Giotto: A Time-T riggered Language for Embedded Programming

by

Benjamin Horowitz

B.A. (Wesleyn University) 1994

A dissertation submitted in partial satisfaction of the
requiremerts for the degreeof
Doctor of Philosophy
in
Computer Science

in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
ProfessorThomasA. Henzinger,Chair
ProfessorEdward A. Lee
ProfessorKamestwar Poolla

Fall 2003

The dissertation of Benjamin Horowitz is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2003

Giotto: A Time-T riggered Language for Embedded Programming

Copyright 2003

by
Benjamin Horowitz

Abstract

Giotto: A Time-TriggeredLanguagefor EmbeddedProgramming

by

Benjamin Horowitz
Doctor of Philosophy in Computer Science

University of California, Berkeley

ProfessorThomas A. Henzinger,Chair

Giotto provides a time-triggered programmer's model for the implementation of embedded
control systemswith hard real-time constraints. Giotto's precisesemartics and predictabil-
ity make it suitable for safety-critical applications.

Giotto is basedaround the ideathat time-triggered task invocation together with
time-triggered mode switching can form a useful programming model for real-time systems.
To substartiate this claim, we describe the useof Giotto to refactor the software of a small,
autonomoushelicopter. The easewith which Giotto expresseshe existing software provides
evidencethat Giotto is an appropriate programming languagefor control systems.

SinceGiotto is a real-time programming language,ensuringthat Giotto programs
meet their deadlinesis crucial. To study precedence-constrainediotto scheduling, we rst
examinesingle-made, single-processorscheduling. We extend to an in nite, periodic setting
the classicalproblem of meeting deadlinesfor a set of tasks with releasetimes, deadlines,
precedenceconstraints, and preemption. We then dewelop an algorithm for scheduling
Giotto programs on a single processorby represerning Giotto programs as instancesof the
extended scheduling problem.

Next, we study multi-mo de, single-processorGiotto scheduling. This problem is
di®erert from classicalscheduling problems, sincein our precedence-constraine@pproad,
the deadlinesof tasks may vary depending on the mode switching behavior of the program.
We presen conditional scheduling modelswhich capture this varying-deadline behavior. We
dewvelop polynomial-time algorithms for someconditional scheduling models, and prove oth-
ersto be computationally hard. We showv how to represen multi-mo de Giotto programsas

instancesof the model, resulting in an algorithm for scheduling multi-mo de Giotto programs
on a single processor.
Finally, we shaw that the problem of scheduling Giotto programs for multiple net-

worked processords strongly NP-hard.

ProfessorThomas A. Henzinger
Dissertation Committee Chair

Acknowledgmen ts

I would like to thank Thomas Henzinger for encouragingand supporting my researd ef-
forts in programming languagesreal-time systems,and scheduling theory, and for his wide-
ranging insight. | wish to thank Edward Lee for the encouragemet) criticism, and discus-
sion that was crucial to the dewvelopmen of Giotto. | would also like to thank Kameshwar
Poolla, for his courseon linear systemsand for being on my quals and thesis committee;
Shanlar Sastry, for generouslysupporting and encouragingthe helicopter project; and Al-
berto Sangiovanni-Vincentelli, for inspiring and leading the investigation of platform-based
design methods for autonomousvehicles.

For their ingenuity, hard work, and e®ectienessin the helicopter project, my
gratitude goesout to Judith Liebman and Cedric Ma. | wish to thank Peter Ray for his
tireless encouragemen and support of the helicopter project; and Hoam Chung, John Koo,
Darren Liccardo, Travis Pynn, David Shim, Ron Tal, and Shannon Zelinsky for their help
with the helicopters.

For early encouragement in hybrid systemsand aviation applications, | wish to
thank John Lygeros, George Pappas, and Claire Tomlin. For stimulating discussionsand
insightful commerts, | would like to thank Steve Neuendor®er Jie Liu, and Rupak Majum-
dar. Special thanks is due to Rupak for implementing a prototype Giotto compiler for the
Lego Mindstorms robots, and for valuable commerts on conditional sdeduling. | would
also like to thank Dmitry Derevyanko and Winthrop Williams for building the Intel x86
robots; and Edward Lee and Xiaojun Liu for help with implementing Giotto asa model of
computation in Ptolemy 1.

| wish to thank David Chinnery, JamesLin, Mark Newman, and Rich Vuduc for
their friendship during the past six years. Finally, | would like to expressmy deepgratitude
to Helen, Daniel, and Sarah Horowitz, and Judith Liebman, without whose support this

work would not have possible.

Contents

1 Intro duction
1.1 Time in embeddedsystemsprogramming
1.1.1 Real-time operating systemsolutions.
1.1.2 Syndironous programming languages.
1.1.3 Fixed logical executiontimes: a disciplined return to threads
1.2 The Giotto abstraction o
1.3 Precedence-constraineddieduling oL
1.4 Overviewofthechapters.
1.5 Notation

2 The Giotto programming language
2.1 Introduction e
2.2 Informal descriptionof Giotto L.
2.3 Formal de nition of Giotto
231 Syntax e
232 Semanics e e
233 Example.
2.4 Platform constraints for Giotto o L.
2.4.1 Abstract Giotto scheduling L.
2.4.2 Giotto annotations
243 Example. e
2.5 DISCUSSION. e e e e

3 Autonomous helicopter implemen tation
3.1 Introduction e
3.2 Background on an autonomoushelicopter
3.3 Common shortcomingsof cortrol systemsdesign
3.3.1 Interleaving nondeterminism
3.3.2 Jditter e
3.3.3 Implicit rates
3.4 A prototype Giotto-based °ight control computer
3.4.1 A Giotto program for helicopter control
3.4.2 An EmbeddedMachine implementation

CONTENTS

3.4.3 Validation using hardware-in-the-loop simulation
3.5 Conclusion

4 Single-mo de, single-pro cessor Giotto scheduling
4.1 Introduction e
4.2 The needfor °exible scheduling,
4.2.1 Preemptibledrivers oL
4.2.2 Spillover.
4.3 Scedulingmodels
4.3.1 The three- eld notation ®] j°
4.3.2 The problem 1jrj;dj;prec;pmtnji
4.3.3 Our problem 1jrj; dj; prec; pmtn; period jj
4.3.4 Twooptimizations
4.4 From Giotto to 1jrj; d;; prec;, pmtn; period jj
4.4.1 The classof single-made Giotto programs
4.4.2 The scheduling problem for single-made Giotto programs
4.4.3 The reduceddata°owgraph.
4.4.4 The instance P[G;wcet] of 1jrj; dj; prec; pmtn; period jj
45 Conclusion

5 Conditional scheduling
5.1 Introduction e
5.2 The conditional scheduling problem
5.21 Treesdeduling
5.2.2 Imprecisetree scheduling
5.2.3 Precedence-constrainedree scheduling.
5.24 Guardedsdeduling
5.3 Hard conditional scheduling problems,
5.3.1 Discrete-timetree scheduling
5.3.2 Directed acyclicgraph scheduling
5.4 Fixed-deadline conditional scheduling
5.5 Conclusion e

6 Multi-mo de, single-pro cessor Giotto scheduling
6.1 Introduction
6.2 The needfor varying-deadlinescheduling.
6.3 Preliminaries
6.3.1 The activities of a multi-mo de Giotto program
6.3.2 Pending computation function of a Giotto program.
6.4 From Giotto to conditional scheduling,
6.4.1 A classof multi-mo de Giotto programs
6.4.2 The scheduling problem for multi-mo de Giotto programs
6.4.3 The sceduling problems generatedby a Giotto program.
6.4.4 The guarded conditional scheduling problem P[m;4
6.4.5 The running time and optimality of Algorithm 6.1

CONTENTS iv

6.5 Conclusion 204
7 Multi-pro cessor Giotto scheduling 207
7.1 Introduction e 207
7.2 Hardnessof multi-pro cessorGiotto scheduling 207
7.2.1 Hardnessof Abstract Giotto scheluling 208
7.2.2 Hardnessof Host-assignel abstract Giotto scheluling 209

7.3 Parallel and job shopscedulingmodels 211
7.3.1 The®j j° notationrevisited 212
7.3.2 Jobshopsdiedulingmodels 213
7.3.3 Parallel schedulingmodels. 214

7.4 Conclusion e 216

Bibliograph y 217

Chapter 1

In tro duction

An emleddad systemis, for the purposesof this dissertation, a computer system
that is physically incorporated into, and integral to the proper functioning of, a larger sys-
tem, the larger systembeing not rst and foremosta computer [Man94, Lev0(]. Embedded
systemsmay be found in aircraft control systems,medicalinstruments, automobiles, mobile
phones, and kitchen appliances. Embedded systemsare often hard real-time systems:the
correctnessof such a system is dependert not only on the value of its outputs but also
on the timing of its outputs [Sta8f. Embedded systemsare normally reactive: an execu-
tion of such a system consists of an ongoing reaction to its environment, at the speed of
the ervironment [HP85]. Finally, embedded systemsare often safety-critical: the improper
functioning of sudch a system can have negative e®ectson human health. This dissertation
will study the programming of hard real-time, reactive, safety-critical embedded systems.

1.1 Time in embedded systems programming

Embeddedsoftware systemsinteract with and often cortrol their physical environ-
mert, and therefore cannot be understood in isolation from that environment. Gaining suc
an understanding requires the recognition that embedded systemsare physial processes
interacting with other physical processes.Crucial to this interaction is timing. In order to
analyze, simulate, or predict the physical e®ectsof an embeddedsoftware system, especially
to the degreerequired for safety-critical systems,one needsto know when the interactions
take place.

As an example, consider an aircraft °ight corntrol computer, in particular the

CHAPTER 1. INTRODUCTION 2

SpaceShuttle's primary avionics software [Car84]. A °ight control computer is frequertly
responsible for a multitude of functions, from guidance, navigation and control (GNC), to
monitoring subsystemhealth and diagnosingfaults, to managemen of the pilot/mac hine in-
terface. Many of thesefunctions, and especially the GNC functions, require reading sensors,
sudch as an inertial measuremeh unit (IMU) that measuresvehicle velocities and acceler-
ations; followed by computing with these sensorvalues, suc as estimating system state
or calculating cortrol laws; followed by using the results of this computation to physically
in°uence actuators, such as ailerons and elevators. These sense-compute-actuateactions
commonly take place in a periodic cycle. On the Shuttle, the rates of the periodic GNC
processesange from 25 Hz for °ight control down to 0.25Hz for pilot display updates. The
tight timing and phasing relationships betweenthe Shuttle's GNC functions were a major
in°uence on the designof the GNC subsystem[Car84].

Sincetimed software plays an essetial role in many embeddedsystems,it is highly
desirableto havetoolsfor its reliable construction. Sadly, however, the commonly usedtools
of embedded systemsprogramming are consideredoutdated in other branchesof computer
science.The Shuttle's software, complete circa 1980,is much closerto the current state-of-
the-art in embedded systemsprogramming than, say, databaseimplementation from 1980
is to current databaseimplementation.

The reasonsfor this state of a®airsmay be traced to two root causes.First, em-
bedded systemsoften have ditcult-to-meet performancerequiremerts, and are subject to
the cost pressuresof high-volume production. The combination of thesefactors often makes
for implementations optimized for speedand cost at the expenseof principled design. Sec-
ond, computer sciencehas tended to view the physicality of enmbedded software as untidy;
in particular, the notion of time has beenabstracted out of computer science[Lee03. The
models of computer science] from Turing machines, to the , -calculus, to procedural pro-
gramming languages,to concurrert formalisms such ascommunicating sequetiial processes
| all abstract out the notion of real, physical time. At best, the notion of time available
within such modelsis looseor imprecise: witness UML, which allows one to annotate mod-
els with timing constraints, but does not o®era preciseinterpretation of the meaning of
such constraints [Dou99]. Though the successesf computer scienceare partly due to ab-
straction, the timing behavior abstracted out is essetial for real-time systems. The lack of
attention paid to time leads many enbedded systemsprogrammersto shun contemporary

programming languagesin favor of tools like assenbly languagethat at least allow them

CHAPTER 1. INTRODUCTION 3

cortrol over timing behavior.

As embeddedsystemsprogramming tools and practiceslanguish, the needfor such
tools is becoming more pressing. The increasing speed of processorsmeansthe tasks that
once required seweral certral processingunits (CPUs) to accomplish can now be accom-
plished by a single CPU. At the sametime that more functionality is getting paded into
embedded software, embedded software is getting padked into more places. Suc software
is often not simply a feature that, though providing some added corvenience,is mainly
unessetial. Instead, from automobiles to satellites, we rely up enmbedded software every
day. What then can be done to improve tools for building embedded software in which

timing is critical?

1.1.1 Real-time operating system solutions

One response to this question is that tools for controlling timing in embedded
systemsalready exist, in the form of xed-priorit y scheduling and real-time operating system
(RTOS) services[Bur94, BW96]. Consistert with this view, and often expressedalongside
it, is the opinion that a lack of education is the main reasonthat common practice has
not caugh up with a perfectly good engineering solution. After all, the argumert goes,
embedded systems engineersare often well-trained in their own specialty, be it chemical
processcontrol or signal processingwhat is missingis training in the appropriate techniques
of computer science.

Let us explore this position. Under an RTOS, the functions to be performed by
embedded software are partitioned into interrupt handlers on the one hand, and threads
or processeson the other. The usual purposeof an interrupt handler is to interact with
a physical device. The execution of an interrupt handler is often triggered by a source
exogenousto the CPU, such as a button pressor a timer. Interrupt handlers can provide
very precise cortrol over the timing behavior of embedded software. However, if many
interrupts require servicewithin a short time interval, someinterrupts may not be handled
at all, and the CPU may becomeoverloaded. Thus, typically the only activities processed
by interrupt handlers are those for which immediate responseis crucial.

The remaining tasks of an embedded software system are executedby threads or
processes.A thread or processis sequetiial stream of instruction execution, normally re-

quiring computation time that is substartially longerthan the time required by an interrupt

CHAPTER 1. INTRODUCTION 4

Thread t runs to completion, starting at time 0:

\ \ \ \
0 8 10 18 20
output 1 output 2

t

to \ \

[[\ \
0 8 9 19 20 28 30
output 1 output 1 output 2

Figure 1.1: The outputs of a multi-threaded program.

handler. Threads and processesare equivalent for the purposesof this discussion;we will
usethe term thread to stand for both.! Each thread usually possesseiis own rst-in, rst-
out stack for executing function calls. Threads may operate independertly, or they may
communicate or shareresources.In the latter case,semaphoregDij65], monitors [Hoa74],
or messagejueuesare normally used.

Thread-basedsystemshave one signi cant disadvantage: they may possess high
degreeof nondeterminism, unlessvery carefully designed. Supposethat one thread t pro-
ducestwo outputs, normally 10 ms and 20 ms after t beginsexecution, but perhapsasearly
as 8 ms and 18 ms. Sudh nondeterminism in execution time is common in software with
conditional behavior, or on CPUs that have architectural featuressud as cacding. If t is
preempted by another thread t° 9 ms after t begins, and t° retains cortrol of the CPU for
10 ms, the rst output of t may appear at 20 ms, and the secondmay appear at 30 ms
(seeFigure 1.1). On the other hand, the outputs of t may appear at 8 ms and 28 ms. The
timing behavior of the obsenable outputs of the systemhasbecomedixcult to predict: the
outputs may be separatedby aslittle as8 ms or as much as 22 ms.

The above phenomenonis symptomatic of a larger problem, the problem of inter-
leaving nondeterminism: in a multi-threaded system, the actions of one thread get inter-
leaved with those of other threads| shu2ed, liketwo deds of cards, due to the choicesof
the system scheduler. Sincethe behavior of the scheduler is typically beyond the reach of

!Threads and processesii®er in that athread separatesthe concept of a sequeriial stream of instructions
from the additional state that may be desirable for running a program, for example an addressspace.

CHAPTER 1. INTRODUCTION 5

the applications programmer, such e®ectsare ditcult to predict, and, when they do occur,

dixcult to reproduce. Moreover, in the above example, the threads did not communicate.

If communication is intro duced, threads may needto wait for oneanother, and the situation

becomeseven more ditcult to analyze. Interleaving nondeterminism greatly complicates
the design and debugging of multi-threaded systems. In an embedded system, where a
rapidly operating ervironment possesseis own degreeof nondeterminism or randomness,
the software engineeringtask can easily becomeunbearably complex.

RTOSs have another disadvantage: they provide only low-level mecanisms for
controlling the scheduling of threads. Typically, a programmer is allowed to assignto ead
thread a number, called the thread's priority . Among the threads available to execute
at any momern, the thread that actually executesis the one with the largest priority.
Priorities are often thought to be an insuciently abstract means of cortrolling thread
scheduling, and, sothe argumert goes,their useshould be avoided. A staunch proponert of
“xed-priorit y scheduling would reply that, when usedproperly, priorit y-basedsceduling is
e®ectie for guararteeing that deadlinesare met, and that rate-monotonic (RM) sdeduling
theory provides instructions for this proper use. In order to explore this reply, we brie°y
introduce RM scheduling; a more detailed intro duction may be found in [But97].

RM sdceduling has its origins in C. Liu and J. Layland's seminal paper [LL73],
where the setting studied is as follows. Each task t; in a set of n tasks ftq;ty; ¢¢¢;thg
must be executedon a single CPU. Task t; has a period Y4, and a worst-case exeution
time g. Task t; must be executed for g time units between times k% and (k + 1)%,
for k = 0;1;2;¢¢¢. For a number ¢ , 0, we say that task t; is complete at ¢, if it has
executedfor g time units since the greatest integral multiple of % lessthan ¢. At any
time instant ¢, from among all the tasks not complete at ¢, the RM algorithm executesa
task t; with minimum period %. It was shown in [LL73] that the RM algorithm produces
a feasible schedule if P ez - n(2¥"; 1). The RM algorithm may be implemented
in a priorit y-based RTOS by assigninga priority p; to ead task t; in such a way that if
Y4 < Yo, then p; > pjo. The RM algorithm hasbeenextendedto cover many variants of the
model of [LL73]: for example, settings in which the invocation of task t; at time k% must
complete at sometime k¥ + d; strictly beforetime (k + 1)% [LSD89]; settings in which
tasks interact through sharedresources|SRL90]; and settings in which aperiodic tasks are
preser in the task set [SSL89].

The author of this dissertation doesnot wish to nd fault with RM theory per se:

CHAPTER 1. INTRODUCTION 6

RM theory has proved useful in a variety of contexts, including xing a software failure on
the Mars Path nder [Jon97]. Instead, the author wishesto arguethat the typical scenarioin
which RM analysisis usedmakesits successfubpplication ditcult. Few programmershave
knowledgeof, or experiencein using, RM analysis. If the job of assigningpriorities to tasks
is givento a programmer, the programmer may choosepriorities that optimize performance,
instead of instead of choosing priorities that meetthe conditions of RM analysis. Moreover,
the choice of RM theorem or type of analysis most appropriate to a given implementation
often requires extensive knowledge [KRP * 93]. For thesereasons,the work of RM analysis
is often given to a specialist who does not have direct involvemen in the production of
the actual code. Sud a division of labor not only requires employing a separate person,
but may also result in a lack of consistencybetweenthe designthat is analyzed and the
program that is implemented.

Rather than leaving the proper assignmenm of priorities to the programmer or to
a specialist, we advocate the use of software tools to automatically analyzethe schedulabil-
ity of, and produce schedulesfor, embedded programs. Further, we advocate automating
schedulability analysisby placing it within the compiler. Though RM theory can sere use-
fully in such arole, in order to uselessrestricted task models, and to analyze conditional
real-time programs, we will employ sdheduling theory in the style of operations resear®

(seeSection 1.3).

1.1.2 Synchronous programming languages

The syndironousprogramming languagesaddressthe problemsof interleaving non-
determinism discussedn Section1.1.1[Hal93]. The main idea of the synchronouslanguages
is to supposethat a reactive computer program computesits outputs instantaneously (at
least notionally) upon receiving inputs from its ernvironment. This supposition is called the
synchmonous hypothesis The instantaneity of the syndhronous hypothesis has three com-
ponerts. First, a syndhronous program changesstate instantaneously upon receiving input
ewvents. Second,the elemerts of a synchronous program communicate instantaneously upon
changing state, in the processinstantaneously generating further internal events. Third, a
synchronous program generatesoutput events instantaneously upon receiving input events
and generating internal everts. In sum, the ervironment of a syndronous program gen-
erates a sequenceof input ewvents, and the program's change of state, internal everts, and

CHAPTER 1. INTRODUCTION 7

output everts are simultaneous with ead input evert.

The syndironous languageshave two advantagesover multi-threaded systems. In
a multi-threaded system, ead thread constitutes its own time line; these individual time
lines are interleaved by the scheduler. In cortrast, the reactions of a synchronous program
canall be dated on the sametime line, sincethesereactionsare instantaneous. The problem
of interleaving nondeterminism therefore disappearsin the synchronouslanguages.Second,
syncronouslanguageshave a formal sematriics that rigorously de nesthe possiblebehaviors
of a syndchronous program. This "xes the meaning of a synchronous program independert
of any implementation.

The two main exemplars of the syndironous languagesare Esterel and Lustre
[BG92, HCRP91]. Esterel is called a control-dominated language becauseit emphasizes
control °ow, and Lustre is called a data-dominated language becauseit emphasizesdata
°ow. Esterel and Lustre also di®er in their treatment of a key semaric ditculty. The
fact that the componerts of a syndhronous program communicate instantaneously may lead
to paradaxes. For example, an Esterel program may be written that is equivalert to the
instruction \emit asignal S if and only if S is not presert" [BG92]. In Lustre, instantaneous
cyclic dependenciesf the above sort are expresslyforbidden: data®°ow cyclesmust be broken
by delay elemens [HCRP91]. In classical Esterel, such cyclesare allowed so long as they
satisfy the requiremerts of Esterel's xed-point sematriics.

The syndironous languageshave two main problems. Both problems stem from
the synchronous hypothesisitself, in particular from the supposition that computation takes
notime. The rst problem is that the synchronouslanguagesdo not provide tools, whether
conceptual tools or software tools, for precisely characterizing the temporal relationship
betweenthe ervironment and the implementation of a syndironous program. The authors
of the syndhronous languagesrecognizethat the synchronous hypothesis cannot truly hold
in an implementation, becauseall computation takestime, even if only a small amourt,
and therefore an implementation cannot react truly instantaneously. For an implementa-
tion, the syndironous hypothesisis therefore relaxed to essetially the condition that the
environment remain unchanged during a reaction of a synchronous program [BB91]. In
other words, a synchronous program can react as slovly asit pleases,solong asthe envi-
ronment doesnot changeduring a reaction. Though such a relaxation of the synchronous
hypothesisaids in implementing a synchronous program, it also weakensthe analyzability

of the temporal connection betweena synchronous program and its ervironment. Contin u-

CHAPTER 1. INTRODUCTION 8

input output input output input output
ewerts ewerts ewerts ewerts ewerts ewerts

S S S
- - - e e

Figure 1.2: The reactions of a syndironous program.

ous physical environments are always changing, and as we have argued, to understand the
relation betweena real-time program and its ervironment, it is desirableto know exactly
when the program producesits outputs. One would like to be able to characterize this
temporal relationship | indeed, onewould like the compiler to do soautomatically | but
the syndhronous languagesdo not o®ersupport for such a characterization.

Ideally, a synchronous program should react quickly to input events. The second
problem of the syndhronous languagesis that a program that reacts quickly to input evens
will have alow CPU utilization. Supposethat a synchronous program, upon receiving a set
of input events, always respondswithin " time units, for somesmall " 2 R (seeFigure 1.2).
If the syndhronous program reactsquickly | i.e.,if " isvery small| then CPU utilization
is very low, as we how explain. For a sequenceof input ewverts at times ¢1; éo; ¢3; ¢¢¢, the
proportion of time the CPU is active can easily be seento be " ¢limji; E(¢i)=¢, where
E(¢;) is the number of input events up to time ¢;. If on averagea constart number of input
events occur per unit of time, and " is small, then CPU utilization is asymptotically low.

1.1.3 Fixed logical execution times: a disciplined return to threads

The two fundamertal problems just discussedlead us to look for alternativesto
the syndchronous languages. Sincethe low CPU utilization causedby exclusive reliance on
interrupt handlers motivated the introduction of threads, it is reasonableto ask whether a
principled reintro duction of threads can ameliorate the low CPU utilization of synchronous
languages.

Let us therefore consider the following scenario. Supposewe have a set of tasks.
With ead task is ass@iated a start time an end time. Also assaiated with ead task is a
set of read ports, a set of written ports, and a function that, given valuesof the read ports,
computesvaluesfor the written ports. Each task logically beginsexecuting at its start time.

CHAPTER 1. INTRODUCTION 9

A task may physically start executing after its start time, but logically it beginsat its start
time. When a task begins, it reads data values from its read ports, and then commences
to compute the value of its function. Logically, this computation cortinuesuntil the task's
end time; physically, the computation may complete beforethe end time, with the valuesof
the output ports bu®ereduntil then. At the end time, the computed value of the function
is placedin the written ports.

We call the supposition that ead task logically executesfrom its start time to its
end time, the xed logical execution time (FLET) hypothesis. The FLET hypothesis con-
trasts with the syndironous hypothesisin that all computation takessomepositive amount
of time, rather than being instantaneous. The behavior of a FLET program possessean
intuitiv e, deterministic semarics that may easily be formalized: given initial port values,
one may de ne, for ead time ¢ and port p, the value of p at ¢; speci cally, port values
changeonly when a task starts or ends.

Furthermore, the problem of scheduling a FLET program can easily be modeled
as an instance of the saheduling problem 1 j ri;pmtn j Lmax, which is the problem of
preemptively scheduling a set of tasks with execution times, releasetimes, and deadlines,
on a single processorso that maximum latenessof the tasks is minimized.? We say that a
scheduling algorithm is optimal for 1j rj; pmtn j L max if, givenany instanceof 1j ri; pmtn j
L max asinput, the algorithm always producesa schedulethat minimizes maximum lateness.
The earliestdeadline rst (EDF) algorithm is optimal for 1 ri; pmtn j L max [Jac59.2 Wesay
that a stheduleis feasible if every task meetsits deadlinein the schedule. Given worst-case
executiontimes (WCETSs) for ead task of a FLET program P, the translation from P to an
instanceof 1j ri; pmtn j L max is straightforward.* The modeling of aFLET program and the
application of a scheduling algorithm can be performed by the compiler, which then hasthe

ability to generatea feasible schedule from a FLET program wheneer a feasible schedule

2The three-"eld notation ®] ~ j ° [LLLK82] is commonly usedto classify scheduling problems, and will
be discussedfurther in Chapters 4 and 7.

3There also exist algorithms optimal for more general problems, such as the algorithm of [BLLK83]. For
F{me periodic task setsdescribed in Section 1.1.1, a necessaryand suzcient condition on schedulabilit y is that

', e=% - 1. This utilization test canbe applied to an instance of 1j ri; pmtn j Lmax only if the instance
has a periodic structure. In contrast, the EDF algorithm determines whether any instance of 1j r;; pmtn j
Lmax has a feasible schedule.

4The problem of estimating WCETSs is orthogonal to the FLET model and scheduling techniques for FLET
programs. Estimating WCETS is, of course,an undecidable problem in general, becauseof a straightforw ard
reduction from the halting problem. For CPUs with architectural features such as cachesand pip elines, the
problem is also practically very dixcult. However, recert researd [TFWO00, FHL * 01] has made progressin
accurately estimating WCETSs for complex architectures using abstract interpretation [CC77].

CHAPTER 1. INTRODUCTION 10

exists. This shift in the responsibility of schedule generation, from the operating system
or the programmer to the compiler, has two advantages. First, the compiler-generated
schedules are ezxcient, since the compiler's scheduling algorithm is aware of the timing
constraints of the FLET program. In cortrast, it would be ditcult to make an RTOS aware
of theseconstraints, sinceRTOSs typically posses®nly simplistic, priorit y-basedsceduling
policies. Second,the compiler-generatedschedulesrelieve the programmer of the dixcult
and error-prone work of manually generating schedulesor assigningpriorities. The FLET
programming model, and the automatic synthesisof schalulesfor FLET programs, are the
central ideas of this dissertation.

The ideaof usinga compiler to ched the schedulability of real-time programsis not
new: the compilers of the languagesMetaH [VB93, Ves97],Real-Time Euclid [KS86], and
RTC++ [ITM90, TK88] performed schedulability cheds. In cortrast to theseapproadies,
this dissertation usesprecedene-oonstrained scheduling models to expresscommunication

dependencies.The use of precedenceconstraints will be described in Section 1.3, below.

1.2 The Giotto abstraction

Though the simple FLET model presenried in Sectionl1.1.3canbe givenanintuitiv e
mathematical semarics, and is amenableto automatic scedule synthesis, the model does
not by itself form an abstract model for programming embedded control systems,for two

reasons:

1. The simple FLET model requires that the programmer specify tasks individually,
which would result in verbose programs. Moreover, the simple FLET model has a
“nite setof activities, whereasreactive programsare usually nonterminating, and thus
cortain anin nite number of activities. In real-time systems,tasks are often periodic.
Periodic task invocations naturally allow terse descriptions of nonterminating task
sets.

2. Second, many real-time systems have a set of operational modes which permit a
dynamic changeduring runtime of the set of tasksinvoked. For example,the Shuttle's
modesinclude pre°ight GNC chedout, ascer/ab orts, on-orbit, and entry. Switches
between modes result from crew input or automatically as a result of a condition

detectedby the software[Car84]. Mode changesallow a limited but analyzableamourt

CHAPTER 1. INTRODUCTION 11

°ight cortrol system
sensors sensor lters cortrol laws act. drivers actuators
IMU pitch aileron1 ¢
MU 771 1000Hz [T 500Hz [[[T| 1000Hz |, || @lleronl
GPSR lateral aileron 2 [T .
GPSR = 5Hz [[[T] 250Hz [[[T| 1000Hz |1, || @lleron2
T n T |
. | air data || throttle || tailplane [T—7 .
air data 17— 100Hz 250 Hz 1000Hz |1,_|| tailplane
. . pilot stick rudder [T
pilot stick *%F 100Hz [1000Hz | rudder

aircraft dynamics |

Figure 1.3: A °y-by-wire °ight cortrol system.

of dynamic change of behavior at runtime.

To motivate a more applicable abstract programmer's model for embeddedcortrol
systems,considera typical °y-by-wire °ight cortrol system[LRR92, Col99], which consists
of the interconnected sensors, lters, cortrol laws, and actuators pictured in Figure 1.3.
The sensorsinclude an IMU; a global positioning system receiver (GPSR), for measuring
position; an air data measuremen system, for measuring such quartities as air pressure;
and the pilot's cortrols, such asthe pilot's stick. Each sensorhasits own timing properties:
the IMU, for example,outputs its measuremei 1,000times per second,whereasthe pilot's
stick outputs its measuremen only 100times per second. Three separatecortrol laws| for
pitch, lateral, and throttle control | needto be computed. The systemhasfour actuators:
two for the ailerons, one for the tailplane, and one for the rudder. Approximate timing
requiremerts for the cortrol laws and actuator tasks are also shavn in Figure 1.3.

We have just described one operational mode of the °y-by-wire °ight cortrol sys-
tem, namely the cruise mode. There are four additional modes: the take-o®, landing,
autopilot, and degradedmodes. In ead of these modes, additional sensingtasks, cortrol
laws, and actuating tasks needto be executed,as well as someof the cruise tasks removed.
For example, in the take-o®mode, the landing gear must be retracted. In the autopilot
mode, the cortrol systemtakesinputs from a supervisory °ight planner, instead of from the
pilot's stick. In the degradedmode, someof the sensorsor actuators have su®ereddamage;

CHAPTER 1. INTRODUCTION 12

the cortrol system compensatesby not allowing maneuwersthat are as aggressie as those
permitted in the cruise mode.

The Giotto programming languageprovides a programmer's abstraction for speci-
fying control systemsthat are structured like the °y-by-wire example. The basicfunctional
unit in Giotto is the task, which is a periodically executed piece of, say, C code. Se\eral
concurrert tasks make up a mode. Taskscan be added or removed by switching from one
mode to another. Taskscommunicate with ead other, aswell aswith sensorsand actuators,
by so-calleddrivers, which is code that transports and converts values between ports. The
periodic invocation of tasks, the reading of sensorvalues, the writing of actuator values,
and the mode switching are all triggered by real time. For example, one task t; may be
invoked every 2 ms and read a sensorvalue upon ead invocation, another task t, may be
invoked every 3 ms and write an actuator value upon ead completion, and a mode switch
may be contemplated every 6 ms. This time-triggered semartics enablese+cient reasoning
about the timing behavior of a Giotto program, in particular, whether it conformsto the
timing requiremerts of a mathematical model of the cortrol design.

A Giotto program doesnot specify where, how, and whentasks are scheduled. The
Giotto program with taskst; and t, can be compiled on platforms that have a single CPU
(by time sharing the two tasks) aswell ason platforms with two CPUs (by parallelism); it
can be compiled on platforms with preemptive priorit y scheduling (such as most real-time
operating systems)as well ason truly time-triggered platforms (such asthe time-triggered
architecture (TT A) [Kop97]). All the Giotto compiler needsto ensureis that the semartics
of the program | i.e., functionality and timing | is presened. To this end, the compiler
needsto solve a possibly distributed scheduling problem. This can be ditcult, and to make
the job of the compiler easier,a Giotto program can be annotated with compiler directives
in the form of platform constraints. A platform constraint may map a particular task to a
particular CPU, assigna particular priority to a particular task, or schedule a particular
communication evert betweentasks in a particular time slot. Such annotations, however,
in no way modify the functionality and timing of a Giotto program; they simply aid the
compiler in realizing the semariics of the program.

Giotto is similar to architecture description languagegADLS) [Cle96]. Like Giotto,
ADLs shift the programmer's perspective from small-grained features such as lines of code
to large-grained features sud as tasks, modes, and inter-componert communication, and

they allow the compilation of scheduling code to connect tasks written in convertional

CHAPTER 1. INTRODUCTION 13

programming languages. The design methodology for the Mars system, a predecessorof
the TTA, distinguishesin a similar way \programming in the large" from \programming
in the small" [KZF* 91]. The inter-task communication semartics of Giotto is particularly
similar to the MetaH language[VB93, Ves97],which is designedfor real-time, distributed
avionics applications. MetaH supports periodic real-time tasks, multi-mo de cortrol, and
distributed implementations. However, MetaH di®ersfrom Giotto in two respects: it does
not have a formal semartics, and mode switchesmay occur at any time [Ves94],not only
at times speci ed prior to runtime, as with Giotto. Giotto can be viewed as capturing a
time-triggered fragmert of MetaH in an abstract and formal way. Unlike MetaH, Giotto
doesnot constrain the implementation to a particular scheduling scheme.

The goal of Giotto | to provide a platform-independert programming abstraction
for real-time systems| is of course shared by the synchronous programming languages.
The semariics of Giotto are particularly similar to those of Lustre. While the synchronous
reactive languagesare designedaround zero-delay value propagation, Giotto is basedon the
formally wealker notion of unit-delay value propagation, becausein Giotto, the xed logical
execution time is always strictly positive. This decision shifts the focus and the level of
abstraction in essetial ways. In particular, for analysis and compilation, the burden for
the well-de nednessof valuesis shifted from logical xed-p oint considerationsto physical
scheduling constraints (in Giotto all values are, sematriically, always well-de ned). Thus,
Giotto can be seenas identifying a class of syndironous reactive programs that support

typical real-time cortrol applications and excient code generation [HK02].

1.3 Precedence-constrained scheduling

A key elemen of our approach to scheduling Giotto programs is to use prece-
denceconstraints for modeling data°ow dependencies.In previous approadcesto scheduling
Giotto, the scheduling model was unnecessarilyrestrictiv e, becauseintertask communica-
tion was assumedto occur at prede ned instants [HKMMO02]. We relax this assumption,
instead requiring that only the communication with the external world happensat prede-
‘ned instants, all other communications being constrained by data®ow dependencies. In
this relaxed context, the relevant scheduling questionis: Can a precedence-constrainecget
of activities with releasetimes, deadlines,and worst-caseexecution times be scheduled to

meetall deadlines?Our useof precedenceonstraints allows more programsto be scheduled;

CHAPTER 1. INTRODUCTION 14

we now sketch why this is so.

The basic idea of the precedence-constrainedapproac is illustrated by the fol-
lowing FLET program, consisting of two tasks t and t® Supposethat t samplesa sensor
at 0 ms and writes port o at 10 ms. Task t° reads o at 10 ms and modi es an actuator
at 20 ms. In the programmer's model, the requiremert that t nish at 10 ms and that t°
start at 10 ms de ne the data’ow dependencebetweent and t® However, let us suppose
that the write and read at 10 ms are purely internal to the program, and that the only
externally obsenable activities are the sensorread at 0 ms and the actuator modi cation
at 20 ms. The constraint that t nish before 10 ms, and that t° start after 10 ms, do not
therefore hold for an actual implementation. Instead, the only requiremerts are that t not
begin before 0 ms, sinceit is at 0 ms that the sensorneedsto be sampled; that t nish
beforet®begins (in symbols, t A t9, sincet suppliest®with an input; and that t°not com-
plete after 20 ms, sinceit is at 20 ms that the actuator needsto be modi ed. Indeed, if t
requires 15 ms of CPU time, and t0 requires 5 ms, then executingt from 0 to 15 ms, and
t0from 15 to 20 ms, meetsthe relaxed constraints. Modeling data®ow dependencieswith
precedenceconstraints therefore allows more programs to be scheduled, while preserving
both the timing of obsenable behaviors and the programmer's abstraction of xed logical
execution times.

The use of precedenceconstraints also allows us to borrow algorithms and con-
cepts from operations researt). For single-processor, single-made settings, we adapt an
algorithm for a precedence-constrainedrersion of the problem 1 ri;pmtn j Lmax [BA76].
The extensionof this algorithm to in nite, periodic task setsis a cortribution of this disser-
tation (Chapter 4). For multi-pro cessorsettings, the standard classi cation of scheduling
problems [LLKS93, LLK82] has assistedus in classifying as NP-hard the complexity of
multi-pro cessorGiotto sceduling (Chapter 7).

For multi-mo de Giotto programs, a precedence-constrainedriew of scheduling in-
troducesa feature not found in traditional traditional sdeduling models: the deadlinesof
a task may change depending on the branching behavior of the program. This feature
motivates the dewvelopmert of algorithms for conditional scheduling with varying dead-
lines (Chapter 5). Though xed-deadline conditional scheduling has recertly been stud-
ied [Bar98a, Bar98b, CETO01], to the author's knowledge this dissertation constitutes the
“rst study of varying-deadline conditional scheduling. The algorithms dewveloped in the

courseof this study are not only novel and of independert interest, but also allow Giotto

CHAPTER 1. INTRODUCTION 15

programsto be scheduled that cannot be scheduled with xed-deadline techniques (Chap-
ter 6).

This dissertation advocatespre-runtime sceduling approad, in which a complete
schedule for the implementation of a FLET program is produced beforeruntime. The pre-
runtime approad cortrasts with an online approad, in which the sceduler decidesat
runtime how to allocate the CPU to tasks. For safety-critical systems,an online approact
needsto be complemerted either with pre-runtime analysisto determine whether the online
schedulerwill producea feasibleschedule[LL73, BHR93], or with an online algorithm whose
performancedegradesgracefully in the presenceof overload [BKM * 91, BS93]. Pre-runtime
scheduling has two advantages. First, it minimizes the time required for runtime actions,
since all but the very simplest decisionsare made prior to runtime. Second,it produces
scheduleswhich can be can be veri ed prior to runtime, independertly of the algorithm
that producedthem; for safety-critical systemsthis latter feature is desirable.

Pre-runtime scheduling is alsousedin the TTA. Giotto wasinspired by the TTA,
particularly by the idea that time-based programming could servwe as a meansfor imple-
menting safely-critical real-time systems. However, Giotto and the TT A are conceptually
of di®eren sorts: while the TTA is a hardware- and protocol-basedrealization of the time-
triggered paradigm, Giotto is a hardware- and protocol-independert programmer's model
for time-based applications. Thus, while the TTA provides a natural platform on which
to run Giotto programs, it is by no meansthe only sud platform. Indeed, a platform for
running Giotto neednot even be a time-basedimplemertation; an EDF- or priorit y-based

implementation may instead be suxcient. Existing platforms will be discussedn Chapter 2.

1.4 Overview of the chapters

This dissertation is structured as follows. Chapter 2 preseris the syntax and
semariics of Giotto. Section 2.2 informally describes the elemeris of a Giotto program:
ports, tasks, and modes. Section 2.3 then formally de nes Giotto's semartics. Section 2.4
describes an abstract version of the scheduling problem that the Giotto compiler needs
to solve, and describes how a Giotto program can be annotated to assistthe compiler in
distributed code generation.

Chapter 3 shows how Giotto may be usedto redesignthe software of an existing

real-time system, a small autonomous helicopter. Section 3.2 brie®y intro duceshelicopter

CHAPTER 1. INTRODUCTION 16

°ight. Section3.3discusseshree commonshortcomingsof the designof software for cortrol
systems. Giotto addressegwo of theseshortcomings,and the third is addressedoy carefully
designingthe software that interacts with sensors.Finally, Section3.4 describesa prototype
Giotto-based °ight corntrol computer, including a Giotto program for helicopter cortrol
(Section 3.4.1), an implementation of the Embedded Machine [HK02] for executing Giotto
programs (Section 3.4.2), and a hardware-in-the-loop helicopter simulator (Section 3.4.3).
The redesignedhelicopter software is more predictable and abstract. At the sametime,
the easewith which Giotto expressedthe functionality of the original helicopter software
supports our argumert that Giotto provides a natural programming model for hard real-
time cortrol systems.

Chapter 4 beginsa study of precedence-constrainedsiotto scheduling. This study
cortinues for the remainder of the thesis. A Giotto program may be either single-made
or multi-mo de, and may be executed on either a single processoror a distributed set of
processors.Of the resulting four cases,we considerin detail single-made, single-processor
Giotto scheduling (Chapter 4); and multi-mo de, single-processorGiotto scheduling (Chap-
ters 5 and 6). Sincemulti-pro cessorscheduling problems are often hard, both theoretically
and practically, our brief treatment of multi-pro cessorGiotto scheduling is limited to a
discussionof hardnessresults (Chapter 7).

To begin our study of Giotto scheduling, Chapter 4 rst considersa simple case:
the problem of scheduling a single-made Giotto program on a single processor.Section 4.2
motivates the needfor precedence-constrainedsiotto scheduling by preserting two Giotto
programsthat could not be scheduled by previous approaces, but can be scheduled using
the techniquesof Chapter 4. Section4.3 developsa scheduling model appropriate for single-
mode Giotto programs. Section4.3.1introducesthe standard three- eld notation ®j | °
for classifying scheduling problems[GLLK79, LLK82, HLv97]. The three- eld notation aids
in locating a standard scheduling problem similar to single-processorGiotto scheduling.
This standard problem is called 1 rj; d;j; prec; pmtn j j , and is described in Section4.3.2.
This problem askswhether a nite set of precedence-constrainedasks with releasetimes
and deadlinesmay be feasibly scheduled on a single processor. To dewvelop a scheduling
algorithm appropriate for Giotto programs, which are nonterminating, Section4.3.3de nes
avariant of 1jr;; d;; prec, pmtn j j . We call this variant 1] rj; d;; prec; pmtn; period j
becauseof its periodic nature. Section 4.3.3 then dewelops an algorithm for sdeduling

instancesof the periodic variant that producesfeasible scheduleswhenewer sud sdedules

CHAPTER 1. INTRODUCTION 17

exist.

Section 4.4 shaws how to usethe model of Section 4.3.3to sdhedule Giotto. We
call the algorithm of Section 4.4 a synthesisalgorithm to distinguish it from the algorithm
of Section4.3.3. Section4.4.1 rst de nes a classof single-male Giotto programs on which
the synthesis algorithm operates. Section 4.4.2 then de nes the notion of "-feasibility:
informally, a Giotto program G is "-feasibleif there exists a feasible schedule for G that
executesevery sensorand actuator within " time units of its ideal time of execution as
speci ed in the Giotto semarics. The quantity " istermed jitter tolerance. Section4.4.2also
intro ducesthree scheduling problemsfor Giotto: (1) Givena single-made Giotto program G,
doesthere exist an " > 0 such that G has an "-feasible schedule? (2) If so, what is the

ng

minimum "° such that G has an ""-feasible schedule? (3) Given G and ", synthesize an
"“-feasibleschedule. In the remainder of Chapter 4, we presen the synthesisalgorithm that
solvesthese problems. Section4.4.3 describesa data structure, the reduced data°ow graph,
that is usedby the synthesisalgorithm. Section4.4.4describesthe synthesisalgorithm itself,
which translates a single-made Giotto program that is a member of the classof programs
de ned in Section4.4.1into an instance of the scheduling problem 1 j rj; d;; prec; pmtn;
period j i . The synthesisalgorithm runs in time pseudomlynomial in the description of its
input Giotto program, and solvesthe problems of Section 4.4.2.

Chapters 5 and 6 study the problem of scheduling multi-mo de Giotto programs
on a single processor.Chapter 5 contains just the scheduling theory, with little mertion of
Giotto, and Chapter 6 cortains the application of this theory to Giotto. The reader wish-
ing to understand only the smallest portion of Chapter 5 necessaryfor Giotto scheduling
needsto read only Sections5.2.1,5.2.3,and 5.2.4. Chapter 5 intro ducesa novel scheduling
model, conditional scheduling with varying deadlines,in which the scheduling problem is
naturally viewed asa gamebetweenthe scheduler and the ervironment. Section5.1 surveys
related work; existing conditional scheduling models require that the deadline of a task be
‘xed when the task is released. Section 5.2 de nes the model that will be used through-
out Chapter 5. In this model, the deadlinesof jobs are given by a nite state machine.
Certain variants of this model are computationally easy and others are computationally
hard. For the easyvariants, we provide a polynomial-time algorithm; for the hard variants,
we provide a proof of NP- or coNP-hardness. The easyvariants are tree scheduling (Sec-
tion 5.2.1), in which the nite state machine's graph is constrained to be a tree; imprecise

tree scheduling (Section 5.2.2), in which the tree scheduling model is augmerted with an

CHAPTER 1. INTRODUCTION 18

anytime reward function; precedence-constrainedree scheduling (Section 5.2.3), in which
the tree scheduling model is augmerted with precedenceconstraints; and guarded schedul-
ing (Section 5.2.4), in which the precedence-constraineanodel is augmerted with jobs that

make mode switching decisions. The hard variants are discrete-time tree scheduling (Sec-
tion 5.3.1), in which the scheduler is constrained to switch betweentasks only at integer
points in time; and directed acyclic graph scheduling (Section 5.3.2), in which the nite

state macdhine's graph is allowed to be an arbitrary acyclic graph (instead of just a tree).
Finally, Section 5.4 examines xed-deadline conditional scheduling problems, in which the
deadline of eath task is xed at the time that the task is released.

Chapter 6 usesthe guardedconditional scheduling model of Section5.2.4for multi-
mode, single-processorGiotto scheduling. The structure of Chapter 6 mirrors that of Chap-
ter 4. Section6.2 motivatesvarying-deadline conditional scheduling for Giotto by preseriing
a Giotto program where tasks' deadlinesvary, depending on the program's mode-switching
behavior. Section6.3 introducesconceptsthat aid the de nition of the synthesis algorithm
of Section 6.4. Section 6.4 usesthe guarded conditional scheduling model to synthesize
schedulesfor multi-mo de Giotto programs. Section6.4.1de nes a classof Giotto programs
on which the synthesis algorithm operates. Section6.4.2de nes "-feasibility for multi-mo de
Giotto programs, and de nes three scheduling problems analogousto those of Section4.4.2.
Sections6.4.3and 6.4.4 de ne the synthesis algorithm, and Section 6.4.5 analyzesits run-
ning time and optimalit y. Though the running time may be doubly exponertial in the size
of the input Giotto program G, it is singly-exponertial if the numbers of G are written in
unary. Moreover, the algorithm solvesthe scheduling problems posedin Section 6.4.2.

Finally, Chapter 7 examinesthe complexity of scheduling Giotto programs for
multiple processors.Section7.2 showsthat two sdheduling problemsassaiated with Giotto
are strongly NP-hard. The rst problem (Section 7.2.1) is the problem of determining
how to assignthe activities of a Giotto program to CPUs so that the activities may be
feasibly scheduled. The secondproblem (Section 7.2.2) is the problem of nding a feasible
schedule, given such an assignmei. Section7.3reviewsthe parallel and job shopsceduling
literature, and showsthat thesenegative results are not peculiar to Giotto, but are common
to many distributed scheduling problems.

CHAPTER 1. INTRODUCTION

1.5 Notation

19

We brie°y describe somesymbols usedin this dissertation; the remainder of the

notation will be introduced as the dissertation proceeds. We use the following symbols to

denote sets:
Symbol | Set
Z the set of integers
z0 fx2Zjx, Og
z>0 fx22Zjx> 0g
Q the set of rational numbers
Q% |fx2Qjx, 0Og
Q>0 fx2Qjx> 0g
R the set of real numbers
R: © fx2 Rjx . Og
R>0 fx 2 Rjx> 0g
[i] fk2ZzZji- k- jg
B ftrue;falseg

A relation R over asetS is a subsetof SE£ S. For arelation R, the symbol R* will denote

the transitiv e closure of R, and R® will denote the transitiv e and re°exive closure of R.

20

Chapter 2

The Giotto programming language

2.1 Intro duction

Giotto provides a programming abstraction for hard real-time applications that
exhibit time-periodic and multimo dal behavior, asin automotive, aerospaceand manufac-
turing cortrol.

Traditional cortrol designhappensat a mathematical level of abstraction, with the
control engineermanipulating di®erenial equations and mode-switching logic using tools
sud as Matlab or MatrixX. Typical activities of the cortrol engineerinclude modeling of
the plant behavior and disturbances, deriving and optimizing cortrol laws, and validating
functionalit y and performanceof the model through analysisand simulation. If the validated
designis to be implemented in software, it is then handed o®to a software engineerwho
writes code for a particular platform (we usethe word \platform" to stand for a hardware
con guration together with areal-time operating system). Typical activities of the software
engineerinclude decomposing the necessarycomputational activities into periodic tasks,
assigning tasks to CPUs and setting task priorities to meet the desired hard real-time
constraints under the given scheduling mechanism and hardware performance,and achieving
the desireddegreeof fault tolerancethrough replication and error correction. While limited
automation for theseactivities is available in the form of code-generationtools, the software
engineer has nal authority over putting the implementation together through an often
iterativ e processof code integration, testing, and optimization.

Giotto providesan intermediate level of abstraction, which (i) permits the software
engineerto communicate more e®ectiely with the cortrol engineer, and (i) keepsthe

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 21

. 2 plant modeling
Control design o
2 control law derivation

, 2 functionality and timing
Giotto program o)
2 periodic software tasks and mode switches

+
Code for real-time 2 hardware mapping
platform 2 computation and communication scheduling

Figure 2.1: Giotto-based cortrol-systems developmert.

implementation and its properties more closelyaligned with the mathematical model of the
cortrol design. Speci cally, Giotto de nes a software architecture of the implemertation
which speci es its functionality and timing. Functionality and timing are suzcient and
necessaryfor ensuringthat the implementation is consistert with the mathematical model.
On the other hand, Giotto abstracts away from the realization of the software architecture
on a speci ¢ platform, and freesthe software engineerfrom worrying about issuessud as
hardware performance and scheduling medanism while communicating with the cortrol
engineer. After writing a Giotto program, the secondtask of the software engineerremains
of courseto implemernt the program on the given platform. In Giotto, this secondtask, which
requiresno interaction with the cortrol engineer,is e®ectiely decoupledfrom the rst, and
can in large parts be automated by increasingly powerful compilers. Giotto compilation
guararntees the presenation of functionality and timing, and thus removesthe needfor a
tedious and error-prone iteration of code evaluation and optimization.

The Giotto design°ow is shown in Figure 2.1. The separation of logical correct-
nessconcerns(functionalit y and timing) from physical realization concerns(mapping and
scheduling) has the added bene t that a Giotto program is ertirely platform independert
and can be compiled on di®eren, even heterogeneousplatforms.

The structure of the rest of this chapter is as follows. We rst give an informal

introduction to Giotto in Section 2.2, followed by a formal de nition of the languagein

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 22

Section 2.3. In Section 2.4, we de ne an abstract version of the scheduling problem that
needsto be solved by the Giotto compiler, and weillustrate how a program can be annotated
to guide distributed code generation. In Section 2.5, we give pointers to current Giotto
implementations and relate Giotto to the literature.

2.2 Informal description of Giotto

Ports

In Giotto all data is communicated through ports. A port represerns a typed
variable with a unique location in a globally shared name space. We use the global name
spacefor ports asa virtual conceptto simplify the de nition of Giotto. An implementation
of Giotto is not required to be a shared-memorysystem. Every port is persistert in the
sensehat the port keepsits value over time, until it is updated. There are mutually disjoint
setsof sensorports, actuator ports, and task ports in a Giotto program. The sensorports
are updated by the ervironment; all other ports are updated by the Giotto program. The
task ports are usedto communicate data between concurrert tasks. Task ports can also
be usedto transfer data from one mode to the next: task ports can be designatedas mode

ports of a given mode, and assigneda value every time the mode is entered.

Tasks

A typical Giotto taskt is shown in Figure 2.2. The task t hasa set In of two input
ports and a set Out of two output ports, all of which are depicted by bullets. The input
ports of t are distinct from all other ports in the Giotto program. The output ports of t
may be sharedwith other tasks aslong asthe tasks are not invoked in the samemode. In
general,a task may have an arbitrary number of input and output ports. A task may also
maintain a state, which can be viewed as a set of private ports whosevaluesare inaccessible
outside the task. The state of t is denotedby Priv. Finally, the task hasa function f from its
input ports and its current state to its output ports and its next state. The task function f
is implemented by a sequetial program, and can be written in an arbitrary programming
language. It is important to note that the execution of f has no internal synchronization
points and cannot be terminated prematurely; in Giotto all synchronization is speci ed

explicitly outside of tasks. For a given platform, the Giotto compiler will needto know the

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 23

f Priv

Figure 2.2: A task t.

f Priv

+ task

Figure 2.3: An invocation of task t.

worst-caseexecution time of f on eat available CPU.

Task invocations

Giotto tasksare periodic tasks: they are invoked at regularly spacedpoints in time.
An invocation of atask t is shawvn in Figure 2.3. The task invocation has a frequency! ask
given by a non-zero natural number; the real-time frequency will be determined later by
dividing the real-time period of the current mode by ! (osx. The task invocation speci es a
driver d which provides valuesfor the input ports In. The rst input port is loadedwith the
value of someother port p, and the secondinput port is loaded with the constart value - .
In general,a driver is a function that cornverts the values of sensorports and mode ports
of the current mode to valuesfor the input ports, or loadsthe input ports with constarts.
Drivers can be guarded: the guard of a driver is a predicate on sensorand mode ports.
The invoked task is executedonly if the driver guard evaluatesto true; otherwise, the task
execution is skipped.

The time line for an invocation of the task t is shown in Figure 2.4. The invo-
cation starts at sometime ¢gat With a communication phasein which the driver guard
is evaluated and the input port values are loaded. The Giotto semartics prescribes that
the communication phase| i.e., the execution of the driver d | is performed in logically

zero time. In other words, a Giotto driver is an atomic unit of computation that cannot be

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 24

f Priv
p! d | t Out
. C n u
X ! task |
Instantaneous Sdceduled
. Communication : Computation
—l — .0 i
Cstart - Cstart stop

Figure 2.4: The time line for an invocation of task t.

interrupted. The synchronous communication phaseis followed by a scheduled computa-
tion phase. The Giotto semartics prescribesthat at time ¢siop the state and output ports
of t are updated to the (deterministic) result of f applied to the state and input ports of
t at time (st - The length of the interval between ¢siart and ¢siop IS determined by the
frequency! 1ask. We say that the task t is logically running from time ¢start to time ¢siop.
The Giotto logical abstraction doesnot specify when, where, and how the actual computa-
tion of f is physically performed between ¢start and ¢ésiop. However, the time at which the
task output ports are updated is determined, and therefore, for any given real-time trace
of sensorvalues, all valuesthat are communicated betweentasks and to the actuator ports
are determined [HKO02]. Instantaneouscommunication and time-deterministic computation
are the two essetial ingredients of the Giotto logical abstraction. A compiler must be
faithful to this abstraction; for example, task inputs may be loaded after time ¢giart , and
the execution of f may be preempted by other tasks, as long as at time ¢siop the values of

the task output ports are those speci ed by the Giotto semartics.

Mo des

A Giotto program consistsof a set of modes, ead of which repeatsthe invocation
of a xed set of tasks. The Giotto program is in one mode at a time. Possibletransitions
from a mode to other modes are speci ed by mode switches. A mode switch can remove
sometasks, and add others.

Formally, a mode consistsof a period, a setof mode ports, a setof task invocations,

a set of actuator updates, and a set of mode switches. Figure 2.5 shovs a mode m which

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 25

contains invocations of two tasks, t; and t,. The period ¥2of m is 10 ms; that is, while
the program is in mode m, its execution repeatsthe samepattern of task invocations every
10ms.! The task t1 hastwo input ports, i; andi,, two output ports, o, and 03, a state Privy,
and a function f;. The task t, is de ned in a similar way. Moreover, there is one sensor
port, s, one actuator port, a, and a mode port, 01, which is not updated by any task in
mode m. The value of 0; stays constart while the program is in mode m; it can be used
to transfer a value from a previous mode to mode m. In addition to o1, all output ports of
tasks invoked in the mode | 0y, 03, 04, and 05 | are, by default, also mode ports; they
must be initialized upon erntering mode m. The mode ports are visible outside the scope
of m, asindicated by the dashedlines. A mode switch may copy the valuesat these ports
to mode ports of a successomode. The invocation of task t; in mode m hasthe frequency
1 = 1, which meansthat t; is invoked once every 10 ms while the program is in mode m.
The invocation of t; in mode m hasthe driver di, which copiesthe value of the mode port 0;
into i1 and the value of the output port o4 of t; into i». The invocation of task t, hasthe
frequency! » = 2, which meansthat t; is invoked onceevery 5 ms as long as the program
is in mode m. The invocation of t, hasthe driver d,, which connectsthe output port oz of
t; to i3, the sensorport s to i4, and the output port os of t, to is. The mode m has one
actuator update, which is a driver dsz that copiesthe value of the output port o, of t; to
the actuator port a with the actuator frequency! 5 = 1; that is, onceevery 10 ms.
Figure 2.6 shaws the exact timing of a single round of mode m, which takes
10 ms. As long as the program is in mode m, one such round follows another. The
round begins at the time instant ¢o with an instantaneous communication phase for the
invocations of tasks t1 and t,, during which the two drivers d; and d, are executed. The
Giotto semartics doesnot specify how the computations of the task functions f; and f, are
physically scheduled;they could be scheduledin any order on a single CPU, or in parallel
on two CPUs. The Giotto semartics speci es only that after 5 ms, at time instant ¢;, the
results of the scheduled computation of f, are made available at the output ports of to. The
secondinvocation of t, beginswith another execution of driver dy, still at time ¢1, which
samplesthe most recert value from the sensorport s. Howewer, the two invocations of t»
start with the samevalue at input port i3, becausethe value stored in o3 is not updated

until time instant ¢, = 10 ms, no matter whether or not f; “nishes its actual computation

YWhile any choice of time unit is possible, we use milliseconds throughout this chapter.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 26

- - - - - - - T A

= 10ms)

Figure 2.5: A mode m.

before¢;. According to the Giotto semartics, the output valuesof the invocation of t; must
not be available before ¢». Any implementation that schedulesthe invocation of t; before
the rst invocation of t, must therefore keep available two sets of values for the output
ports of t;. The round is nished after writing the output values of the invocation of t;
and of the secondinvocation of t, to their output ports at time ¢, and after updating the
actuator port a at the sametime. The beginning of the next round shaws that the input
port i3 is loaded with the new value produced by tj.

Mo de switc hes

In order to give an example of mode switching we intro duce a secondmode m®,
shawn in Figure 2.7. The main di®erencebetweenm and m@is that m®replacesthe task t»
by a new task tz, which has a frequency! (ask:3 Of 4 in m® Note that t3 hasa new output
port, 0g, but also usesthe sameoutput port o4 ast,. Moreover, t3 has a new driver dg,
which connectsthe output port oz of t; to the input port ig, the sensorport s to iz, and
the output port og of t3 to ig. The task t; in mode m®hasthe samefrequencyand usesthe
samedriver asin mode m. The period of m® which determinesthe length of ead round,
is again 10 ms. This meansthat in mode m? the task t; is invoked once per round, every
10 ms; the task t3 is invoked 4 times per round, every 2.5 ms; and the actuator a is updated
onceper round, every 10 ms.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE

liask:1 = 1

Figure 2.6: The time line for a round of mode m.

01
e
i Privs
di t1
i2 Mtask;1 = 1
>
Priva
t3
'task ;3 = 4

¥9= 10ms)

Figure 2.7: A mode m°.

27

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 28

A mode switch describesthe transition from one mode to another mode. For this
purpose,a mode switch speci es a switch frequency a target mode, and a driver. Figure 2.8
shavs a mode switch ~ from modem to target mode m®with the switch frequency! gyitch = 2
and the driver ds. The guard of the driver is called exit condition, asit determineswhether
or not the switch occurs. The exit condition is evaluated periodically, as speci ed by the
switch frequency As usual, the switch frequency of 2 meansthat the exit condition of dg
is evaluated every 5 ms, in the middle and at the end of ead round of mode m. The exit
condition is a boolean-valued condition on sensorports and the mode ports of m. If the
exit condition evaluates to true, then a switch to the target mode m®is performed. The
mode switch happensby executing the driver ds, which provides valuesfor all mode ports
of m® speci cally, ds loads the constart - into o;, the value of the mode port o5 into og,
and ensuresthat 0y, 03, and o4 keeptheir values (this is omitted from Figure 2.8 to avoid
clutter). Like all drivers, mode switchesare performed in logically zerotime.

Figure 2.9 shaws the time line for the mode switch ~ performed at time ¢;. The
program is in mode m until ¢; and then enters mode m® Note that until time ¢; the time
line correspnds to the time line shown in Figure 2.6. At time ¢3, rst the invocation of
task t, is completed, then the mode driver ds is executed. This "nishes the mode switch.
All subsequenh actions follow the semartics of the target mode m®independertly of whether
the program entered m®just now through a mode switch, at 5 msinto a round, or whether
it started the current round already in mode m® Speci cally, the driver for the invocation
of task t3 is executed,still at time ¢;. Note that the output port og of t3 hasjust received
the value of the output port os from task t, by the mode driver ds. At time ¢», task t3
is invoked a secondtime, and at time ¢z, the round is "nished, becausethis is the earliest
time after the mode switch at which a complete new round of mode m° can begin. Now the
input port i1 of task t; is loaded with the constart - from the mode port 0;1. In this way,
task t; can detect that a mode switch occurred.

A mode switch may occur while a task is logically running; in this casewe say that
the mode switch logically interrupts the task invocation. For a mode switch to be legal, the
target mode is constrained sothat all task invocations that may be logically interrupted by
a mode switch can be corntinued in the target mode. In our example, the mode switch ~
can occur at 5 ms into a round of mode m, while the task t4 is logically running. Hence
the target mode m® must also invoke t;. Moreover, sincethe period of m%is 10 ms, as for

mode m, the frequencyof t; in m%must be identical to the frequencyof t; in m, namely, 1.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 29

01 02 O3 04 Og

Va

! switch = 2

Figure 2.8: A mode switch ~ from mode m to mode m©

. . . .0 . .0 . .
[4Y] 4] (&) a @ @ [&] Q3

- Y,= 10 ms -

Figure 2.9: The time line for the mode switch * at time ¢;.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 30

If, alternativ ely, the period of m®were 20 ms, then the frequencyof t; in m®would have to
be 2.

2.3 Formal de nition of Giotto

2.3.1 Syntax

Rather than specifying a concrete syntax for Giotto, we formally de ne the com-
ponerts of a Giotto program in a more abstract way. In practice, Giotto programs can be
written in a concrete,C-like syntax. A Giotto program consistsof the following componerts:

1. A set of port declarations. A port declaration (p; Type; init) consistsof a port hame
p, a type Type, and an initial value init 2 Type. We require that all port namesare
uniquely declared; that is, if (p;¢ 9 and (p% ¢ ¢ are distinct port declarations, then
p 6 p° The set Ports of declared port namesis partitioned into a set Sensebrts of
sensor ports, a set ActPorts of actuator ports, a set InPorts of task input ports, a set
OutPorts of task output ports, and a set PrivPorts of task private ports. Given a port
p 2 Ports, we use notation such as Type[p] for the type of p, and init[p] for the initial
value of p. A valuation for a set P u Ports of ports is a function that maps ead port
p 2 P to avaluein Type[p]. We write ValdP] for the set of valuations for P.

2. A setoftask declarations. A task declaration (t; In; Out; Priv; f) consistsof a task name
t, a setInu InPorts of input ports, a set Out u OutPorts of output ports, a set Priv
PrivPorts of private ports, and a task function f : ValdIn[Priv] ! ValdOut[Priv].
If (t; In;Out; Priv; @ and (t®In® Out® Priv® ¢ are distinct task declarations, then we
require that t 6 t%and In\ In°= Priv\ Priv®= ;. Tasksmay shareoutput ports as
long as the tasks are not invoked in the samemode; seebelown. We write Tasksfor
the set of declaredtask names.

3. A setof driver declarations. A driver declaration (d; Src g; Dst; h) consistsof a driver
name d, a set Src 4 Ports of source ports, a driver guard g : ValdSrd ! B, a set
Dst p Ports of destination ports, and a driver function h : ValdSrd ! ValgDst].
When the driver d is called, the guard g is evaluated, and if the result is true, then
the function h is executed. We require that all driver namesare uniquely declared,

and we write Driversfor the set of declareddriver names.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 31

4. A set of mode declarations. A mode declaration (m; ¥ ModePorts; Invokes Updates
Switche$ consistsof a mode namem, a positive mode period ¥42 Q> 9, a setModePorts
K1 OutPorts of mode ports, a set Invokes of task invocations, a set Updatesof actuator
updates and a set Switchesof mode switches We require that all mode namesare
uniquely declared, and we write Modesfor the set of declared mode names.

(2) Each task invocation (! sk; t; d) 2 Invokegm] consistsof a task frequency! a5k 2
Z>0, atask t 2 Taskssuch that Out[t] p ModePorts[m], and a task driver d 2
Drivers such that Srdd] p ModePorts[m] [Senselrts and Dst[d] = In[t]. The
invoked task t only updates mode and private ports; the task driver d readsonly
mode and sensorports, and updatesthe input ports of t. If (¢t; § and (¢t% ¢ are
distinct task invocations in Invokegm], then we require that Out[t]\ Out[t9 = ;;
that is, tasks sharing output ports must not be invoked in the samemode.

(b) Each actuator update (! 5¢t;d) 2 Updategm] consists of an actuator frequency
l act 2 270, and an actuator driver d 2 Driverssuch that Srqd] u ModePorts[m]
and Dst[d] p ActPorts. The actuator driver d readsonly mode ports, no sensor
ports, and updates only actuator ports. If (¢d) and (¢ d% are distinct actuator
updatesin Updategm], then we require that Dst[d]\ Dst[d9 = ;; that is, in eat
mode, an actuator can be updated by at most one driver.

(c) Each mode switch (! switch; M®d) 2 Switche$m] consists of a mode-switch fre-
quency! swich 2 Z”°, a target mode m°®2 Modes and a mode driver d 2 Drivers
such that Srdd] p ModePorts[m] [Sensebrts and Dst[d] = ModePorts[m?.
The mode driver d reads only mode and sensorports, and updates the mode
ports of the target mode m® If (¢ ¢d) and (¢ ¢d9 are distinct mode switches
in Switche$m], then we require that for all valuations v 2 ValdPorts] either
gld](v) = false or g[d9(v) = false. It follows that all mode switches are deter-

ministic.
5. A start mode start 2 Modes

The program is well-timed if for all modesm 2 Modes all task invocations (! (ask;t; § 2
Invokegm], and all mode switches (! switch ; M® @ 2 Switche$m], if ! task=! switch 2 Z~ 9, then
there exists a task invocation (! 2,;t; @ 2 Invokedmq with ¥fm]=! tasx = ¥AM9=! &, The
well-timedness condition ensuresthat mode switches do not terminate tasks: if a mode

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 32

switch occurs when a task is logically running, then the sametask must be preser alsoin
the target mode.

2.3.2 Semantics

A program con guration C = (m; £ V; ¥%ctive ; ¢) consistsof a mode m 2 Modes a
mode time + 2 Q, a valuation v 2 ValdPorts] for all ports, a set ¥cive 1 Tasksof active
tasks and a time stamp ¢ 2 Q. The set ¥%ciive 1 Taskscontains all tasks that are logically
running, whether or not they are physically running by expending CPU time. The number
+, 0 measureghe amount of time that haselapsedsincethe last mode switch, unlesssome
tasks were logically running at the time of the last mode switch, in which caset \dates
bad" the mode switch to the closesttime instant beforethe mode switch when the current
mode could have started from its beginning with all its tasks. For a program con guration
C and asetP p Ports, we write C[P] for the valuation in ValdP] that agreeswith C on the
valuesof all ports in P.

The made frequenciesof a mode m 2 Modesinclude (i) the task frequencies! 45k
for all task invocations (! 1ask; ¢ 9 2 Invokedm], (ii) the actuator frequencies! ¢ for all
actuator updates (! act; § 2 Updategm], and (iii) the mode-switch frequencies! gyitch for
all mode switches (! gwitch ; § 9 2 Switche$m]. Let ! |;m[m] be the least common multiple
of the mode frequenciesof m. During an execution, as long as the program is in mode m,
the program con guration is updated every ¥Jm]=! |, [m] time units. Each update results
from a sequenceof v etypesof everts: rst, sometasks are completed (i.e., removed from
the active set); second,someactuators are updated; third, somesensorsare read; fourth, a
mode switch may occur; fth, somenew tasks are activated.

Let us be more precise. Consider a program con guration C = (m; £ V; ¥active ; é)-

We needthe following auxiliary de nitions:

2 A taskinvocation (! ask;t; @ 2 Invokedm] is completad at con guration C if t 2 ¥cive ,

and = is an integer multiple of ¥fm]=! (ask.

2 An actuator update (! act;d) 2 Updategm] is evaluatel at con guration C if +is an
integer multiple of ¥m]=! 4.

2 A mode switch (! switeh ; ¢ d) 2 Switche$m] is evaluatel at con guration C if +is an
integer multiple of ¥Ydm]=! switch -

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 33

2 A task invocation (! task; ¢ d) 2 Invokedm] is evaluatal at con guration C if +is an

integer multiple of ¥im]=! (ask .

The actuator update (! act; d), mode switch (! switch ; ¢ d), or task invocation (! iask; G d) is
enablal at con guration C if it is evaluated at C and g[d](v) = true.

The program con guration Cg, is a suaessorcon guration of C if Cgye results
from C by the following nine steps, called Giotto micro steps Theseare the stepsa Giotto

program performs wheneer it is invoked, initially with = 0, ¥cive = ;, and ¢ = O:

1. [Up date task output and priv ate ports] Let ¥ompleted b€ the set of taskst such
that atask invocation of the form (¢ t; § 2 Invokedm] is completedat con guration C.
Consider a port p 2 OutPorts [PrivPorts. If p 2 Out[t] [Priv[t] for sometask t 2
Yeompleted , then de ne Viask (p) = fItI(C[IN[t] [Priv[t]))(p); otherwise, de ne Viask (P) =
v(p). This givesthe new valuesof all task output and private ports. Note that ports
are persistert in the sensethat they keeptheir valuesunlessthey are modi ed. Let
Ciask bethe con guration that agreeswith vizsx on the valuesof OutPorts[PrivPorts,

and otherwise agreeswith C.

2. [Up date actuator ports] Consider a port p 2 ActPorts. If p 2 Dst[d] for some
actuator update (¢ d) 2 Updategm] that is enabledat con guration Cissk, then de ne
Vact (P) = h[d](Ciask[Srdd]])(p); otherwise, de ne vact(p) = v(p). This givesthe new
values of all actuator ports. Let C,; be the con guration that agreeswith vyee on
the valuesof ActPorts, and otherwise agreeswith Ciask .

3. [Up date sensor ports] Considera port p 2 Sensebrts. Let vsense(p) be any value
in Typeg[p]; that is, sensorports change nondeterministically. This is not done by
the Giotto program, but by the ervironment. All other parts of a con guration are
updated deterministically, by the Giotto program. Let Cgense be the con guration
that agreeswith vsense ON the valuesof Sensebrts, and otherwise agreeswith Cg.

4. [Up date mode] If a mode switch (¢ Marger; § 2 Switchegm] is enabled at con gu-
ration Csense, then de'ne m®= myarger; Otherwise, de ne m®= m. This determinesif
there is a mode switch. Recall that at most one mode switch can be enabledat any
con guration. Let Ciarget be the con guration with mode m° that otherwise agrees

Wlth Csense.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE

sensor
port s; type R
port s» type B

actuator

port a type R init O
input

port i; type R

port i» type R

port i3 type R
output

o

port o1 type R init

port o type R init O
private

port p; type R init O

port p; type R init O

port po type R init O

task t; input i1 output o1 private p; function f;
task t, input i, output oy private p, function f;
task t3 input i3 output 0, private ps function f3

driver di source o, guard g; destination i1 function hy
driver dy source s; guard gi destination i, function hy
driver d3 source s; guard g; destination i3 function hs
driver d4 source o; guard g; destination a function hy
driver ds source s; guard gs destination 01, 0p function hg

modem; period 6 ports 01, 0
frequency 1 invoke t; driver d;
frequency 2 invoke t, driver dp
frequency 1 update ds
frequency 2 switch my driver ds

modem, period 12 ports 01, 0O

frequency 2 invoke tj driver dj

frequency 3 invoke t3 driver ds

frequency 2 update ds

frequency 3 switch mj driver ds
start my

Figure 2.10: The abstract syntax of a Giotto program with two modes.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 35

5. [Up date mode ports] Considera port p 2 OutPorts. If p 2 Dst[d] for some mode
switch (¢ ¢ d) 2 Switche$m] that is enabledat con guration Csense, then de ne:

Vmode(P) = h[d](Crarget[Srdd]])(p)

Otherwise, de ne Vmode(P) = Crarget[OutPorts](p). This gives the new values of all
mode ports of the target mode. Note that mode switching updates also the output
ports of all tasks t that are logically running. This does not a®ectthe execution
of t. When t completes,its output ports are again updated, by t. Let Cnoge be the
con guration that agreeswith vmnoge On the valuesof OutPorts, and otherwise agrees

Wlth Ctar get .

6. [Up date mode time] If no mode switch in Switche§m] is enabled at con gura-
tion Csenses then dene +° = + Otherwise, supposethat a mode switch is enabled
at con guration Csense to the target mode m® Let Ysunning = Yactive N Yeompleted - If
Ysunning = ;, then de ne #0= 0. Otherwise, let ° be the least common multiple of
the set f¥Im]=! task | (! task;t; @ 2 Invokegm] for somet 2 ¥ynning g Of task periods
for running tasks; then ° is the time it takesduring a round of mode m to complete
all running tasks simultaneously. Let " be the least integer multiple of ° sud that
" . % then " i %is the time until the next simultaneous completion point. De ne
= ¥Im9; ("i 4. Thusamode switch always jumps as closeas possibleto the end
of a round of the target mode. Let Ciocai be the con guration with mode time +°that

otherwise agreeswith Cpoge-

7. [Up date task input ports] Considera port p 2 InPorts. If p 2 Dst[d] for sometask
invocation (¢ ¢d) 2 Invokedm9 that is enabled at con guration Cioea, then dene
Vinput (P) = h[d](Ciocal [Srdd]])(p); otherwise, de ne Vinput (p) = V(p). This givesthe
new values of all task input ports. Let Cinpyt be the con guration that agreeswith
Vinput ON the valuesof InPorts, and otherwise agreeswith Cjoca -

8. [Up date activ e tasks] Let ¥nanieq b€ the set of taskst such that a task invocation
of the form (¢t; ¢ 2 InvokedmY is enabled at con guration Ciocai. The new set of
active tasksis 3/§Ctive = (Yactive NYeompleted) [Yenavled- L€t Cactive be the con guration
with the set %4, of active tasks that otherwise agreeswith Cinput -

9. [Adv ance time] Let #5,c be the least integer multiple of ¥4m9=! cm[MY9 sud that

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 36

Figure 2.11: The time line for an execution of the program from Figure 2.10.

+ouc > 22 this is the time of the next evert (task invocation, actuator update, or mode
switch) in mode m® The next time instant at which the Giotto program is invoked is
+uee | F0time units in the future; an implementation may use a timer interrupt for
this. Let ¢sue = ¢+ tsuc | > Let Csuee be the con"guration with mode time #syoc

and time stamp ¢suc that otherwise agreeswith Cactive -

An execution of a Giotto program is anin nite sequenceCyp; C1; Cy; ¢¢¢ of program
con gurations C; suc that (i) Co = (start; 0;v;;;0) with v(p) = init[p] for all ports p 2 Ports,
and (i) Cj+1 is a successorcon guration of C; for all i , 0. Note that there can be a mode
switch at the start time of the program, but there can never be two mode switchesin a row
without any time passing.

2.3.3 Example

We usethe simple Giotto program from Figure 2.10to illustrate Giotto's semariics.
This program contains two modes, m1 and m,. Mode m; hasa period of 6 ms, and invokes
two tasks, t; and t,, with frequenciesof 1 and 2, respectively. Mode m» has a period of
12 ms, and invokest; and the task t3, with frequenciesof 2 and 3, respectively. The taskst,
and t3 both read the sensorport s; and write to the sameoutput port 0,. This is possible
becauset, and t3 are invoked in di®erert modes. The task t; reads o, and writes to the
output port o1, which is read by the actuator driver d4 to write the actuator port a. In both
modesthe actuator update occurs every 6 ms. Mode m; evaluates a possiblemode switch

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 37

to mode m, every 3 ms; m, contemplates switching badk to m; every 4 ms. These mode
switches are cortrolled by the driver ds, which readsthe sensorport s,. A mode change
occursif s, cortains the value 1. Both mode switches,when enabled,write the ports o; and
02. We assumethat with the exception of gs the guards g; of all other drivers are always
true. The initial valuesof the sensorand input ports are omitted from the gure, asthey
are written before being read.

Toillustrate the semartics of this program, consideran execution E = Cg; Cy; ¢¢¢
that beginswith the following program con gurations:

Co= (M1;0;6;;0)

C1 = (mg; 2, Gfta;t30;2)
Cz = (mg; 4 Gfty;t30;4)
C3 = (m2; 6, Gfty;t30;6)
Cs = (m2; 8, Gfty1;t30;8)
Cs = (my;3;6ft1;9)

Ce = (M1;6;Gft1;t20;12)
Cz= (m1;9; ¢fty;t20; 15)

The execution E starts in mode m1, but switchesimmediately to mode m,. At con gura-
tion C4, the executionswitchesbad to mode m; (note that a mode switch in a con guration
C; is reected only in the successorcon guration Ci:;). The execution remainsin mode
m; until con guration Cs.

Figure 2.11 shows an initial segmen of the time line for E. At 0 ms, the port
0; is usedto update the actuator port a. The sensorport s, is read by the mode driver
ds. The guard of ds evaluates to true, indicating a mode change, and thus the port o, is
updated (port oz is also updated but not used, and therefore omitted in the gure). Port
0, providesthe input to task t;. The sensors; providesthe input to task t3. At 4 ms, task
tz completes;the sensorport s, is updated, but no mode change occurs; and the sensors;
providesinput to a new invocation of task t3. At 6 ms, task t; completes;the actuator port
a is updated using the output of t;; and a new invocation of task t; starts. At 8 ms, task
t3 completes;sensors; is updated; and the guard of the mode driver ds evaluatesto true,
indicating a switch to mode m; and updating ports 0; and o, (neither port is used, and
therefore both are omitted in the gure). At 9 ms, sensors; is updated again, but no mode

change occurs; sensors; is updated; and an invocation of task t, begins. At 12 ms, both

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 38

tasks t; and t, complete; a, s; and s; are all updated; and new invocations of t; and t;
start. Note that at the time of the mode switch at 8 ms, the mode time of the target mode
m1 is 2 ms, becausetask t; has beenlogically running for 2 ms. For the duration of 1 ms,
task t1 is the only running task, until at mode time 3 ms (real time 9 ms), an invocation
of task t, is added. At mode time 6 ms (real time 12 ms), the partial round of mode m1 is
“nished, and a new round begins.

2.4 Platform constrain ts for Giotto

In order to compile a Giotto program, the compiler needstwo additional piecesof
information: (i) a platform speci c ation, which de nes the number and topology of hosts
(CPUs), and worst-caseexecution times for all Giotto activities (tasks, drivers, and sensor
readings); and (ii) ajitter tolerance, which speci es how much the actual timing candeviate
from the Giotto semartics. The jitter toleranceis neededbecauseit may be impossibleto
implement the Giotto semartics exactly. For example, if according to Giotto semariics,
seweral actuators are written at the same point ¢ in time, and there is only one host,
then the actual writes cannot all occur exactly at time ¢. The Giotto compiler takes a
Giotto program, a platform speci cation, and a jitter tolerance, and if possible,generates
platform code that lieswithin the jitter toleranceof Giotto semariics. Speci cally, for every
program execution, the compiler must attempt to produce a schedule that indicates when
and where the Giotto activities are performed. Sud a schedule may not exist, becausethe
scheduling problem can be overconstrained. An overconstrained scheduling problem may
becomesolvable without changing the Giotto program, by a conbination of the following:
increasethe number of hosts, decreasehe worst-caseexecutiontimes, or increasethe jitter

tolerance.

2.4.1 Abstract Giotto scheduling

We de ne an abstract Giotto scheduling problem. The problem is abstract, aswe
include only scheduling constraints that needto be met by all Giotto implementations. Any
particular, concrete implementation may have to take into accourt additional sceduling
constraints.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 39

Activities

Let G be a Giotto program. An activity of G is a pair a[k] consisting of an action
a and an index k 2 |, chosenfrom someindex set| . We distinguish betweencomputation
activities and communication activities. The action of a computation activity is either a
task t 2 Tasks or true(d) or false(d) for a driver d 2 Drivers or read(s) for a sensorport
s 2 Senseprts. The action t executesthe task t; the actions true (d) and false(d) represer
the execution of driver d in caseswhere the outcome of the driver guard is true or false,

respectively; the action read(s) loads a new sensorvalue into the port s. We write

Acts = Tasks|
ftrue(d); false(d) j d 2 Driverg|
fread(s) j s 2 Senseprtsg

for the set of computation actions. For every computation action a 2 Acts, the setr(a) u

Ports of read ports and the setw(a) pu Ports of written ports are de ned as follows:
2 If a=tfort2 Tasks thenr(a) = In[t][Priv[t] and w(a) = Out[t] [Priv[t].
2 If a= true(d), then r(a) = Srdd] and w(a) = Dst[d].
2 If a= false(d), then r(a) = Srdd] and w(a) = ;.
2 If a= read(s), thenr(a) = ; and w(a) = fsg.

The action of a communication activity hasthe form send(p), for a port p 2 Ports, and its
purposeis to broadcastthe value of p over a network to all hosts of the platform. Other
models of communication are possible,but not addressedhere.
Let E = Cy; Cy; Cy; ¢¢¢ be an execution of G. For ead positioni, Oand1-

9, we write C;~ for the program con guration obtained from C; by performing the Giotto
micro steps1 through °, asde ned in Section2.3.2. The execution E givesriseto a setAg
of computation activities. For theseactivities we usethe index setl ¢ = Z: °£ [1:: 9], where
the index (i;) refersto the program con guration C;-. We write < for the lexicographic
orderon | g; that is, (i1; 1) < (ip; ») if eitheriy < iy, orbothi; = i and "1 < ",. The set

Ag is the smallest set of activities cortaining the following:

2 [Task activities] If (¢t; § is a task invocation that is completed at con guration C;,
then tfi; 1] 2 Ag.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 40

2 [Actuator activities] If (¢d) is an actuator update that is enabled at con guration
Ci:1, then true(d)[i; 2] 2 Ag. If (¢d) is evaluated but not enabled at C;.1, then
false(d)[i; 2] 2 Ae.

2 [Sensoractivities] If (¢ ¢d) is a mode switch that is evaluated at con guration C;.3,
or (¢ ¢d) is a task invocation that is evaluated at con guration C;.s, and s 2 Srdd]

for a sensorport s 2 Sensebrts, then read(s)[i; 3] 2 Ae.

2 [Mode-driver activities] If (¢ ¢d) is a mode switch that is enabled at con guration
Ci.3, then true(d)[i; 41 2 Ag. If (¢ ¢d) is evaluated but not enabledat con guration
Ci. 3, then false(d)[i; 4] 2 Ag.

2 [Task-driver activities] If (¢ ¢ d) is a task invocation that is enabledat con guration
Ci.6, then true(d)[i; 7] 2 Ag. If (¢¢d) is evaluated but not enabled at C;.g, then
false(d)[i; 712 Ag.

The activities in Ag are called the computation activities induced by the execution E of the
program G.

The interaction betweenthe activities in Ag constrains the order in which these
activities can be performed: if activity A; suppliesa value to activity A, via a port, then
A, must nish before A, can begin. For two activities A; = aj[k;] and A, = ag[ks] in
Ag and a port p 2 Ports, we say that A1 writes p to A, (in symbols, A; @ Ao) if
() p2 w(a1)\ r(az) and ki < ko, and (ii) there is no activity A3z = aslks] in Ag sud that
p 2 w(az) andk; < k3 < ky. Wewrite A1 @: A; if thereis someport p such that A; @E Ao,
Note from the de nition of Ag that a task activity t[i; 1] is addedto Ag with i setto the
con guration number of the activit y's completion in order to make the relation @z capture
the fact that the output ports of t are written when the task completes. Figure 2.12 shavs

the precedenceconstraints betweenthe activities in Ag.

Platform speci cations

A Giotto program can in principle be run on a single suzciently fast CPU, in-
dependert of the number of modes and tasks. Howewer, taking into accourt performance
constraints, the timing requiremerts of a program may or may not be achievable on a single
CPU. We therefore considerdistributed platforms. For simplicity, we restrict our attention

to platforms that connecta set of hosts through a broadcast channel, called the network;

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 41

for example, all hosts may be on a commonbus. A platform speci c ation for the program

G is atriple P = (H;wcet, wcct):

2 H is a nite set of hosts which represen the processingelemeris on which compu-
tation activities may execute. We write Hy = H [fN g for the set of hosts together
with the network, which is denoted N .

2 weet : Acts£ H ! Q- 9 is a function that assignsto ead pair (a;h), where a is a
computation action and h is a host, a worst-case execution time, which represerts an
upper bound on the time required for processingan activity of the form a[§ on host
h. For driver activities of the form true (d)[¢ 4, the worst-caseexecution time takes
into accourt both the guard and the function of driver d; for driver activities of the
form false(d)[¢ q, only the driver guard. Methods for obtaining worst-caseexecution
times can be found, for example,in [ML99, TFWOOQ].

2 weet: Ports ! Q- 0 is a function that assignsto ead port p a worst-case communi-
cation time, which represerts an upper bound on the time required for broadcasting

the value of p over the network.

Jitter tolerance

A jitter tolerance " 2 Q”° is a positive rational number. Intuitiv ely, " represerts
the maximal tolerable di®erencebetweenthe actual time of an actuator write (or sensor
read), and the time at which the write (or read) is supposedto occur according to the
Giotto semartics. In particular, if Giotto speci es an actuator write at 12 ms, then an
implementation that conforms with the jitter tolerance " must write the actuator in the
interval [12j "; 12]; and if Giotto speci es a sensorread at 12 ms, then a conforming

implementation must read the sensorin the interval [12, 12+ "] (seeFigure 2.12).

Schedules

A schedule speci es a possible timing for the activities that are induced by a
program execution. Formally, a schealule of the program G on the set H is a function
S:RE Hy ! A that mapsewery time ¢ 2 R and host h 2 Hy (including the network) to
an activity in somesetA. An elemern in A may represen a computation or communication
activity of G, or a non-Giotto activity. We require that activities do not migrate between

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 42

> mode | | task

tasks

’—> driv ers driv ers
actuator | sensor

drivers | ports

Figure 2.12: The precedenceand timing constraints for computation activities.

hosts:if S(¢;h) = S(¢%h9, then h = h® We alsorequire that schedulesare nitely varying:
for all h 2 Hy, there is no boundedin nite sequencei; < ¢é2 < ¢3 < ¢¢¢ of reals such that
S(¢éa;h) 6 S(¢z;h) 6 S(¢s;h) 6 ¢ee.

GivenasdeduleS and an activity A 2 A, we say that A occurs in S if there exist
¢ 2 Randh 2 Hy sud that S(¢;h) = A. In this case,we de ne hosts(A) = h and the

following:

2 The start time starts(A) of the activity A in the scheduleSisinff¢ 2 Rj S(¢; § = Ag.

The start time may be 1

2 The nish time n g(A) of the activity A in the scheduleS issupf¢ 2 Rj S(¢; § = Ag.

The nish time may be +1 .

2 The total execution time total s(A) of the activity A in the schedule S is
z

1
t2f (2RjS(¢;9= Ag

The total executiontime may be in nite.

Let E be an execution of the program G, and let P be a platform speci cation for G. The
schedule S realizes the program execution E on a platform speci ed by P if the following

conditions hold:

2 [Computation activities] Every activity A 2 Ag occursin S and hosts(A) 6 N.
Second,if A = a[d and hosts(A) = h, then totals(A) = wcet(a;h). Third, for all
activities Aj; A2 2 Ag, if A1 @ Az and hosts(A1) = hosts(A»), then n g(A;) -
starts(A>).

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 43

2 [Communication activities] For all activities A1;A> 2 Ag, if A @E A, and hosts(A1)
6 hosts(A»), there exists a communication activity A = send(p)[A1] such that (i) A
occurs in S and hosts(A) = N, (i) totals(A) = wcct(p), and (i) n g(A1) -
starts(A) and n g(A) - starts(A2). In this case,we sa that A is a communica-

tion predecessor of A».

Note that becauseS is a sdedule, rather than an actual run of the Giotto program, it
allocates the worst-caseexecution time for eadh computation activity, and the worst-case
communication time for eadh communication activity. The scheduleS conforms to the jitter

tolerance" if the following conditions hold:

2 [Actuator timing] For every actuator activity A = true(d)[i; 2] or A = false(d)[i; 2] in
Ag, whered is an actuator driver, we have¢j j " - starts(A) and n g(A) - ¢. Here
¢ is the time stamp of the i-th con guration of the program execution E.

2 [Sensortiming] For every sensoractivity A = read(s)[i; 3] in Ag, wheres is a sensor

port, we have ¢; - startg(A) and ng(A) - &+ "

Given a Giotto program G, a platform speci cation P, and a jitter tolerance", a
schaluling function S mapsevery executionE of G to a schedule Sg that realizesE on P in
conformancewith ". The scheduling function S is feasible if for any two executionsE and
E%that agreeon the valuesof all sensorports up to time ¢, the schedulesSg and Sgo are
identical up to time ¢; more precisely if E = Cg;C1;Cy; ¢¢¢ and EC= C2; CY%: CS: ¢¢¢ and
Ci[Senseprts] = CYSensebrts] for all i - k, then Sg(¢; h) = Sgo(¢; h) for all ¢ - ¢ and all
h 2 H, where ¢ is the time stamp of con guration Cy.? Feasibility rules out clairvoyant
scheduling functions, which can predict future sensorvalues. The abstract Giotto schealuling
problem asks, given G, P, and ", if there exists a feasible scheduling function. If not, then
the scheduling problem (G; P;") is overconstrained.

The sdeduling constraints preserted in this section are intended to capture a
minimal set of constraints: precedencessensorand actuator timing, and execution and
communication times. These constraints are necessaryfor any implementation of Giotto,
but they may not be suzcient. For example, a particular implementation may restrict

the amount of information on which a scheduler can baseits decisions(according to our

2Note that for an execution Co;Cy;¢¢¢; Ci; Cis1 ; ¢¢¢, vis1 [SenseRrts] re°ects the value of sensorports
at time ¢;.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 44

de nitions, a scheduling decisionmay depend on all past sensorvalues), or it may bound the
bu®ersizefor storing previous valuesof a port (accordingto our de nitions, a schedule may
sendany number of valuesof a port over the network beforeany of the valuesis used), or it
may require the transmission of mode-change messagedetween hosts, etc. By considering
the constraints of concreteimplementations, the abstract Giotto scheduling problem can be
re ned into a number of di®erert concrete scheduling problems.

2.4.2 Giotto annotations

An ideal compiler must solve a Giotto scheduling problem by producing a feasible
scheduling function or determining that the given problem instance is overconstrained.
Howewer, for distributed platforms, the abstract Giotto sdceduling problem is NP-hard
(it is a generalization of multi-pr ocessor schaluling [GJ79]). Algorithms and heuristics
for solving similar distributed scheduling problems can be found, for example, in [TC94,
EKP* 98, Bru01, Pin02]. In practice, a compiler will have a third outcome, namely, that it
succeedseither in generating code nor in proving non-sdedulability. In order to aid the
compiler in nding a feasible scheduling function in ditcult situations, we introduce the
conceptof Giotto annotations.

The most basic Giotto annotation is the mapping annotation. A particular ap-
plication may require that tasks be located on speci ¢ hosts, e.g., closeto the physical
processeghat the tasks control, or on processorsparticularly suited for the operations of
the tasks. A mapping annotation canbe usedto expresssuc constraints, and alsoto reduce
the sizeof the spacein which the compiler must look for a feasiblescheduling function. Let
G be a Giotto program, and let P be a platform speci cation for G. A mapping annotation
for G on P is a partial function host: Acts | H that assignsa host of P to some com-
putation actions of G. The mapping annotation is complete if the function host is total.
Considera schedule S that realizesan executionE of G on P. The schedule S conforms to
the mapping annotation hostif for all activities A 2 Ag, if A = a[q and host(a) is de ned,
then hosts(A) = host(a).

A more detailed Giotto annotation is the scheduling annotation. The exact form
of scheduling annotations dependson the platform: a scheduling annotation speci es task
priorities, relative deadlines,or time slots, depending on whether the underlying real-time

operating system usesa priorit y-driven, deadline-driven, or time-triggered scheduler. We

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 45

choose an uncomplicated platform | with preemptive priority scheduling of tasks, and
round-robin time-slice scheduling of message®on the network | in order to demonstrate
that a precisede nition of scheduling annotations is possible. More elaborate annotations
would require longer de nitions, but not a fundamertal changein approach. One can de-
‘ne partial scheduling annotations, which leave some decisionsto the system scheduler,
but for simplicity, we de ne only a complete form of scheduling annotation. To be pre-
cise, a schaluling annotation for the program G on a platform speci ed by P is a tuple

(host; priority; slot; £):

2 [Mapping] The function host: Acts! H is a complete mapping annotation for G on
P.

2 [Task priorities] The function priority : Tasks! Z>9 assignsa priority to every task.

2 [Communication times] For simplicity, we assumethat all communication proceedsin
rounds, with ead round providing a time slot to every port. The value of a port p
can be broadcast once per round, in the slot provided to p. Let P = jPortsj be the
number of ports. The function slot: Ports! [0:: P 1] is a bijection that assignsa
slot number to every port. The positive rational =2 Q>° is the duration of ead time
slot. We assumethat only onebroadcastis possibleper time slot; that is, wect(p) = +

for all ports p 2 Ports.

Consider a sthedule S that realizesan execution E of G on P. The sdedule S conforms
to the scheduling annotation (host priority; slot; £) if S conformsto the mapping annotation

host and the following conditions hold:

2 [Task priorities] Consideran activity A that occursin the schedule S. The activity A
is completed in S at time ¢ if n g(A) - ¢. The activity A is enabla in S at time ¢ if
for all activities A%that occurin S, if A°@: A or A%is a communication predecessor
of A, then A®is completed at ¢. For all times ¢, 2 R, all hostsh 2 H, and all task
activities A1 = tqfip; 1] and A, = tyfio; 1]in Ag, if S(¢;h) = A1 and host(ty) = h and
A, is enabledin S at time ¢, then priority(t1) , priority(tz).

2 [Communication times] For every communication activity A = send(p)[q that occurs
in S, there exists a number n 2 Z: © such that +¢(n ¢P + slot(p)) - starts(A) and
ng(A) - £¢(n¢P + slot(p) + 1).

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 46

A Giotto program with annotations is a formal re nement of the program: the
Giotto semairiics, as de ned in Section 2.3.2, is not changed by the annotations, but the
number of feasible scheduling functions may be reduced. The annotated Giotto scheluling
problem asks, given a Giotto program G, a platform speci cation P, a jitter tolerance",
and a (mapping or scheduling) annotation A, if there is a feasible stcheduling function S
sudh that for every execution E of G, the schedule Sg conformsto the annotation A. If
the abstract Giotto scheduling problem (G; P;") has a solution, but the annotated problem
(G;P;"; A) doesnot, then the annotation A is invalid. Invalid annotations constrain the
program in a way that rules out all feasiblescdeduling functions.

Mapping and scheduling annotations, as de ned above, provide only one example
of how a Giotto program canbe mappedonto a particular kind of platform. According to the
de nitions, mapping annotations occur strictly prior to scheduling annotations. In general,
we believe that it is advantageousto arrange Giotto annotations in multiple levels. Sud a
structured view supports the incremertal re nement of a Giotto program into an executable
image. The multila yered approad suggestsa modular architecture for the Giotto compiler
with separate modules for, say, mapping and scheduling. The compiler may attempt to
solve the scheduling problem on any annotation level, and if it fails to do so, it may ask for
more detailed annotations at a lower level. At every level, the annotation must be chedked
for validity, that is, for consistencywith the annotations at the higher levels and with the
Giotto semartics. Such a compiler can be evaluated along seweral dimensions:(i) how many
annotations it requiresto generatecode, and (ii) what the costis of the generatedcode. For
instance, a compiler can usea cost function that minimizes jitter of the actuator updates.

2.4.3 Example

To illustrate the °exibilit y a®ordedto the Giotto compiler, we presern seweral
possiblescedulesfor an execution of the Giotto program from Figure 2.10. The platform

specication P = (H;wcet wect) consists of a single host (H = fhg) and the following

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 47

worst-caseexecution times:

weet(read(s1); h) = 0:25

weet(read(sy); h) = 0:25

weet(t1; h) = 0:25

weet(tz; h) = 0:5

weet(ts; h) = 1.0

weet(true(dyi); h) = 0:25

weet(true(dz); h) = 0:5

weet(true(ds);h) = 1

weet(true(ds);h) = 1

weet(true (ds); h) = weet(false(ds); h) = 0:5

SinceH is a singleton set, we neednot de ne wcct. The jitter toleranceis *= 1.

Consider the sample execution E pictured in Figure 2.11. In E, sensorsare read
and actuators are written at precisely the time instants speci ed by the Giotto sematriics.
This precision is clearly impossibleto attain if sensorreads and actuator writes take a
non-negligible amourt of time. Further, in E, the secondinvocation of task t; executes
between 6 and 12 ms. This requiremert may be too strict, and if insisted upon would
prevent some Giotto programs from being schedulable. Instead, what is required is that
the secondinvocation of t1; executesafter all t1's input port valuesare available, and before
any activity that needsts's output port values.

Figure 2.13 shows the constraints on timing and precedencedor the computation
activities that are induced by the execution E; theseare the constraints that appear in the
de nition of the realization of an execution, and in the de nition of conformancewith the
jitter tolerance. Boxeswith a thick border represert sensorand actuator activities. These
activities are special, becausetheir execution is constrained to happen at speci ¢ times.
The remaining boxes are activities that execute tasks, mode drivers, and task drivers.
These activities may executeat any time, provided they meet all precedenceconstraints.
For example, read(s;)[0; 3] precedestrue (d3)[0; 7], becausethe sensoractivity read(s;)[0; 3]
provides the sensorvalue to the task-driver activity true (d3)[0; 7]. Note alsothat in Figure
2.13activities of the form false(ds)[¢ § do not precedeother activities, asa driver doesnot
write any ports if its guard evaluatesto false.

Figure 2.14 shaws a schedule that realizesthe execution E on a platform spec-

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 48

true(ds)[0;4]
true(d,)[0;7] true(d,)[3;7]
t1[6;1]

false(ds)[2;4] true(ds)[4:4] false(ds)[5;4]

R

true(ds)[0;2] Ry \V true(ds)[3;2] Rs

—tg[21]] tal41]
\ \
true(d3)[0;7] true (ds)[2;7] true(d,)[5;7] t2[6;1]

Figure 2.13. The precedenceand timing constraints for the program execution of Fig-
ure 2.11. Here R; is an abbreviation for read(s;)[0;3]. Similarly, R»;¢¢¢;R7 are,
respectively, abbreviations for read(s,)[0; 3], read(s1)[2;3], read(s)[2;3], read(sy)[4; 3],
read(s1)[5; 3], and read(s)[5; 3].

read(s,)[4;3]
true(ds)[0;2] true(d;)[3;7] true(ds)[4;4]
read(s1)[0;3] t4[6;1] read(s,)[5;3]
read(s,)[0;3] read(s;)[2;3] read(sy)[5;3]
true(ds)[0;4] read(s;)[2;3] false(ds)[5;4]

true(d,)[0;7] false(ds)[2;4] true(dy)[5;7]
true(d3)[0;7] true(ds)[3;2] t2[6;1]

t‘1[3;1] t‘rue(dg)[2;7] true (d,)[6;2]

t3[2;1] t3[4;1]

Figure 2.14: A schedule for the program execution of Figure 2.11.

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE

true (ds)[0;2]
read(s)[0;3]
read(s,)[0;3]
true (ds)[0;4]

t1[3;1]
true(dy)[3;7]

true(dy)[0;7]

t1[6;1]
read(s)[2;3]
read(sz)[2;3]
false(ds)[2;4]
true (ds)[3;2]

true(d3)[0;7]
\

true (ds)[2;7]
\

read(s;)[4;3]
true(ds)[4;4]

read(sy)[5;3]
read(s;)[5;3]
false(ds)[5;4]
true(d;)[5;7]
t2[6;1]
true (d4)[6;2]

t3[2,1]

t3[4;1]

Figure 2.15: A secondsdcedule for the program execution of Figure 2.11.

true (ds)[0;2]

read(s,)[0;3]

read(s;)[0;3]

true (ds)[0;4]

true (ds)[0;7]

t3[2;1]
true(d,)[0;7]
t1[3;1]

t3[2,1]
true(d;)[3;7]
t1[6;1]

read(s,)[4;3]
true(ds)[4;4]
read(s;)[5;3]

read(s;)[2;3]
read(sy)[2;3]
false(ds)[2;4]
true(ds)[3;2]
‘ t‘rue(dg)[2;7]

read(s,)[5;3]
false(ds)[5;4]
true(d,)[5;7]
t2[6;1]
true(d,)[6;2]

t3[4;1]

Figure 2.16: A third sdhedule for the program execution of Figure 2.11.

49

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 50

i'ed by P and conformsto the jitter tolerance ™ = 1. To understand what Figure 2.14
represers, considerthe interval from j 1 to 3:5. First the actuator activity true(d4)[0; 2]
executes;this activity updatesthe actuator port a. Then the sensoractivities read(s1)[0; 3]
and read(s;)[0; 3] execute; these activities update the sensorports s; and s,. Next, the
mode-driver activity true (ds)[0; 4] executes, indicating a mode change, followed by the
task-driver activities true(d1)[0; 7] and true(ds)[0; 7]. Finally, the task activities t1[3; 1]
and t3[2; 1], corresponding to the rst invocations of tasks t; and t3, execute. Note that
the driver activity for the secondinvocation of task t1, namely true(d;)[3; 7], as well asthe
task itself, t1][6; 1], executein advance of 6 ms. This is permissible, becausetrue (d1)[3; 7]
needsonly the value of port o, produced by the rst invocation t3[2; 1] of task t3, which is
complete at 3.5 ms. The schedule of Figure 2.14 conformsto a scheduling annotation with
priority(t1) > priority(ts): for example,at 2.25ms, t1[3; 1] and t3[2; 1] are both enabled, but
t1[3; 1] executes.

Figure 2.15 shavs a secondschedule that realizesthe execution E on a platform
specied by P and conforms to the jitter tolerance ® = 1. The sdcedule of Figure 2.15
conformsto a scheduling annotation with priority(ts) > priority(t;). Figure 2.16shovsathird
schedule for the sameexecution, conforming to a scheduling annotation with priority(t1) >
priority(t3). In this sdedule, task t3 is preempted at 2.5 ms by the driver for task t; and
then by task t; itself.

2.5 Discussion

While many of the individual elemens of Giotto are derived from the literature,
we believe that the study of strictly time-triggered task invocation together with strictly
time-triggered mode switching as a possible organizing principle for abstract, platform-
independen real-time programming is an important step towards separating reactivity from
schealulability. The term reactivity expressesvhat we meanby control-systems aspects: the
system'sfunctionality, in particular, the control laws, and the system'stiming requiremerts.
The term scedulability expressesvhat we mean by platform-dependent aspects, suc as
platform performance, platform utilization (scheduling), and fault tolerance. Giotto de-
composesthe developmert processof embedded cortrol software into high-level real-time
programming of reactivity and low-level real-time scheduling of computation and commu-

nication. Programming in Giotto is real-time programming in terms of the requiremerts of

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 51

control designs,i.e., their reactivity, not their schedulability.

The strict separationof reactivity from schedulability is achievedin Giotto through
time- and value-determinism: given a real-time trace of sensorvaluations, the correspond-
ing real-time trace of actuator valuations produced by a Giotto program is uniquely de-
termined [HKO2]. The separation of reactivity from sdedulability has seweral important
rami cations. First, the reactive (i.e., functional and timing) properties of a Giotto pro-
gram may be subject to formal veri cation against a mathematical model of the cortrol
design[Hen00]. Second,a Giotto program speci es reactivity in a modular fashion, which
facilitates the exchangeand addition of functionality. For example, functionality code (i.e.,
tasks and driver functions) can be padkagedas software componerts and reused. Third, as
increasingly powerful Giotto compilers becomeavailable, the embedded-softvare develop-
ment e®ortis signi cantly reduced. The tedious programming of scheduling code is replaced
by compilation, which eliminates a common sourceof errors. Fourth, Giotto is compatible
with any scheduling strategy, which therefore becomesa parameter of the Giotto compiler.
There are essetially two reasonswhy even the best Giotto compiler may fail to gener-
ate executablecode: not enoughplatform utilization, or not enoughplatform performance.
Then, independertly of the program's reactivity, utilization can be improved by a better
scheduling module, and performance can be improved by faster or more parallel hardware
or leaner functionality code.

Curren t Giotto implemen tations

We brie°y review the existing Giotto implementations. The rst implementa-
tion of Giotto was a simpli ed Giotto run-time systemon a distributed platform of Lego
Mindstorms robots. The robots used infrared transceivers for communication. Then we
implemented a full Giotto run-time system on a distributed platform of Intel x86 robots
running the real-time operating system VxWorks. The robots used wireless Ethernet for
communication. We alsoimplemented a Giotto program running on v e robots, three Lego
Mindstorms and two x86-basedrobots, to demonstrate Giotto's applicability for hetero-
geneousplatforms. The communication betweenthe Mindstorms and the x86 robots was
done by an infrared-Ethernet bridge implemented on a PC. For an informal discussionof
theseimplementations, and embeddedcortrol-systems developmert with Giotto in general,

we refer to the earlier report [HHKO1].

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 52

In collaboration with Marco Sarvido and Walter Schaufelberger at ETH Zivich,
Christoph Kirsch built a high-performance implementation of a Giotto system on a sin-
gle StrongARM SA-110 processorthat cortrols an autonomously °ying model helicopter
[KSHPO02]. This implemertation started from an existing implementation of the helicopter
control system [CEK™* 99], which included a custom-designedreal-time operating system
called HelyOS and cortrol software written in a subset of Oberon [WG92] suited for em-
bedded real-time systems. The existing software was reimplemerted as a combination of
a Giotto program and Oberon code that implemernts the task and driver functions. Much
of the existing functionality code could be reused. The Giotto program for the helicopter
consistsof six Giotto modessud as\tak e-o® and \hover." The hover mode, for example,
contains a 40 Hz cortroller task and a 200 Hz data-fusion task.

The author has implemented a similar run-time system for UC Berkeley's au-
tonomous helicopters. This implementation will be further discussedin Chapter 3. In this
case,the target languagewas C rather than Oberon, and the target operating systemwas
VXW orks rather than HelyOS.

For the Oberon helicopter project, C. Kirsch developed a Giotto compiler that tar-
getsavirtual real-time machine, called the Embedded Machine [HK02]. EmbeddedMachine
code, also called E code, supervisesthe timing of functionality code, which can be written
in any convertional programming languagesud asC. An EmbeddedMachine-basedGiotto
run-time systemeconsistsof an implementation of the EmbeddedMachine together with the
scheduler of a real-time operating system. While E code is interpreted by the Embedded
Machine, functionality code is native code that is scheduled for execution by the system
scheduler. For E code that is generatedfrom a Giotto source program, the sceduling
problem is more constrained than the abstract Giotto sceduling problem de ned in Sec-
tion 2.4.1, but still independert of any particular systemsceduler; it is only required that
the scheduler be compatible with the schedulability test of the Giotto compiler [HKMMO02].
E code produced by the compiler can be executedon any platform for which an Embedded
Machine implemertation is available. For the helicopter project, C. Kirsch and M. Sarvido
implemented the Embedded Machine on top of HelyOS.

C. Kirsch alsoimplemented a Giotto-based electronicthrottle cortroller on a single
Motorola MPC 555 processorunning the real-time operating systemOSEKWorks. For this
purpose,the Embedded Machine was ported to OSEKWorks, which is widely usedin the
automotiveindustry. In addition to thesereal-time versionsof the EmbeddedMachine, non-

CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 53

real-time implemertations of the EmbeddedMachine are available for Linux and Windows.

54

Chapter 3

Autonomous helicopter

Implemen tation

3.1 Intro duction

Chapters 1 and 2 argued that the Giotto programming language provides an ap-
propriate programmer's model for real-time cortrol systems. This chapter substartiates
the argument by showing how the author used Giotto to refactor a portion of the control
software of a small, autonomous helicopter. After a very brief introduction to autonomous
helicopters is given, three common shortcomings of cortrol systems software design are
preseried, shortcomingsthat result in nondeterministic and nonabstract implementations.
The Giotto programming languageaddressedwo of theseshortcomings,and a carefulimple-
mentation of sensordevice drivers addresseghe third. This chapter then further describes
how Giotto was usedto redesignof the control system of an autonomous helicopter. We
will seethat the e®ort of integrating Giotto into the existing control systemdesignwas not
prohibitiv e, and that the use of Giotto resulted in a more deterministic and more abstract
implementation.

An alternativ e approad to addressingthe limitations of current cortrol systems
software is preseried by the Open Control Platform (OCP), being developed at the Boeing
Phantom Works [WKS™* 01]. The OCP sharescertain of its designgoalswith Giotto: recon-
“gurabilit y (the ability to changethe connectionsbetween software elemeris at run-time),
extensibility (the ability to add new tasks to a system), and distributabilit y (the ability to

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 55

executecomponerts on multiple processors).WhereasGiotto addresseshe rst two goals
using modes, the behavior of which is speci ed prior to runtime, the OCP usesdynamic re-
con guration at runtime. Unlike Giotto, the OCP doesnot have a deterministic sematriics,
nor doesit provide guaranteesthat real-time tasks will meet their deadlines. Giotto has
previously beenusedto refactor the software on a small autonomous helicopter [KSHPO02].
In contrast to [KSHP02], here a commercial o®-the-shelf(COTS) enbedded computer and
real-time operating system (RTOS) are used, which allows the software supporting the
Giotto program to executeon potentially many other platforms.

The structure of this chapter is as follows. Section 3.2 preseris badground ma-
terial on autonomous helicopters. Control of helicopters is far beyond the scope of this
chapter and this thesis. We present only a small amount of material that will be helpful
in understanding the examplein this chapter. In particular, we give a brief intro duction
to the actuator inputs of a typical helicopter (which are the outputs of an autonomous
helicopter's °ight computer). We also give a brief intro duction to a typical, minimal sensor
set| consisting of an inertial navigation system and a global positioning system receiver
| onboard an autonomoushelicopter, and we describe the typical typesand rates of data
produced by thesetwo sensors.

Section 3.3 describes three shortcomings of corntrol system software that lead to
nondeterministic and nonabstract designs. Berkeley's helicopter systemis usedto illustrate
these problems, not for the purpose of singling this system out for criticism, but instead
becauseit is a system with which the author is familiar. The author believes that the
problems discussedare not particular to Berkeley's helicopter system, but are also presen
in many other control systemimplementations. We shov how Giotto addressegwo of the
problems. The third problem is not solved by Giotto, but is included nonethelessbecause
it explains an important feature of our Giotto-based control system:the implementation of
devicedrivers for communicating with sensors.

Section 3.4 describes some details of our implementation of a prototype Giotto-
based’ight control computer for Berkeley's Yamaha R-MAX autonomous helicopter. We
preseri the high-level features of the prototype system, rather than the low-level detalils, in
order to keepthe presenation concise.We rst presert a Giotto program for cortrolling the
helicopter that matchesthe typical useto which the helicopter is put. We then describe the
EmbeddedMachine (E machine) [HK02], usedto executeGiotto programs. The E machine
is a platform-independert virtual machine for cortrolling the interaction between software

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 56

processesand physical processesn a real-time embedded computer system. We brie°y
describe our implementation of the E macdine for the prototype °ight control computer.
Finally, we describe the implementation of a hardware-in-the-loop simulator (HILS) that
we usedto test and debugour prototype corntrol system. The HILS is a separatecomputer
running in parallel with the control computer, that executesa real-time dynamical model of
the helicopter. The HILS producesasoutputs duplicates of the sensormessagesert to the
control computer, and acceptsasinputs the actuator messagesert by the control computer.
Thus, the physical outputs of the control computer are fed into the HILS as inputs, and
the physical outputs of the HILS are fed into the corntrol computer as inputs. The HILS
allowed the discovery and correction of logical and functional bugsin the prototype cortrol

system.

3.2 Background on an autonomous helicopter

In this section, we give a very brief introduction to helicopter °ight, which we use
as an examplein this chapter. Our goalis to presen only enoughbadkground necessaryto
understand later sectionsof this chapter. For a more detailed intro duction, see[Shi0Q]. In
its most common form, a helicopter has a fuselage,a main rotor assenbly, and a tail rotor
assenbly. The fuselagecortains the helicopter's engine, and, for Berkeley's autonomous
helicopters, the °ight control computer. The main rotor assenbly givesthe °ight cortrol
computer cortrol over the collective pitch and cyclic pitch of the main rotor blades. The
collective pitch of the main rotor bladesa®ectsthe vertical thrust applied to the fuselage,
and the cyclic pitch a®ectsthe lateral and longitudinal thrust applied to the fuselage.The
control computer also cortrols the collective pitch of the tail rotor blades. The tail rotor op-
posesthe torque around the vertical axis induced by the rotation of the main rotor. Finally,
a pilot normally hascortrol over the throttle, and adjusts the throttle to keepconstart the
angular velocities of the main and tail rotors; the throttle of Berkeley's autonomous heli-
coptersis governedby an independen cortrol systemthat maintains constart rotor angular
velocity, and that doesnot communicate with the °ight computer.

For Berkeley's autonomous helicopters, cortrol over the main rotor collective and
cyclic pitch and over the tail rotor collective pitch is e®ectedusing servomotors. During
autonomous’ight, the °ight computer rather than the pilot sendsmessageso these seno-

motors. In order to stabilize the °ying autonomous helicopter, the °ight computer adjusts

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 57

¢ SENsoA
INS
¢ RS232
¢ processoi ¢ actuataA
FlightComputer ¢ RS232 Servos
sensor . RS232
<
GPSR

Figure 3.1: UML deployment diagram of the topology of the helicopter control system's
hardware.

(1) the cyclic pitch, to keepthe helicopter from tipping over and to move the helicopter
forward or backward and left or right; (2) the main rotor collective pitch, to move the
helicopter up or down; and (3) the tail rotor collective pitch, to point the helicopter in the
desireddirection.

Sewral researt groups have succeededn demonstrating autonomous helicopter
°ight, including but not limited to [Con95 CCP98, SDF* 98, SKHS9§. Of utilit y to most
of theseprojects has beenthe commercial availabilit y of small, accurate inertial navigation
systems (INSs) and global positioning system receivers (GPS receivers or GPSRs). Typ-
ically, an INS provides inaccurate but frequert measuremets of velocity and orientation
(e.g., about every 10 ms), and a GPSR provides accurate but infrequent measuremets
of position (e.g., about every 250 ms). Typically, in order to develop cortrol laws for an
autonomous helicopter, an INS, a GPSR, and a °ight computer are mounted on the heli-
copter. Test °ights are then madein which both the pilot's commandsand the helicopter's
responsesare recorded. Next, systemidenti cation techniquesare usedto determine values
for the parametersof a dynamical model of the helicopter. Finally, cortrollers are synthe-
sizedfor this dynamical model. A dynamical model for the Berkeley R-50 helicopter will

be later described in Section 3.4.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 58

Figure 3.1 shows a typical hardware con guration for an autonomous helicopter.
This "gure is a Uni ed Modeling Language(UML) deployment diagram [RJB99]. Each box
is called a node and depicts a computational resourcethat existsat runtime and is physical.
The nodes of Figure 3.1 are an INS, a GPSR, a °ight computer, and the helicopter's
sernvomotors. The INS and GPSR are stereotyped as sensors(indicated by ¢ sensoA),
meaning that their primary purposeis to make measuremeis of the physical world. The
senomotors are stereotyped as actuators, meaning that their primary purposeis to a®ect
the physical world. Finally, the °ight computer is stereotyped as a processor, meaning
that its primary purposeis to processdata. The communication between the nodes of
Figure 3.1is depicted with the lines betweenthe nodes. The °ight computer receives data
from the INS and GPSR, processeshis data, and sendsdata to the servomotors. For
Berkeley's YamahaR-MAX, communication takesplace over RS232serial channels,soeadt
line is stereotyped with ; RS232 . For simplicity, Figure 3.1 omits seweral nodes of a
typical autonomoushelicopter system, such asa ground station, that would not add to this
chapter's presenation.

As the capabilities of autonomous helicopters have grown, so has the complex-
ity of their control software. This software is normally hierarchical in nature, with the
\lo west" level responsible for cortrol | especially stabilization | of vehicle dynamics. At
UC Berkeley, additional layers of software include a ground station, waypoint navigation
basedon a vehicle control language[Shi00Q], a vision-basedlanding system [Sha99, and a
collision avoidance system based on nonlinear model-predictive cortrol [SKS03]. As the
software grows more complicated, so doesthe choice of helicopter vehicle: either Yamaha
R-50 or Yamaha R-MAX, with other helicopters being contemplated for addition to the
°eet. Given this growing complexity, deterministic and abstract software is neededto re-
ducethe ditcult y of dewveloping and extending the helicopter system. In the next section,
we discussseweral common shortcomings of control systems software designthat lead to

nondeterministic and nonabstract software, and how these shortcomingsmay be addressed.

3.3 Common shortcomings of control systems design

In this section, we discussthree common shortcomingsof cortrol systemssoftware
design. Though theseproblemsare presen on the Berkeley helicopters, the author believes

they are not the special fault of the implementers of the helicopter system, but are rather

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 59

i1: send\elAngles()— i2: sendServoCommands(™>

feverylOm fevery20 m
i: INS Y & DQICONT Y & Servos

i3: readPosition()
feveryl0 mg

ShaedMemaoy

T g2: writePosition()
fevery250 mgg

g1: sendRsition() =

fevery250 mgy
g: GPSR DQIGPS

Figure 3.2: UML collaboration diagram of the processeof the current helicopter system,
and the communication betweenthese processes.

typical of many cortrol systemdesigns.In Section3.3.1,we show how a careful designof the
software that interacts with sensorsmay be usedto addressthe rst of theseshortcomings.
In Sections3.3.2and 3.3.3, we shov how Giotto may be usedto addressthe remaining two
shortcomings.

We usethe UML to motivate and explain our design principles, wherewer possi-
ble. Though UML cannot fully expressall the behavior to which we wish to call attention,
it sernes adequately in its role as a lingua franca for software design. UML allows us to
highlight in language-neutralterms the di®erencebetweena typical cortrol systemand a
Giotto-based cortrol system. UML has an additional bene t: whereasthe use of an ex-
perimental programming languagefor constructing a safety-critical systemmay be deemed
too risky, UML allows the suggestionsof Sections3.3.1 and 3.3.2to be incorporated into
existing designswithout the adoption of an experimental language. Without further ado,
we begin our discussionof the common problems.

3.3.1 Interleaving nondeterminism

Figure 3.2 depicts the interaction betweenthe elemens of the current helicopter
system. We have already encourtered three of theseelemers, the INS, the GPSR, and the
senomotors. The remaining elemens are deployed on the °ight computer. DQICONT is

a process(a thread of cortrol with its own addressspace)that is responsible for receiving

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 60

messagedrom the INS, processingthese messagesand sendingcommandsto the servomo-
tors.> DQIGPS is a processresponsible for receiving messagesrom the GPSR and writing
these messagegso shared memory. DQICONT reads this memory to update its position
estimate. Every elemen of Figure 3.2 except for the shared memory is an active object;
active elemeris can initiate activity. That an elemer is active is indicated by a rectangle
with thick lines. The sharedmemory cannot initiate activity, and is therefore passiwe. That
an elemen is passiw is indicated by a rectangle with thin lines.

The communications from the INS and GPSR and to the servomotors take place
via the sending of messages.These messagesre asyndironous, meaning that the sender
doesnot pauseto wait for results from the receiver. In the UML, asyndronous messages
are indicated by a half stick arrow, asfor the velocity and Euler anglesmessagesert by the
INS, the position messagesert by the GPSR, and the servomotor command messagesert
by DQICONT. In addition to the communication via messagestwo of the active elemerts,
DQICONT and DQIGPS, communicate via sharedmemory. In particular, DQIGPS writes
to the sharedmemory, and DQICONT readsfrom the shared memory. Thesewriting and
reading actions are synchronous, meaning that the initiating processpausesto wait for
results from the shared memory. In the UML, syndironous actions are indicated by a
Tled-in arrow.

The current helicopter system has two interleaved sequence®f actions. The rst
sequenceconsistsof the INS sending a message(action il in Figure 3.2), followed by the
cortrol computer sending a servomotor command messageevery other INS message(i2),
followed by the corntrol computer reading a GPSR messagegrom the shared memory (i3).
The secondsequenceconsistsof the GPSR sendinga messagggl), followed by the control
computer writing the GPSR messageto shared memory (g2). The rst sequenceoccurs
every 10 ms, with sernvomotor commands occurring every 20 ms. The second sequence
occurs every 250 ms. The internal clocks of the INS and GPSR are unsynchronized and
may drift; further, there is initially someamount of skew betweenthe two clocks.

The interaction depicted in Figure 3.2 decreaseshe determinism of the helicopter
control system. On the current system, the shared memory is not protected by a mutual
exclusion medhanism. As is well-known, this does not ensure data consistency:since ac-

tion g2is non-atomic, and may be preemptedaction i3, the sharedmemory readin action i3

1The name DQICONT is derived from \DQI-NP ," the INS used,and \CONT," short for \control" [Shi0o0].

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 61

i INS

i1: send\eIAngIes()V

feveryl0 mgy
i2: send\elAnglesPs() — i3: sendServoCommands(™>
. feveryl0 mgy . fevery20 mgy
SenscReceiver Giottolmpl Servos

g1: sendPsition() %

fevery250 mgy
g: GPSR

Figure 3.3: UML collaboration diagram of the processesof the helicopter system that
removesthe interleaving nondeterminism presen in Figure 3.2.

may cortain a garbled message. This may lead to a large jump in the position estimate
of the INS process,and therefore to the calculation of inappropriate cortrol values. Of
course, it is possibleto ensureconsistencyusing a mutual exclusion medanism. However,
aswasarguedin Chapter 1, the problem runs deeper: independert streamsof computation
lead to interleaving nondeterminism, which greatly complicates debugging, especially in a
rapidly changing real-time setting. With only two processegresen, the task is perhaps
manageable;but were the helicopter systemto grow in functionality, the debugging e®ort
would call for a redesign.

Figure 3.3 preserts a refactoring of the interprocesscommunication that mitigates
the interleaving nondeterminism pictured in Figure 3.2. The INS and GPSR ead generate
their own stream of messagesas before. Here, however, these streams of messagesare
received by a single processrunning on the °ight computer. This processis called the sensor
receiver. The sensorreceiver usesa select() system call to wait for data on multiple
serial ports. When a GPSR messageis received, the sensorreceiver bu®ersthe position
data in the GPSR messagefor later use. When an INS messageis received, the sensor
receiver aggregatesthe velocities and Euler angles of the INS messagetogether with the
position of the previously received GPSR messageand sendsthe aggregationto the Giotto
implementation. The receipt by the Giotto implementation of a messagefrom the sensor
receiver constitutes a clock tick. The INS data is assumedby the Giotto implementation

always to be fresh. If the GPSR data wasreceived more than 10 ms ago, the sensorreceiver

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 62

INS DQICONT Servos

I
|

! ! control
I

send\élAngles() laws
D feveryl0 mgy
L sendServoCommands()
fevery20 mgy U

Figure 3.4: UML sequencadiagram of the processef the current helicopter system.

indicates to the Giotto implementation that the GPSR data is stale.

Syndronized INS and GPSR clocks would be more deterministic than unsyndro-
nized clocks, and are therefore preferable. However, syncironized clocks are not possible
with the sensorset currently on the Berkeley Yamaha helicopters. Further, switching to
a new sensorset would be prohibitiv ely costly. The sensorreceiver processrepresers a
compromise solution in which drifting clocks causea varying but acceptable amourt of
skew between GPSR messagesand INS messages. The interleaving of the reception of
sensormessagegherefore cannot be eliminated onboard the helicopter, but the e®ectsof
the interleaving are ameliorated by the uniform interface preseried by the sensorreceiver
process.

The sensorreceiver processis not part of the Giotto program or implementation
discussedin Sections3.4.1and 3.4.2, below. Rather, the sensorreceiver processis software
infrastructure that enablesthe Giotto program to cortrol the helicopter without getting
embroiled in communication with the sensors.Using a sensorreceiver processis appropriate
for sensorsthat are active, i.e., that send data of their own accord. We believe that the
managemen of active sensorsusing a sensorreceiver processhas advantages independen
of the Giotto implementation that is described below: a sensorreceiver processrepreserts
an intuitiv e and modular division of computational labor, and sparesthe control process

from knowing the protocols necessaryfor initializing and communicating with the sensors.

3.3.2 litter

Figure 3.4 shows the sequenceof execution of the processesof the current heli-
copter system. This diagram omits the interaction with the GPSR, and focuseson the

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 63

interaction with the INS. The DQICONT processreceives a messagefrom the INS every
10 ms. Using this message DQICONT computesthe cortrol laws, and sendsthe result
of this computation to the servomotors every 20 ms. The computation of the cortrol laws
does not always take the sameamount of time; if one conditional branch in DQICONT
is followed, rather than another, the amount of time may di®er. Even if DQICONT had
no conditional branches,its executiontime might be shortenedor lengthenedduring some
invocations, for exampleby architectural featuressud ascacing. Thus, if the INS message
is received at time ¢, then the time ¢ + ¢ ¢ at which the servomotor command is sert may
vary. Put another way, ¢ ¢ is not constart, but instead dependson many hard-to-predict
factors.

Such unpredictable variation in timing is known as jitter . Jitter makes more dif-
“cult the task of analyzing or simulating the behavior of the closed-lamp helicopter system
(sensors+ °ight computer + actuators + helicopter dynamics), sincethe time at which the
°ight computer producesits outputs is unknown a priori . We take issuewith the common
view that a real-time systemrequiresonly that the time betweenan evert and the response
to it be boundedfrom above. In order to develop mathematical models of a cortrol system
plus its environment, it is necessaryto know when the system interacts with its environ-
ment. For this purpose,bounding the responsetime from above is not suzcient. Instead,
it is desirablethat the responsetime be bounded both from above and below.

Figure 3.5 shaws a sequenceof the execution of processegshat remaovesthe jitter
presert in Figure 3.4. Every 10 ms, the INS triggers the sensorreceiver process,which
immediately triggers the Giotto implemertation. The Giotto implementation consists of
the E machine and the cortrol laws, both of which will be discussedin Section 3.4. Every
20 ms, the Giotto implementation immediately sendscommandsto the servomotors. These
commandswere computed during the previoustriggering of the Giotto implementation. The
Giotto implementation then invokesthe computation of the cortrol laws. This computation
will producethe sernvomotor commandsfor the next triggering of the Giotto implementation.
The 10 ms of latency intro duced is acceptablefor the helicopter application. The variation
in executiontime of the sensorreceiver processis small, asis the variation in executiontime
of the portion of the Giotto implementation precedingthe sendingof servomotor commands;
thus, the amount of jitter is reduced. The technique preseried in this section for reducing
jitter is a benet of using Giotto, but may of course be implemented independertly of
Giotto.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 64

Giottolmpl %

INS SensoReceiver EMachine ControlLavs Servos

send\élAngles() |
feveryl0 mgy

I

send\élAngles®s()
feveryl0 mgy sendServoCommands()
fevery20 mgy

»
L

send\élAccelPs()
feveryl0 mgy U

Figure 3.5: UML sequenceadiagram of the processe®f the helicopter systemthat removes
the jitter of Figure 3.4.

Pro cedure 3.1 Structure of the main cortrol loop of the current helicopter system.
1. count := 0O

2: while true do

3: Wait for messagdrom INS.

4: oount := count + 1

5. Update position estimate using INS messageand previous position estimate.
6

7

8

if count = 0 mod 2 then
Compute cortrol laws using position estimate and waypoint.
Sendcommand messaggo senomotors.

3.3.3 Implicit rates

Procedure3.1showsthe structure of the main cortrol loop of the current helicopter
system. In line 3, the procedurewaits for a messagefrom the INS; this is a blocking wait
with no timeout. After this messagds received, the number count of messageseceiwed is
incremerted, and for each messagereceived, the position estimate is updated. For every
secondINS messageaeceiwed, the cortrol laws are computed and a command is sert to the
senomotors in lines 6{8. The timing behavior of the main cortrol loop is thus implicitly
given by the use of the variable count. In this simple example, the timing behavior is easy
enoughto understand; but if count were usedin a more complicated way, or more counters
were added, the timing behavior would becomeditcult to comprehend.

The implicit timing behavior we have just seencortrasts with the explicit timing

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 65

sensor port INS
actuator port servos
output port estimates
input
port INS-input
port estimates-input

task Tter
input INS-input, estimates-input
output estimates

driver Tter-driver

source INS, estimates

guard true

destination INS-input, estimates-input
driver servosdriver

source estimates

guard true

destination servos

mode control period 20 ms
frequency 2 invoke ‘Tter driver Tter-driver
frequency 1 update servosdriver

Figure 3.6: The main cortrol loop of the helicopter systemexpressedas a Giotto program.

INS INS INS

“Tter “Tter
estimates estimates estimates

SEIvVos: | Servos
~————— Yjcontrol] = 20mMs —————»-

é ¢t 20ms

Figure 3.7: A timing diagram for the Giotto program for the main cortrol loop.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 66

behavior of the Giotto program of Figure 3.6, and its assaiated timing diagram (Figure 3.7)
This program invokesa single task, Iter , which usesthe most recert INS messageand the

previous position estimate to update the current position estimate. The program also
updates a single actuator, servos at half the frequency of Tter . The frequenciesmay be
read o®directly from the program. Unlik e the suggestionsof Section 3.3.1, the suggestions
of this section cannot be implemented using a convertional programming languagelike C

or Ada: the explicit timing behavior that Giotto o®ersis not available in corvertional

languages.

3.4 A protot ype Giotto-based °ight control computer

The argumerts of Section 3.3 in favor of Giotto, though they may be convinc-
ing on a conceptual level, needto be substartiated on a concrete and practical level. In
this section, we complemert those argumerts with a description of the implementation
of a prototype Giotto-based °ight control computer. This implementation is designedto
stabilize Berkeley's Yamaha R-MAX helicopters. Section 3.4.1 preserts a Giotto program
for helicopter control that meets the requiremerts of the typical use of the helicopters.
Section 3.4.2 describesthe E machine, usedfor executing Giotto programs, and brie°y de-
scribes our implementation of the E macdhine on the real-time operating system VXW orks.
Finally, Section 3.4.3 describes a hardware-in-the-loop simulator that we usedto validate
the prototype Giotto-based °ight control computer.

We rst describe the typical use of the Berkeley helicopters: a test °ight. We
describe this as a UML use case,without belaboring the point by preseriing a use case
diagram. The actors are a safety pilot and a computer operator. In the normal °ow of
ewerts, the pilot °ies the helicopter from the ground to a prespeci ed location. The pilot
then announces\Enable control.” The operator enablesthe autonomous behavior of the
helicopter, and then announces\Control enabled." The experiment is performed by the
°ight control computer. The pilot then announces\Disable cortrol." The operator disables
automatic cortrol, then announces\Control disabled." The pilot lands the helicopter. An
exceptional “ow of events occurs if the operator or pilot believes the °ight computer is
malfunctioning, and announces\Disable cortrol* before the experiment is complete. In
this case,the operator disablesautomatic corntrol, announces\Control disabled,” and the
pilot lands the helicopter.

sensor
port GPS
type GPSMessage
port INS
type INSMessage
port isEnabled
type bool
port waypoint
type double[4]
actuator
port servos
type ServosMessage
output
port position
type double[6]

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 67

input

port GPSh.

type GPSMessage
port INST_ .

type INSMessage
port position™

type double[4]
port GPSicT)ntroI

type GPSMessage
port I’\lSiort])ntrol

type INSMessage
port position |

type double[4]
port waypint™

type double[4]

port controls
type double[4]

Figure 3.8: Ports of the Giotto helicopter corntrol program.

3.4.1 A Giotto program for helicopter control

This section preserts a Giotto program for helicopter cortrol that satis es the re-
quiremens of the usecasejust discussed.(The Giotto program of Figure 3.6 doesnot match
the use case;for illustrativ e purposes,the program of Figure 3.6 simpli ed the program of
this section.) The program of this sectionacceptsasinputs INS messagesiPSR messages,
waypoints, and a booleanvalue isEnablal from the operator, and producesestimatesof the
helicopter's position and cortrol valuesfor the senoomotors as output. We concerirate on
the program structure and timing behavior, rather than the functions implemented by the
tasks. Descriptions of thesefunctions may be found in [Shi0O0, Ma02]. The Giotto program
currently running on the prototype °ight cortrol computer is functionally identical to the
program preseried here when the operator input isEnablel is true. We rst presern the
ports of the program, then the tasks and drivers, and nally the modes.

Ports of the Giotto program. The port declarations of the Giotto helicopter
control program appear in Figure 3.8. Sensorports INS and GPS contain the most recert
messageseceived from the INS and GPSR. The boolean sensorport isEnablel is true if
and only if control is currently enabled by the operator. The sensorport waypint is the
waypoint most recerntly generatedby the waypoint cortroller. This waypoint includes a

desired x; y; z position, plus a desired heading angle. The actuator port servos cortains

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 68

values for the collective and cyclic pitch of the main rotor, and the collective pitch of
the tail rotor. The remaining ports are task output and input ports. The output port
position cortains the Giotto program's estimate of the helicopter's position. This estimate
includes the helicopter's x; y; z coordinates, plus the helicopter's Euler angles. The output
port controls contains the results of computing the control laws, and is usedto update the
actuator port servos The task input ports (GPSH’}Er , etc.) are set by the task driversto be
copiesof the correspnding sensorand output ports (GPS, etc.). For simplicity, Figure 3.8
omits initial values.

Tasks and driv ers of the Giotto program. The tasksand driversofthe Giotto
helicopter control program appear in Figure 3.9. There are two tasks, Tter and control.
Both tasks are responsible for updating the position estimate position; for this purpose,
the tasks needthe current INS and GPSR messagesas well as the previously computed
position. In addition, control is responsible for updating the port controls; for this purpose,
control needsthe current waypoint. A high-level picture of the structure of the function of

control is as follows:

if GPS™ ., is a fresh GPSR messagehen _
Correct position using GPSg, o and position & o -

: Predict position using INS o1 @nd positiony ;-

. Set controls using position and waymint.

The function of Tter omits step 4 but is otherwise similar. The drivers for the two tasks,
“Tter-driver and control-driver, simply copy their sourceports to the tasks' input ports.
Similarly, the driver for the actuator port, servosdriver, copiescontrols into servos We
will discussthe mode switch drivers actuate-switch and estimate-switch when we discuss
the modes.

Mo des of the Giotto program. Figure 3.10presens the modesof the helicopter
control program. There are two modes, estimate and actuate. Mode estimate invokesthe
task Tter every 10 ms, thereby updating the position estimate. As long as isEnableal is
false, the guard of actuate-switch is false, and the program stays in mode estimate. When
isEnablad becomestrue, the guard is true, and the program switches to mode actuate.
Mode actuate invokesthe task control every 10 ms, and updates the actuator port servos
every 20ms. The program switchesfrom actuate to estimate whenisEnabled becomedalse.

This completesthe description of the Giotto program for helicopter control.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION

task Tter
input GPS™M. , INST, , position®
output position
function fer

task control _ _ _
input GPSIC%ntroI' INSI&)ntroI’ posmon'&mtrol’ Waymimlclzmtrol
output position, controls
function feontrol

driver Tter-driver
source GPS, INS, position
guard true
destination ~ GPS™, , INS™. , position®
function hier

driver control-driver
source GPS, INS, position, waypint
guard true
destinaton GPS ., INSI ., positon™ . ., waypint
function heontrol

driver servosdriver
source controls
guard true
destination servos
function hservos-driver

driver actuate-switch
source isEnabled, position
guard isEnablel
destination position, controls
function hactuate

driver estimate-switch
source position
guard : isEnablel
destination position
function hestimate

Figure 3.9: Tasksand drivers of the Giotto helicopter cortrol program.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 70

mode estimate period 10 ms ports position
frequency 1 invoke Tlter driver lter-driver
frequency 1 switch actuate driver actuate-switch
mode actuate period 20 ms ports position, controls
frequency 2 invoke control driver control-driver
frequency 1 update servos
frequency 2 switch estimate driver estimate-switch

start estimate

Figure 3.10: Modesof the Giotto helicopter cortrol program.

3.4.2 An Embedded Machine implemen tation

A Giotto program does not run itself, but instead requires a run-time system
for executing tasks and drivers, and for communicating with sensorsand actuators. In
this section, we describe one suc run-time system, the Embedded Machine (E machine,
for short) [HK02]. We used an implementation of the E machine onboard our prototype
°ight control computer in order to executethe Giotto program for helicopter cortrol. The
E madine is a virtual machine that managesthe communication betweenand amongtasks,
drivers, sensors,and actuators. The E machine cortrols how a real-time software system
reactsto an evert in the ervironment, for example a sensormessageor the tick of a timer.
At the occurrence of such an evert, the E machine executesa sequenceof instructions.

Theseinstructions, called E code, are essetially of three types.

2 First, an E code instruction may be a call driver (or call) instruction. In the presen
context, drivers are parameter-free routines that communicate data between and
among sensors,tasks, and actuators. In the model of the E macdine, drivers are
syndironous,i.e., if adriveris called in responseto an evert in the ervironment, then
the driver terminates beforeany other event occurs? Thus, after calling a driver, the

E machine waits until the driver completes.

2 Second,an E code instruction may be a schalule task (or schedule) instruction. In
the presert context, tasks like drivers, are parameter-freeroutines. Unlike drivers,

tasks perform signi cant computation, and thus do not execute synchronously. The

2This assumption may be overly restrictiv e, especially if drivers require non-negligible computation time.
Chapters 4 and 5 investigate scheduling models which allow this assumption to be removed.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 71

E macdine does not block until a scheduled task is complete, but instead informs
the operating systemthat the task is ready to execute. The operating system then
schedulesthe task according to the operating system's scheduling policy. Like the

ervironment, the operating systemis beyond the jurisdiction of the E machine.

2 Third, an E code instruction may be a future E code (or future) instruction. A
future instruction determines how the E machine will respond to a future event.
Sudch an instruction has two argumerts: a predicate p and a block e of E code. The
instruction future (p;e) inserts the pair (p;e) into a trigger queue At ead future
ewven, if (p;e) isthe rst pair in the queuewhosepredicate is true, then e is executed,

and (p;e) is removed from the trigger queue.

E codeis portable, predictable, and real-time. A more completedescription of the E machine
may be found in [HKO02].

For the compilation of a Giotto program to be executed using the E machine,
the elemens of the Giotto program are separatedinto two automatically-generated parts,
functionality and timing. The functionality part includes ports and parameter-freeroutines
for ead task and driver. Theseroutines call, with the appropriate argumerts, programmer-
de ned functions for the tasks and drivers. The timing part includes the E code and, for
ead schedule (t) instruction, a positive integer that denotesthe relative deadline of the
task t that is scheduled. In Figure 3.7, for example, the relative deadline of Tter is 10 ms.
An earliest deadline rst sceduler is thus appropriate for use with the current Giotto
compiler.®

In order to run the Giotto program for helicopter control, the author ported the
E machine to run on the real-time operating systemVxW orks. This port started from the
Linux-basedE machine described in [HK02], in which the E machine runs asa high-priorit y
thread, and eadt task runs asa lower-priority thread. With ead task is assaiated a unique
semaphore. Each task t is an in nite loop that rst waits for a post to its semaphore,
then executesupon receiving this post, then waits for a post to its semaphore,and so on.
To executethe instruction schedule (t), the E macine posts to the semaphoreof task t.
Our port is di®erent from the port described in [HKO2] in seweral respects. First, our port

3Here, the deadline of a task is taken to meanits logical deadline [HK02]. In particular, the deadline of a
task doesnot here mean the earliest time at which its outputs may a®ectan actuator. Lik e the requirement
that driv ers execute synchronously, this requirement may be overly restrictive. Chapters 4 and 5 examine
models in which this restriction is removed.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 72

of the E madiine does not use the POSIX features of VxW orks; the author has found
that the VxW orks-native features function more reliably. Second,the dynamic linking and
distributed featuresof the E macdhine were not neededfor our implementation. Finally, our
port implements EDF scheduler on top of the priorit y-based scheduler of VxWorks. The
result is a leanimplementation of the EmbeddedMachine, consisting of fewer than 600lines

of code?

3.4.3 Validation using hardw are-in-the-lo op simulation

This section describes the hardware-in-the-loop simulator built by the author in
conjunction with J. Liebman and C. Ma to test the prototype Giotto-based °ight cortrol
computer. A hardware-in-the-loop simulator (HIL simulator or HILS) is a computer that
is distinct from the corntrol computer, that has physical interfacesthat mate with those
of the cortrol computer, and that executesin real-time a dynamical model of the cortrol
computer's environment. The timing, data formats, and protocols of the environment's
sensorsand actuators are duplicated by the HILS. This enablesthe testing of the prototype
°ight corntrol computer against a real-time model of the actual vehicle. HIL simulation
replacescostly, dangerous,and time-consuming °ight tests with inexpensiwe, safe, short,
and repeatable laboratory tests.

HIL simulation is commonly usedin the aerospaceindustry to validate corntrol
systems, and has beenin use since at least the early 1970s[Tom00]. HIL simulation has
previously beenusedto test both autonomous helicopters [JM02, SS0] and Giotto-based
helicopter cortrol software [KSHPO02]. In cortrast to [JM02], our HILS runs on an RTOS,
allowing real-time performance. In contrast to [SS01 KSHP02], our HILS usesstandard
COTS hardware and software, enabling us to port the HILS to new platforms.

Before describing our HILS, we brie°y describe the hardware used for both the
simulator and the prototype °ight control computer. We chosetwo matching computers
from SBS Tednologies,ead of which is essetially a compact PC. One computer runs the
Giotto program described above, and the other runs the hardware-in-the-loop simulator

4The author also improved the shutdown of E machine threads by cleanly releasing all resourcesupon
shutdown. Surprisingly, of any single improvemert made, this one had the greatest bene cial e®ect. Prior
to this improvemert, in order to test out a new version of control computer software, the control computer
itself had to be switched o® and on, requiring about 120 seconds. After this improvemert, the power could
be left on, and the time reduced to about 15 seconds. This enabled many more bugs to be found and xed
in a given amount of time.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 73

Figure 3.11: Hardware for prototype helicopter control computer: CompactPCl computer,
serial communications card, and chassis.

described belov. Each computer has an 850 MHz Pertium 111 CPU, 256 MB of RAM,

192MB of nonvolatile Flash memory, and an Ethernet port.® The speedof thesecomputers
is more than suzcient for the execution of our simulator and cortrol program (for example,
the averageexecutiontime of the task control is 0.052ms) and allows room for growth. Since
communication with the sensorsand actuators on the R-MAX is over RS232serial channels
(seeFigure 3.1), we used a four-port RS232 card, also from SBS, with eady CC7 cortrol

computer. In all, four serial ports are needed:one for the GPSR, one for the servomotors,
and two for the INS. In our prototype implementation, we only usedone serial line for the
INS, omitting the additional serialline necessanyfor di®ererial GPS correction. Figure 3.11
shows one of the computers, with serial card and chassis. In the remainder of this section,

we describe the dynamical model and software structure of the HILS.

Hardw are-in-the-lo op simulator: dynamical mo del

A dynamical model has previously been developed for the Berkeley R-50 heli-
copters [Shi0(. The similarity between the R-50 and the R-MAX makes the structure
of this model appropriate for the R-MAX, and the Berkeley helicopter group plans to
derive an R-MAX model with the same structure. The model of [Shi0OQ was obtained

5These computers have the CompactPCl form-factor, which possesseshe advantage, over the more
traditional PC-104 form factor, of allowing easieraccessto the °ight computers: rather than disassenbling
a PC-104 stack, one merely has to slide cards out of the CompactPCIl backplane.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 74

using system identi cation techniques, starting from the generic small helicopter model
of [MTK99, MTKOOQ]. This genericmodel is:

X = Ax +Bu (3.1)
where:
X = uvwpar Ain Hin Ain abrgp]” 2 RY (3.2)
u = [ua up uy u,]" 2R
u;v;w = velocities in body coordinates
p;g;r = angularratesin body coordinates
Ain :Hin ;Ain = linearized approximation of roll, pitch, yaw
a;b = longitudinal and lateral °apping anglesof main rotor blades
rm = Yyaw stabilization subsystemstate
Ua = input to main rotor bladeslongitudinal °apping angle
U, = input to main rotor bladeslateral °apping angle
uy = input to main rotor bladescollective pitch

input to yaw-stabilization subsystem

uffb

and the structure of A and B are asfollows (here, @ indicates that the corresponding matrix
entry may be any real number):

21?100 0O 00 O jgO = 0 O 2OOOO
0 = 0 0O 00 g 00 0 = O 0 00O
0 0 © 0 0= O 00 = o O 0 0 = O
a o 0 0 00 O 00 = = O 0 00O
a o 0 0O 00 O 00 = o O 0 0 0O
A = 0 0 = a O0=a O 00 O O = B = 0 0 & =
0 0 O 1 00 O 00 0 0 O 0 0 0O
000 O 100 0O OOTDO 0 00O
0 0 O 0O 01 O 00 0 0 O 0 0 0O
0 0O 0j10 O 00 & o O a o 0 O
0 0 0 j1 00 O 00 o ©o O a o 0 O
0 0 O 0 0= O 00 0 0 = 0 0 0O

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 75

By equipping the helicopter with hardware and software to record the pilot's input
and the vehicle'sresponse,D. Shim identied A and B [Shi00]:

2io:1257o 0 0 0 0 0ig0 ig 0 0
0 i 0:4247 0 0 0 o0 g 00 O g 0
0 0 {07598 0 0 842310 00 389954 9:6401 O
i 0:1677 0:0870 0 0 0 o 0 00 367050 1611087 O
i 0:0823 j 0:0518 0 0 0 o 0 00 635763 19:4931 0
A = 0 0 0:0566 | 1:3300 0 | 551050 00 0 0 i 44:8734 (3.3)
0 0 0 1 0 o0 0 00 O 0 0
0 0 0 0 1 0 0 00 O 0 0
0 0 0 0 0o 1 0 00 O 0 0
0 0 0 0 i1 o0 0 00 34436 08287 O
0 0 0 i1 0 o0 0 00 03611 |314436 O
0 0 0 0 0 181570 00 O 0 i 11:0210
2 3

0 0 0 0

0 0 0 0

0 0 705041 O

0 0 0 0

0 0 0 0

B = 0 0 23:6260 44:8734 (3.4)

0 0 0 0

0 0 0 0

0 0 0 0

i 0:8417 2:8231 0 0

i 224090 | 0:3511 O 0

0 0 0 0

Equations (3.1), (3.3), and (3.4) are the core of the model of our HILS. For the
Euler angles,we improve upon this core model, as suggestedin [Shi00]. In (3.2), Ain , Min »
and Aj, are approximations to the Euler angles, derived from a linearization of the heli-
copter dynamics. To obtain a more accurate represeration of the Euler angles,we usethe
following standard equation to transform the angular rates p;q;r in body coordinates into

the derivativesA; ; A_of the Euler angles:

2 i) 32 3
1 sSACtu cActu p

3 2

A

guézgo cA isA £3q (3.5)
A 0 sA=cp cA=cu r

Here, cx, sx, and tx are abbreviations for cosx, sinx, and tan x, respectively. Note that

the accuracy of equation (3.5) is limited by the fact that p, g, and r are linearized approx-

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 76

Pro cedure 3.2 Simulator software implementation.
1: count := 0
2: while continue = true do
Settimer to post to semaphoresem at time ¢+ 1 ms, where ¢, msis the current time.
if new actuator messages preseri then
Update inputs u.
if count = 0 mod 10 then
SendINS messageusing the values of state variables for time ¢ ms.
if count = 0O then
Send GPSR messageusing the valuesof state variables for time ¢ ms.
10: Compute the valuesof state variables for time ¢ + 1 ms.
11: count := (count + 1) mod 250
12: Wait on sem.

imations to the angular rates® Another coordinate transformation may be usedto obtain
the velocities X1p, Yip, and zyp in tangert plane coordinates from the velocities u, v, and w

in body coordinates:

2 3 2 o S 32 3
Xtp CAcCcu j SACcA+ cACspuc¢sA sA CcA+ cACsucCcA u
Yip & = § sAc¢cpu cAc¢cA+ sAtspt¢sA | cA¢sA+ sA ¢succA v é (3.6)
Zip i SH CUESA CUECA w

The dynamical model of the HILS thus has 24 states: the 12 states of the vector x,
the three non-linearized Euler anglesA;u;A and their derivatives, and the three tangert
plane coordinates X, Yip; Zyp and their derivatives. The dynamics of x are governed by
the di®ererial equation x = Ax + Bu, where A and B are givenin (3.3) and (3.4). The
dynamics of the remaining states are governed by equations(3.5) and (3.6). This concludes
our discussionof the dynamical model of the HILS. In the next section, we describe the

software structure of the HILS.

Hardw are-in-the-lo op simulator: software structure

We now discussthe software structure of the HIL simulator. Our goal was to
build a simulator useful for debuggingthe prototype °ight control computer, rather than
to build a simulator itself in need of debugging. This goal mandated the complemeriary
designcharacteristics of simplicity and determinism. These characteristics are exhibited by

5Note also that four entries of the transformation matrix may tend to 81 asptendsto §%#2, i.e. as
pitch facesdirectly up or down. This phenomenon, known as gimbal lock, is not of concern here, since the
helicopter is never put through such extreme maneuvers by our simulator.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 77

Procedure 3.2, which shaws the structure of the simulator. First, the iteration count count
is setto 0. The procedurethen ernters a while loop, at the top of which it is cheked whether
the global variable continue istrue. An external proceduremay halt the simulator by setting
continue to false. A timer is setin line 3 to begin another iteration of the simulator by
posting to the semaphoresemafter 1 ms.” In lines 4{5, if a new actuator messages prese,
the simulator updatesthe input vector u. Lines 6{7 sendan INS messagesvery 10 ms, and
lines 8{9 senda GPSR messageevery 250 ms. These messagesre created using the values
of the state variables computed 1 ms previously (cf. Section 3.3.2). Line 10 computes new
values for the state variables. These values may be used during the next iteration of the
while loop, at time ¢ + 1 ms, to send messages.Line 11 updates count. Finally, line 12
waits on the semaphoresem.®

The computation of new values for the state variables (line 10) usesthe fourth-
order Runge-Kutta implementation of [PTVF92]. BecauseRunge-Kutta methods require
that derivativesbe calculated at future time instants, they are an imperfect match for HIL
simulation: the outputs of the cortroller at times ¢°> ¢ cannot be known by the simulator
at time ¢ [Led99]. We therefore assume,in the calculation at time ¢, of the values of the
state variables at time ¢ + 1 ms, that the inputs at time ¢ > ¢ are identical to those
at time ¢. This assumption, though a source of inaccuracy, was su+cient to validate the
stability both of the current helicopter corntrol laws and of our Giotto cortrol program, and
moreover to uncover logical bugs in the implementation of the control software. Though
it would be desirable to remove this inaccuracy by using a causal numerical integration
method (e.g., an Adams-Bashforth method, as suggestedby [Led99]), an implementation
of such a method was not available when we wrote the simulator.

An earlier, alternativ e software structure wasdescribedin [HLM * 03, Lie02, Ma02].
This earlier implemertation had two additional tasks: one for sending INS messagesand
another for sending GPSR messages.The implementation described here is simpler and
more deterministic, and adds other improvemerts, including: noisein the sensormodels,
more frequert computation of vehicledynamics, sensorand actuator messageshat duplicate
that data formats of the actual GPSR and INS (respectively, the Novatel MillenRT-2 and

"The 1 ms interval was chosenbecauseshorter intervals (e.g., 0.1 ms) overloaded the simulator computer
with interrupts.

8The model of the simulator would naturally permit an implementation in Giotto. However, it seemed
circular to test and debug a Giotto-based system with a Giotto-based system, so we instead used more
traditional tools: C and VxW orks.

CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 78

the C-MIGITS 1), a heartbeat monitor for the simulator, and improved thread startup and
shutdown.

The use of a HIL simulator to debug the prototype Giotto-based °ight cortrol
computer resulted in an extremely reliable system:in a reliability test, the simulator com-
puter in parallel with the control computer ran for over one month without any failure (and
only stopped running becausethe author had to power down the systemfor transport to a

demo).

3.5 Conclusion

In this chapter, we arguedthat the Giotto programming languageaddressesom-
mon shortcomingsof cortrol systemssoftware. We exhibited three such shortcomings,using
the UML to describe two of them. We showved how a Giotto implementation, together with
a careful implementation of device drivers for communication with sensors,leadsto more
deterministic and abstract cortrol systemssoftware. To substartiate our argumert about
the determinism and abstraction of Giotto, we described the dewvelopmert of a prototype
Giotto-based °ight corntrol computer for Berkeley'sYamahaR-MAX autonomoushelicopter.
We preseried a Giotto program for cortrolling the helicopter. We described the E machine,
and our implementation of it for the prototype °ight control computer. Finally, we de-
scribed the designand implementation of a hardware-in-the-loop simulator to validate the

reliabilit y of our prototype °ight control computer.

79

Chapter 4

Single-mo de, single-pro cessor
Giotto scheduling

4.1 Intro duction

In this chapter, we addressthe problem of scheduling single-made Giotto programs
for a single processor. This is an important case,as many cortrol algorithms have a single
mode of operation, and many implementations usea single processorto reduce cost, design
time, and debugging e®ort. Though using multiple processorsincreasesoverall processing
speed,sodoesthe ever-growing power of modern processorsput without the addedoverhead
of interprocessorsyndironization and communication. In addition, though multi-pro cessor
systemspermit greater fault tolerance, experienceshawsthat extreme caremust betakenin
the designand debuggingof such systems. The amount of e®ortinvolved tends to decrease
rather than increasecon dencein their purported fault tolerance.

Instead of only deweloping sdheduling algorithms for Giotto, we adopt a more
inclusive approach. Our strategy is to embed the sctheduling problem for single-male,
single-processor Giotto programs into a more general problem. It is this more general
problem that we solve. The algorithms that we dewelop are useful not only for Giotto, but
also for more expressie time-triggered programming languages,e.g., languagesin which
the unit-delay requiremerts of Giotto are relaxed.

Our approac hastwo main ingredierts. The rst is that we use precedencecon-
straints to model data °ow. Speci cally, if an activity A; writes a valueto a port p, and A,

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 80

readsthat value from p, then A; must complete before A, begins. The timing of sensors
and actuators in a Giotto program should be xed, sincesensorsand actuators interact with
the external world at times speci ed a priori by the Giotto program. However, besidessen-
sorsand actuators, all other activities may be executedat any time, subject to precedence
constraints imposedby data °ow. In this chapter, we show that the precedence-constrained
view of single-processorscheduling lets more Giotto programs be scheduledthan was previ-
ously possible. The secondkey ingrediert is that we start from a the precedence-constrained
scheduling algorithm, EDFA, dewveloped in of operations researt. This algorithm provides
a useful departure point, but to make it appropriate for scheduling Giotto, we extend it
to handle an in nite, periodic set of jobs. The algorithm that we dewelop has two desir-
able properties. First, it is optimal: it nds a sdcedule satisfying timing and precedence
constraints wheneer such a sdhedule exists. Second,it is reasonablyfast: it runs in time
polynomial in its input size,and pseudomlynomial in the frequenciesof the Giotto program.
Though precedence-constraineanulti-pr ocessor scheduling of programming languagesis an
active area of researti [DRVO00], to the author's knowledge precedence-constrainedingle-
processorscheduling of programming languageshas not been extensiwely studied. As we
shaw in Chapter 7, the results of this chapter do not generalizeto a multi-pro cessorsetting.

An EDF-basedsdedulability test was previously preseried in [HKMMO02]. Prece-
denceconstraints play no part in this algorithm. This earlier algorithm optimally schedules
Giotto programs for a single processor,under three restrictions:

1. Each task driver executesat the time instant ¢; speci ed in the Giotto sematriics.

2. Each task invocation executesin the interval [¢;; ¢ + ¥&!], where Yais the period of

the mode invoking the task, and ! is the invocation's frequency

3. Sensors,actuators, and task drivers require \negligible" computation time. Exactly
how much computation time is negligible was not speci ed.

It wassubsequetly arguedin [HHKO3] that, from a semartic perspective, theserestrictions
can be relaxed in a systematic way. In this chapter, we cortinue the line of argumen
of [HHKO03], showing how the restrictions can be relaxed from a schaluling perspective as
well. It should be noted that though our algorithm allows more programsto be scheduled,
it runs in time pseudopmlynomial in the frequenciesof the input program, whereasthe test
of [HKMMO2] is polynomial-time. This disadvantage seemsrather slight, asthe frequencies

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 81

of a Giotto program are typically small.

For simplicity, the algorithm that we dewelop is a pre-runtime sceduling algo-
rithm: before runtime, it producesa complete schedule of the implementation's threads.
This sdedule speci es when to start, suspend, resume, and stop eadh thread. A pre-
runtime scheduling algorithm hastwo advantages. First, it minimizes the complexity of the
actions at runtime. The runtime \scheduler" becomeshighly deterministic, which greatly
simpli es debugging. Second,the generatedschedulescan be independertly veri ed prior to
runtime. This provides an important double-ched in situations where safety and reliabilit y
are primary concerns. The advantages of pre-runtime sceduling are thoroughly discussed
in [Kop97]. Of course,other approacesare also possible. For example, one might provide
a schedulability test prior to runtime, but relegateall decisions about processorallocation
to a runtime scheduler. The rst useof this approad is perhaps[LL73]; a recert exemplar
is [BHR93]. Additionally , one might make the runtime sdeduler more clever about how to
handle situations of overload (see,e.g.,[BS93). Neither of theseapproadesis inconsistert
with the approad pursued here; we have adopted a pre-runtime approacd only in order to
study stheduling models and algorithms in as simple a setting as possible.

Throughout this chapter, we assumethat actuators are invoked in an interval
[¢ii " ¢i] beforethe timestamps ¢ in the Giotto semartics, and that sensorsare invoked in
aninterval [¢; ¢ + "] after the timestamps. Indeed, the Giotto scheduling algorithm of this
chapter (Algorithm 4.3) will produce schedulesthat minimize the jitter tolerance". We
shall alsoassumethat the sdeduling algorithm doesnot have accesgo port values. In this
sense,our approad is °ow-insensitive. A more °ow-sensitive problem, without precedence
constraints, is shavn to be PSPACE-completein [HKMMO02]. Our °ow-insensitive analysis
thus gains exciency at the expenseof accuracy as one would expect. Finally, we assume
for simplicity that the guard of ead driver evaluatesto true, though this assumption does
not a®ectour results (in the worst casefor the scheduler, ead guard evaluatesto true, so
that actions conditional on the guard are also executed).

The structure of this chapter is as follows. Section 4.2 presents two examples
that motivate the needfor precedence-constraineddeduling. These examplescannot be
scheduled by the current Giotto compiler, but can be sdeduled by the algorithm in this
chapter. Section4.3 discussesnodelsand algorithms for precedence-constrainedgdeduling
problems. We extendthe model 1 rj; d;; prec; pmtn j j to anin nite, periodic variant. We

then present an optimal, polynomial-time scheduling algorithm for this variant. Section4.4

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 82

shows how to translate single-made Giotto programsinto instancesof the model developed

in Section4.3.

4.2 The need for °exible scheduling

In this section, we motivate the needfor precedence-constrainedingle-processor
scheduling of single-made Giotto programs. We presen seweral examplesthat the current
Giotto compileris not ableto schedule,but that are nonethelesscedulable. The rst exam-
ple, in Section4.2.1,indicates that all activities of a Giotto program should be preemptible,
not just task invocation activities. The secondexample,in Section 4.2.2, arguesthat the
execution of activities of oneround of a Giotto program should be allowed to continue into
the next round of the program. These examplesare two among many; we have included
theseparticular examplesin order to arguethat the scheduling requiremerts of the current
compiler are overly restrictiv e (e.g., the requiremert that drivers execute\synchronously,"
and that tasks nish beforetheir \logical" deadlines;cf. [HK02] and [HKMMO02]). We shall

usethe example of Section4.2.2 as a running examplein Section4.3.

4.2.1 Preemptible driv ers

Figure 4.1 shows a Giotto program. This program hastwo sensorss; and s,, ead
taking 1 unit of time to read! There are two taskst; and t», and their respective driversd;
and d,. Each of thesetakes1 unit of time to execute,exceptdriver d,, which takes?2 units.
A third driver d3 writes actuator a and takes 1 unit of time. There is a single mode m
with period 12. Mode m invokest; with frequency 2, t, with frequency 1, and d3 with
frequency 2.

We now describe someof the timing requiremerts of the program of Figure 4.1.
Figure 4.2 depicts theserequiremerts in graphical form. Boxeswith a thick border indicate
activities that executeat a xed time. Thin boxes indicate activities that may execute
at any time, subject to precedenceconstraints and timing constraints on predecessorand
successors.Note that d; readss;, and d, readss,. To minimize jitter, both sensorsare
read betweentimes 0 and 2; thus the activities true(d1)[0; 7] and true (d2)[0; 7] must start

after time 2. Similarly, since sensors; is read betweentimes 6 and 7, true(d;)[1; 7] must

*What exactly the unit of time is, whether seconds,milliseconds, microseconds,etc., is not of imp ortance
in this chapter.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING

sensor
port s; type int time 1
port s; type int time 1
actuator
port a type int init O
input
port i1 type int
port i, type int
output
port o; type int init O
port 0 type int init O

task t; input i output o; function f; time 1
task t, input i, output o, function f, time 1

driver d; source s; guard true destination i; function
driver dy source s, guard true destination i, function
driver d3 source 0;;0, guard true destination a function

modem period 12 ports 01;0;
frequency 2 invoke t; driver dj
frequency 1 invoke t, driver dp
frequency 2 update d3

start m

Figure 4.1: Preemptible drivers program.

hy time 1
hy time 2
hs time 1

83

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 84

true(ds)[0; 2]

i1 0

reads;)[0; 3] true(d,)[0; 7] true(ds)[1; 2]

| | | |
0 2 5 6

reads;)[0; 3] true (dy)[0; 7]
\ \

0 2
read’s;)[1; 3] true(dy)[1; 7]
\ \

6 7 11 12
cee

Figure 4.2: Preemptible driverstiming constraints.

true(ds)[0; 2] true(d,)[0; 7] true(d;)[0; 7]
read(s,;)[0; 3] true(ds)[1; 2] true(dz)[2; 2]
read(s,)[0; 3] read(s;)[1; 3] read(s)[2; 3]
‘ true (dh)[0; 7] ‘ true (du)[1; 7] ‘ read(s,)[2; 3]
\ \ \
[T T 1 Jewaf [T] Jueu] Jelza] T T]
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0 6 12

Figure 4.3: Preemptible drivers schedule.

start after time 7. Finally, note that d3 readsthe output ports of t; and t, betweentimes 5
and 6, and betweentimes 11 and 12. Thus, the activity t1[1; 1] must complete beforetime 5.
Similarly, the activities t,[2; 1] and t1[2; 1] must start after time 11. It may be veri ed that
no schedule can meet these constraints unlessthe activity true(d,)l[i; 7] is preempted, for
eah i = 0;2; 4; ¢¢C.

Figure 4.3 shows a schedule for the program of Figure 4.1. Note that d, nishes
half of its execution betweentimes 4 and 5. At time 5, d, is preempted by ds, si1, di,
and t;. Finally, at time 9, d; is ableto nish. The schedulefrom time 11to time 23 repeats
the schedule from j 1 to 11, with the indices of activities incremerted by 2. Similarly, the

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 85

sensor
port s type int time 1
actuator
port a; type int init
port ap type int init O
input
port i1 type int
port i, type int
output
port op type int init O
port o0 type int init O

o

task t; input i output o; function f; time 1
task t input i, output o0 function f; time 4

driver d; source s;o0p guard true destination i; function h; time 1
driver d, source s guard true destination i, function hy time 1
driver d3 source 01 guard true destination a; function hs time 1
driver d4 source 01 guard true destination a, function hy time 4

modem period 22 ports 01;0;
frequency 2 invoke ti driver di
frequency 2 invoke t, driver d;
frequency 1 update ds
frequency 2 update dg

start m

Figure 4.4: Spillover program.

schedule from 23 to 34 repeatsthe schedule from | 1 to 11, and soon forever.

4.2.2 Spillo ver

Figure 4.4 showns another Giotto program. Mode m invokestasks t; and t, with
frequency 2. Using driver di, t; readssensors and the output port o, of t,. Taskt, reads
only s. Using drivers d; and d4, respectively, mode m also updates actuators a; and a;
with frequenciesl and 2. Both d3 and d4 read the output port o; of taskt1. Toread oy, a1

usesds, and a, usesds. There are two important timing requiremerts to note:

1. Becausetrue(d1)[0; 7] receives an input from read(s)[0; 3], true(d;)[0; 7] must begin
after time 1. Sincethe output of t1[1; 1]is read by actuator driver true(ds)[1; 2], t1[1; 1]

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 86

true(ds)[0; 2] true(ds)[1; 2]
read(s)[0; 3] read(s)[1; 3]
true(d,)[0; 7] true(dy)[1; 7]
t4[1;1] t1[2;1]

‘ t‘rue(dz)[0;7] t‘rue(dz)[1;7]
freecpof [| [[| ey |]] [[[w21
e e e e e

0 11
true (ds)[2; 2] true (dz)[3; 2]
read(s)[2; 3] read(s)[3; 3]
true(dy)[2; 7] true (dy)[3; 7]
t1[3;1] ti[4;1]
t‘rue(dz)[z; 7] t‘rue(dz)[3; 7]
[ruedyz2l] | Jezu] [| | we []| | | [e@1]

I L e T e e e e e e
22 33

Figure 4.5: Spillover schedule.

must nish by time 10. In general,true(d;)[i; 7] and ty[i + 1; 1] must begin after time
11 + 1 for i = 0;1;2; ¢¢¢. Also, true(dq)[i; 7] and ty[i + 1;1] must nish by 11 + 10
fori = 0;2;4;¢¢¢, and by 11i + 6 for i = 1;3;5; ¢¢g.

2. Similarly, true (dz)[0; 7] must begin after time 1. In general,true (dz)[i; 7] and to[i + 1; 1]
must begin after time 11 + 1, for i = 0;1;2; ¢¢¢. Note that the actuator drivers ds
and ds read only t;'s output, not ty's output. Sincet; readst,'s output, t, inherits
its deadline from t;. Thus, true (dy)[i; 7] and tp[i + 1;1] must nish by time 11i + 17
fori = 0;2;4; ¢¢¢, and by 11i + 21 for i = 1;3;5; ¢¢¢.

Under the assumptionthat sensorsand actuators executeduring times [11i j 5;11 + 1] for
i = 0;2;4; ¢¢¢, and during times [11i j 1;11 + 1] for i = 1;3;5; ¢¢¢, it may be veri ed that
no schedule can meet these constraints unlessthe activity t[i; 1] nishes after its logical
deadline at time 22 for i = 2;4; 6; ¢¢¢. We call this phenomenonspillover.

Figure 4.5 shows a schedule for the program of Figure 4.4. Note that the second
invocation of t,, t5[2; 1], cannot complete before its logical deadline at time 22, because
actuator drivers d3 and d4 needto execute. These actuator drivers need the output of

t1[2; 1], which is complete, sothe fact that t5[2; 1] is not complete doesnot causea problem.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 87

Activit y to[2; 1] is able to complete at time 25, though its execution spills over into what is
logically the secondround of the Giotto program. The schedule from time 33 until time 55,
most of which is not shown, repeats the schedule from 11 until 33, with the indices of
activities incremerted by 2. Similarly, the schedule from time 55 until 77 repeats that
from 11 until 33, and so on forever.

4.3 Scheduling models

4.3.1 The three-eld notaton ®j j°

In scheduling theory, a standard notation is used to describe scheduling prob-
lems [GLLK79, LLK82, HLv97]. This notation has beenin use sincethe 1970s. By that
time, the number of scheduling problemshad grown large enough(one count put the number
at 4536[LLLK82]) that mathematical methods were neededto understand the relationships
betweenthe problems. The standard notation helpsto classifythe computational complex-
ity of the problems, by making it apparert when one problem is more expressie than
another. The standard notation consistsof three elds, ®, , and °, and is typically written
®]

j °. The meaning of these elds is as follows:

2 ® describes the madhines which are to be scheduled. For example, ® = 1 meansa

single-madine, ® = P means parallel identical machines, and ® = J meansa job

shop?
2 "~ describesjob parametersand capabilities. To take two examples, = pmtn means
that preemption is allowed, and = rj; pmtn meansthat jobs have releasetimes and

preemption is allowed.

2 ° represetts the cost function. For instance, ° = Cnhax meansthe cost of a schedule
is the maximum job completion time, and ° = L yax meansthe costis maximum job

lateness(which assumesa deadline has beengiven for ead job).

We now discusshow to chooseappropriate valuesof ®, , and ° for the problem

of scheduling single-made Giotto programs on a single processor.

2 Sincethis chapter is concernedwith single-processorsdeduling, ® = 1.

2|n parallel models, including ® = P, jobs are allowed to migrate between machines. In shop models,
including ® = J, ajob consistsof a set of operations, each such operation being Xed to a particular machine.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 88

2 The selectionof is more involved. A job that is required to executeat a xed time
can be modeledwith an appropriate choice of releasetime and deadline. For example,
an actuator activity A that must executeup to time 0, and that requires 1 unit of
time, may be modeled by setting the releasetime of A equalto j 1, and the deadline
of A equalto 0. Thus, it is useful to have include r; and d; (releasetimes and
deadlines). In addition, in orderto model data°ow dependencies, shouldinclude prec
(precedences). Finally, — should include pmtn, not only becausepreemption is a
commonfeature of real-time operating systems,but alsobecausemany problemsthat

are otherwise computationally easybecomehard when preemption is disallowed.3

2 The choice of ° is simpler. Were we to adhere strictly to the standard notation, we
would use the cost function °© = L sy, maximum lateness. However, we are really
only concernedwith determining whether there is a schedule for which L nax - 0, and
synthesizing such a scheduleif so. For this reason,we usethe variant of the standard
notation in which ° = j [B*01]. This variant askswhether there is a schedule in

which every job nishes beforeits deadline.

In conclusion, the scheduling problem for single-made, single-processorGiotto programsis
similar to 1j rj; d;; prec; pmtn j j , which askswhether a set of jobs with releasetimes,
deadlines,and precedenceconstraints is schedulable with preemption on a single machine

such that all deadlinesare met.

4.3.2 The problem 1jr;; d;j; prec; pmtn j i

This similarity of single-made Giotto sceduling for a single processorto 1 j rj;
d;; prec; pmtn j | allows us to use an optimal algorithm for 1j r;j; d;; prec; pmtn j i as
a starting point. This section precisely de nes the problem 1j r;; d;; prec; pmtn j j , and

preserts an algorithm for it due to J. Bfazewicz[B&76].

De niton 4.1 (1 jrj; dj; prec; pmtn jj). AninstanceP of 1jr;; d;j; prec; pmtn j

is a tuple (J;t;r;d;A), where:

2 J is a nite set, called the set of jobs.

3For example, the problem 1 rj;pmtn j Lmax isin P, whereasljr; j Lmax is NP-hard [Len77]. There are
job shop sdcheduling problems for which the preemptive version is NP-hard and the non-preemptive version
is easy[BKS99], but such problems are exceptions.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 89

2 t:J 1! Zz>9isafunction that assignsead job a positive integer, called the job's

exeution time.

2 r:J1 2z %isafunction that assignsead job a nonnegative integer, called the job's
releasetime.

2. d:J ! Zz>9is afunction that assignsead job a positive integer, called the job's

deadline.*

2 ApJEJisarelation on J, called the precedene relation. We shall normally write
j AjCinsteadof (j;j9 2 A. a

Sewral remarks are in order. For Giotto, ajob might be an invocation of a sensor,
an actuator driver, a task driver, or a task. Howewer, asfar as1jrj; dj; prec; pmtn j j
is concerned,a job is simply something that takestime. A precedenceconstraint j A j©°
requiresthat j “nish beforej®canbegin. If j A j© we say that j is a predecessor of j ©, and
that jOis a suwessor of j. Similarly, if j A* j% we say that j is a transitive predecessor
of j© and that j°is a transitive sumessorof j.5 A job j may executeat any time after r(j),
aslong asall its predecessorsire complete,and j must nish befored(j). It will follow from
the fact that t(j) > O for each j 2 J, and from De nition 4.2, that an instanceof 1jr;; d;;

prec; pmtn j i is feasibleonly if A is acyclic.
De nition 4.2 (schedule, feasibilit y). A schalule S is a pair (I ; €), where:

2 | is a nite set of intervals of the real line R. Each interval in I must be nonempty
and of the form (;r), i.e., left-open and right-open. Intervals in | must also be

non-overlapping; i.e., if i;i°2 1 andi 6 i% theni\ i°=;

2 e: 1! Jisafunction that assignsa job (i) to ead interval i. We say that the job

e(i) is executed in interval i.

Given ajob j in the range of e, let 1[j] be the set of intervals in which j is executed,i.e.,
the setfi 2 1 je(i) = jg. Givena schedule S and a job j, we de ne sewral functions:

2 The start time of job j in S, starts(j), isinfe.yo 17 -

“For simplicity, we require that t(j), r(j), and d(j) are integers, for all jobs j 2 J. The results of this
chapter would continue to hold if these quantities were allowed to be rational.
®The relation A* is the transitiv e closure of A.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 90

2 The nish time of j in' S, ng(j), is sUP;ry2)T

P
2 The total exeeution time of j in S, totals(j), IS ()21 |

We say that schedule S satis es (or is feasible for) problem instance P = (J;t; r;d;A) if the

following two conditions are met:
I. Foreadh jobj 2 J,r(j) - starts(j), ns(j) - d(j), andt(j) = totals(j).
. Foread j;j%2 J suchthat j AjC ng(j)- starts(j9.
We say that P is feasible if there is a schedule S that satis es P. o

In 1976, J. Biazewicz developed a polynomial-time algorithm EDFA that, given
aninstanceP of 1jr;; d;; prec; pmtn j j , nds a scedulesatisfying P if one exists. EDFA

relies on transitiv e releasetime and deadline functions r® and d”, de ned by:

ro(j = max r(j")
(J) fi%j%A°jg (J
d(j = min _ d(j ")
(J)] Gj A5 O (J

We say that job j is enable at time ¢ if r°(j) - ¢ and, for all j%sud that jOA* j, j©
has executedfor at least t(j 9 time units up to ¢. EDFA schedulesjobs according to the

following rule:
At ead time ¢, executea job j that is enabledat ¢ and has minimal d°(j) value. (4.1)

The O(ijZ) running time of EDFA wasreducedto 0O(jJdjlogjJdj) by [Kim94]. A clear proof
of the optimality of EDFA may be found in [Bru01].6

4.3.3 Our problem 1jrj; dj; prec; pmtn ; period j i

The problem 1 j rj; dj; prec; pmtn j j is a not a perfect match single-made,
single-processorGiotto programs, since such programs have in nite, periodic streams of
activities. In this section, we de ne a periodic versionof 1 j r;j; d;j; prec; pmtn j j ; this
periodic versionis not a standard model but rather our own cortrivance. We then develop
a scheduling algorithm for this periodic version.

SA variant of EDF* is preserted in [SBS95],in which r®(j) and d°(j) are de ned by:

r'G) = max(r(j);maxjojoaqf (%) + (i)
d®()) = min(d(j);min o4+ o (i t(i))

and jobs are scheduled according to the rule (4.1). This variant is also optimal.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 91

De niton 4.3 (1 j rj; dj; prec; pmtn ; period j i). An instanceof 1jr;; d;; prec;
pmtn; period j | isatuple P = (J;t;r;d:A;)), where:

2 J is the union of disjoint sets Jg;J1; ¢¢¢, ead with the samenumber n 2 2>0 of
elemens. For notational corvenience,let jh; 1i; ¢¢¢;j h; ni be the members of J;.

2 I 2 770 s called the period.

2 The functions t, r, d, and the relation A are de ned as they were in De nition 4.1,
and must satisfy the following additional conditions:

{ tGh;ki)=t(ho;ki) foralli2[1::1]andk 2 [1:: n].
{ r(jh; ki) = r(jho;ki) + i}, and d(jh; ki) = d(jro;ki) + i}, foralli 2 [1:1]
andk 2 [1::n].
{ Forallk2[1:n],
r(jho;ki) 2 [0::} j 1] (4.2)
(This requiremert, though not essetial, simpli es the proofs below.)

{ The precedenceelation A satis es the uniformity condition:
jh; ki Ajhi%kS i® jrojki AjHO; i k9 (4.3)
for all i;i°2 [0::1] and all k;k®2 [1::n]. (Equivalertly, jh; ki A jHCKkSG i®
jhi i ki Ajh% i:k9.)
{ Ifjh; ki AjH%kY theni- i%foralli;i°2[0::1]andall k;k%2 [1::n]. a

De nition 4.4 (schedule, feasibilit y). This de nition follows De nition 4.2, with a
modi cation to accourt for the in nite nature of the problem instance P. A schealule S is
a pair (1;e), wherel is de ned asit wasin De nition 4.2, exceptthat | neednot be nite;
and e is de ned asit wasin De nition 4.2. Further, starts, n g, totals, satisfaction, and
feasibility are de'ned asthey werein De nition 4.2." a

"Note that starts(j) may bejl , ng(j) may be+1 , and totals(j) may be 1 . A schedule in which
starts(j) = i1 or ng(j) = +1 is of no interest, since it cannot satisfy P. A schedule S in which
totals(j) = 1 is also of no interest, sinceit can be tranformed into a schedule S° with totalgo(j) < 1 (by
deleting intervals that executej), such that SCis feasibleif S is.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 92

The rest of this section extends EDF” to our new setting. It is not immediately
obvious how to do so, since EDFA works on Tite problem instances. We rst dewelop a
necessarycondition on feasibility for our periodic problem. We then extend this condition
into a necessaryand suzcient condition that provides us with an optimal, polynomial-time
algorithm for 1j rj; dj; prec; pmtn; period j j .

A necessary condition on feasibilit y for 1jrj; dj; prec; pmtn ; period j j

We begin our analysiswith a de nition of active schedules,in which the processor

eagerly executesany available job.

De nition 4.5 (activ e schedule). Let S = (I;€) be asdedule. We say that ¢, 2 R is an
idle time if ¢ Z[;r]forany (";r)21. Ajobj 2 J is complete at ¢, if
. X .. .
t{) - JiV L el
i210]
S is active if (1) for all idle times ¢, thereisnojob j 2 J such that r?(j) - ¢ andj is not

completeat ¢, and (2) for every job j 2 J, totals(j) = t(j). o

Intuitiv ely, a feasible schedule is active if no job can be executed earlier without some
other job being executedlater. In the remainder of this section, we consider only active
schedules. The justi cation for this restriction is provided by the following proposition,
which is eviden:

Prop osition 4.6. If P is afeasibleinstanceof 1j rj; d;; prec; pmtn; period j i , then there

exists an active schedule that satis es P.

Activ e scheduleshave the following corveniert property: for any two active schedules,the
amourt of computation pending at time ¢ (the amourt of computation releasedbut not
completed) is the same.

We now develop a condition that any instanceP of 1] rj; d;; prec; pmtn; period j j
must satisfy in order to be feasible. This condition certers around the notion of a rest
point, an instant when no jobs remain to execute,i.e., when all jobs that have beenreleased
are completed. We will establish seweral lemmas concerning rest points, leading up to

Theorem 4.14: P is feasibleonly if the set[} ::2]] cortains a rest point.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 93

pending
computation
p(i)
A
5
4
3
) AN AN
1 \
0
> time i
0 5 6 9 12 14 15

Figure 4.6: An illustration of the conceptof rest points.

De nition 4.7 (p ending computation function, rest point). Let
. _P .
TM) =" fj23jreg) = igtQ)

T(i) is the amount of computation whosetransitiv e releasetime isi. We de ne the pending

computation function p:Z: %! Z. 9 asfollows:

2 p(0) = T(0).
2 Fori> o0, 8

o o Spii 1)1 ifpii 1)>0
p() = T(@) + . o D=0

Letp :Z-91 Z.-9pedenedbypi (i)=p@i)i T(i). Wesa that i 2 Z- % is a rest point
if pi (i)=028 a

Note that 0 is a rest point, sincep! (0) = p(0)i T(0) = T(0)j T(0). Finally, note
that T(i))=T(i+}) fori2[0:1].

Example 4.8. We usean exampleto illustrate the conceptof a rest point. Supposethat

TO)=5 TG=3 TE=1 TO=3 T@A2Y=2 T@A4)=1

8If pwerede ned on R: © instead of Z: °, then arest point would be an instant ¢ at which lim o, ,; p(¢?) =
0. The denition of p as a function on Z- ° is simpler, though it makesthe denition of a rest point less
intuitiv e.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 94

Algorithm 4.1 An algorithm for computing all rest points in the set[0:: 2]] .

1: Rest points(P = (J;t;r;d;A;!): aninstanceof 1] ri; dj; prec; pmtn; period j j)
for all jobsj 2 Jo[J1 do

Compute the transitiv e releasetime r“(j) of j .
Sort Jo [J1 in order of nondecreasingtransitiv e releasetime r°. We assumethat the
sorting puts the jobs into an array j[i], i 2 [1::2n], with the following property: if
i;i%2 [1=2n]andi < i% then r®(G[i]) - ro(G [i9).
5:1:= 1, ininterval := true, ¢prev:=i 1, P(éprev) =0
6: Report that time 0 beginsan interval of rest points.
7: while i - 2n do
8
9

Ao

o=, T=t(hD), i%=i+1

if inInterval = true then
10: Report that time ¢ endsan interval of rest points.
11: while i°- 2n and r?([i9) = r°[i]) do
12: T:=T+t([iY, i%=i%1

13 i:=10% p(¢) = minfo; P(éprev) i (& éprev) + TO, dprev = ¢
14: if i- 2nand ¢+ p(¢) - r(j[i]) then

15: ininterval := true

16: Report that time ¢ + p(¢) beginsan interval of rest points.

and that T(i) = Ofori 2 [0::14] nf0;5;6;9; 12, 14g. Figure 4.6 preseris an graph of the
pending computation p(i). Timesi 2 f0;5;9; 12, 14g are rest points. All otheri 2 [0:: 14]

are not rest points. o

Algorithm 4.1 nds all rest points in the range[0 :: 2}]] by determining the integers
i 2 [0::2'] atwhichpi (i) = 0. The running time of Algorithm 4.1is O(n?), wheren = jJgj:
steps 2{3 can be implemerted to run in O(n3) time, step 4 can be implemented to run in
O(nlogn) time, and steps 7{16 can be implemented to run in O(n) time. The main loop
in lines 7{16 determinesthe value p(¢) of the pending computation function at all times ¢,
sud that r%(j) = ¢ for somejob j 2 Jo[Ji.

Corollary 4.9. Algorithm 4.1 nds all rest points in the range [0:: 2!] in O(n3) time,

wheren = jJgj.
We next derive a simple but useful fact about the pending computation function.

Lemma 4.10. Let i; < i2 benonnegative integers. If p(i) > Ofor all i in both [i; ::i2] and

[ia+] izt], thenfori 2 [ig::iz],
pi+ D) = p)i p' (i) +p (it) (4.4)
p(i+1) = p@)i p(iz)+ p(izt) (4.5)

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 95

pending
computation

p(i)

ANNN ANNN

time i
Figure 4.7: A diagram for Lemma 4.10.
Figure 4.7 may aid the readerin understanding the signi cance of the Lemma.
Proof. Sincep(i) > Ofori 2 [iy::iz],
. X
p(i) = p' ()i (ij i1)+ T(k) (4.6)
k=i1
Similarly, sincep(i +]) > Ofori 2 [i1::i2],
| !
pli+ 1) =p (ia+]) i ((i+7) i >(2+1)) + T(k) (4.7)
k=ig+|
. P i P i+! . —
Since -, T(k) = K= g4l T(k), (4.7) simpli es to
i
pli+D) =p (a+) i (iid)+ T (4.8)
k=i
Comparing (4.6) and (4.8), we seethat
pli+ 1) =p@)i p' (i)+p (ia+)) (4.9)
which yields (4.4). Sincep(i) = p' (i) + T(i),and T(i) = T(@ + }),
i p @)+ p (ia+)) = T(@)i pli)i T+ +pis+))
= i p(i) + pliz+) (4.10)

From (4.9) and (4.10),
p(i+1) =p()i p(i)+ p(ia+)
which yields (4.5). O

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 96

Lemma 4.11. If thereis no rest point in [} ::2}]], then p(2}) > p(}).

Proof. Let r be the latest rest point in [0::]]. SinceO is a rest point, there is at least one
sudch rest point. We now verify that the conditions of Lemma 4.10 are satis ed fori; = r
andi, = |. Sincer is the latest rest point, p(i) > Ofori 2 [r ::}]. Sincethere is no rest
point in [} ::2}], afortiori p(i) > Ofori 2 [} +r ::2]]. The conditions of Lemma 4.10

are thus ful' lled. Applying (4.4) with i = |, we obtain:
p) =p@ i PP +P G +T) (4.11)

Sincer is arest point, p' (r) = 0, and since} + r isnot arest point, pi (+r) > 0. Thus,
by equation (4.11), p(2})) > p(}). O

Lemma 4.12. Let k be amember of Z: 9. If p(i) > Ofor all i 2 [k! ::(k+ 2)!], then

p((k+2)) = 2p((k+ 1)) i p(k)

Proof. Leti; = k] andi, = (k+ 1)]. The conditions of Lemma 4.10are ful lled. Setting
i = (k+ 1)I, and applying (4.5), we obtain that

p((k+ 1); +3) =p((k+ 1)) i p(ki) + pki +1)
which yields our result. O
Lemma 4.13. If thereis norest point in [} ::2]], then for k = 1;2; ¢¢¢:
2 there is no rest point in [k} :: (k+ 1)]], and

2 p(tk+ 1)) =p@) +k(pE) i pG).

Proof. For k = 1, the lemmareducesto the claims (1) that thereisnorestpointin [} :: 2]],
which is true by assumption,and (2) that p(2})) = p(}) + (p(2}) i p(})), which is trivially
true. For the induction step, supposeasinduction hypothesisthat the lemmais true for all
j - k. We needto show that the lemma remainstrue for k + 1.

By Lemma 4.11, p(2}) > p(}). From this, and the induction hypothesis for k,
it follows that p((k + 1)}) > p(k}). Also, by the induction hypothesisfor k, there is no
rest point in [k} ::(k+ 1)]. Thus, there is no rest point in [(k+ 1)} ::(k+ 2);], since

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 97

in this range the initial pending computation is greater. Since[k] :: (k + 2)] cortains no
rest point, p(’) > Ofor all * 2 [k} ::(k+ 2)}]]. By Lemma4.12,

p((k+2))) = 2p((k+ 1)) i p(ki) (4.12)

By the induction hypothesis,

p((k+ 1)) = p@) + k(p2) i pG) (4.13)

Also by the induction hypothesis,

p((k+ 1)) i p(ki) = p@2) i p(G) (4.14)
Thus,
h i h i
p((k+ 2)) = h|O((k+ 1)) + p((k+ 1)) hi p(k?) _ (by (4.12))
i i

= p@) + k(p(2) i p@) + p2) i p() (by (4.13) and (4.14))

= p() + (k+ 1)(p2) i p@)
as desired. O

If there is no rest point in [} ::2]], then Lemma 4.13 states that at the succes-
sive times 2] ; 3] ; ¢¢¢, the amount of pending computation increasesby p(2)) i p(). By
Lemma 4.11, the quantity p(2})) i p(}) is positive. Thus, the amount of pending compu-
tation at timesi] increaseswithout bound. Intuitiv ely, this indicates that eventually some
job must be late. The following theorem con rms this intuition.

Theorem 4.14. An instanceP = (J;t;r;d;A) of 1j rj; d;; prec; pmtn; period j i is feasible
only if the set[} :: 2}] contains a rest point.

Proof. We will useLemma 4.13to show that if [} ::2]] contains no rest point, then P is
infeasible. Let D = maxj2y (d°(j) i r°(j)). If, at time i}, somejob j with r®(j) - i} | D
is not complete, then j or somesuccessomf | has missedits deadline. We now examine

how large i hasto be sothat the following stronger condition attains:
Ho o» YA
At time i}, somejob j with r°() - ij T 1 isnot complete.
|
P
Let T = J-ZJOt(j). By the pigeonhole principle, if p(i}) > T, then somejob j with
r’(j) < i} is not complete at time i}. Similarly, if p(i}) > KT, then somejob j with

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 98

r’GG) < (ij k+ 1) isnot completeat time (i j k+ 1)l. Thus, we needto choosek such
that u »D Al
i k+1- 0ij -
|
It sutcesto set » Y,

k |B+1
I

We now choosei sud that p(i}) > kT. By Lemma4.13,p(i}) =p(})) + (i D(p2) i
p(})). Settingp(}) + (ii 1)(p2) i p(})) > KT, and solving for i, we obtain
KT + p(2) i 2p()
p(2) i p()
Choosing any i satisfying this inequality (e.g., one plus the ceiling of the right hand side)

will suxce. We have shown that by time i] somejob will have missedits deadline. Thus, P

is infeasible. O

An exact condition on feasibilit y for 1jr;; dj; prec; pmtn ; period j j

The previous section preserted a necessarycondition on feasibility for an in-
stanceP of 1jr;; dj; prec; pmtn; period j j , namely, that there be arest point in [} :: 2}].
Howewver, P may have suc a rest point, but still be infeasible: this occursif the jobs can-
not be scheduled to meet their deadlines? In this section, we extend Theorem 4.14 into a
necessaryand suzcient condition on feasibility (Theorem 4.17). This extensionrelieson an
attractiv e property of the pending computation function, namely, that if i 2 [} 1 2] Jisa
rest point, then p \lo oks the same" on the intervals

[ij) owij]y, [ici+y 1] [i+) =i+2 4 1]; ¢¢
In other words, p is periodic, with period |, beginningatij |, aswe now show.

Lemma 4.15. If there is a rest point in i 2 [} 2], then p(k) = p(k +) for k 2
ii) =1]

°For example, consider an instance (J;t; r;d;A;l) of 1jrj; dj; prec; pmtn; period j i , where:

J=fjh;1iji2z2°%; A=;; ! =10
and for each i 2 Z- °:
t(jh; Li)=2; r(jh;1li)= 10; d(jh;1i)= 10+ 1
Foreachi 2 Z- °, time 10i + 2 is a rest point. In particular, time 122 [10:: 20]is a rest point. However, the

job jh; 1i releasedat time 10i cannot meet its deadline at time 10+ 1, since the execution time of j h; 1i
is 2.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 99

Proof. Recall that T(¢ is periodic, i.e., T(k) = T(kj |) for k 2 [} ::1]. Note that
p(0) - p(), since

pO=TO) =T - TGO +p O =p@)
Supposethat i 2 [} ::2]] isarestpoint. Thenpi (ij |) = 0, sinceT (4 is periodic and
the initial pending computation p(0) is greaterthan p(}). SinceT (9 is periodic, and both

ij | andi arerest points,

p(k) = p(k+1}) fork2T[ij | =ij 1]
A simple argumert by induction establishesthat for all * = 1; 2; ¢¢¢,
p(k)y=p(k+) fork2[ij | =ij 1] O

A similar argumert establishesthe following lemma.

Lemma 4.16. Let k be a positive integer, and let i bea menmber of [0::} 1]. If i + k|

is a rest point, then i + k3 is a rest point for all nonnegative integersk®= 0; 1; ¢¢¢.

Intuitiv ely, Lemmas 4.15 and 4.16 allow the time line to be divided into sections
[ij; =ij1L[i=i+) j 1], etc., ead of length |; thesesectionsmay be scheduled using
EDFA. Indeed, supposethat (1) thereisarestpointiin [} :: 2], and (2) EDFA produces
a feasible schedule S for jobs releasedin [ij | ::ij 1]. Under these conditions, one can
create a feasible schedule for all of P by \pasting together" successie copiesof S, asthe

following theorem shows.
Theorem 4.17. An instance P of 1 r;j; dj; prec; pmtn; period j is feasibleif and only
if:

1. thereisarestpointiin [} :: 2], and

2. EDFA producesa feasibleschedule for jobsj with r®(G) 2 [ij | =i 1].

Proof. If the rst condition doesnot hold, then Theorem 4.14 shaws that P is infeasible. If
the Tst condition holds but the seconddoesnot, then sinceEDFA is optimal, P isinfeasible.
We have established the \only if" part. For the \if " part, supposethat i 2 [} : 2]]

is a rest point, and that EDFA produces a feasible schedule S = (I;€) for jobs j with
re’G) 2 [ij } =i 1]. For the \if " part, supposethat i 2 [} ::2]] is a rest point, and
that EDFA producesa feasiblesthedule S = (I;€) for jobsj with r®(j) 2 [ij | =ij 1]

We use(l ; €) to construct an in nite sequencgl y;ex) of schedules: for k = 0; 1; ¢¢¢, let

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 100

Algorithm 4.2 EDF algorithm for an instanceof 1 r;; d;; prec; pmtn; period j j .
1. EDF(P = (J;t; r;d;A;: . aninstanceof 1jrj; dj; prec; pmtn; period j i)
Use Algorithm 4.1to determine the rest points in [0:: 2]].
if [} ::2]] doesnot contain a rest point then
Report that P is not feasible.
else
let i be any rest point in [} ::2]] in
Compute the transitiv edeadlined”(j) for eadjob j sudhthat r°(G) 2 [ij | =i 1]
Schedule all such jobs using EDFA.
if the previous step produced a feasible schedule then
Report that P is feasible;construct and return schedules(l; 1;€, 1) and (lo; €p),
as described in the proof of Theorem 4.17.
else
Report that P is not feasible.

=
e

ol

2 ly=fC+klsr+k) jCir)21g.
2 g(C+ k! ;r+k') =jha+ k:bi, wherejha;bi = e(;r).

Since (I ; e) is feasiblefor jobs j with r®(j) 2 [ij | :=ii 1], (Ik;ex) is feasiblefor jobs |
with r?() 2 [ii | +kl =iji 1+ K.

In addition, we needto construct a schedule (I, 1;€, 1) for jobs j with r(j) 2
[0:ij)} i 1]. A technical point is that for these jobs we must do something slightly
di®erert from the above, sincel may cortain intervals that intersect [0;]] (subtracting |
from theseintervals, as suggestedby the above de nition of |, would amourt to scheduling
[i 1 ;0]). Similarly, the jobs executedin | may include members of Jo (subtracting 1 from
the rst index of these jobs would yield jobs in the nonexistert setJ; 1). Fortunately, all

members of J; are executedafter |, sincej 2 J; impliesr®(j), |. We therefore let

2hia=fCitsri) jGr)21 ande’;r) 2 Jaig.

2e1Cit;ri) =jhj L0, wherejha;bi = e(;r) 2 J;.
It is straightforward to verify that (I, 1;€, 1) is feasiblefor jobsj with r®(j) 2 [0::ij | i 1]
Finally, letly = "¢ i1y, leter = -, ;e.andletS; = (I ;e). (11 ;e) satis esP,
thus establishing the \if " part. O

Algorithm 4.2 preserts an algorithm that tests an instance of 1 j rj; d;; prec;
pmtn; period j j for feasibility, using the condition of Theorem 4.17. Steps2 and 7 can be

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 101

implemented to run in O(n?®) time, wheren = jJoj. Step 8 can be implemented to run in
O(nlogn) time using, say, a priority queue. All other stepscan be implemented to run in
O(1) time. Note that the substedules(lg;ex) for k 2 [1:: 1] can easily be constructed
from (lo; ey). We have establishedthe following:

Corollary 4.18. Algorithm 4.2 determines whether an instance (J;t;r;d;A; D oofljry;

d; ; prec; pmtn; period j i is feasiblein O(n3) time, wheren = jJgj.

Example 4.19. We now presert an exampleto illustrate how Theorem 4.17 schedulesan
instance P of 1 j r;j; d;; prec; pmtn; period j j . (This exampleis the problem instance
generatedby the Giotto program of Figure 4.4. Section 4.4 explains how to generatean
instanceof 1jr;; d;; prec; pmtn; period j j from a Giotto program.) Let P = (J;t;r;d, A,

), where:
2 The setof jobs, J,is | _y Jk, whereJy = fjhk; i j 2 [1:13).

2 For eadh job j, the executiontime of j, t(j), is:

t(jh; i) = 1 t(jhk;2i) = 4 t(jhk;3i) = 1
t(jhk; 4i) = 1 t(jhk;5i) = 1 t(jhk; 6i) = 1
t(h;7i) = 4 t(jhk;8i) = 1 t(jhk;9) = 1

t(jhk; 101) = 1 t(j hk; 11i) = 1 t(jhk;12) = 1

t(jhk;13) = 4

°The correspondencebetweenthesejobs and the jobs generated by the program of Figure 4.4 is asfollows:

jh; 1i = true (d3)[2k; 2] jhk; 2i = true (da)[2k; 2] jhk; 3i = read(s)[2k; 3]
jhK; 4i = true (d1)[2k; 7] jhk; 5i = true (d2)[2k; 7] jhk;6i = t1[2k + 1;1]
jh; 71 = to[2k + 1; 1] jhk; 8i = true (ds3)[2k + 1; 2] jhk; 9 = read(s)[2k + 1; 3]

jhk; 10 = true (d1)[2k + 1;7] jhk; 11 = true(d2)[2k + 1;7] jhk; 12i
jhk; 131 = to[2k + 2; 1]

t1[2k + 2;1]

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING

2 For ead job j, the releasetime of j, r(j), is:

r(jhk; 1) = ki

r(jhk;4i)=k; +5
r(jhk;7i) =k; +5
r(jhk;10i) = k; + 16
r(jhk;13) = k; + 16

r(jhk;2i) =
r(jhk;5i) =
r(jhk; 8i) =
r(jhk; 1) =

2 For ead job j, the deadlineof j, d(j), is:

d(jhk;li) =k} +5
d(jhk;4i) = k; + 16
d(jhk;7i) = k; + 27
d(j hk;100) = k; + 27
d(j hk;13) = k; + 38

d(j hk; 2i) =
d(j hk; 5i) =
d(j hk; 8i) =
d(j hk; 1%i) =

+5
+ 15
+ 16

+5
+ 27
+ 16
+ 38

2 The following precedenceconstraints compriseA:

jhk;3i A jhk; 4
jh; 51 AjHk;7i
jh; 9 Ajh; 10
jhc; 11 A jhk; 13
jh; 13 A jhk+ 1;4i

These precedenceconstraints are illustrated in Figure 4.8.

2 Finally, | = 22.

jhk;3i A jk;5i
jhk;6i A jhk;8i

jhk;9i A jhk; 11
jh; 120 A jhk+ 1; 1

r(jhk;3i)=k; +5
r(jhk;6i) = k; +5
r(jhk;9) = kj + 16
r(jhk;12) = k; + 16

d(jhk;3i) =k} +6
d(jhk;6i) = kj + 16
d(jhk; 9i) = k} + 17
d(jhk;12) = k; + 27

jhk; 4i A jh;6i
jhk;7i A jh; 10
jhk; 100 A jHk; 12i
jh; 120 A jhk+ 1;2i

102

Figure 4.9 preserns the pending computation function p for our example; p is

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 103

[jro4i e jro6i o8]
|j0;5i e j10;7i [10, 10 [={j F0; 120 |+ jhL; 1
1709]
10,15 [~{j 1013 || jhi; 4 [~ jhi;6i] jhL8i |
5 b 7] e 20 a2] e i
¢0¢
Figure 4.8: Precedenceconstraints for Example 4.19.
pending
computation
p
10
8
6
4
2
N
0 time

Figure 4.9: Pending computation function p for Example 4.19. Times 5, 13, 14, 15, 37, 38,
59, and 60 are rest points. Fori 2 [0:: 1], times 15+ 22 and 16+ 22 are rest points.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING

104

jho; 8i jhL; 2
jho; i jh; 3i
jro: 10 jro; 13
jho; 12 jh; 4i

j ho; 11i j hL; 6i

‘ j‘ho;la' ‘ j‘hl;5i
LTI [[ima JTT] [[][itwa
Dol bbb
15 22 33 37

Figure 4.10: A feasible schedule for activities of Example 4.19 that are releasedbetween

ij) andij 1(i= 37isarestpoint).

8

5i k

8i (ki 5)
:

1

de ned by:

k) =
Pt 8i (ki 16)

7i (ki 22)
10; (ki 27)

fork 2 [0:: 4]
fork 2 [5::13]
fork =14

fork = 15

for k 2 [16:: 21]
for k 2 [22:: 26]
for k 2 [27 :: 36]

p(ki 22) fork 2 [37::1]
The rst rest point in [} ::2]] isati = 37. Note that p is periodic, with period | = 22,
starting atij | = 15,asclaimedby Lemma 4.15. Figure 4.10 preseris a feasiblesdedule
for jobsj with r°(j) 2 [ij | :ij 1]. Figure 4.11shows a pre x of the schedule S; for P

that is produced by the proof of Theorem 4.17. This schedule satis es P, asdesired. ©

4.3.4 Tw o optimizations

We now describe two ways to optimize a runtime systemthat executesan instance
of 1jrj; dj; prec; pmtn; period j i . Theseoptimizations may be usedfor any sud runtime
system, including any systemthat executesthe instancesof 1j r;; d;; prec; pmtn; period j i
produced by the Giotto scheduling algorithm of this chapter (Algorithm 4.3, below). The
‘rst optimization (Section 4.3.4) is to aggregatedistinct jobs into the samethread. This
reducesthe number of threads, and consequetly the memory footprint and the context

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 105

j ho; 8i
j hO; i jro; i
j FO; 3i j fo; 101
j ro; 4i j Ho; 12
jho; 6i jho; 11i
‘j‘hO;Si ‘ jto:13
L2 [T] 1 [[jmwa | [T [[[|
b
0 11 15 22
jhL; 1 j h; 8
jhL;3i jht; 9i
jro: 13 j hL; 10
i h; 4i j hL; 12
j hL; 6i jho; 11
‘ j‘h1;5i j‘h1;13i
[z 111 [[[[s [T]11] |
I
22 33 37 44

Figure 4.11: Pre x of a feasibleschedule for Example 4.19.

switch overhead. The secondoptimization (Section 4.3.4)is to usea single stack to execute
jobs. This makesa context switch not much more expensive than a function call [Wir96].

Job aggregation

Consideran instance P of 1 rj; dj; prec; pmtn; period j j , and the set of jobs
Ji=fj2J3jr%j)=randd(j) = dg

At runtime, the jobs in Jj are executedin somenumber of threads. How many threads are
necessary?We claim that a single thread T} sutces. T} executesthe jobs in J} in any
linear order consistert with the partial order A. The scheduler usesan earliest deadline rst

policy to schedule threads, where the deadline of T} is d. Further, the scheduler resoles
ties betweenthreads with the samedeadlinein favor of the thread T} with minimum release
time r. The question here is, given that ead job j may run for less than its worst-case
time t(j), can someprecedenceconstraint be violated? To answer this question, consider
two jobs j; and j, such that j1 A j,. If j1 and j, arein the samesetJ], then j; will “nish

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 106

beforej, begins,sinceT] linearizesA. Supposethat j1 andj arein distinct setsJéi 6 Jé;
respectively. By the denition of r® and d*, sincej1 A jo, r1 - roanddy - do. There are

two casesto consider:

1. If di < dy, then Téll will executein preferenceto Téz2 Thus j1 will nish beforej,

begins.

2. If dy = dy, sinced'* 6 J'2, r1 < ro. Again in this case, T will executein preference
da da da
ra
to sz.

It follows that no precedenceconstraint can be violated.

For Example 4.19, the setsJ are:

J0 = fjmo;1i; jho;2ig
38 = fjo;3ig

J2 = fjmo;4i; jro;6ig
J>, = fjm0;5i; jho;7ig
35 = fjto;8ig

31 = fjro;9ig

J3® = fjh0;10i; jHho; 12ig
Ji3® = fjm0;1%; jho;13g
¢ee

Single-stac k implemen tation

De nition 4.20 (balanced schedule). Let S be a schedule, asde ned by De nition 4.2
or De nition 4.4. We say that S is balanoced if for any two jobsji;j2 2 J, it is not the case

that starts(j1) < starts(jz) < ns(ia) < ns(o) o

Sud schedulesare called balancedbecausehey correspond to strings in a balanced
parenthesis language, where ead opening parernthesis (; denotesthe start of job j, and
ead closing parerthesis); denotesthe completion of j. EDFA and Algorithm 4.2 always
produce balanced sdhedules,as doesthe rate monotonic scheduling algorithm [LL73]. Any
balanced schedule S may be transformed into a balanced schedule S° in which, if job j»
preemptsjob j 1, then j, will completebeforej 1 executesagain. More precisely the following

proposition may be proved using an exchange argumert:

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 107

Prop osition 4.21. Any balancedsdeduleS = (I ;€) may be transformed into a balanced
schedule S°= (1% €% with the following properties:

1. For any job j in the rangeof e,
totals(j) = totalso(j); starts(j) = startso(j); nso(j) = ns()

Thus, if S satis'es an instance P of 1j rj; dj; prec; pmtn; period j i , then S%also
satis es P.

2. Let j1 and j, bejobs in the range of e sud that
startso(j1) < startso(j2) < ngo(j2) < N golj1)

Then €4i% 6 j; for any interval i°2 19such that i\ [startso(j2); N go(j2)] 6 ;. In
other words, if j, preemptsji, then j, nishes beforej; executesagain.

Balanced schedules are attractiv e for two reasons. First, in a balanced schedule
the overheaddue to context switchesmay be bounded: eat thread gets charged one con-
text switch when its starts, and onewhenit nishes. For nite sdcedulesthis bound is 2tc,
where t is the number of threads and c is the time required for a context switch. This
obsenation is originally due to A.K. Mok and M.L. Dertouzos [MD78] for schedules pro-
duced by EDF-based algorithms. Second,balanced schedulesmay be implemented using a
single stadk. In most current programming languageimplementations, ead thread usesa
pushdown stadk to executefunction calls. Operating systems,including most real-time op-
erating systems,typically useseparatestadks for distinct threads. For balanced sdedules,
the samestack spacemay be usedby di®eren threads, aswe will explain below. This has
the advantage of saving time during context switches: as we will see,preemption becomes
no more expensiwe than a jump into an interrupt serviceroutine, plus an invocation of the
runtime sdeduler, plus a function call. Storing and restoring additional per-thread infor-
mation is no longer necessary The obsenation that a single stack sutces for “xed-priorit y
systemsis due to N. Wirth [Wir96]. The generalizationto arbitrary balancedsdedulesis,
we believe, original.

We now explain how to sharea single stack in a balanced schedule. We focus on

time instants when the runtime scheduler is active: (1) thread startup (starts(j) for some

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 108

job j), and (2) thread termination ('n g(j)).}! At thread startup, the runtime scheduler
receivescortrol; this is frequertly accomplishedusing a timer interrupt. The stac is in the
state in which the interrupted thread hasleft it. The runtime scheduler placesthe program
counter of the interrupted thread on the stack. The runtime scheduler then jumps to the
start addressof the thread being started. The new thread runs for sometime, perhaps
getting preemptedby other threads. We assumethat the newthread leavesthe stac in the
samestate in which it found it, i.e., with the program counter of the preemptedthread on
top. At thread termination, the runtime sdeduler returns to the program courter at the
top of the stack of the interrupted thread. Becausethe scheduleis balanced,the interrupted
thread neednot execute(and thus usethe stadk) betweenthe start time and the nish time

of the interrupting thread.

4.4 From Giotto to 1jr;; dj; prec; pmtn ; period j j

In this section, we will obtain a pseudomlynomial-time sdedule synthesis algo-
rithm for a class of single-made Giotto programs. Our strategy will be to generate an
instanceof 1 rj; d;; prec; pmtn; period j i givena program in this class,and then to apply
Algorithm 4.2 to this instance.

4.4.1 The class of single-mo de Giotto programs

We now de ne the class of single-made Giotto programs for which we synthe-
size schedules. To begin with, we shall limit our attention to Giotto programs which are

unconditional :

De nition 4.22 (unconditional program). A single-made Giotto program is uncondi-
tional if the guard of every driver is true, i.e., for every driver d 2 Driversand every port
valuation v 2 ValdPorts], g[d](v) = true. a

Wewill shortly de ne the subclassof unconditional programsthat interestsus. For uncondi-
tional Giotto programs, the result of every driver and task invocation needsto be obtained.
Unconditional programs therefore represen the worst casefor the scheduler. Figure 4.12

1 The scheduler may also be active if a thread terminates beforeits scheduled Tnish time. This commonly
occurs if the actual execution time of the thread is lessthan its worst-case execution time. At such times,
the scheduler may execute soft real-time threads, using separate stacks if necessary Here we discussthe use
of a single stack only for hard real-time threads.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 109

sensor
port s type int time 1
actuator
port a type int init O
output

port o; type int init O
port o, type int init O

task tp input i1 output o; function f;
task t, input i, output op function f;

driver dj source s guard true destination i; function h;
driver dy source o0; guard true destination i, function hy
driver d3 source 0, guard true destination a function hsz time 1

modem period 10 ports 01;0
frequency 1 invoke t; driver dj
frequency 1 invoke t, driver d»
frequency 1 update ds

start m

Figure 4.12: An unconditional Giotto program.

shaws an unconditional Giotto program that serwesas a running example in this section.
This program has two tasks and one actuator, all of which are invoked with frequency 1.
Task t; readssensors (via driver d;). Taskt, readsthe output of task t1 (via driver dy).
Actuator driver d3 readsthe output of t,.

We now note se\eral facts about unconditional programs. For a single-made Giotto
program, con guration C; occurs at time ¢; = i(¥&!), where %is the period of the single
mode m, and ! is the least common multiple of the frequenciesof task invocations and
actuator updates of m. For any executionsE and E° of an unconditional program, Ag =
Ago and @:= @:o. We thus write A and @ instead of Ag and @-. For an unconditional

program, there are four typesof activities ali; k] in A:
2 Task activities are of the form t[i; 1].

2 Actuator driver activities are of the form true (d)[i; 2].

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 110

2 Sensorread activities are of the form read(s)[i; 3].

2 Taskdriver activities are of the form true (d)[i; 7].

Task activities and task driver activities may be executed at any time, subject to the

constraints of @ and are thus called °oating activities. Actuator driver activities d[i; 2]

and sensorread activities s[i; 3] must be executed closeto time ¢;, and are thus called

“xed activities. For the purposesof this chapter, a platform annotation is a function wcet

mapping ead action a to a positive integer wcet(a), the worst-caseexecutiontime of a.
We now further focus on the classof single-made programs of interest.

De nition 4.23 (actuator- and sensor-dep endent program). A Giotto program is
actuator-dependent if for every °oating activity a[i; k] 2 A, there exists a xed activity
aJi®kq 2 A sudh that afi; k] @aJi%kY. A Giotto program is sensor-degndent if there
exists i® 2 Z- 0 such that for every °oating activity afi; k] 2 A with i , i there exists a
“xed activity aJi®k9 2 A suc that aJi® k9 @a(i; k]. a

In an actuator-dependert program, every °oating activity precedessome xed activity.?
In a sensor-degndert program, there is somecon guration Cj-= after which every °oating

activity is precededby some xed activity.

Example 4.24. To illustrate the de nition of actuator- and sensor-degndence,consider
Figure 4.13,which shows a portion of the graph (A; @ of the Giotto program of Figure 4.12.
As the gure shaws, every °oating activity precedessome xed activity; thus, the program
of Figure 4.12 is actuator-dependert. Some °oating activities, for example true (d»)[0; 7],
are not precededby a xed activity. Howewer, every °oating activity a[i; k] with i ;| 2 is

precededby a xed activity; thus, the program of Figure 4.12is sensor-degndert. o

For sensor-degndert programs, a °oating activity not precededby a xed activity can
be computed prior to runtime; moreover, some°oating activities a[i; k] may be computed
considerably earlier than ¢;. Sensor-and actuator-dependert programs form an important
classof Giotto programs, since Giotto is designedfor applications that processsensordata
and usethe resultsto e®ectactuators. In the remainder of this chapter, all Giotto programs

will be unconditional, sensor-and actuator-dependert.

12 An weaker but equivalent denition of actuator-dependenceis that a program is actuator-dependent if
there exists i® 2 Z- © such that for every °oating activity a[i; k] with i , i°, there exists a xed activity
A%k such that a[i; k] @ AYi%k%. However, the weak and strong de nitions for sensor-degendenceare
not equivalent.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 111

true(ds)[0; 2]

reads)[0; 3]

V

true(d,)[0; 7]
true(d,)[0; 7]

V
true(ds)[1; 2]
reads)[1; 3]

V

true(dy)[1; 7]
true(dy)[1; 7]

V
true(ds)[2; 2]

reads)[2; 3]
V

true(dy)[2; 7]

g true(dy)[2; 7]

V

Figure 4.13: The data°ow graph (A; @ of the Giotto program of Figure 4.12.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 112

4.4.2 The scheduling problem for single-mo de Giotto programs

We now de ne the scheduling questionfor which we will develop an algorithm. We
are concernedwith scheduling only thoseactivities in A that are precededby a xed activit y.
We wish to stheduletheseactivities sothat (1) the constraints of @are respected, (2) every
activity a[i; k] is scheduledfor at least wcet(a) time units, and (3) for xed activities a[i; k]
the temporal di®erencebetweeny; and the time at which a[i; k] is scheduled is minimized.

We now formalize theserequiremerts.

De nition 4.25 ("-feasibilit y). Let the set A® be de ned asfollows: a[i; k] 2 A if and
only if afi; k] 2 A, and either a[i; k] is "xed or there exists a xed activity aJi® k9 with
aJi®k9 @ a[i; k]. A Giotto program G is "-feasible if there exists a schedule S sud that
for every activity a[i; k] 2 A™:

2 The total executiontime total s(a[i; k]) equalswcet(a).
2 |f afi; k] precedessomeactivity aJi% k9, then n g(a[i; k]) - starts(aJi® k9).

2 |f a[i; k] is an actuator driver activity, then ¢;j " - starts(ali; k]) and n g(afi; k]) - ¢,
and further betweenstarts(a[i; k]) and ¢; no °oating activity is executed.

2 |If afi; k] is a sensorread activity, then ¢; - starts(ali; k]) and n g(afi; k]) - & + ",
and further between¢; and n g(a[i; k]) no °oating activity is executed. a

The quantity " was termed jitter tolerance in [HHKO3]. A large jitter tolerance is clearly
undesirable. In particular, for jitter toleranceslarger than ¥#!, the sensorand actuator
activities of one con guration C; can be executedat ¢;; 1 Or ¢i+1, Which is unacceptably
early or late. This motivates the following questions, with which the remainder of this

section will be concerned:

Question 4.26. Doesa single-made Giotto program G have an "-feasibleschedulefor some

YRl ?
Question 4.27. If so,what is the smallest"” suc that G has an "°-feasibleschedule?

Question 4.28. Given this minimum "7, synthesize an ""-feasibleschedule.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 113

4.4.3 The reduced data°o w graph

The remainder of this sectiondewvelopsan algorithm for answering thesequestions.
Our approad is, given G and weet, (1) to generatean instance P[G; wcef] of 1 r;; d;; prec;
pmtn; period j j , and (2) to apply Algorithm 4.2 to P[G;wcet]. For (1), we must rst
determine which activities arein A®, and we must partition A" into Jg;J1; ¢¢¢. To this end,
we intro duce the reduced data°ow graph, which capturesthe time delays of an execution of
the program G:12

De nition 4.29 (reduced data’°o w graph). The reduced data®ow graph of an uncon-
ditional Giotto program is a edge-veighted directed graph (V; E; W), where the verticesV,
edgesE p V £ V, and weight function W : E! Z: 9 are de ned as follows:

2 ThesetVisfali;k]2 Aji2[0:! i 1]g.
2 The pair e= (a[i; k];aJi®k9) 2 V£ Visin E if:

{ ai; k] @aJi®KkY. In this case,we de ne W(e) = % i.

{ afi; k] @aJi%+ ! ;k9. In this case,we de ne W(e) = i%+ ! j i. o

The reduceddata®ow graph lets us determine an upper bound on the latest time
at which a °oating activity a[i; k] 2 A" may execute. Let ~ = imod!. Let Ly be
the minimum path length in the reduceddata®ow graph from a[’; k] to any xed activity
aT"%kq 2 V. The earliest con guration that invokesa xed transitiv e successonf a[i; k] is
Ci+L Thus:

alhk]”

Prop osition 4.30. Let S be a "-feasibleschedulefor any " > 0. Then:
T s(ali; KD) -+ Lapsg) (V)

Similarly, the reduced data®°ow graph lets us determine a lower bound on the
earliest time at which a °oating activity a[i; k] 2 A may execute. Again let * = i mod ! ,
and let E,py) be the minimum path length in the reduced data®ow graph from any xed
activity aJ’®k9 2 V to a[’;k]. The latest con guration that invokesa xed transitiv e
Thus:

predecessonf afi; k] is Ci; g, -

3 The concept of a reduced data®ow graph st appearedin [KMW67], where the delays were allowed to be
multidimensional. [KMW67] shows that multidimensional delays necessitatethe bu®ering of unboundedly
much data as time progresses;fortunately, our delays are unidimensional. Reduced data®°ow graphs are
commonly usedto study the parallelization of programming languages(cf. [DRV00]).

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 114

Prop osition 4.31. Let S be a "-feasibleschedulefor any " > 0. Then:
starts(afi; kl) , (ii Eagpxp)(¥#F!)

Finally, the reduceddata®ow graph lets us determine the set A° of activities which
cannot be computed prior to runtime. Consider a °oating activity a[i; k]: the latest xed
activity which transitiv ely precedesali; k] has a con guration number of i j Egpyg. |If
i i Earxy < 0,then no xed activity transitiv ely precedesali; k], and a[i; k] 2 A®. Thus:

Prop osition 4.32. A" is the union of the following two sets:

fafi; k] 2 A jali; k] isa xed activityg

a

afi; k] 2 A jali; k] is a °oating activity andi i Eapx;, O

4.4.4 The instance P [G; wcet] of 1jr;; d;j; prec; pmtn ; period j i
We are now in a position to de ne the scheduling problem instance P [G; wcet]

generatedby a Giotto program G and execution times wcet:

De nition 4.33 (the scheduling problem P[G; wcet]). P[G;wcef]isatuple (J;t;r;d; A,
1), de ned asfollows:
2 For " = 0; 1, ¢ce, let
J- = f xed activities afi; k]2 Aji2[! = (C+ 1! i 1]g
© a
[°oating activities afi; K2 A jii Egimodar kg2 [! = (C+ 1! j 1]
S1
LetJ = <, J.
2 For a[i; k] 2 J, let t(a[i; k]) = wcet(a).
2 Let Actj be the actuator driver activities with con guration number i, i.e., the set

fd[i; 2] 2 Ag, and let Sensebe the sensorread activities with con guration number i,
i.e., the setfg[i; 3] 2 Ag. For ai; k] 2 Act;,

P
r@@fi; k) = i(“#)i giopac, Weet(d)
d@afi; k) = i(¥&!)

For afi; k] 2 Senseg
r@afi; k) = i(v&!)

d(afi; k]) (V&) + i s[i: 3]2 Sense Weet(s)

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 115

Otherwise, a[i; k] is a °oating activity, and

r(ali; k)
d(afi; k])

(i Eafi mod! x)(¥#!)
(i + Laji mod 1 k))(V#!)

2 The relation A is de ned asfollows. Let a[i; *];a4i% 9 be two members of J. Then
ali; k] A aJi%k9 i® ali; k] @a%i® K

2 Finally, | isthe period %2of mode m. o

The problem instance P[G;wcet] may be generatedin time pseudoplynomial in the fre-
guenciesof the task invocations and actuator updates of mode m. It may be veri ed that
P[G; wcet] satis es the conditions of De nition 4.1, with the exception of condition (4.2).
We now investigate the extent to which (4.2) holds. Note that for A 2 Jo,

2 3
X
r(A) 2 4j weet(d) :: Yj YE! D (4.15)
d[! ;2]2 Act:
Consider two adjacert con gurations C; and Cij+1, wherei 2 [0::! j 1]. If it is not the
casethat
X X
weeft(s) + weet(d) - Y&! (4.16)
s[i; 3]2 Sense dli+1;2]2 Act+1

then the program G cannot be "-feasiblefor any " - ¥=! . Whether (4.16) holds may be
cheded in time polynomial in P[G; wcef], by examining all activities in Jo[J;. Suppose
on the other hand that (4.16) holdsfor alli 2 [0::! | 1], andin particular fori =" i 1. If

P

dp 2)eAct, Weel(d) = Y&l then g1 1.5 gense , , WeEH(S) = 0. In this case,Sense; 1 = ;,

sothat the upper bound of (4.15) is strict, i.e., for A 2 Jg,
r(A) < Y Y&

X
= Y weet(d)
d[! ;2]2 Act:

P
If " gp 2p2act, Weet(d) < ¥#!, then by (4.15), for A 2 Jo,

r(A) - Y Y&
X

< Vi weet(d)
d[! ;22 Act

We have establishedthe following proposition:

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 116

Prop osition 4.34. Whether (4.16) holds may be cheded in time polynomial in P [G; wcet].
If (4.16) doesnot hold, then G is not "-feasiblefor any " - ¥&!. If (4.16) holds, then
2 3

r(A) 2 4; X weet(d) :: Yaj 1 X weet(d)© (4.17)
d[! ;2]2 Act, d[! ;2]2 Act

The fact that the releasetimes of P [G; wcef] satisfy the modi ed condition (4.17)

preseris no dixculties for Algorithm 4.2. Supposethat (4.16) holds, and let S denote the
schedule obtained by running Algorithm 4.2 on input P[G;wcet]. Supposethere exists an
"Qfeasible schedule S° for some"?. ¥&!. Using an exchange argumert, it may be shown
that SO can be transformed into S, and that S is "-feasible for some" - "% Further, it
may be veried that S is feasible. Thus, if G has an "%feasible schedule for some"? -
Yg!, then S is feasible. The corverse also holds: by the construction of P[G;wcef], if S
is feasible, then S is "-feasible for some" - ¥%&!. Note that all sensorsand actuators
drivers are ex%:DLJted at con_guratliaon Co. Thus, théa maximum jitter in S occurs at Cy,
i€, "% = max apact, WCEHA); a2sensg WCEHA) . Finally, sincethe jitter tolerance”
attained by S is at most the jitter tolerance "° obtained by an arbitrary schedule S " is
the minimum jitter tolerance"”, and S is a ""-feasible schedule. We have establishedthe

following:

Theorem 4.35. Let S be the schedule obtained by running Algorithm 4.2 on input P[G,
wcet]. Questions4.26,4.27,and 4.28 may be answered as follows:

1. G hasan "-feasibleschedule for some" - ¥&! if and only if S is feasible.

epP P a
2. If Sisfeasible,then "® = max s, WCEH(A); A2 sense WCEHA) .

3. If Sis feasible,then S is an "“-feasiblesdedule.

The procedureimplicit in Theorem 4.35is shown in Algorithm 4.3. Since P[G; wcef] may
be constructed in time pseudomlynomial in the size of the description of G, and since
Algorithm 4.2 runs in time polynomial in the size of the description of P[G;wcef], we

concludethat:

Corollary 4.36. Algorithm 4.3 answers Questions4.26,4.27,and 4.28in time pseudomly-
nomial in the size of the description of its input program G.

CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 117

Algorithm 4.3 Sdhedule synthesis algorithm for single-made Giotto programs.
1. Schedule synthesis(G: sensor-and actuator-dependent Giotto program, wcet mapping
from ead action a to the worst-caseexecutiontime wcet(a) of a)

2: Construct the instance P[G;wcef] of 1 r;; d;; prec; pmtn; period j j .

3. if (4.16) doesnot hold then

4: Report that G doesnot have an "-feasibleschedulefor any " - Y&l .

5. else

6: Attempt to construct a feasiblesdchedule S for P[G;wcetf], using Algorithm 4.2,
7. if no feasiblescedule exists then

8: Report that G doesnot have a "-feasibleschedule, for any " - ¥&! .

9. else cp p a

10: Report that " = max — ppact, WCEH(A); a2sense WCEHA) .

11: Report that S is an "“-feasibleschedule.

Whether a fully polynomial-time algorithm for answering these questionsexists is an open

question14

45 Conclusion

In this chapter, we have seenhow to sdhedule single-made, single-processorGiotto
programs. The key elemen of this chapter's approac has been the use of precedence-
constrained scheduling algorithms, drawn from the scheduling theory literature, that nd a
feasibleschedule whene\er one exists. We preseried two Giotto programsthat have feasible
schedules, but are rejected as infeasible by previous scheduling algorithms for Giotto. We
arguedthat the scheduling problem 1 r;; d;; prec; pmtn j j is a good match for scheduling
single-made, single-processorGiotto programs. To accourt for the in nite nature of Giotto
programs, we extendedthis problem to a periodic version, 1] r;; d;; prec; pmtn; period j i .
We dewveloped an optimal algorithm for this extended problem, basedon the conceptof rest
points. We then showed how to translate a class of single-processor,single-made Giotto
programs into instances of this extended problem. This resulted in a pseudomlynomial-
time sdeduling algorithm for a classof single-made, single-processorGiotto programs.

¥ For the simpler, periodic setting described of [LL73] consisting of a set of n jobs ji, i 2 [1:: n], eac
with gn assciated period | ; and execution time t;, a necessaryand suzcient condition on schedulability is
that ', ti=) i - 1. It is therefore possiblethat a similar rate-based condition could provide the basis for
a fully polynomial algorithm that answers Questions 4.26, 4.27, and 4.28.

118

Chapter 5

Conditional scheduling

5.1 Intro duction

Supposethat an engineerneedsto designone of two devices, either device A or
device B. Each device will require nine months of work. The due date of both A and B
is in oneyear, but only one device will needto be completed. However, which device will
needto be completed will not be known until six months from now. Building both devices
within oneyearis clearly impossible,sincethe total amount of time required is 18 months.
Instead, the engineer'snext six months should be divided equally betweenA and B, with
the remaining six months dewoted exclusively to either A or B, depending on the decision
six months from now about which deviceto complete. We call such a scenarioa conditional
schaluling problem becausethe execution of the engineer's scheduling strategy depends
conditionally upon decisionsthat are made externally to the schedule (the decisionin six
months about which deviceto build).

In the above example,the scheduling strategy is easyenoughto determine. In more
complicated examples,it may be lessclear how to devisea strategy. What if the devicesto
be built are many, require unequal amounts of time, and have unequal due dates? What if
the decisionsabout which devicesto build occur at di®erert times? What if somedevices
require other devicesto be already completed? This chapter presens generalizationsand
variants of the engineer'sproblem, and locatesthe dividing line between polynomial-time
and computationally infeasible variants.

Table 5.1 summarizesour results. The structure of this chapter is as follows.
After surveying related work in Section 5.1, Section 5.2 precisely de nes the basic condi-

CHAPTER 5. CONDITIONAL SCHEDULING

Problem

Form of graph:
Form of strategy:
Easinessresult:

Problem
Form of graph:
Form of strategy:

Additional features:

Easinessresult;

Problem
Form of graph:
Form of strategy:

Additional features;

Easinessresult;

Problem
Form of graph:
Form of strategy:

Additional features:

Easinessresult;

Problem

Form of graph:
Form of strategy:
Hardnessresult:
Easinessresult:

Problem:

Form of graph:
Form of strategy:
Hardnessresult:
Easinessresult:

Problem
Form of graph:
Form of strategy:

Additional features:

Hardnessresult:
Easinessresult;

119

Tree scheduling (Section5.2.1)
tree

dense-time

polynomial-time algorithm

Imprecise tree scheduling (Section5.2.2)
tree

dense-time

anytime reward function

polynomial-time algorithm

Precedence-constrained
tree

dense-time
precedencerelation
polynomial-time algorithm

tree scheduling (Section5.2.3)

Guarded scheduling (Section5.2.4)
tree

dense-time

guard jobs, precedencerelation
polynomial-time algorithm

Discrete-time
tree
discrete-time
strongly NP-hard
in NP

tree scheduling (Section5.3.1)

DAG scheduling (Section5.3.2)
directed and acyclic

dense-time

strongly coNP-hard

in EXPTIME

Fixed-deadline
any
discrete-time or dense-time

“xed deadlines

coNP-hard

in 2EXPTIME; doubly exponertial-time algorithm

scheduling (Section 5.4)

Table 5.1: Main results of this chapter.

CHAPTER 5. CONDITIONAL SCHEDULING 120

tional scheduling problem. The remainder of Section5.2 then considersconditional schedul-
ing problems for which feasible schedulescan be found in polynomial time. Section5.2.1
preseris the rst sud \easy" classof problems, in which the structure of the underlying

conditional graph is a tree. Sections5.2.2 and 5.2.3 extend the model of Section 5.2.1 with

anytime reward functions and precedenceconstraints, respectively, in such a way that fea-
sible schedulesmay still be found in polynomial time. Section 5.2.4 extends the model of
Section 5.2.3to model computational jobs that determine which conditional branch needs
to be followed. This feature will be of interest in Chapter 6, for scheduling multi-mo de
Giotto programs on a single processor.

Section5.3 preserts two variants of the basicconditional sdheduling problem which
are, unfortunately, computationally hard. First, for scheduling real-time software, it is often
desirable that the scheduler be activated periodically by a timer interrupt. This leadsus
to consider,in Section 5.3.1, a discrete-time conditional sdheduling scenario,in which the
scheduler is restricted to changethe running job only at integral points in time. For this
scenario, we shaw that the problem of nding a feasible schedule is NP-hard. Second,
it would be desirable to allow conditional scheduling problems in which the underlying
conditional graph is acyclic: such directed acyclic graph (DAG) sdceduling problems are
more expressie than the tree scheduling problems of Section 5.2. In Section 5.3.2, we
show that determining whether such an DAG scheduling problem has a feasibleschedule is
coNP-hard.

Finally, in Section 5.4, we investigate conditional scheduling problems in which
the deadline of eadh job is xed at the time that the job is released.The problem of nding
a feasible schedule for "xed-deadline conditional scheduling problems is coNP-hard. We
presert a doubly exponertial-time sceduling algorithm for xed-deadline problems, even
for problems where the underlying conditional graph cortains cycles.

In Chapter 6, we will shav how to usethe conditional scheduling algorithm of
Section5.2.4to synthesize single-pracessorscdedulesfor multi-mo de Giotto programs. Al-
though we believe that the sdheduling models of this chapter are of interest independert
from their usein scheduling Giotto programs, the reader who wishesto understand only
the minimal amount of this chapter necessaryfor Chapter 6 needsto read only Section5.2,
up to page 129, skipping Section 5.2.2, resuming again at page 133 with Sections 5.2.3
and 5.2.4, and skipping all sectionsafter Section5.2.4.

CHAPTER 5. CONDITIONAL SCHEDULING 121

Related work

The model we shall consideris closelyrelated to the model of [Bar98a], which was
further extendedand analyzedin [Bar98b, CET01]. Our model generalizeshesemodelsin
two respects. First, and most importantly, the models of [Bar98a, Bar98b, CET01] do not
permit the deadlinesof jobs to changedepending on conditional behavior. Though the idea
of dynamically changing deadlinesmay seemodd, we have already encourtered a situation
in which the deadlinesdo so change:the engineer'sproblem. In one scenario,the engineer
had to produce device A within 12 months, with deviceB givenan in nite deadline. In the
other scenario,then engineerhad to producedeviceB within 12 months, with deviceA given
an in nite deadline. Second,jobs are unrelated in the models of [Bar98a, Bar98b, CET01],
in the sensethat jobs do not admit precedenceconstraints. When precedenceconstraints
are included, conditionally changing deadlinesare alsorequired, evenif the deadline of eath
job j is 'xed whenj is released.To seewhy this is so, considera scenarioin which job j1
precedeshoth j, andjs. Initially , j1 is releasedfollowed some xed time later by the release
of either job either j, or j3, but not both. If jo's deadline is di®erent from j3's deadline,
then j1's deadline varies, depending on whether j, or rather j 3 is released.

Indeed, as we shall seein Chapter 6, Section 6.2, the phenomenon of varying
deadlines is presert when one takes a precedence-constrainedview multi-mo de Giotto
scheduling. Thus, varying-deadline conditional sdheduling is appropriate for precedence-
constrained multi-mo de Giotto scheduling. In corntrast, xed-deadline conditional schedul-
ing, the subject of Section 5.4, is appropriate for non-precedence-constraineanulti-mo de
Giotto scheduling, in which the scheduling algorithm considersthe logical deadline of eadh
task to be its actual deadline. In keeping with the focus of this thesis on precedence-
constrained scheduling, we will use a varying-deadline conditional scheduling algorithm in
Chapter 6 for multi-mo de Giotto sdeduling.

Though the model we shall considerin this chapter generalizesthose of [Bar98a,
Bar98b, CETO01] in the two respects discussedabove, in two other respects our model
is lessexpressiwe. First, we do not addressthe parallel composition of two or more condi-
tional scheduling problems. Our techniquescould be extendedto handle sudh compositions,
though we do not discussthese extensionshere. Second,our models specify exact release
times for tasks, not minimum separations between releasetimes. We believe that these

CHAPTER 5. CONDITIONAL SCHEDULING 122

di®erencesare slight, and that our varying-deadline model is of independert interest.!

A secondline of researd that has inuenced our model is that of G. Fohler,
especially [Foh94], which dewelops algorithms for multi-pro cessorconditional scheduling.
The model of [Foh94]is a xed-deadline multi-pro cessormodel, whereasours is a varying-
deadlinesingle-processomodel. Wefocuson a single-processomodel to develop polynomial-
time algorithms; aswe will seein Chapter 7, multi-pro cessormodels are often NP-hard.

A distinct line of researt in real-time sdheduling seekso extend the priorit y ceiling
protocol [SRL90]to handle changesof operational mode, including the addition or deletion
of tasks, modi cation of the frequencyof a task, and soon [SRLR89]. Our approad di®ers
substartially from that of [SRLR89. In our model, jobs interact via precedenceconstraints,
not via sharedresources.Moreover, mode changesseemto be regardedasinfrequent evens
in [SRLR89], whereasin our model, mode changesare allowed to be frequert. Finally, our
schedulability tests are suxcient and necessarywhereas[SRLR89] only provides su+cient

tests.

The reader familiar with the techniques of [Bar98a, Bar98b, CET01] may also wonder whether these
techniques may be extended to our setting. We now explain why such an extension seemsimprobable.
These techniques rely on a deadline bound function, which assignsto eadc nonnegative real number t a
number dbf(t), which is the maximum, over all time intervals | of length t, of the sum of computation times
of jobs that have releasetimes and deadlines within 1. In the models of [Bar98a, Bar98b, CET01], eacth
job j is due at its releasetime plus a xed constant d(j). It is shown in [CETO01] that an instance of such a
model is schedulable if and only if for all t , O,

dof(t) - t (5.1)

The proof of the \only if" portion relies in an essetial way on the optimalit y of the earliest deadline rst
(EDF) scheduling policy.

However, EDF is not optimal in our setting, aswe now explain. Consider the example from the beginning
of this chapter, modi ed in the following way. Supposethat device A is due in 12 months, and will require 12
months of work; that device B is due in nine months, and will require three months; and that a decision will
be made in six months about which device to complete. If we de ne the deadline d(A) of A (respectively,
the deadline d(B) of B) to be the earliest future time when A (respectively, B) is due, then d(A) = 12 and
d(B) = 9. If the scheduler usesan EDF policy, then B will be executed rst for three months, followed
by A. But if A is chosenfor completion, then A's deadline will be missed. If instead of using an EDF policy,
if the engineer devotes six months to A, then either six months to A or three months to B (conditional on
the decision about which device to complete), then the deadline will be met in eadc case.

Thus, the proof of condition (5.1) doesnot extend to our setting. Indeed, it is easyto seethat (5.1) is not
sutcient in our setting. Consider again the example from the beginning of the chapter, modi ed so that
both device A and device B require 10 months of time. Then:

1)
0 if t< 12

dof(=" 10 it t. 12

Though condition (5.1) holds, still there is no solution to the given scheduling problem: A requires four
months of time during the rst six months, and so doesB, but only six months are available.

CHAPTER 5. CONDITIONAL SCHEDULING 123

Figure 5.1: The engineer'sproblem modeled as a conditional scheduling problem.

5.2 The conditional scheduling problem

We begin with a precisede nition of the model we shall considerin this chapter.

De nition 5.1 (conditional scheduling problem). A conditional scheluling problemP

is a pair (F; W), where:

2 F = (V;vp;E;D) is called the nite state machine of P. Here, V is a nite set, called
the vertices of which the initial vertex vg 2 V is a member. The set E of edgesis a
subsetof V £ V; we write v ! vCinstead of (v;v) 2 E. The function D assignsto

eah edgee 2 E a nonnegative rational duration D(e) 2 Q- °.

2 W = (J;t;r;d) is called the workload of P. Here,J is a nite set, calledthe jobs The
function t assignsto ead job j 2 J an amourt t(j) 2 Q> ° of time required by j. The
function r assignsto eat vertexv 2 V asetr(v) u J of jobsreleasad at v. Similarly,

the function d assignsto ead vertex v2 V a setd(v) p J of jobs due at v. o

Example 5.2. Figure 5.1 preseris the engineer'sproblem modeledasa conditional schedul-
ing problem. For convenience we useintegersasvertices. At the initial vertexvg = 1, jobsA
and B are released.The jobs releasedat vertex 1 are indicated with the labelr : A; B adja-
cen to vertex 1. The time required by eat job A andB is 9 (i.e., t(A) = t(B) = 9), though
this is not pictured. The duration D(1! 2) ofthe edgel! 2is 6; this is pictured adjacert
to the edgel ! 2. After this duration has passed,the manager decideswhich device to
build. To build device A, the managerfollows the edge2! 3. After an additional 6 time

CHAPTER 5. CONDITIONAL SCHEDULING 124

units (the duration D(2! 3)is 6), job A is due at vertex 3. The jobs due at vertex 3 are
indicated with the label d : A adjacert to vertex 3. To build deviceB instead, the manager
follows the edge2! 4; after an additional 6 time units, job B is due at vertex 4. o}

We will be concernedwith a gameplayed by the scheduler versusthe environment.
The environment decideswhat branchesto take in the conditional graph, and the scheduler
decideshow to allocate a single processoramong the jobs J. At time 0, the gameis at
the initial vertex vo. The ernvironment choosesany vertex vi such that vo ! vi. The
scheduler is informed immediately, at time 0, of the ervironment's decision. During the
next D(vo ! Vvj3) time units, the scheduler allocatesthe processoramongthe jobs. In this
section, we let scheduler make preemptions at arbitrary times.? Each releaseof a job j is
a requestfor the execution of an additional instance of j. When a vertex v is encourtered
such that j 2 d(v), all previously releasedinstancesof j must be complete. Thus, the
scheduler losesif somejob in both r(vg) and d(v1) is not complete by time D(vo ! wvi).
Otherwise, the game cortinues, and the ernvironment again choosesany vertex v, suc
that v ! v,. The scheduler, informed of this choice, allocatesthe processoramong jobs
for the next D(vy ! vp) time units. The sdeduler losesif somejob in both d(v,) and
(r(vo) nd(v1)) [r(v1) is not complete at time D(vp ! vi) + D(v1 ! Vv2). The game
continuesin this way forever, or until a vertex is entered that has no outgoing edges.

Our main goalin this sectionis to dewvelop an algorithm for nding winning strate-
giesfor the scheduler. To this end, we make precisethe gamewe have informally described
by de ning the movesof the environment (runs) and the decisionsof the scheduler (strate-

gies).

De nition 5.3 (runs and strategies). Let P be a conditional scheduling problem. A
1and (vi;vi+1) 2 E
fori 2 [0::nj 1] The length of run (vo;v1;¢¢¢;vy) isn+ 1. Let R be the set of runs

run %2of P is a sequence(vp; vy; ¢¢¢; v,) of vertices such that n |
of P. For any run Y%= (vg; ¢¢C;vy), a run (vo; ¢¢C; vy; ¢CC; vy) 2 R is a continuation of %4
and is a maximal cortinuation if vertex vy, has no successors. We also say that Yis a
cortin uation of Yitself. A strategy ¥%for P is a function %: R£ J ! R: ° such that for any

2|n Section5.3.1, we will investigate a variant of the conditional scheduling problem in which the scheduler
may preempt only at integral times. This models a periodic timer interrupt, for example. The choice of the
integers over, say, a set of evenly spacedrationals is arbitrary , but is no lessgeneral.

CHAPTER 5. CONDITIONAL SCHEDULING 125

Run %2in R ¥{(*%2A) ¥(*%2B)

(1;2) 3 3
(1;2;3) 6 0
(1;2;4) 0 6

Figure 5.2: A strategy %for the problem of Figure 5.1.

run ¥%= (vp;vy; ¢¢¢;vy,) in R,
X
Y(/2]) - D(vni1! Wn) (5.2)
j2J
If ¥{¥2j) > 0, we say that strategy executes job j along run ¥2 For ead integeri 2 [0:: n],
let ¢(i) = Li:é D(vk ! wvk+1). Wesay that ¢(i) is the time at which the i-th element v; of

run Yzis entered. o}

Note that ¢(vi)i ¢(Vi; 1) = D(vi; 1! Vvi). Intuitiv ely, a strategy ¥allocates¥{2]) time to
job j betweentimes ¢(nj 1) and ¢(n). The inequalities (5.2) expressthe constraint that
for a run (vo; ¢¢¢;vy,), the strategy %.allocatesat most D(vp; 1! vn) from time ¢(nj 1)
until time ¢(n). Strategies are non-clairvoyant in the sensethat, past the next vertex v,
chosenby the ervironment, the scheduler has no knowledge of the future behavior of the

environment.

Example (5.2 contin ued). For the problem of Figure 5.1, the set R of runs is f(1;2);
(1;2;3); (1;2;4)g. The strategy preseried at the beginning of the chapter | divide the rst
six months betweenA and B, and spend the next six months exclusively on either A or B

| is preseried in Figure 5.2. a

We now de ne the conditions under which a strategy %ais winning. Informally, the
de nition is asfollows. Considera run ¥2= (vp; vy; ¢¢¢;v,), and ajob j that is releasedat v;
for somei 2 [0::nj 1]. If there is no vertex vi, k 2 [i + 1:: n], at which j is due, then %
imposesno requiremerts on % Now supposethere is such a vertex, and let vg= be sud a
vertex with minimum index k®. Each vertex at or after v; and before v= that releases
incurs a requiremert of t(j) additional time units for j. Let m denote the number of suc
vertices. In order to be winning, ¥ must allocate at least m ¢t(j) time units for j from

time ¢(i) up to time ¢(k®). More precisely we de ne a winning strategy as follows.

CHAPTER 5. CONDITIONAL SCHEDULING 126

De nition 5.4. Let P be a conditional scheduling problem. A strategy %zis winning for
P if, for every run %= (vg;vq; ¢CC¢;v,) 2 R, for every integeri 2 [0::nj 1], and for every

job j 2 r(v;), either the set
fkjk2[i+ 1:n]andj 2 d(vk)g (5.3)

is empty, or the condition, marked (5.4) below, holds. Let k® be the minimum over the
set (5.3). Let m be the sizeof the setf™ ji - ~ < k" andj 2 r(v:)g. Then

o]

YA(vo; 66C;v+);j) , met(j) (5.4)

=i+l

must hold. o}

We now considerhow to nd a winning strategy for a conditional scheduling prob-
lem P. On the positive side, if the graph (V;E) is a tree rooted at vg, we dewvelop in Sec-
tion 5.2.1a polynomial-time algorithm that determineswhether P has a winning strategy,
and if sosynthesizessuch a strategy. We then shaov how to enrich the tree scheduling model
with an anytime reward function (Section 5.2.2), precedenceconstraints (Section 5.2.3),
and guard jobs (Section 5.2.4), while retaining a polynomial-time synthesis algorithm. On
the negative side, if (V;E) is a directed acyclic graph (respectively, if strategies must be
discrete-time), we show in Section 5.3 that determining whether P has a feasible strategy
is coNP-hard (respectively, NP-hard). Table 5.1 on page 119 summarizesthe results of this

chapter.

5.2.1 Tree scheduling

We now presert an algorithm that decideswhether P hasa winning strategy, and
if soreturns such a strategy. This algorithm (1) createsa system of linear inequalities
that capturesthe constraints on a winning strategy, and (2) tests these inequalities for a
solution using a polynomial-time linear programming algorithm. The inequalities have the
property that any solution correspondsto a winning strategy. Further, the inequalities may
be generatedin time polynomial in the size of the conditional scheduling problem P, if the
graph (V;E) is a tree rooted at vo. Thus, for sud tree-shaped problems we will show that

our algorithm runs in polynomial time.3 It should be emphasizedthat if (V;E) is instead a

30f course, a nonpolynomial-time algorithm, such as the simplex method, may in practice run more
quickly. Our focus hereis not to nd the fastest algorithm in practice, but instead to prove the existence of
a polynomial-time algorithm.

CHAPTER 5. CONDITIONAL SCHEDULING 127

directed acyclic graph, the running time may not be bounded by a polynomial, though our
algorithm still synthesizesa winning strategy if one exists.
In order to presen our algorithm, we introduce the system of linear inequalities

generatedin step (1) of our algorithm by meansof an example.

Example (5.2 contin ued). For our running example, the inequalities are

¥(1;2;A) , O ¥(1;,2;B) , O
%(1;2,3;A) , O ¥%(1;2;3;B) , O (5.5)
¥(1;2,4;A) , O ¥(@1,2,4;B) , O

¥(1,2);A) + ¥%(1,2);B) - 6
(1;,2,3);A) + ¥4(1;2,3);B) - 6 (5.6)
¥(1,2;4);A) + ¥%(1,2,4);B) - 6

H(L;2;A) + H(1:23)A) . 9 5.7)

¥(1;2);B) + 4(1;2,4);B) . 9
The variables of the inequalities are the members of the setf¥{*2j) j %2 R~ | 2 Jg. The
inequalities (5.5) require that ¥{%2j) is nonnegative for ead run ¥22 R and job j 2 J. The
inequalities (5.6) capture the constraint (5.2), that the amount of time allocated by the
scheduler during an interval is at most the duration of that interval. Any assignmen of
valuesto the variables ¥(Y2j) that satis es (5.5) and (5.6) also satis es the requiremerts
of De nition 5.3; such an assignmen is thus a strategy. The inequalities (5.7) expressthe
constraint (5.4), that betweenthe releaseof a job and its next subsequeh deadline, suxcient
time is allocated to that job. The readermay verify that the strategy of Figure 5.2 satis es

the inequalities (5.5), (5.6), and (5.7). o

We now formally de ne the system Lin [P] of linear inequalities generatedby a
conditional scheduling problem P. There will be nitely many inequalities if the graph
(V; E) is a directed acyclic graph, and Lin [P] will be polynomial in the sizeof P if (V;E) is

a tree rooted at vg.

De nition 5.5 (the system Lin [P] of linear inequalities). Let P be a conditional
scheduling problem. The set of variables of Lin [P] is f¥%(%2j) j¥2 R”" | 2 Jg. There are

three typesof constraints in Lin [P]:

2 [Nonnegativity constraints] For ead variable ¥{%2j), ¥{*2j) , Ois a constraint.

CHAPTER 5. CONDITIONAL SCHEDULING 128

P
2 [Duration constraints] For ead run %= (vg; ¢¢¢;v,) 2 R, i23 ¥(%2j) - D(vn; 1!

V) IS a constraint.

2 [Execution time constraints] For ead run 2= (vp; ¢¢¢;v,) 2 R, for ead integer
i 2[0:nj 1], for eadh job j 2 r(v;), if the set (5.3) is nonempty, then

<]

YA(vo; ¢CC;v-);j) , met(j)

=i+l

is a constraint, where k® and m are asde ned in De nition 5.4. o

The reader will note the close correspondence between De nition 5.3 and the
nonnegativity and duration constraints of Lin[P]. Based on this correspondence, it is

straightforward to prove the following proposition.

Prop osition 5.6. An assignmem of valuesto the variables of Lin [P] is a strategy if and

only if the assignmen satis es the nonnegativity constraints and the duration constraints.

The readerwill alsonote the closecorresppndencebetweenDe nition 5.4 and the execution
time constraints of Lin [P]. It is thus straightforward to prove that an assignmen of values
to the variables of Lin [P] is a winning strategy if and only if the assignmen is a strategy
and moreover satis es the execution time constraints of Lin [P]. From Proposition 5.6, the

following proposition follows.

Prop osition 5.7. An assignmen of valuesto the variables of Lin [P] is a winning strat-
egy if and only if the assignmen satis es the nonnegativity, duration, and execution time

constraints.

Algorithm 5.1 constructs the constraint set Lin [P], straightforwardly and accord-
ing to De nition 5.5, and then tests whether Lin [P] has a solution. We now shaw that the

running time of Algorithm 5.1 is polynomial in the sizeof P.

2 Since the graph (V;E) is a tree, the number jRj of runs equals the number jEj of
edges.The number of variables of Lin [P] equalsjRj ¢jJj = jE]j ¢jJ]. Sincethere is one
nonnegativity constraint per variable, there are jEj ¢jJj such constraints.

2 Sincethere is oneduration constraint per run, there are jEj suc constraints. The left
hand side of eath such constraint is the sum of jJj terms. The right hand side of eath
sudh constraint is the numerical constart D(v! V9. This constart has size O(jDj),

where Dj is the size of the description of D.

CHAPTER 5. CONDITIONAL SCHEDULING 129

Algorithm 5.1 Tree scheduling.
1. Algorithm Tree scheduling(P = ((V;vo; E;D); (J3;t; r; d)): atree scheduling problem)
2. Lin[P]:=;

3: for all runs 2= (vo; ¢4¢;vy) 2 R do

o

4: Lin[P]:=Lin[P][j20 %2) - D(Vnj 1! Vi)

5. for all jobsj 2 J do

6: Lin[P]:= Lin[P][f3¥4%j), Og

7. for all integersi 2 [0::nj 1]do

8: for all jobsj 2 r(v;) do

9: if set(5.3) 6 ; then , o

10: Lin[P]:= Lin[P]['im Y{(vo; ¢¢¢;v);j), met(j) , wherek® and m are
asde ned in De nition 5.4.
11: Use a polynomial-time linear programming algorithm to test whether Lin [P] has a
solution % If so, report that ¥ is a winning strategy. If not, report that P has no
winning strategy.

2 The number of execution time constraints is at most jRj times the length of the
longestrun times jJj. Sincethe length of the longestrun is at most jEj, the number
of execution time constraints is at most jEj2 ¢jJj. The left hand side of ead such
constraint is the sum of at most jEj terms. The right hand side of ead such constraint
is the numerical constart md(j). This constart hasO((log JEj)+ jtj) size,sincem - jEj,

where jtj is the size of the description of the function t.

From thesefacts, it may be veri ed that the running time of steps 2 through 10 of Algo-
rithm 5.1 is polynomial in the sizeof P, and further that the size of Lin [P] is polynomial
in the sizeof P. Thus, the running time of step 11 is also polynomial in the sizeof P. We

have establishedthe following:

Theorem 5.8. Let P be a conditional scheduling problem in which (V;E) is a tree rooted
at vo. Then Algorithm 5.1 runs in time polynomial in the sizeof P, determineswhether a

winning strategy for P exists, and if soreturns suc a strategy.

5.2.2 Imprecise tree scheduling

It has beenwidely obsened within the arti cial intelligence community that the
amount of time required to compute an optimal result may reduce the utilit y of the re-
sult [RW91]. Since earlier results are generally better than later results in a real-time set-

ting, computing the optimal result after a long delay may be lessdesirablethan computing

CHAPTER 5. CONDITIONAL SCHEDULING 130

a sub-optimal result after a short delay. In order to maximize a utilit y function, decisions
needto be made about the amourt of time to dewte to ead job. Anytime algorithms allow
sudh decisionsto be made °exibly [DB88]. An anytime algorithm is an algorithm in which
computation may be interrupted at any time, producing results of increasingquality asthe
amount of computation time increases.

The similar conceptof imprecise computations hasbeenstudied in scheduling the-
ory sincethe 1980s[SLC91, LLSY91]. An imprecise computation consistsof two parts, a
mandatory part and an optional part. The mandatory part must be completedto produce
a result of minimum acceptablequality. The optional part follows the mandatory part, and
improvesthe result produced by the mandatory part. [SLC91] preserns a polynomial-time
algorithm that "nds, from amongall schedulessatisfying release,deadline, and mandatory
computation constraints, onethat is optimal in the senseof minimizing the total amourt of
remaining optional computation. In addition, [SLC91] permits a positive, rational weight
for ead job, and shows how to minimize the weighted sum of remaining computation times.
The per-job weight may be thought of as a linear reward function. [AMMMAO1] general-
izes[SLC91]to include concave reward functions, and presents a polynomial-time algorithm
that nds optimal schedulesfor this more generalmodel, as long as strong periodicity re-
quiremerts are met.

The conditional scheduling problem of De nition 5.1 can easily be adapted to
't the framework of imprecise computations. The condition (5.4) speci es a lower bound
on the amount of time ead job j must be executed| or, in other words, the mandatory
executiontime of j. Any additional executiontime is optional. To quartify the total reward
of a strategy, we augmert the basic conditional scheduling problem with a reward function
f:J! Q9 Aswewill see,this reward function behaves similarly to the linear reward
function of [SLC91].

De nition 5.9 (imprecise scheduling problem). An imprecise schealuling problem P
is a triple (F;W,;f), where the nite state machine F and workload W are de ned as in
De nition 5.1,andf :J! Q- 0 js a function, called the reward function, assigninga non-
negative rational number f (j) to ead job j. The runs, strategies and winning strategies of
an imprecise scheduling problem (F ; W;f) are the sameas for the underlying conditional
scheduling problem (F ; W). o

Our goal is to dewelop an algorithm for nding a winning strategy of maximum

CHAPTER 5. CONDITIONAL SCHEDULING 131

reward. Before we de ne what the reward of a strategy is, however, we restrict the class
of imprecise scheduling problems that we will considerin four ways. The intent of these
restrictions is (1) to simplify the de nition of the reward of a strategy, and (2) to focuson
a classof imprecise stheduling problems for which a polynomial-time algorithm exists. To

theseends, we de ne a well-formed imprecise scheduling problem as follows:

De nition 5.10 (well-formed imprecise scheduling problem). We say that an im-

precisescheduling problem is well-formed if the following conditions hold:

1. In order to develop a polynomial-time algorithm, we require that the graph (V;E) is

a tree rooted at vp.

2. In order to simplify the de nition of the reward of a strategy, we require that for
ead job j 2 J, there exists exactly one vertex v 2 V such that j 2 r(v). Given this

requiremert, for j 2 J welet r(j) denotethe unique vertex v 2 V such that j 2 r(v).

3. Without loss of generality, we require that for any v 2 V and any j 2 d(v), there

existsvP2 V such that v°! * vandj 2 r(v9.4

4. Givenland 2, without lossof generality we require that there do not exist two vertices
v;vP2 V such that v! * vOPand d(v)\ d(v9 6 ;.5 o

We now de ne the reward of a strategy. The reward of a run (vo; ¢¢¢; vy) is the
sum, over all jobsj due at v,, of f (j) times the amount of time allocated to j sincethe
vertex releasingj was entered.® The reward of a strategy is the sum, over all runs %2 R,

of the reward of %2 We formalize this notion in the following de nition:

“Recall that | * is the transitiv e closure of | . No generality is lost for the following reason. If j 2 d(v),
but there doesnot exist a v®2 V with v®! * v andj 2 r(v9, then upon reaching v, j cannot have been
released. Thus, the fact that j is due at v can be ignored. A problem not satisfying 3 may be replaced by
a problem that does satisfy 3, by removing j from d(v); the constraints on a winning strategy remain the
same.

5No generality is lost for the following reason. Given 2, for any run (vo; ¢¢¢;v,) and any job j, there is at
most one vertex v; such that j 2 r(v;). Now if | werein both d(vx) and d(v,o), for somei+ 1- k< k°- n,
then given 1, vyo is only reachable from v; by rst passingthrough vi. Thus, the fact that j is due at vio
can be ignored, sincej already had to complete before the predecessorvy of vyo is reached. Any problem
satisfying 1 and 2 but not 4 can be replaced by one that satis’es 1, 2, and 4, by removing j from d(vgo); the
constraints on a winning strategy remain the same.

5Given the denition of well-formedness,j was releasedby someprevious vertex vi, i 2 [0 nj 1];] was
releasedby exactly one such vertex; and j was not due at someprevious vertex vi, i 2 [i+ 1:nj 1].

CHAPTER 5. CONDITIONAL SCHEDULING 132

Algorithm 5.2 Imprecise scheduling.

1. Algorithm Imprecise scheduling(P = (F; W;f): an imprecise scheduling problem)

2: if the constraints Lin [F; W] have a solution then

3: Usea polynomial-time linear programming algorithm to nd a solution ¥that maxi-
mizesthe objective function (5.8) subject to the constraints Lin [F ; W]. Report that %
is an optimal strategy.

4: else

5. Report that P hasno winning strategy.

De nition 5.11 (rew ard of a strategy). Let ¥be a strategy for a well-formed imprecise

scheduling problem. The reward of %is

X X pd
fGg)e Y4(vo; ¢e¢; vi);]) (5.8)

(vo;¢e®wn)2R j2d(vn) i=r(j)+1
We use the symbol f [¥] to denote the reward of strategy % We say that a strategy ¥is

optimal if %is winning, and for all winning strategies ¥4, f [¥4 , f[34). o

The third (last) summation in (5.8) measureshe amount of time allocatedto job j between
entering the vertex v, ;) that releaseg and ertering the vertex v, at which j is due. The
secondsummation measuresthe reward of the run (vp; ¢¢¢;v,). The rst summation, of
course, measuresthe reward of the strategy ¥’

We wish to develop an algorithm that, when given a well-formed imprecisescedul-
ing problem P = (F;W;f), decideswhether P hasa winning strategy, and if soreturns an
optimal strategy. Givenour linear programming approad, this is quite easily accomplished:
we simply usea polynomial-time linear programming algorithm to maximize the objective
function (5.8) subject to the constraints Lin [F;W]. We summarize this obsenation in

Algorithm 5.2. We have thus establishedthe following theorem:

Theorem 5.12. Let P be a well-formed imprecisesdeduling problem. Algorithm 5.2 runs
in time polynomial in the size of its input P, decideswhether P has a winning strategy,

and if soreturns an optimal strategy.

"Other denitions of the reward of a strategy are also possible: one might, for example, weight the last
sum by f (j)=n(j), where n(j) is the number of vertices at which j is due. Alternativ ely, one might weight
the second sum by Prob(*3, where Prob is a probabilit y distribution over runs. The signi cant choice is
not the speci ¢ way in which the reward of a strategy is de ned, but rather that the de nition be a linear
function of the variables ¥{(vo; ¢¢¢;vi);j).

CHAPTER 5. CONDITIONAL SCHEDULING 133

5.2.3 Precedence-constrained tree scheduling

In this section, we enrich the conditional scheduling model of De nition 5.1 by
adding precedenceconstraints. We then dewelop a polynomial-time algorithm, basedon
Algorithm 5.1 of Section5.2.1, to synthesize schedulesfor the extended model. We begin
by adding a precedencerelation A ¥ J £ J to the conditional scheduling problem:

De nition 5.13 (precedence-constrained scheduling problem). A precedene-mn-
strained schealuling problem P is a triple (F ‘W; A), where the Tnite state machine F and
workload W are de ned asin De nition 5.1, and the precedene relation A % J £ J is an
acyclic binary relation on J. We shall normally write j A j%instead of (j;j9 2 A. The
runs and strategies of a precedence-constrainedgdeduling problem (F ; W; A) are the same
as for the underlying conditional scheduling problem (F; W). a

Wewill considera restricted subsetof precedence-constraineddeduling problems.
Asin De nition 5.10,werequirethat the graph (V; E) is atree rooted at vo, and that ead job
is releasedby exactly one vertex. The rst requiremert is necessaryfor a polynomial-time
strategy synthesis algorithm. The secondrequiremert, in the presen context, simpli es
the de nition of a winning strategy (De nition 5.15, below). Without loss of generality,
we also require that conditions 3 and 4 of De nition 5.10 hold. Finally, we require that if
j AjC thenj is both releasedand due prior to j° This requiremert is an analogueto the
de nition of transitiv e releasetimes r” and deadlinesd” from Chapter 4, Section4.3.2. We
have chosena syntactic meansof enforcing this requiremert, rather than the algorithmic
meansof Chapter 4, in order to simplify the de nition of a winning strategy below. We now

precisely specify the classof precedence-constrainegdceduling problems we will consider:

De nition 5.14 (well-formed precedence-constrained scheduling problem). We
s& that a precedence-constrainegdeduling problem is well-formed if:

1. Conditions 1, 2, 3, and 4 of De nition 5.10 hold.
2. For any two jobsj;j%2 J,if j Aj%thenr(j)! *r(j9.

3. Let j;j % be any two members of J such that j A j© Supposej®2 d(v9 for some
v92 V. Then there existsv 2 V sudh that j 2 d(v) andv ! °v°8 o

8Recall that ! ° is the transitiv e, re°exive closure of ! .

CHAPTER 5. CONDITIONAL SCHEDULING 134

We now consider what it meansfor a strategy to be winning for a well-formed
precedence-constraineddeduling problem. Considerarun (vg; ¢¢¢;v,) 2 R, and an integer
i 2[0::nj 1]. SinceA is acyclic, for any strategy % it is possibleto topologically sort the
the execution of jobs from time ¢(i) until time ¢(i + 1), sothat A is respected. On the other
hand, supposethat for two jobsj;j%2 J suchthat j A j© there existsak 2 [i + 1:: n] such
that

Y(vo; eee:vi);j% > 0
Y{(vo; CCC;v);j) > O

In this case,strategy % violates the precedenceconstraint j A j© sincej doesnot nish
before j © begins. If no sud violation occurs, ¥is winning. More precisely we de ne a

winning strategy as follows:

Denition 5.15 (winning strategy). Let P = (F;W;A) be a well-formed precedence

constrained scheduling problem. A strategy %ais winning for P if %4is winning for (F ;W)
in the senseof De nition 5.4, and the following additional condition holds. Consider any
run (vo; ¢¢¢;v,) 2 R and any jobs j;j%2 J such that j A jO If 34(vo; ¢¢¢;vi);j9 > O for
somei 2 [1::nj 1], then ¥(vp; ¢¢¢; vy);j) = Oforall k 2 [i + 1:: n]. In other words,

8i2[1:nj 1]
8k2[i+ 1:n] (5.9)
Y(vo; ¢8¢;vi);j9 >0 =) F(vo;¢¢¢;v);j) =0

If (5.9) does not hold for somerun Y%= (vo; ¢¢¢;vy,), some precedenceconstraint j A j°
and somei 2 [1::nj 1], then we say that ¥i-violates precedenceconstraint j A j®along

run %2 o]

Supposethat (F ; W; A) is a precedence-constraineddeduling problem, and that %
is awinning strategy for the lessconstrained conditional scheduling problem (F ; W). Some-
what surprisingly, a strategy ¥ that is winning for (F;W;A) may be derived from ¥in
polynomial time. The relation between precedenceconstrained scheduling and conditional
sdheduling is analogousto the relation betweenthe classical stheduling problems 1 j rj;
dj; prec; pmtn j i and 1jrj; dj; pmtn j j (see[B76])). In eat case,sthedulesfor the
precedence-constrainedersion can be derived from schedulesfor the versionwithout prece-

denceconstraints by an appropriate topological sort. In the preser case,the topological

CHAPTER 5. CONDITIONAL SCHEDULING 135

sort required is more complex, but the basicintuition remainsthe same:if job j precedes
job jC then it is always acceptableto executej in preferenceto j® We now showv how to
derive a winning strategy for (F;W:A) from a winning strategy for (F; W) in polynomial

time.

Prop osition 5.16. Let P = (F;W;A) be a well-formed precedence-constrainegceduling
problem. Let ¥be a winning strategy for (F;W) in the senseof De nition 5.4. Then a

winning strategy for P may be obtained from %4in time polynomial in jVj ¢jJj.

Proof. Without loss of generality, we assumethat the winning strategy ¥%for (F ;W) has
three additional properties. Let ¥2= (vg; ¢¢¢v,) 2 R be any run, and let j 2 J be any job.
Then:

I. If 3(%j) > 0 then there existsa vertex v 2 V suc that j 2 d(v) and v, ! ° v. Infor-
mally, j is not executedalong run %2unlessit is subsequetly due alonga cortinuation
of 2

. If ¥%j) > Othenj 2 r(v;) for somei 2 [0::nj 1]. Informally, j is not executed

along run Y2unlessit has beenreleased.

P
1L Ly %(Vo; €¢¢;vi);j) - t(j). Informally, j is not executedfor more than t(j) time

units.

Let runs %; ¢¢¢; ¥, be the members of R, enumerated in order of nondecreasinglength.
Let % = % For i = 1;¢¢¢; m, we construct a strategy % from %, 1, with properties [{I |1

above, and two additional properties:
IV. % remainswinning for (F;W).

V. Considerany run Y 2 f44; ¢¢¢; %g, and any continuation %20f %o. Let njo be length
of Y. Then for any k 2 [1:: njoj 1], there is no precedenceconstraint j A j©sud

that % k-violatesj A j%along %

Properties IV and V imply that %, is winning for (F;W;A). Since(V;E) is a tree, the
number m of runs is O(jVj). It remainsto shav only that strategy % may be obtained
from strategy %, 1 in time polynomial in jVj ¢jJj; the remainder of the proof is devoted to

establishing this fact.

CHAPTER 5. CONDITIONAL SCHEDULING 136

Let (vo; ¢¢¢;Vv,) be the sequenceof vertices of run %. Let j;j%2 J be any two
jobs such that j A j%and %, 1 n-violates j A j°along somecortinuation of ¥. Consider
any maximal cortinuation 2= (vp; ¢¢¢; vy, ; ¢¢C; vho) of % sud that j 2 d(v) for some
k2 [n+ 1::nY. We call sud a cortinuation a (%;j)-continuation. Since %, 1 is winning
for (F; W) and satis es 11,

X° x
Y 1((vo; €6¢;v2);j) = t()i ¥ 1((vo; ¢0¢;v-);)
‘=n+l =1
In other words, for any (¥;])-continuation, the amount of time allocatedto j after vertex vy
is the same,and is equal to the time t(j) required by j minusthe amount of time allocated
to j beforev,. Figure 5.3illustrates this situation. In the "gure, after v,, the sameamourt
of time is allocatedto j on ead (¥;])-continuation (these cortin uations are (vo; ¢¢¢; e) and
(vo; ¢¢¢; h)). On other cortinuations, lesstime is allocated to j (this other corntinuation is
(vo; ¢¢¢; g)).

Selecttwo jobs j;j % sudh that (1) j A j% (2) %, 1 n-violates j A j°along some
cortin uation of %, and (3) j is minimal in the partial order A*. Let T be the minimum of
the amourt %, 1(%j9 of time allocated to j© along run %, and the amourt that remains
to be executedof job j, i.e.,

. . . P .
T=minf% (%% tG)i L % 1((vo; ¢¢¢;vi);j)g

We now perform an exdhange of execution times. We move T units of the execution of |
from the (%;]j)-continuations to %, sothat %(Y%;j) = T. At the sametime, we move T
units of the execution of j© from % to the times just vacated in the (¥;])-contin uations,
taking care to presene property | by not executing j © along cortinuations on which j©is
not due. This transformation is illustrated in Figure 5.3; strategy %, 1 is pictured in the
upper half of the gure, and strategy % is pictured in the lower half. Note in Figure 5.3
that % executesj ®along run (vo; ¢¢¢; €), sincej°2 d(e); but that to presene property |, %
doesnot executej ®along either (vo; ¢¢¢;), (vo; ¢¢¢; g), or (vo; ¢¢¢; h), sincej %is in neither
d(f), d(g), nor d(h).

We repeat this processwith additional jobs j;j O_satisfying (D{(3) until no suc
jobs remain, thus obtaining strategy %. There are at most lszj exchangesto perform. Each
exchangetakes O(jVj) time, sincethere are O(jVj) cortinuations of %. Thus, obtaining %

requirestime polynomial in jVj ¢jJj. We now prove that properties I{V hold for %;.

CHAPTER 5. CONDITIONAL SCHEDULING 137

Strategy ¥ 1:

- * - 0
o) ‘GE‘@
()
ngii

Strategy %

- * - 0
o) ‘ﬁ)‘@
()
CBC':J'

Figure 5.3: A visual aid for the proof of Proposition 5.16.

CHAPTER 5. CONDITIONAL SCHEDULING 138

I. Consider any jobs j;j° that were exchanged in the construction of %. Since %; 1
satis es property I, and j is executedby %, 1 along a corntinuation of %, j is due
along a cortinuation of %. Similarly, j °is due along a corntinuation of %, since %; 1
satis es |, and j is executedby %, 1 along Y. Further, by the construction of %, j %is

not executedalong those cortin uations on which j is not due. Thus, | holds for %;.

I1. Consideragainany jobsj;j that wereexchanged. Since%; 1 satis'es|l, and %, 1(%;
i9 > 0,j%2 r(w) for somek 2 [0:nj 1]. By condition 2 of De nition 5.14,
i 2 r(vxo) for somek®2 [0:: k]. Thus, Il holds for %.

I11. Consideragain any jobs j;j°that were exchanged. For ead leaf vertex v- 2 V,
P . P. ,
k=1 Za((vo; €8¢, vie)i 1) = =y Fai ((Vo; S8¢; Vi)])

whereas
P. _ P. _
et Ya((Vos €8¢, vi)ii 9 - g % 1((Voi 00¢;)3 9

Since %, 1 satis ed |1, % satis es|Il aswell.

IV. Consideragainany jobsj;j that wereexcanged. Job | is not moved earlier than the
vertex that releasest, by Il. Sinceby the argumert for |11, the total time allocated
to j remainsthe same,the inequality (5.4) continuesto hold for job j. For job j© by
property | for %, 1, the times vacated by j do not occur past the vertices at which j
is due. By condition 3 of De nition 5.14, a fortiori the times vacated by j do not
occur past any vertex at which j %is due. Thus, j ®is not moved later than any vertex
at which it is due. Further, along the paths on which j°is due, the time allocated
to j °remainsthe same. Thus, (5.4) continuesto hold for job j % We concludethat %
remains feasiblefor (F;W).

V. Each n-violation of a precedenceconstraint by %, 1 was removed in the construction
of %. Further, for k < n, no k-violations were reintroducedin the construction of 34,
sincethe construction of % only modi ed the behavior of %, 1 for % and cortin uations
of Y. Thus, % satis es V. o}

We have shown that % may be obtained from %, 1 in time polynomial in jVj ¢jJj, thus
completing the proof. O

CHAPTER 5. CONDITIONAL SCHEDULING 139

Algorithm 5.3 Precedence-constrainedree scheduling.
1: Algorithm Precedence-constrainedtree scheduling(P = (F;W;A): a precedence-
constrained tree scheduling problem)
if Algorithm 5.1 reports that (F ;W) hasa winning strategy ¥then
Obtain a winning strategy for P from %; using the algorithm described in the proof
of Proposition 5.16.
else
Report that P hasno winning strategy.

a »

Consider a well-formed precedence-constrainedscheduling problem (F ; W;A). If
(F; W) hasawinning strategy ¥; then a winning strategy for (F ; W; A) may be constructed
from % in time polynomial in (F;W;A). On the other hand, if (F;W) has no winning
strategy, then (F ; W; A) has no winning strategy either, since (F ; W) is a lessconstrained
versionof (F ; W; A). Thus, to chedk whether (F ; W; A) hasa winning strategy, the following
algorithm suzces: rst, test whether Lin [F; W] has a feasible solution % If not, then
report that (F;W;A) hasno winning strategy. If so, usethe algorithm of Proposition 5.16
to obtain a winning strategy from the feasible solution % We summarize this procedure
in Algorithm 5.3. Sincea winning strategy for (F; W;A) may be obtained from a winning
strategy for (F ;W) in time polynomial in the sizeof (F; W) (Proposition 5.16), and since
the running time of Algorithm 5.1 is polynomial in the size of (F; W) (Theorem 5.8), the
running time of Algorithm 5.3 is polynomial in the size of (F;W;A). We have established

the following theorem:

Theorem 5.17. Let P = (F;W;A) be a well-formed precedence-constrainedscheduling
problem. Then Algorithm 5.3runs in time polynomial in the sizeof its input P, determines

whether a winning strategy for P exists, and if soreturns such a strategy.

5.2.4 Guarded scheduling

In order to use conditional scheduling models to synthesize schedulesfor Giotto
programs (Chapter 6), we needto add a feature to the precedence-constrainednodel of
Section5.2.3. For Giotto programs, the environment doesnot immediately communicate to
the program the next modeto enter; rather, though this decisionis madeby the ervironment
when sensorvalues are read, the program must perform computation | the evaluation of
mode switch driver guards| beforeit knows the ervironment's decision. We now explore
the implications of this addedfeature for the precedence-constraineadonditional scheduling

CHAPTER 5. CONDITIONAL SCHEDULING 140

model of Section5.2.3.

We call a precedence-constrainedgonditional scheduling problem guarded if a (pos-
sibly empty) set G(v) u r(v) of guad jobs is assaiated with ead vertex v. These guards
jobs are due at eat successonf v. The guard jobs ascertain the environment's decision
about which vertex to enter next; for Giotto, the guards are mode switch driver guards.
More precisely we de ne a guarded conditional scheduling problem as follows:

De nition 5.18 (guarded scheduling problem). A guarded conditional schealuling prob-
lem P isatuple (F;W; A; G) sudhthat (1) (F;W;A) is awell-formed precedence-constrained
scheduling problem, (2) the function G maps ead vertex v 2 V to a set G(v) p r(v) of
jobs, and (3) for any edge(v;v® 2 E, G(v) p d(v9. The runs of a guarded conditional
scheduling problem (F ; W; A; G) are the sameas for the underlying conditional scheduling
problem (F; W). o

We say that a scheduleis guarde if, after entering vertex v, the schedule doesnot
changeinstantaneously, but rather changesonly after ead guard job g 2 G(v) is no longer

executing. More precisely we de ne a guarded schedule as follows:

De nition 5.19 (guarded schedule). Let P be a guarded conditional scheduling prob-
lem. A guarded schalule S for P is a function that assignsto ead run Y= vg; ¢¢¢; v, of P

a pair S(¥3 = (I ;€) suc that the following conditions hold:

2 | is a nite set of intervals, eac of which is a nonempty, left-open, and right-open
set(;r) 1 (¢(nj 1);¢(n)) with rational endpoints *; r 2 Q. We require that distinct
intervals do not overlap, i.e., if i;i%2 | andi 6 i% theni\ i°= ;.

2 e:l ! Jisafunction mapping ead interval i to a job e(i) 2 J.

2 Let A= v§;¢e¢;v0 be any run such that v; = vOfor all i 2 [0::nj 1], and let
(1%€9 = 4. Then for any interval (';r) 2 | sud that e(;r) 2 G(vp; 1):

{1.r= 10
time r, and similarly 1°, = f(s;t) 2 1%t - rg.

.» Where | is the setf(s;t) 21 jt- rg of intervalsin | preceding

{ Forany intervali 2 1., e(i) = eXi). a

CHAPTER 5. CONDITIONAL SCHEDULING 141

Denition 5.20 (feasible guarded schedule). Let P = (F;W;A;G) be a guarded
conditional scheduling problem. For eat guarded schedule S for P, ead run %20f P, and
for each job j in the job setJ of P, de ne the set | [S; %]] of intervals as follows:

I[S;2j]=fi21jei)=jg

where(l;e) = S(*}. Schedule S executesjob j alongrun Yzin the intervals | [S;%2j]. De ne
the strategy ¥4S] correspnding to S to be a strategy for the precedence-constrainegroblem
(F;W;A), asfollows: X
YISI(2)) = jij
i21[Si¥z]

The guarded schedule S is feasible for P if:
2 9S] is winning for (F;W;A), in the senseof De nition 5.15.

2 For any pair (j;j9 in A, for any run “0f P, if (;r) 2 I[S;%j]and (%r9 2 I[S; %9,

thenr - 0 o

Recall from Proposition 5.16that a winning strategy for a precedence-constrained
problem (F;W;A) may always be obtained from a winning strategy for the underlying
conditional scheduling problem (F;W). In a very similar way, a feasible guarded sched-
ule for a guarded problem (F;W;A;G) may be obtained from a winning strategy for the
underlying precedence-constrainegroblem (F;W;A), aswe now shav. Put another way,
Proposition 5.21is to guarded conditional scheduling as Proposition 5.16is to precedence-

constrained conditional scheduling.

Prop osition 5.21. Let P = (F;W;A;G) be a guarded conditional scheduling problem.
Then P hasa feasibleguarded scheduleif and only if the precedence-constrainegonditional
scheduling problem (F;W;A) has a winning strategy % in the senseof De nition 5.15.
Further, a feasible guarded schedule for P may be obtained from a winning strategy for

(F;W;A) in time polynomial in the sizeof P.

Proof. ()) If aguardedsdeduleS is feasiblefor P, then %S], asde ned in De nition 5.20,
is winning for the underlying precedence-constrainegroblem (F ; W; A).

(() Supposethat ¥ is a winning strategy for (F;W;A). We will show that
a feasible guarded schedule for P may be obtained from % Consider any runs % =
(Vo; €¢¢; Vn; 1; V) and ¥ = (v3; ¢ee;vO. 1;vQ) such that for i 2 [0:nj 1], vi = V. By

nj

CHAPTER 5. CONDITIONAL SCHEDULING 142

Algorithm 5.4 Guarded scheduling.
1: Algorithm Guarded scheduling(P = (F;W;A:;G): a guarded conditional scheduling
problem)
if Algorithm 5.3 reports that (F;W;A) hasa winning strategy ¥then
Obtain a feasibleguarded schedule S for P from %; using the algorithm described in
the proof of Proposition 5.21.
else
Report that P has no feasibleguarded schedule.

a »

property |11 of the proof of Proposition 5.16, for any guard j 2 G(vn; 1), ¥%2j) = %2 j).
Also by property |11, for any job j%sudh that jOA* j, 34%j9 = ¥4*2j9. Since¥is feasible,
the guard jobs and jobs that precedethem executefor lessthan

Min D (vn; 1! V)] (Vo 1) 2 EQ

It follows that, after entering vy, 1 at time ¢(nj 1), the scheduler may rst complete the
guards G(vn; 1) and jobs precedingthese guards, and then switch sdhedulesconditional on
the next vertex ascertainedby the guards (e.g., vy or v9). We concludethat any feasible
strategy produced by Algorithm 5.3 of Section 5.2.3 can be transformed into a guarded
feasible schedule. It may be veri ed that the transformation described above may be im-

plemented to run in time polynomial in the sizeof P. O

Consider a guarded conditional scheduling problem P = (F;W;A;G). If the un-
derlying precedence-constrainegroblem (F ; W:; A) has a winning strategy % then Propo-
sition 5.21 guaranteesthat a feasible guarded schedule for P may be constructed from %4
However, Proposition 5.21 also shows that if (F;W;A) hasno winning strategy, then P has
no feasible guarded schedule. These obsenations lead to Algorithm 5.3, which determines
whether a guarded conditional scheduling problem has a feasible guarded schedule. Since
such a schedule can be derived from a winning strategy %sin time polynomial in the size
of P (Proposition 5.21), and sincethe running time of Algorithm 5.3 is polynomial in the
size of (F;W;A) (Theorem 5.17), the running time of Algorithm 5.4 is polynomial in the

sizeof P. We summarizein the following theorem:

Theorem 5.22. Let P = (F;W;A;G) be a guarded conditional scheduling problem. Then
Algorithm 5.4 runs in time polynomial in the size of P, determines whether a feasible

guarded schedule for P exists, and if soreturns such a schedule.

CHAPTER 5. CONDITIONAL SCHEDULING 143

5.3 Hard conditional scheduling problems

In Section5.2, we saw that several conditional scheduling problems| tree schedul-
ing, imprecisetree sceduling, precedence-constrainetree scheduling, and guarded schedul-
ing | can be solved in polynomial time. In this section, we will investigate conditional
scheduling problemsthat cannot be solvedin polynomial time, unlessP = NP. Section5.3.1
examinesdiscrete-time strategies,in which the scheduleris restricted to make decisionsonly
at integral points in time. We will seethat determining whether a tree scheduling prob-
lem has a winning discrete-time strategy is NP-hard. Section 5.3.2 considersconditional
scheduling problemsin which the graph (V; E) is a directed acyclic graph (DAG). Wewill see
that determining whether a DAG sdeduling problem hasa winning strategy is coNP-hard.

5.3.1 Discrete-time tree scheduling

There is one respect in which the strategies produced by the algorithm of Sec-
tion 5.2.1 are impractical: they require that preemptions be made at arbitrary rational
points in time. This is not possiblein computer systems,sincethe CPU speedprovides an
upper bound on the frequency of preemptions; moreover, becauseof context-switch over-
head, most real-time systemsdo not function well with timers that run faster than 10 kHz.
Supposethat strategiesare restricted to preempt only at a sparse,evenly-spacedspacedset
of times | at integral times, say.® We call such restricted strategies discrete-time strate-
gies. For discrete-time strategies,do tree scheduling problemsremain solvable in polynomial
time? Unfortunately, the answer is no, as we will seein this section.

The di®erencan the complexity of dense-and discrete-time versionsof tree schedul-
ing provides evidencethat conditional scheduling with varying deadlinesis fundamertally
di®erent from standard single-processorsceduling models. In standard single-processor
settings, the samepolynomial-time algorithm is often optimal both for a model that allows
preemption at any time, and for a model that allows preemption only at integer points
in time. In cortrast, there can be no polynomial-time tree scheduling algorithm that is
optimal for both dense-timeand discrete-time models, unlessP = NP.

We now precisely de ne discrete-time strategies; we also de ne the problem Dis-

crete-time tree scheluling that we will prove is NP-complete:

®We consider integral times only for reasonsof simplicity. The results of this section generalizeto any
evenly-spacedset of time points.

CHAPTER 5. CONDITIONAL SCHEDULING 144

OO T
3
3
rijsiaiisiia i3 8 j \ \
®d3j1;jz ®d3jl;js @d:jl;jA @d3jz;j3 @d3jz;j4 d3j3§j4

Figure 5.4: The conditional scheduling problem of Example 5.24.

Run Y22 R Y1) YA2j2) YA2j3) ¥YA'2ja)

1;2) 0.5 0.5 0.5 0.5
(1;2;3) 1.5 1.5 0 0
(1;2;4) 1.5 0 1.5 0
(1;2;5) 1.5 0 0 1.5
(1;2;6) 0 1.5 1.5 0
1;2,7) 0 1.5 0 1.5
(1;2;8) 0 0 1.5 1.5

Figure 5.5: A winning strategy ¥for the conditional scheduling problem of Example 5.24.

De nition 5.23 (discrete-time strategy , Discr ete-time tree scheduling). A strat-
egy ¥afor a conditional scheduling problem P is discrete-time if, for eat run %22 R and
eadh job | 2 J, ¥('2j) 2 Z. The set Discrete-time tree schaluling isfP j P is a conditional
scheduling problem such that (1) (V; E) is atree rooted at vp, and (2) there exists a winning
discrete-time strategy for Pg. a

Clearly, since discrete-time strategies are strategies, the existence of a winning
discrete-time strategy implies the existenceof a winning strategy. However, the corverseis
not true. As the following example shows, sometree scheduling problems have a winning
strategy, but no winning discrete-time strategy.

Example 5.24. Considerthe tree scheduling problem of Figure 5.4. There are four jobs, j 1,
j2,]3, andj4. The amount t(j;) of time required by job j; is2for all i 2 [1:: 4]. The initial
vertex is 1. At verj[ex 1, jobsj1, j2, j3, and j4 are released. Vertex 2 has six successors,
onefor ead of the "2‘ ways of choosing two of the four jobs. At ead successoof vertex 2,
two jobs are due, so that every set of two jobs is due at some successormnf vertex 2. The
duration D(1! 2) of the edgel! 2is 2; all other edgeshave a duration of 3. Figure 5.5

depicts a winning strategy for this problem. This strategy divides the rst 2 time units

CHAPTER 5. CONDITIONAL SCHEDULING 145

equally betweenjobs j1, j2, j3, and ja, sothat 34(1;2);j;) = 0:5for all i 2 [1::4]. The
remaining 3 units of time are divided equally betweenthe two jobs due at whichever of the
successoivertices 3 through 8 is chosen. Note that ¥{%2j;) Z Z for each run 22 R and

i 2 [1::4]. It may be veri ed that P has no winning discrete-time strategy. a

A tree scheduling problem P that is a member of Discrete-time tree schaluling
possessea short certi cate of membership: a winning strategy % Sud a strategy speci es,
for eadh run Y%2= (vo;vq;¢¢¢;vy) and job j, an integer ¥{%j) - D(vh;1 ! Vvn). Since
the number of runs is equals the number jEj of edges,the represertation of ¥ requires
O(jEj ¢jJj ¢D) space,where D = maxee logD(€). Further, it may easily be seenthat
chedking whether %is winning requires time polynomial in the length of the description
of P. Thus:

Prop osition 5.25. Discrete-time tree schealuling is in NP.
In the remainder of this section, we prove the following theorem:

Theorem 5.26. Discrete-time tree schealuling is NP-hard, evenif the time t(j) required by

ead job j is 1.
Proposition 5.25and Theorem 5.26 together establish the following corollary:
Corollary 5.27. Discrete-time tree schaluling is NP-complete.

Recall that a 3-CNF formula

is a conjunction of clauses of which let us say there are m. Each clauseis the disjunction
“i1_ i2_ i3 Ofthreeliterals "j.1, .2, and "j.3. Each literal is either a booleanvariable xy or
anegatedbooleanvariable : x,. Wewill let n denotethe number of variablesappearingin A,
and we will assumethat thesevariables are members of the setfxq; ¢¢¢; x,g. Without loss
of generality, we may assumethat ead clausecontains three distinct variables[Pap94. The
set 3-SAT is the set of all 3-CNF formulae that are satis able. 3-SAT is NP-hard [GJ79].
We prove Theorem 5.26 by preseriing a polynomial-time reduction from 3-SAT to Discrete-
time tree schaluling. We now informally describe the reduction from 3-SAT to Discrete-time

tree scheluling, after which we formally describe the reduction and prove Theorem 5.26.

CHAPTER 5. CONDITIONAL SCHEDULING 146

dityfy ditygf, dity s dotyfy

L

i
() e

r:tyfq r:tyfo Ttaf3 rtn:fn

Figure 5.6: The assignmen gadget.

Intro duction to the reduction from 3-SAT to Discr ete-time tree scheduling

Given a 3-CNF formula A, the reduction producesa tree scheduling problem P [A],
with the following property: P[A] has a winning discrete-time strategy if and only if A is
satis able. The problem P[A] consistsof two parts, an assignmentgadgetand a formula
gadget Figure 5.6 shaws the assignmen gadget. The assignmem gadget consists of the
2n + 2 vertices 1; 2; ¢¢¢; 2n + 2. (Vertex 2 plays no signi cant role in the construction, but
is included to make the graph regular.) At vertex 2i j 1,fori 2 [1::n], jobst; and f; are
released. Each job requiresone unit of time, i.e., t(tj) = t(f;) = 1. Jobst; and f; are due

at vertex 2i + 2. For any feasiblediscrete-time strategy ¥ either:

Y4(1;¢¢¢;2i + 1);t;) = 1 and
Y((1;¢0¢;2 + 2);f;)) = 1

or:
¥{(1;¢e¢;2i + 1);f;)) = 1 and
Y{(1;¢¢¢;2i + 2);t5) = 1

In an intuitiv e sense,the rst choice corresponds to a truth assignmen that gives vari-
able x; the value true, and the secondchoice corresponds to an assignmen that gives X;
the value false. Intuitiv ely, then, the assignmen gadgetforcesthe scheduling algorithm to
pick a truth assignmetn.

The reduction now needsa meansfor determining whether the assignmen chosen
by the scheduling algorithm \satis es" the 3-CNF formula A. This medanism is provided
by the formula gadget, pictured in Figure 5.7. The formula gadgetconsistsof the m vertices
2n+ 3;¢¢¢;2n+ m+ 2. Fori 2 [1:: m], three jobs are due at vertex 2n + i + 2. Which jobs

CHAPTER 5. CONDITIONAL SCHEDULING 147

@d:jl;l;jl;zijl;s
4
2\\

d:jmaim2ims

Figure 5.7: The formula gadget.

these are depend on the variables occurring in the literals "1, “i:2, and .3, and whether
these literals are positive or negative. To be precise,d(2n + i + 2) = fji-1;]i:2;]i:39, where
fori%2 [1:: 3], 8
< s

W
Jobsji-1, ji.2, and ji3 can nish before vertex 2n + i + 2 if and only if one of them has
completedbeforevertex 2n+ 1. Intuitiv ely, this canoccur if and only if the truth assignmen
chosenby the scheduling algorithm makesone of the literals "1, “i.2, or -3 true, i.e., if the

truth assignmen makesA true.

Pro of of NP-hardness of Discr ete-time tree scheduling

We now preciselyde ne the reduction from 3-SAT to Discrete-time tree schealuling.
We Trst describe a polynomial-time function that maps ead 3-CNF formula A to a tree
scheduling problem P[A]. We then prove that A is satis able if and only if P[A] has a
winning discrete-time strategy. This will establish that Discrete-time tree schealuling is
NP-hard (Theorem 5.26).

Givena 3-CNF formula A = Vin;1 “i1_i2_ -3, Wwede ne the conditional schedul-
ing problem P[A] = ((V;vo; E;D); (J;t; r; d)) asfollows:

2 The setV of verticesis [1:: 2n+ m + 2].

2 The initial vertex vg is 1.

CHAPTER 5. CONDITIONAL SCHEDULING 148

2 The set E of edgesis:

f(2ij 1)! 2i)ji2[1=:n+ 1] [(assignmern gadget)
f(2ij 1)! @i+1)ji2[1:n]g ["
f2n+ 1)! 2n+i+2)ji2[1:m]g (formula gadget)

2 For eah edgee= v! V02 E, the duration D(e) of e is de ned as follows:
8

D(e)-< 2 ifv=2n+ landv®= 2n+ i+ 2for somei 2 [1:: m]
- 1 otherwise

2 The setJ of jobsis ftq;f1;ty;f2; ¢CC;t,; frQ.
2 The time t(j) required by job j is 1 for each jobj 2 J.

2 Fori 2 [1:n], the setr(2ij 1) of jobs releasedat vertex 2i j 1is ft;;fjg. For all
other verticesv 2 V, r(v) = ;.
2 The setd(v) of jobs due at eac vertex v is de ned as follows:

d(2i + 2) fti;fig fori 2 [1::n]
d2n+ i+ 2) = fji1; Ji2s Ji3g fori 2 [1::m]

wherefor i 2 [1::m] andi®2 [1:: 3], jiio is de'ned by (5.10). For all other vertices
v2V,d\v) = ;.

It can easily be seenthat the conditional scheduling problem P [A] can be derived
from the 3-CNF formula A in time polynomial in the sizeof A. We now prove the following

lemma, which establishesTheorem 5.26.

Lemma 5.28. The 3-CNF formula A is satis able if and only if the tree scheduling prob-

lem P[A] has a winning discrete-time strategy.

Proof. ()) Supposethat Ais satisable. Let T be a truth assignmen which makesA true.

We de ne the discrete-time strategy ¥4T] as follows:
2 Fori 2 [1:n],if T(xj) = true, then:
YITI((; eee; 21 + 1);t5)
YITI((1; ¢ee; 2 + 1); 1)
YT, ¢ee; 20 + 2);t5)
ATI((2; eee; 20 + 2); 1)

R O O PP

CHAPTER 5. CONDITIONAL SCHEDULING 149

and if T(x;) = false, then:

YATI((L; ¢ec; 20 + 1);t5)
YITI((1; ¢¢e; 2 + 1); 1)
YITI((2; ¢eC; 2i + 2);t5)
YTI((L; ¢oe; 2 + 2);f))

I
o + +» O

2 Fori2[1:m]:

{ If T makesead literal “j.1, .2, and “j.3 true, then ¥T]((1; ¢¢¢;2n+ i+ 2);j) = 0
foreadj 2 J.

{ If T makesexactly one literal “;;o false, then ¥T]((1;¢¢¢;2n + i + 2);jii0) = 1,
where ;o is de ned by (5.10). For eat other job j 2 J, ¥T]((1; ¢¢¢;2n + i +
2);j) = 0.

{ If T makes exactly two literals “j;j0 and j;o false, then ¥T]((1;¢¢¢;2n + i +
2);jii0) = HAT]((1;¢¢¢;2n + i + 2);jii00 = 1, wherejijo and j;;o are de ned
by (5.10). For eadh other job j 2 J, #T]((1;¢¢¢;2n+ i+ 2);j) = 0.

This completesthe de nition of ¥T]. We now shaw that ¥T] is winning. By construction,
both jobst; andf; nish by vertex 2i+ 2. It remainsto show that jobsj;.1, ji-2, andj;.3 nish
by vertex 2n + 2i + 2. Since T makesA true, for eac i 2 [1:: m] there is somei®2 [1:: 3]
such that T makesliteral "o true. The corresponding job jiio nishes by vertex 2n + 1.
At most two jobs remain to be scheduled before vertex 2n + 2i + 2. By the construction
of ¥T], these other two jobs nish by vertex 2n + 2i + 2. Thus, ¥T] is winning.

(() Supposethat P[A] has a winning discrete-time strategy % We de ne the

truth assignmen T[%¥] as follows:
8
< true if (1;¢6¢;2i + 1);t) = 1

T(x;) =
PAC) - false if ¥{(1;¢¢¢;2i + 1);f;) =1

Note that since %.is a winning discrete-time strategy, either ¥{(1; ¢¢¢;2i + 1);t;) = 1 or
¥{(1; ¢¢¢; 2i + 1);f;) = 1, but not both. We now shaw that T[¥] makes A true. Let i be
an arbitrary member of [1:: m]. Consider the i-th clauseof A, “i1_ i1_ i3 Since ¥is
winning, either ji.1, ji:2, or ji:3 is nished by vertex 2n+ 1. Let i°2 [1:: 3] be such that j;;o
is nished by vertex 2n + 1. Let k be the index of the variable xy of literal “j;jo. Without

CHAPTER 5. CONDITIONAL SCHEDULING 150

loss of generality supposethat “j;o is positive, sothat j;jo = tyx. Sincejob ty is nished by
vertex 2n + 1, ¥(1; ¢¢¢; 2k + 1);tx) = 1. Thus, T[¥(xk) = true, and T[¥} makesthe i-th
clausetrue. Sincei wasarbitrary, T[¥ makesA true. We concludethat A is satis able. [

It should be noted why the construction of P[A] fails to shov that \dense-time"
tree scheduling (Section 5.2.1) is NP-hard. Given the conditional scheduling problem P[A],
considera strategy ¥ssud that for i 2 [1:: n]:

Y{(1;¢¢¢;2i + 1);t;) = ¥4(2; ¢¢c;2i + 1);f;) = 05

In this strategy, every job is executedfor 0.5 time units before vertex 2n + 1. The i-th
branch of the clausegadget requires that three jobs nish within two time units. A total
of 1.5 time units of executiontime for thesethree jobs remains after vertex 2n + 1, sothey

can easily nish on time.19

5.3.2 Directed acyclic graph scheduling

The polynomial-time algorithms from Section5.2 all operate on conditional schedul-
ing problemsin which the graph G= (V;E), is a tree. This raisesan obvious question: if
the graph Gis allowed to have a more generalform | for example, a directed acyclic graph
(DAG) | canit still be determined in polynomial time whether a conditional scheduling
problem has a winning strategy? In this section, we will shov that the answer to this
guestion is no. This hardnessresult is unfortunate, as cortrol-°0 w graphs are, for most
programming languages,directed acyclic graphs. Thus, it would be useful to be able to
determine whether a DAG sdeduling problem has a winning strategy. We now precisely
de ne what a DAG sdeduling problem is.

De nition 5.29 (D AG scheduling problem, DAG scheduling). A DAG schealuling
problem is a conditional scheduling problem in which the graph (V;E) is acyclic. The set
DAG schaluling is fP j P is a DAG scheduling problem such that there exists a winning
strategy for Pg. o

We now show that DAG schealuling is coNP-hard. After we prove that DAG
schaluling is coNP-hard, we will discussupper boundson the complexity of DAG schealuling.

n fact, this fractional strategy is what initially suggestedto the author the polyhedral algorithm for
dense-time tree scheduling.

CHAPTER 5. CONDITIONAL SCHEDULING 151

Theorem 5.30. DAG schaluling is coNP-hard, evenif the time t(j) required by ead job j
is 1.

Recall that a 3-DNF formula

is a disjunction of m clauses Eacdh clauseis the conjunction "1 ".2™ "i.3 of three literals.
As with 3-CNF formulae, ead literal is either a boolean variable xix or a negatedboolean
variable : xx. We will againlet n denotethe number of variablesx; ¢¢¢; x, appearingin A.
The set 3-TAUT is the set of all 3-DNF formulae that are tautologies. Note that a 3-DNF
formula A is a tautology if and only if : A is unsatis able. Note also that
m /m
i T2 Tis is equivalent to)
i=1 i=1
Thus, : Ais equivalert to a 3-CNF formula A. BecauseA 2 3-TAUT i®: Ais unsatis able i®
A 2 3-SAT, 3-TAUT is coNP-complete. We prove Theorem 5.30by displaying a polynomial-

time reduction from 3-TAUT to DAG schaluling.

Intro duction to the reduction from 3-TAUT to DAG scheduling

Given 3-DNF formula A, the reduction producesa DAG sceduling problem P[A]
with the following property: P[A] has a winning strategy if and only if A is a tautology.
The problem P[A] consistsof three parts: an assignment gadget, a formula gadget, and a
tail gadget. All edgeshave duration 1 unlessotherwise noted. The assignmen gadgetis
pictured in Figure 5.8. It consistsof 3n + 1 vertices. Consider vertex 1, which has two
successors.At the top successorthe jobs t1.1;¢¢¢;t1., are released. Each of these jobs
has a computation time of 1. At the bottom successorthe jobs f 1.1; ¢¢¢; f 1., are released.
Intuitiv ely, the top successocorrespndsto atruth assignmen in which x; is true, and the
bottom successorcorrespondsto an assignmen in which x; is false. Further, a path from
vertex 1 to vertex 3n + 1 corresponds to a truth assignmen for the variables x1; ¢¢¢; x,.
Job o hasa computation time of 1. Job o is releasedat vertex 1 and due at vertices2 and 3.
Job o is alsoreleasedat vertices 2 and 3 and due at vertex 4. In any winning strategy, o is
the only job executedfrom time O until time 2n.

The formula gadgetis made up of m clause gadgets. Figure 5.9 depicts the clause

CHAPTER 5. CONDITIONAL SCHEDULING 152

f11¢¢¢f1m f21¢¢¢f2m fn1¢¢¢fnm

Figure 5.8: The assignmen gadget.

d:ji;l

o/\i
N ,/

Figure 5.9: The clausegadgetfor the i-th clause.

CHAPTER 5. CONDITIONAL SCHEDULING 153

d: 111 d: iz1 d: jml

WaAWAWaAWAN

R A S T

N N N \w/

Figure 5.10: The formula gadget.

gadgetfor the i-th clause, ;1" "i.2”" "i.3. The rst vertex 3n+ 4i i 3 hasthree successors,
corresponding to the three literals. For i92 [1:: 3], job j;;o is due at the i%th successor,
where g

. fri if o= Xk

Jiio= . b 0 s e (5.11)
Note that this de nition is the opposite of the de nition of j;;o for the NP-hardnessproof
(equation (5.10)). Vertices3n+ 4ij 2,3n+ 4ij 1, and 3n + 4i ead releasethe job o.
Recall that job o has computation time 1. Job o is due at the common successowertex
3n+ 4i + 1. In any winning strategy, o is the only job executedfrom time 2n+ 2i j 1 until
time 2n+ 2i. The vertex 3m+ 4i | 3 releaseghe job s. Job s hascomputation time 1, and
will be duein the tail gadget. The role of s will be explained shortly. Figure 5.10shaws the
ertire formula gadget. It consistsof a sequenceof m clausegadgets,one for eat clause.

To understand the role of job s, considera run %= (1;¢¢¢;3n + 1) from vertex 1

to vertex 3n + 1. Let ¥4 (respectively, %2 and ¥%2) be the sequenceconsisting of Y2followed
by vertex 3n + 2 (respectively, 3n + 3, 3n + 4). There are two casesto consider:

1. For somei 2 [1:: 3], job j1;i hasbeenreleasedalong run ¥2 Supposefor concreteness
that job j1.» has beenreleased. In any winning strategy % ¥{%2;j1.2) = 1. Thus, s

will not have completed after following %2 and entering vertex 3n + 5.

2. Neither j1.1, j1:2, norj 1.3 hasbeenreleasedalongrun ¥ Then s can be executedalong

CHAPTER 5. CONDITIONAL SCHEDULING 154

d:s

Figure 5.11: The tail gadget.

runs ¥4, %, and ¥z, and s will have completed upon entering vertex 3n + 5.

Thus, s will be able completein all runs following %2and subsequetly entering vertex 3n+ 5
if and only if neither ji.1, j1.2, nor j1.3 has been releasedalong run ¥2 But note, from
the properties of the assignmen gadget, that “2releasesneither j1.1, j1.2, nor j1.3 if and
only if the clause 1.1 "1.2” "1.3 is madetrue by the truth assignmen correspnding to %2
Intuitiv ely, then, the rst clausegadgetindicates whether the rst clauseis made true by
the truth assignmen corresponding to ¥z if someamournt of s remains to complete upon
ertering vertex 3n + 5, then the truth assignmen makesthe rst clausefalse. Further, if
more than m j 1 units of s remain to complete upon entering vertex 3n + 4m + 1, then
the truth assignmem makes A false. The proof in the next subsectionwill °esh out these
intuitions; here our purposeis merely to intro duce the construction.

The tail gadgetis pictured in Figure 5.11. The tail gadget follows the formula
gadget. The tail gadgethastwo vertices3n + 4m + 1 and 3n + 4m + 2 connectedby an
edgeof duration mj 1. The duration of the edgeis signi cant, in that if morethan mj 1
units of job s are pending when vertex 3n + 4m + 1 is entered, then s will not be able to
“nish beforevertex 3n+ 4m + 2 is entered. Intuitiv ely, s will be able to nish beforevertex
3n+ 4m + 2 is entered if and only if every truth assignmem makes someclauseof A true,

i.e., if and only if A is a tautology.

Pro of of coNP-hardness of DAG scheduling

We now precisely de ne the reduction from DAG scheluling to 3-TAUT. We rst
preseri a polynomial-time function that maps ead 3-DNF formula A to a DAG scheduling
problem P[A]. Wethen shaw that Ais a tautology if and only if P[A] hasa winning strategy,
thus establishing that DAG schaluling is coNP-hard (Theorem 5.30).

Given a 3-DNF formula A= "L, i1~ "2 ;3 we de ne the DAG scheduling

CHAPTER 5. CONDITIONAL SCHEDULING 155

problem P[A] = ((V;Vo; E;D); (J;t; r; d)) asfollows:
2 The setV of verticesis [1:: 3n + 4m + 2].
2 The initial vertex vg is 1.

2 The set E of edgesis:

fBij 2)! @Bij 1ji2[1:n]g [(assignmert gadget)
fBij 2)! 3Bi)ji2[1:n]g ["

f(Bij 1)! @Bi+1)ji2[1:n]g [

f@Bi)! @Bi+1)ji2[1:n]g [

fBn+4ij 3)! Bn+4ij 2)ji2[l:m]lg | (formula gadget)
fBn+4ij 3)! Bn+4ij 1)ji2[1l:m]lg | "
f(3n+4ij 3)! Bn+4i)ji2[1:m]g [

fBn+4ij 2)! Bn+4i+1)ji2[1l:m]lg |

fBn+4ij 1)! Bn+4i+1)ji2[1l:mlg |

f(Bn+ 4i)! Bn+4i+1)ji2[1l:m]g [

fBn+4m+ 1)! (3n+ 4m+ 2)g tail gadget

2 For eath edgee= v! V02 E, the duration D(e) of e is:

8
<

mij 1l ifv=3n+4m+ landv®= 3n+ 4m+ 2
D(e) = .

1 otherwise

2 The setJ of jobs is:

fti ji2[1zn;k2[1zmlg [
ffix ji2[1an;k2[1:mlg [
fo;sg

2 For eadh job j 2 J, the time t(j) required by j is 1.

CHAPTER 5. CONDITIONAL SCHEDULING 156

2 The setr(v) of jobs releasedat vertex v 2 V is de ned as follows:

rGij 2) = fog fori 2 [1::n]
rij 1) = fojtik jk2[1::m]g fori 2 [1:n]
r(3i) = foifik jk2[1:m]g fori2[1:n]
rBn+4ij 3) = fsg fori 2 [1::m]
rBn+4ij 2) = fog fori 2 [1::m]
r3n+4ij 1) = fog fori 2 [1::m]
r(3n+ 4i) = fog fori 2 [1::m]

For all other verticesv 2 V, r(v) = ;.

2 The setd(v) of jobs due at vertex v 2 V is de ned as follows:

d@ij 1) = fog fori 2 [1::n]

d(3i) = fog fori 2 [1::n]

d(3i + 1) = fog fori 2 [1::n]

d@n+4ij 3+i9 = ©ji;ioa fori 2 [1:m];i%2[1::3]
d(3n + 4i + 1) = fog fori 2 [1::m]

d(3n + 4m + 2) = fsg

where ;o is de ned by (5.11). For all other verticesv 2 V, d(v) = ;.

It can easily be seenthat the DAG sdheduling problem P [A] can be derived from
the 3-DNF formula A in time polynomial in the size of A. We now prove the following
lemma, which establishesTheorem 5.30.

Lemma 5.31. The 3-DNF formula A is a tautology if and only if the DAG sceduling
problem P[A] has a winning strategy.

Proof. (() Supposethat A is not a tautology. We will show that P[A] has no winning
strategy. Consider a truth assignmem T that makes A false. For eat clause j.1 * “j2 »
“i-3 there exists an integer i°2 [1:: 3] such that T makes “;;o false. Consider the run %
corresponding to this truth assignmem and choice of literals; more precisely de ne “zas
follows. For i 2 [1:: n], Y2passeghrough vertex 3i j 1if T(x;) = true, or through vertex 3i
if T(xj) = false. Fori 2 [1:: m], %passeghrough vertex 3n+ 4i j 3+ i% At ead of the m
vertices3n + 4i | 3+ iC the job ji;o (as de ned by (5.11)) is due; moreover each suc job

CHAPTER 5. CONDITIONAL SCHEDULING 157

has beenbeenreleasedon run ¥2 From vertex 1 to 3n + 1 there are 2n time units of job o
due; from vertex 3n + 1to 3n + 4m + 1 there are m time units of o due and m time units
of the jobs j;;o due, for a total of 2n + 2m time units. If ead instance of job o and eat
job ji;jo completesin the 2n + 2m time units before vertex 3n + 4m + 1, then the m time
units of job s cannot complete in the remaining m j 1 free time units before s is due at
vertex 3n + 4m + 2. Thus P[A] doesnot have a winning strategy.

()) Supposethat A is a tautology. We shall exhibit a strategy ¥ and then show

that it is winning. Let ¥%be de ned as follows:

2 Considerany run %= (1;¢¢¢;i) whose nal vertex i isin the set[2::3n+ 1]. Then
Y(%20) = 1.

2 Let i beamember of [1::m], and let i°be a member of [1 :: 3]. Let ¥%be a run whose
“nal vertex is 3n+ 4i j 3+ i% If j;;0 has beenreleasedalong ¥ then ¥{(%j ;o) = 1,
whereji;o is asde ned by (5.11). Otherwise ¥{*25s) = 1.

2 For any run Y= (1;¢¢¢;3n + 4i + 1), wherei 2 [1:: m], ¥{%20) = 1.
2 Finally, for any run Y2whose nal vertex is 3n+ 4m + 2, ¥(*2s) = mj 1.

Note that, by construction, all instancesof job o, aswell asjobst;,jo and f o, completebefore
they aredue. It remainsto shaw that s alsocompletesbeforeit is due. Consideran arbitrary
run % from vertex 1 to vertex 3n+ 4m+ 2, and the corresponding truth assignmem T. More
precisely T(x;) = true if ¥gpassedhrough vertex 3ij 1, and T (x;) = falseif ¥spasseghrough
vertex 3i. SinceAis a tautology, T makes someclauseof A, s& i1 i2” is, true. For
any i92 [1:: 3], considerany contin uation %2 of ¥awhose nal vertex is 3n+ 4ij 3+ i% Since
the job ;o due at vertex 3n+ 4i j 3+ i®hasnot beenreleased {%s) = 1. Sinces executes
for 1 unit of time beforevertex 3n + 4m + 1, ead instance of s completesbeforeit is due

at vertex 3n + 4m + 2. Thus %4is winning. O

An upp er bound on the complexit y of DAG scheduling

Theorem 5.30 gives a lower bound on the complexity of DAG scheluling. For an
upper bound, note that a DAG scheduling problem has no more than (jVj + 1)IVi*l runs.
Now, (jVj + 1)iVi*l = 2(Vi*1) leg;(Vi+1) = 20(Vi®) Using this fact, it may easily be shavn

that for DAG scheduling problem P, the set Lin [P] of linear inequalities has at most 2 (P

CHAPTER 5. CONDITIONAL SCHEDULING 158

members, for some polynomial function f, where jPj is the size of the description of P.
Further, ead constraint in Lin [P] has size polynomial in jPj. The constraints in Lin [P]
may be solved by a linear programming algorithm in time polynomial in 2f (P} j.e. in time

290P)) for somepolynomial function g. It is therefore possibleto show:
Theorem 5.32. DAG schaluling is in EXPTIME.

Determining a tighter upper bound on the complexity of DAG schealuling has
proved ditcult. It is tempting to think of a DAG sceduling problem P as a game played
by two players, the scheduler and the ervironment, on an alternating Turing machine: the
moves of the players alternate, with the ernvironment writing down the next vertex v, and
then the schedulerwriting down the amourt of time allocatedto ead job beforev is ertered.
If the running time of this alternating Turing machine were polynomial in the description
of P, then DAG schealuling would bein PSPACE. It is not clear, however, that it sutcesfor
the scheduler to write down rational numbers with denominators whosesizeis polynomial
in the description of P; thus, it is not clear that the running time of this alternating Turing
machine is polynomial. It is an openquestionwhere DAG schaluling liesin the gap between
coNP and EXPTIME.

5.4 Fixed-deadline conditional scheduling

For conditional scheduling problems in which the graph (V;E) contains cycles,
deweloping a strategy synthesis algorithm | even a superpolynomial-time algorithm |
has proved very ditcult. Though the author cannot locate the source of this dixcult y
with complete con dence, he nonethelessbelieves that the problem lies with the lack of
standard forms of winning strategies for conditional scheduling problems. This conceptis
best explained by comparisonwith the EDF sdeduling algorithm. The way that EDF is
shavn to optimal, say for the problem 1 j r;; dj; prec; pmtn j j (for a de nition of this
problem, seeChapter 4), is to show that an arbitrary feasibleschedule S can be rearranged
into the schedule S°that EDF would have produced. The schedule produced by EDF is thus
a standard form that represens a classof feasible schedules. For a conditional scdheduling
problem P, the processof going from the constraints Lin [P] to a winning strategy ¥involves
global optimization, so that one is hard-pressedto locate a standard form for winning
strategies.

CHAPTER 5. CONDITIONAL SCHEDULING 159

Supposehowever that P is a conditional scheduling problem in which all deadlines
are xed. That is, after a job j is released,j has a deadline some xed number of time
units later. This deadlineis the sameregardlessof which vertex releaseg, and regardless
of the sequenceof vertices encourtered after j is released!! It was obsened in [CETO1]
that, for such a xed-deadline conditional scheduling problem, EDF is an optimal scheduling
algorithm. Asin Section4.3.3,the technical challengenow becomesoneof detecting whether
so much computation is releasedthat EDF cannot produce a feasible schedule. In this
section, we will dewvelop an algorithm that makesthis determination. The algorithm that
we obtain will run in doubly exponertial time, and will determine whether a xed-deadline
conditional scheduling problem has a winning strategy.

This section generalizesthe results of [CETO01] by allowing the analysis of condi-
tional scheduling problemswith arbitrary graphs (V;E). In [CETO1] the graph is required
to be a DAG with a unique sourcevertex and a unique sink vertex. Theserestrictions may
be slightly relaxed by allowing an edgefrom the sink to the source,the only cyclesin the
graph being formed by suc an edge[Cha03. In this section, we remove theserestrictions.
Whereas[CETO01] presened a fully polynomial-time approximation scheme, our algorithm
is a doubly exponertial-time exact algorithm. As we will shav in Theorem 5.39, the exact
decision problem | determining whether a xed-deadline conditional scheduling problem
has a winning strategy | is coNP-hard. The proof of this fact adapts a construction
from [CETO1]. There is thus no polynomial-time algorithm for the exact decision prob-
lem, unlessP = coNP. Where the complexity of our xed-deadline conditional scheduling
problem lies in the gap betweencoNP and 2EXPTIME is an open question.

We begin with a de nition of xed-deadline conditional scheduling. Rather than
placing additional conditions on De nition 5.1to obtain a de nition of xed-deadline prob-

lems, we opt for the following, lesscumbersome,de nition.

De nition 5.33 (' xed-deadline conditional scheduling problem). A xed-deadline

conditional scheluling problemis a pair (F; W), where:
2 F isde ned asin De nition 5.1.

2 W = (J;t;r;d), whereJ, t, and r arede ned asin De nition 5.1,andd:J! Q>Cis

a function assigningto ead job j a positive rational deadline d(j). o

1A Xed-deadline scheduling problem is obtained for a multi-mo de Giotto program if the sdcheduling
algorithm considersthe logical deadline of each task to be its actual deadline.

CHAPTER 5. CONDITIONAL SCHEDULING 160

We now de ne the classof xed-deadline conditional scheduling problemsthat our

algorithm is capable of analyzing.

2 We require that the duration D(e) of eat edgee is an integer, and that the time t(j)
and deadline d(j) of ead job j are integers. This requiremert may be removed by
multiplying ead of thesequartities by the leastcommonmultiple of the denominators

of these quartities; for simplicity, however, we retain this requiremert.

2 We require that every vertex have a successor.This requiremert is not strict, asany
graph not satisfying it may be transformed into a graph that does:add an edgefrom
every vertex with no successorto a new vertex v that releasesno jobs, with a new

edgefrom v bad to itself.

2 Werequire that if a vertex releasesajob j, then at leastd(j) time units passbeforej
is releasedagain. Unlik e the previous two requiremerts, this one is necessaryfor the

algorithm we shall develop.

More precisely we de ne asfollows the conditions under which a xed-deadline conditional

scheduling problem is well-formed.

De nition 5.34 (well-formed xed-deadline conditional scheduling problem). A
“xed-deadline conditional scheduling problem is well-formed if the following conditions hold:

2 For every edgee2 E, D(e) 2 2”9, and for every job j 2 J, t(j);d(j) 2 Z2°.
2 For eah v 2 V there exists a vertex v02 V such that v! V@

2 Considerany job j 2 J and any run %= (vg;¢¢C;v,) 2 R. Let i < k be two
P
nonnegative integerssuch that j 2 r(v;) andj 2 r(vk). Then d(j) - !‘; ilD(vi !

Vie)- o

Becausenumerical quartities rather than vertices are now usedto imposedead-
lines, exactly when a job executesbetween the time ¢(i) when v; is entered and the
time ¢(i + 1) when vi;1 is entered is now important, rather than just the proportion of
time allocated to a job between ¢(i) and ¢(i + 1). For this reason, the de nition of a

strategy hasto be modi ed to t our new setting.

CHAPTER 5. CONDITIONAL SCHEDULING 161

De nition 5.35 (strategy). Let P be awell-formed xed-deadline conditional scheduling
problem. A strategy ¥for P is a function that assignsto ead run %= (vg; ¢¢¢;v,) 2 R a
pair (%3 = (I ;€) sud that:

2 | is a set of intervals, eadt of which is a nonempty, left-open and right-open subsetof
(¢(ni 1);¢(n)). Distinct intervals must not overlap, i.e., if i;i°2 1 andi 6 i then

i\i%= ;.

2 e: ! Jisafunction mapping eat interval i to a job e(i). We say that job (i) is

exeuted in interval i.

For a strategy %and a run 22 R, we let |1[%%} (respectively, e[%%}) denote | (respec-
tively, €), where (I;€) = 3¥*. Intuitiv ely, |[%% are the intervals in which somejob is
executedby ¥ along %2 and €[%; %2 is a function which givesthe jobs executedin thesein-
tervals. Finally, for ajob j 2 J, we let | [%%2]] denotethe setfi 2 1 [%Y4]| = e[¥%Y(i)0.
Intuitiv ely, | [%4Y2j] is the set of intervals in which job | is executedby ¥along Y2 o

We now de ne the conditions under which a strategy is winning. A strategy is
winning if, for every in nite path (vo;vs; ¢¢¢) through the graph (V;E), for every integer
i 220 foreveryjobj 2 r(v), ¥allocatest(j) time to job j between¢(i) and ¢(i) + d(j).

More precisely:

De nition 5.36 (winning strategy , Fixe d-deadline scheduling). A strategy ¥%for a
well-formed xed-deadline conditional scheduling problem P is winning if for any in nite
sequence(Vp; v1; ¢¢¢) of vertices, beginning with the initial vertex vg, sud that v; ! vji1
fori 2 Z- 9, for any integerk 2 Z: ©, for any job j 2 r(v):

X‘ X
iV Gl osek)y+dG)i L t(4)
=kl Q21 [¥(voieew)]
The set Fixed-deadline schealuling is fP j P is a well-formed xed-deadline conditional

scheduling problem and P has a winning strategyag. a

From the optimality of EDF for xed-deadline conditional scheduling [CETO01], it may
easily be veri ed that if a well-formed xed-deadline conditional scheduling problem P has
a winning strategy, then P hasa winning strategy %in which the endpoints of ead interval

i 2 1[%%Y} are integers, for eat run ¥22 R.

CHAPTER 5. CONDITIONAL SCHEDULING 162

Algorithm 5.5 EDF algorithm for xed-deadline conditional scheduling problems.

1: Algorithm EDF(Time: Z: °, Remaining: array J of Z: °, Deadline: array J of Z: ©)
2: while Time > 0 and Remaining[j] > 0 for somej 2 J do

3. let j := ajobin J sud that Deadline[j] is minimal in
¢ = minfTime; Remaining[j1g
Time := Time j ¢, Remaining[j]:= Remaining[j]j ¢
for all j 2 J such that Remaining[j]> 0 do

Deadline[j] := Deadline[j]i ¢

if Remaining[j] > Deadline[j] for any j 2 J then

Report that P hasno winning strategy, and return.

© o N a ks

We now dewelop an algorithm for determining whether a xed-deadline conditional
scheduling problem has a winning strategy. We rst presert an EDF scheduling algorithm
(Algorithm 5.5). Wethen we presen an algorithm that usesAlgorithm 5.5to detectoverload
(Algorithm 5.6). For any run (vo;Vv1; ¢¢¢), andany i 2 [0:: 1], Algorithm 5.5 describeshow
EDF sdiedulesthe time interval (¢(i); ¢(i + 1)) from the time vertex v; is entered until the
time vertex vi+1 is entered. EDF hasthree inputs:

1. Time, a nonnegative integer, initially setto the duration of the edgev; ! vj+1. Time
indicates the amount of time remaining in the interval (¢(i); ¢(i + 1)).

2. Remaining, an array of nonnegative integersindexedby the setJ of jobs, that speci es
how many units of executiontime remain for ead job.

3. Deadline, also an array of nonnegative integersindexed by J, that speci es for eath
job j the amount of time until j's deadline expires.

In lines 2{3, while sometime from the interval (¢(i); ¢(i + 1)) is remaining, and somejob has
execution time remaining, a job j with minimal deadline is selected. This job is executed
for Time or Remaining[j] time units, whichever quartity is smaller; call this quartity ¢
(lines 4{5). Line 7 xes up the array Deadline to accourt for the fact that ¢ units of time
have elapsed. If there is somejob j suc that Remaining[j] > Deadline[j], the deadline
for j cannot be met (line 8). In this case,P hasno winning strategy (line 9).
Unfortunately, sincethe number of runs, and the lengths of ead run, arein general
in nite, Algorithm 5.5 cannot be usedto chedk ead run in turn, asthe processwould

never terminate. However, there are only nitely many permissible vectors Remaining and

CHAPTER 5. CONDITIONAL SCHEDULING 163

Algorithm 5.6 State-spaceexploration algorithm for "xed-deadline conditional scheduling.
1: Algorithm Explore(P: well-formed xed-deadline conditional scheduling problem)
2: for all v2V do

3: Frontier[v] := Explored|[v] := ;

4: let Remaining[j]:= Deadline[j]:= Oforeacj 2 J in

5. Frontier[vg] := (Remaining; Deadline)

6: while Frontier[v] 6 ; for somev 2 V do

7. Selectany vertex v such that Frontier[v] 6 ;.

8: let (Remaining; Deadline) be any member of Frontier [v] in

9: Frontier [v] := Frontier [v] nf (Remaining; Deadline)g

10: Explored[v] := Explored[v] [f(Remaining; Deadline)g

11 for all j 2 r(v) do

12: Remaining[j] := t(j), Deadline[j] := d(j)

13: for all v02 V such that v! v°do

14: let (¢ ¢ Remaining® Deadline% := EDF(D(v! v9;Remaining; Deadline) in
15: if (Remaining®, Deadline®) 2 Explored(v9 then a
16 Frontier (v9 := Frontier (V9 [(Remaining® Deadline9

17: if EDF hasnot declaredthat P hasno winning strategy then
18: P hasawinning strategy.

Deadline, since
Remaining[j] 2 [0:: t(j)] and Deadline[j]2 [0::d(j)] for eah job j 2 J (5.12)

This obsenation suggestsa state spaceexploration algorithm (Algorithm 5.6), wherea state
is a pair (Remaining; Deadline) of vectorssatisfying (5.12). For ead vertex v, Algorithm 5.6
keepstrack of a set of unexplored states Frontier [v] and a set of explored states Explored[v].
Initially , Frontier [vo] is just a pair of zero vectors, corresponding to the fact that no jobs
have either remaining execution time or upcoming deadlines,and Frontier [v] = ; for eat
vertex v 6 vg (lines 2{5). Now, as long as some vertex v has a nonempty frontier, a
pair (Remaining; Deadline) is selectedfrom Frontier[v] (lines 6{8). This pair is removed
from the frontier of v, and addedto the explored set of v (lines 9{10). Lines 11{12 update
Remaining and Deadline to accourt for the jobsreleasedat vertex v. Now, for ead successor
vertex vOof v, we let Remaining®and Deadline ®be the result of applying Algorithm EDF for
D(v! V9 time units (lines 13{14).22 If (Remaining® Deadline9 is not in the explored set
of V0 then (Remaining® Deadline? is added to the frontier set. Finally, after all reachable

states have beenvisited (line 17), if no call to Algorithm EDF reported failure, then the

2\We assumea call-by-value semartics, so that Remaining and Deadline are not modied by the call in
line 14 to Algorithm EDF.

CHAPTER 5. CONDITIONAL SCHEDULING 164

“xed-deadline problem P is reported to have a winning strategy (line 18).

It is easyto show, basedon the optimality of EDF for xed-deadline conditional
scheduling [CETO01], that Algorithm 5.6 correctly determines whether P has a winning
strategy. Further, the while loop in lines 6{16, executesat most oncefor eact vertex v and
state (Deadline, Remaining), i.e., at most jVj i29 t(j) |29 d(j) times. The running
time of Algorithm 5.6 is thus doubly exponertial in the sizeof P. We summarizethis result

in the following theorem.

Theorem 5.37. Algorithm 5.6 determineswhether a well-formed xed-deadline conditional
scheduling problem P has a winning strategy. The running time of Algorithm 5.6 is doubly

exponertial in the sizeof P.
The following corollary follows directly from Theorem 5.37:
Corollary 5.38. Fixed-deadline scheluling is in 2EXPTIME.

It shouldbe noted that sincet(j) and D(e) arein Z (rather than Q) for eadjob | 2
J and eat edgee 2 E, only discrete-time strategiesare produced by Algorithm 5.6. Since
Algorithm 5.6 is optimal, for xed-deadline problems the existenceof a winning strategy
implies the existenceof a winning discrete-time strategy. (This fact, it will be recalledfrom
Section 5.3.1, is in contrast to varying-deadline conditional scheduling problems.) Thus, a
discrete-time version of Fixed-deadline schaluling would be no more complex than Fixed-
deadline schaluling itself; for brevity we do not formalize this obsenation. It should alsobe
noted that for a xed-deadline scheduling problem P in which the graph (V;E) is atree, the
running time of Algorithm 5.6is polynomial in the sizejP| of the description of P, sinceonly
onepair (Remaining; Deadline) is ever addedto Frontier [v] for any vertex v 2 V. Thus, as
one would expect from our previous results on varying-deadline tree scheduling problems,
deciding whether a xed-deadline tree scheduling problem has a winning strategy, and if so
synthesizing such a strategy, may be performed in polynomial time. Fixed-deadline DAG

scheduling is coNP-complete, as we discussbelow.

A lower bound on the complexit y of Fixe d-deadline scheduling

It may be wonderedwhether there exists a polynomial-time algorithm that decides
membership in Fixed-deadline schaluling. We now show that there is no sudc algorithm,

unlessP = coNP. We adapt a construction from [CETO1] to prove the following:

CHAPTER 5. CONDITIONAL SCHEDULING 165

) O (=)
%@/ \®/ \@ / s

r:o;j

Figure 5.12: The xed-deadline conditional scheduling problem produced from a knapsad
problem K .

Theorem 5.39. Fixed-deadline schaluling is coNP-hard.

Proof. A knapsackproblem K consistsof n integral weightsw; 2 Z>° and gains g, 2 Z>©,
fori 2 [1:1n], again gal G 2 2% and a weight gaal W 2 Z>°. The problem K is a

member of the set Knapsack if there exists a subsetS of [1 :: n] suc that

X
>i<25

W W (5.14)
i2S

Knapsack is NP-hard [GJ77].

We presernt a polynomial-time function that, given a knapsadk problem K, pro-
ducesa xed-deadline conditional scheduling problem P[K] with the following property:
K 2 Knapsack if and only if P[K] 2 Fixed-deadline schealuling. This will establish that
Fixed-deadline schaluling is coNP-hard. Without lossof generality, we scaleK sothat the
weight goal W and ead weight w; is an integer multiple of maxiz 1 .. nj gi. Givena knapsak
problem K, our function createsa conditional scheduling problem (F [K]; (J[K];t[K]; r[K];
dlK]), where J[K] = fo;j;j1;¢¢¢;j,0, F[K] and r[K] are as pictured in Figure 5.12,

and t[K] and d[K] are de ned as follows:

tf[Kl[(o)0 = 1

tKIG) = Wi G

tKIG) = o fori 2 [1:n]
dK](o = 1

dK](G) = n+W

dKIGi) = w fori 2 [1:n]

CHAPTER 5. CONDITIONAL SCHEDULING 166

Note that t[K](ji) - D(2i; 2i+ 1) sinceg; - w;. Wenow show that K 2 Knapsack(i.e., there
exists a set S satisfying (5.13) and (5.14)) if and only if P[K] 2 Fixed-deadline scheluling.

()) Let S bea setsatisfying (5.13) and (5.14). Let %= (vg; ¢¢¢; vyy) bearun such
that (1) vo = 1, (2) vm = 2n+ 2, and (3) Yvisits vertex 2i, fori 2 [1:: n], if andonlyifi 2 S.
Note that vn; 1 = 2n + 1. To obtain a contradiction, supposethat there exists a winning
strategy % From time O until time ¢(mj 1), ¥%executesjob o for n time units, and jobs
fjiji 2 Sg, for atotal of > G time units. Thus upon ertering vertex v; 1, ¥2has executed
jobj for< ¢(mj 1)j nj G time units, and soj must executefor > n+ W ¢(mij 1) units
of time beforej completes. However, upon ertering vertex vy; 1, the number of time units
remaining beforej's deadlineisn+ W j ¢(mj 1). Thusjob j cannot meetits deadline,
and ¥icannot be winning.

(() Supposethat K 2 Knapsack We construct a strategy % and then showv %
to be winning. Let %= (vo; ¢¢¢;vy) be arun of P[K]. We de ne 3%by casesbasedon the
structure of %

2 If vmj 1= 2ij 1for somei 2 [1::n], then ¥(¥} = (I;€), where| contains only the
interval (¢(m i 1);¢(m)), and e(¢(m i 1);¢4(m)) = o.

2 If vy = 2n+ 2,then 3(¥) = (I ;€), wherel contains only the interval (¢(mi 1);¢(m)),
and e(¢(m i 1);¢(m)) = j.

2 Otherwise, for somei 2 [1:n], vm;1 = 2i and vy, = 2i + 1. Then ¥} = (I;e),
wherel contains the twointervalsii = (¢(mij 1);¢(m)i gi) andiz = (¢(M)i gi; ¢(m)),
and:

e(i1)
e(i2)

By construction, all the 0 and j; jobs meet their deadlines. It remainsto show that the j

j
Ji

job meetsits deadlineat time n+ W.

For any edgee = (v;v9 in P[K], de'ne the weight W (e) of eto bew; if i 2 [1::n],
v = 2i, and v0= 2i + 1, and 0 otherwise. For a run Y%= (vo;¢¢¢;vy), de ne the weight
W (%) of %to be P Mi LW (vi;vis). Let %= (vo; ¢¢¢; Vi) be any run sud that v = 1,
Vmij 1= 2n+ 1,and vy = 2n + 2. To show that j meetsits deadline, there are three cases
to consider:

CHAPTER 5. CONDITIONAL SCHEDULING 167

2 Casel: W(vp; ¢¢¢;vm; 1) < W. Note that ¢(mj 1) = n+ W(vg; ¢¢C;vm; 1) < n+
W. Prior to vertex vm; 1, ¥sallocates - G time to the j; jobs (otherwise, the set
fi 2 [1::n]] Yvisits vertex 2ig would satisfy conditions (5.13) and (5.14), and K
would be in Knapsack). Thus, at time ¢(m j 1), ¥ahas already executedjob j for

dmi 1) nj G time. Betweentime ¢(mj 1) and time n + W, % allocates
n+ W ¢(mj 1) additional time units to j. The total time that ¥ allocatesto |

beforetime n + W is therefore, W G.

If casel doesnot hold, let ¥8 = (vo; ¢¢¢; vino) be the shortest pre x of run (vo; €CC; v, 1)
such that W(¥9) . W. Note that, since?? is the shortest such pre x, (1) Vmo= 2i + 1 for
somei 2 [1::n], (2) Vmo, 1 = 2i, and (3) W (Vvo; ¢¢¢; Vo 1) < W.

2 Casell: W(vg; ¢¢¢; vn0) = W. Prior to time ¢(m9, ¥%allocates: G time to the j;
jobs (otherwise, K would bein Knapsack). Thus, by time ¢(m9, %allocates, Wi G
time to j. Since¢(m% - n+ W, %allocates, W ; G time to j beforetime n+ W.

2 Caselll: W (vp; ¢¢¢; Vo) > W. Note that ¢(m9 i W (vo; ¢¢¢;vimo) - n; thus, ¢(m9
W (vo; ¢¢¢; vino) + W - n+ W. If we canshow that %allocatesat leastW j G time to
job j prior to time ¢(m9 j W (vo; ¢¢¢; vino) + W, we will be done. We split the time
that ¥%allocatesto job j into two parts, the portion beforetime ¢(m°; 1), and the

portion betweentime ¢(m% 1) and time ¢(mY ;i W (vo; ¢¢¢; Vo) + W:

{ SinceW (vo; ¢¢¢; vimo, 1) < W, prior to time ¢(m% 1), %allocates- G time to
the j; jobs (otherwise, K would be in Knapsack). Thus, prior to time ¢(m% 1),
Ysallocates, W (Vo; ¢¢¢;vimo 1) i G time to job j.

{ Sinceboth W and W (vo; ¢¢¢; viy0) are multiples of maxis 1 .- nj gi, W (Vo; ¢¢¢; Vo)

W, maXiopq-nGo, G. Thus,¢(m9 i W(vo; ¢6¢; Vo) + W - ¢(m9 g. By
the construction of % job j is executedfrom time ¢(m° 1) until time ¢(mY9j g,
i.e., at least until time ¢(m9% i W (vo; ¢¢¢; vimo) + W.
Thus, betweentimes ¢(m% 1) and ¢(m9% i W (vo; ¢¢¢; vino) + W, Yaexecutesj for
e(mY i ¢(mP 1) W (vg; 6¢¢; vimo) + W time units. Since¢(m%j ¢(m% 1) =
W (Vo; €CC¢; vino) | W (Vo; ¢¢C; vino; 1), Yaexecutes] for Wi W (vo; ¢¢¢; Vo, 1) time
units betweentime ¢(m°%; 1) and time ¢(m9 j W (vo; ¢¢¢; vino) + W.

Adding the two portions, we seethat the total time allocated by ¥4to job j up to time
o(m9 i W(vg; 6¢¢;vo) + Wis, W G. a

CHAPTER 5. CONDITIONAL SCHEDULING 168

Where exactly the complexity of Fixed-deadline scheluling lies between 2EXP-
TIME and coNP is an open question. For acyclic xed-deadline scheduling problems, the
complexity can be located precisely Recall from De nition 5.34and the remarks preceding
it that a well-formed xed-deadline conditional scheduling problem must have an edgefrom

ewvery vertex v to someother vertex. We therefore de ne acyclicity as follows:

De nition 5.40 (Fixe d-deadline DAG scheduling). A well-formed xed-deadline con-
ditional sdcheduling problem is acyclic if (1) the only cyclesin the graph (V; E) are formed
by edgesof the form v! v, i.e., from a vertex to itself, (2) any such vertex v has no other
outgoing edges,and (3) for any sud vertex v, r(v) = ;. We call such a vertex v terminal.
Fixed-deadline DAG scheluling is the setfP | P is an acyclic well-formed xed-deadline

conditional scheduling problem that has a winning strategyg. a

It may be shown that Fixed-deadline DAG scheluling is in coNP: a short certi cate of
non-menbership in Fixed-deadline DAG scheluling is a run “2from vq to a terminal vertex
such that EDF cannot meet all job deadlineswhen the ervironment choosesto follow %2
Indeed, Fixed-deadline DAG scheluling is coNP-hard, since the construction in the proof
of Theorem 5.39 produced only acyclic problems. We summarizein the following theorem:

Theorem 5.41. Fixed-deadline DAG scheluling is coNP-complete.

5.5 Conclusion

In this chapter, we investigated conditional scheduling problems. Table 5.1 on
pagel1l19summarizesour results. We rst introduceda novel model, conditional scheduling
with varying deadlines. We developed a polynomial-time algorithm for determining whether
a conditional scheduling problem has a feasible schedule (or, in the terminology of this
chapter, a winning strategy). We extended this basic conditional sdheduling model in
three ways, and developed a polynomial-time algorithm for eat extension. First, to model
imprecisescheduling and anytime algorithms, we shavedin Section5.2.2how a linear reward
function may be added to conditional scheduling problems. Second,in Section 5.2.3, we
showed how the conditional scheduling model may be extendedwith precedenceconstraints
that limit the order in which jobs may execute. Third, in Section5.2.4, we shoved how the
precedence-constrainednodel of Section5.2.3 may be extendedwith guard jobs that must

be executedto determine the next vertex the environment will enter.

CHAPTER 5. CONDITIONAL SCHEDULING 169

In Section 5.3, we showed that two variants of the basic conditional scheduling
problem are computationally hard. In Section 5.3.1, we shawved that if the scheduler is
restricted to make decisionsonly at integral points in time | modeling a periodic timer
interrupt, for example| then the problem of nding a feasible schedule is NP-hard. In
Section 5.3.2, we showed that if the graph (V;E) of a conditional scheduling problem is
acyclic (rather than a tree), then the problem of nding a feasible schedule is coNP-hard.
Finally, for conditional scheduling problemswith xed deadlines,we presered in Section5.4
a doubly exponertial-time algorithm that tests for the existenceof a winning strategy, and
we showed that deciding whether a xed-deadline problem has a feasible schedule is coNP-
hard.

In Chapter 6, we will use Algorithm 5.4 of Section 5.2.4 to synthesize single-

processorsdedulesfor multi-mo de Giotto programs.

170

Chapter 6

Multi-mo de, single-pro cessor
Giotto scheduling

6.1 Intro duction

This chapter shows how to use a conditional scheduling algorithm to synthesize
single-processorschedulesfor multi-mo de Giotto programs. We develop an algorithm that,
when given a multi-mo de Giotto program G, rst translates the scheduling constraints of G
into a set of guarded conditional scheduling problems, and then attempts to synthesizea
feasible guarded schedule for ead such problem, using the guarded conditional scheduling
algorithm of Section5.2.4.

The scheduling algorithm of this chapter is the analogue,in a multi-mo de context,
of the single-made Giotto scheduling algorithm of Section 4.4, which when given a single-
mode Giotto program G, rst translated G into aninstanceof 1j r;; d;; prec; pmtn; period |
i , and then attempted to generate a feasible schedule using the algorithm Section 4.3.3.
The structure of this chapter closely follows that of Chapter 4, with two main di®erences.
First, the scheduling theory usedin this chapter wasdevelopedin Chapter 5. For Chapter 4,
the scheduling theory was much simpler and was therefore developed within Section 4.3.
Second,the Giotto scheduling algorithm of this chapter requiresa variant on the conceptof
the activities of a Giotto program from Section2.4.1;this variant is presened in Section6.3.
In cortrast, the conceptsof Section 2.4.1 were suzcient for Chapter 4.

Section 6.2 beginsthis chapter by motivating the needfor using varying-deadline,

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 171

precedence-constrainecconditional scheduling algorithms for Giotto. It does so by pre-
serting a Giotto program in which the tasks have deadlinesthat vary depedert on the
mode-switching behavior of the program. Section 6.2 is the analoguein the multi-mo de
setting of Section 4.2, which motivated the needfor precendence-constrainedgdeduling of
single-made Giotto programs.

Section 6.3 contains preliminary de nitions necessaryfor the subsequen develop-
ment of this chapter's scheduling algorithm. Section 6.3.1 reformulates the concept of the
activities of a Giotto program sothat this conceptcan be usedfor multi-mo de scheduling.
Thus, Section 6.3.1is similar to Section 2.4.1, which formulated the concept of the activi-
ties of a Giotto program in a manner appropriate for single-male scheduling. Section 6.3.2
de nes a pending computation function, and a notion of a rest point, for multi-mo de Giotto
programs. The sdeduling algorithm of this chapter requires, intuitiv ely, that there exist a
constart n such that at any momert during the execution of a Giotto program, the amourt
of time until the next rest point is at most n. This requiremert guaranteesthat the guarded
conditional scheduling problems generatedby the sdeduling algorithm of this chapter are
“nite. The useof rest points in this chapter cortrasts with the usein Chapter 4. Here, rest
points are usedto guarantee the termination of the Giotto scheduling algorithm, whereasin
Section4.3.3, rest points wereusedto prove a necessarycondition on feasibility for instances
of the underlying (non-Giotto) sceduling model.

Section 6.4 presens the sdceduling algorithm for multi-mo de Giotto programs.
Section 6.4 is the analogue,in the multi-mo de cortext, of Section 4.4, which preseried a
scheduling algorithm for single-made Giotto programs. Section 6.4.1 beginsby de ning a
classof multi-mo de Giotto programs(similarly, Section4.4.1presened a classof single-made
Giotto programs). This classcontains those programs for which the sdeduling algorithm
of this chapter correctly determines whether feasible schedulesexist. Next, Section 6.4.2
de nes three scheduling questions for multi-mo de Giotto programs. These questions are
the analogues,in the multi-mo de context, of the sdheduling questions of Section 4.4.2 for
single-made Giotto programs. In particular, Section6.4.2de nes a notion of "-feasibility for
multi-mo de Giotto programs, and asks: Doesa program possessan "-feasiblesdedule, for
somejitter tolerance" > 07? If so, what is the minimum "° such that the program possesses
a "“-feasibleschedule?

Section6.4.3beginsthe presenation proper of the scheduling algorithm for multi-

mode Giotto programs. The preseration of the scheduling algorithm is top-down. We rst

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 172

describe Algorithm 6.1. When givena Giotto program G asinput, Algorithm 6.1 producesa
setProblemsof guardedconditional scheduling problems. Each problem P[m;] in Problems
captures the constraints of scheduling program G starting from mode m and mode time *
with no pending computation. Together, the members of Problemscapture the constraints
of scheduling the ertire program G. After producing the set Problems Algorithm 6.1
attempts to generatea feasible guarded schedule for eat problem in Problems using the
guarded conditional scheduling algorithm of Section 5.2.4. If a schedule can be generated
for eadh member of Problems then the program G is "-feasible for some" > 0, and the
generatedschedulesconstitute an "°-feasiblescedule;if a schedule cannot be generatedfor
somemenmber of Problems then G does not possessan "-feasible schedule for any " > 0
(Theorem 6.25, Section 6.4.5).

After describing Algorithm 6.1, Section 6.4.4 describes the construction of the
guarded conditional scheduling problems P [m; £]. This construction is the analogue,in the
multi-mo de cortext, of the single-made problem P[G; wcet] of Section 4.4.3. Here, the
preliminary de nitions of Section 6.3 are usedin two ways. First, the reformulation of the
concept of the activities of a Giotto program is usedto de ne the nite state machine, job
set, precedencerelation, etc., of the conditional scheduling problem P[m; 4]. Second,the
requiremert that there be a bound on the amount of time until the program G reacesa
rest point ensuresthat the construction of P[m;] terminates. After describing P[m; 4],
as an example we presen a particular problem P[m; 1] for the Giotto program from Sec-
tion 6.2, followed by a completeguardedsdedulefor this program. Finally, in Section6.4.5,
we discussthe running time of Algorithm 6.1, and we discusshow the algorithm may be
usedto answer the questions posedin Section 4.4.2. Unfortunately, the running time of
Algorithm 6.1 may be doubly exponertial in the sizeof its input program G. Fortunately,
Algorithm 6.1 nds an "“-feasible strategy (i.e., a strategy with the minimum jitter toler-

ng

ance"”) aslong as G has an "-feasiblestrategy for some" > 0.

6.2 The need for varying-deadline scheduling

This section preserts an example multi-mo de Giotto program that shows how the
deadline of a task may vary, conditional on the branching behavior of the program. Recall
from Section 5.1 that a conditional scheduling problem with "xed deadlines becomesa

problem with varying deadlineswhen one adds precedenceconstraints to the sceduling

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 173

model. In a similar way, the xed logical deadlinesof a multi-mo de Giotto program become
varying deadlineswhen one adopts a precedence-constraine@pproac to scheduling Giotto.
This current sectionis the analogue,in a multi-mo de cortext, of Section4.2, which argued
for the needfor precedence-constrainedsingle-processorsceduling of single-made Giotto
programs. The current Giotto compiler cannot sthedulethe exampleprogram of this section,
though the program does possessa feasible schedule. Section 6.4.4 applies the schedule
synthesisalgorithm of Section6.4to synthesizea completescedulefor the exampleprogram
of this section.

We now presert a multi-mo de Giotto program that illustrates how precedence
constraints lead to varying deadlines. The program of Figure 6.1 hasthree modes,m1, mo,
and m3. Each mode hasa period of 30, and invokestaskst, and t, with frequencyl. There

are two di®erencedbetweenthe modes:

2 The data°ow betweensensorstasks, and actuators is di®eren in the two modes(see
Figure 6.2). In all three modes, tasks t; and t, receive an input from the sensors.
In mode m», t; receives an additional input from t,. In mode ms, t> receives an

additional input from t;.

2 In mode m1 actuator a receivesan input from both t; andt,. In contrast, in mode my,
actuator a receiwesits input from t; only. In mode mg, actuator a receiwesits input

from t, only.

The di®ering data®°ow and the switches from mode m; give t; and t, varying

deadlines,as we will now see. Considerthe following three executions:

Ei1 = (m1;0,669;(ma; 1566);(ma; 30,6 ¢ G; ¢oe
Ez = (M1;0,669;(m1; 156 ¢ G;(m2; 30,6 ¢ G; (m2; 60 ¢ ¢ §; ¢ee
Es = (M1;0,66¢9;(m1;156¢9;(m3;30,¢ ¢ 9G; (m3; 60 ¢ ¢ G; ¢ee

In all three executions,the program remainsin the start mode my until time 15. In exe-
cution E1, the program stays in my until time 30. In executionsE, and E3, the program
erters m, and mg, respectively, at time 15. Taskst; and t, are invoked at time 0. Now, at
time 30 in mode m1, the actuator a gets updated using driver da.m,. This driver readsthe
output ports of tasks t; and t,. Thus, both tasks must nish by time 30! In cortrast, at

YIn fact, they must “nish by time 28, since the execution time of driver dam , is 2.

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING

sensor

port s type int time 1
actuator

port a type int init O
input

port i1 type int

port i, type int

port i3 type int
output

port o; type int init O

port o, type int init O
task t; input i output o7 function f;
task t, input i, output o function f;
driver d,-m, source s guard G,:m,
driver d,:m, source s guard Gi,:m,
driver d,.m, Source s, 0 guard O, :m,
driver d,:m, source s guard Gt,:m,
driver d,.m, Source s guard t;:m;
driver di,:m, source s, 0p guard Gi,:m,
driver dam, source o1, 02 guard Qgam,
driver dam, source o guard Gam,
driver dam, source op guard Gam,
driver dm, source s guard gm, time 1
driver dm, source s guard gm, time 1

modem; period
frequency 1
frequency 1
frequency 1
frequency 2
frequency 2
modem, period
frequency 1
frequency 1
frequency 1
modem3 period
frequency 1
frequency 1
frequency 1

start mg

30 ports 01, 02
invoke t; driver
invoke t, driver
update dam,

dtiiml
dt2§m1

switch my driver dm,
switch mgz driver dm,
30 ports 01, 02
invoke ty driver d¢;:m,
invoke ty driver dt,:m,
update dam,

30 ports 01, 02
invoke tp driver dt,:m,
invoke ty driver di,:m,

update dam,

174

PR RPRR

time 9

time 9

time 1 destination i; function hi,.m, time
time 1 destination iy function hi,:m, time
time 1 destination i; function hi.m, time
time 1 destination iy function hi,:m, time
time 1 destination i; function hi,:m, time
time 1 destination i, function hi,.;m, time
time 1 destination a function hgm, time 1
time 1 destination a function hagm, time 1
time 1 destination a function hgm, time 1
destination 01, 0z function hy, time 5
destination 01, 0z function hy, time 5

Figure 6.1: A Giotto program with varying deadlines.

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 175

mode m; mode m; mode mj3

tl tl tl

t2 t2 t2

Figure 6.2: Data°ow di®erencesbetweenthe modes mi, my, and ms of the program of
Figure 6.1.

time 30in mode my, actuator a gets updated using driver da.m,. This driver readsonly the
output port of task t;. Thus, task t; needsto nish by time 30in execution E,, but task t,
doesnot. Similarly, at time 30 in mode m3, actuator a gets updated using driver dam;,,
which readsthe output port of task t,. Thus, task to needsto nish by time 30 in exe-
cution Eg, but task t; doesnot. We concludethat the deadlinesof tasks t; and t, vary

depending on the conditional behavior of the program of Figure 6.1.

6.3 Preliminaries

This section cortains preliminary de nitions necessaryfor the presenation of the
scheduling algorithm for multi-mo de Giotto programs in Section 6.4. In this section, we
dewvelop a multi-mo de picture of the activities of a Giotto program that corntrasts with the
picture of Section 2.4.1. The alternativ e picture of this section will make more corveniert
the de nition of our algorithm in Section 6.4. There are two main concrete di®erences

betweenthe two pictures:

2 First, Section2.4.1indexed activities a[i; i9 by a con guration number i and a micro
step number i® whereasthis sectionindexesactivities a[®;i9 by, essetially, a pre x °
of an execution and a micro step number i® The indexing scheme of this section
allows a distinction betweenactivities that have the samecon guration number i but

are from executionsthat switch through a di®eren sequenceof modes.

2 Second, our algorithm for translating Giotto programs into conditional scheduling

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 176

problems works only on programs that satisfy a certain condition. In order to de ne
this condition, we needto de ne a multi-mo de version of the pending computation

function from Section4.3.3.

The structure of this section is as follows. First, in Section 6.3.1, we presen the multi-
mode picture of the activities of a Giotto program. Next, in Section 6.3.2, we de ne the
multi-mo de version of the pending computation function.

6.3.1 The activities of a multi-mo de Giotto program

This section is a multi-mo de version of Section 2.4.1, which de ned the activities
of a Giotto program. To begin our presenation, we introduce a variant of the notion of
con guration from Section 2.3.2. This variant notion, which we call a control point, is
neededfor two reasons. First, con gurations make somedistinctions that we need not to
make: for example, two con gurations are di®erert if their port valuations are di®erer.
Second,con gurations do not make somedistinctions that we needto make: for example,
they do not explicitly record the mode switch drivers usedto transition betweenmodes.

De nition 6.1 (control point). For any mode m 2 Modesand mode time +2 Q:

2 |If there exists a task (! sk;t; d) 2 Invokedm] such that + is an integer multiple of
¥dm]=! task, then we say that + is an m-invoke time, and that + is an (m; t; d)-invoke

time.

2 |If there exists an actuator update (! 5¢;;d) 2 Updategm] such that * is an integer
multiple of ¥Jm]=! 4t, then we say that * is an m-update time, and that * is an
(m; d)-update time.

2 |f there exists a mode switch s = (! switch;M%d) 2 Switche$m] such that + is an
integer multiple of ¥4m]=! qwitch ,» then we say that + is an m-switch time, and that +

is an (m; m® d)-switch time.

An unconditional control point is a pair (m; £) suc that * is not an m-switch time and +
is either an m-invoke or an m-update time. A conditional control point is a 5-tuple
(m; £d;m%+9 sudh that + is an m-switch time, and one of the following two conditions
holds:

2m=mP+=42 andd= +

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 177

2 +is an (m; m®d)-switch time, and +° may result from + according to micro step 6 of

the Giotto semarics.

I+

A control point is either an unconditional control point or a conditional cortrol point. If

+

is not an m-switch time, let the set C[m;] of control points of mode m and mode time *
be the singleton set f (m; +)g. Otherwise, let C[m;4] = fcjc= (m;£d;m%+9 andcis a

conditional cortrol pointg. a

Note that C[m; 4] contains either one unconditional cortrol point, or more than one condi-
tional cortrol point.

The operation of a multi-mo de Giotto program may be thought of as an in -
nite sequenceof cortrol points. The program starts in any cortrol point of the form
(start; 0;d; mq1;4). The program may then proceeddeterministically through a sequence
of unconditional cortrol points, at any mode time +? > + of mode m; at which an actuator
is updated, task driver is evaluated, or task is invoked, but no mode switch is evaluated.
Whenewer a mode switch is evaluated, say at mode time {9 the program choosesa new
mode m, and a new mode time *,, and the program is at the conditional control point
(my; £9d;my;). The driver d is the mode switch driver whoseguard evaluated to true;
if all guards evaluated to false, then d = +, my, = mjy, and &, = i&".’ The operation of the
program cortinuesin this manner forever. We call a sequenceof control points obtained in

this manner a path, a conceptthat we now de ne precisely

De nition 6.2 (successors of a control point, path). Let c be a control point. If ¢
is unconditional, let (m;+) = c. If cis conditional, let (§G¢m;+) = c. Let Hgpjich > *
be the smallest mode time sud that #yich is an m-switch time. Similarly, let +5oy > +
be the smallest mode time sud that 5,y is either an m-invoke or an m-update time. If
*stay < Fswitch then the unconditional cortrol point (m; #stay) iS the unique suaessor of c.
If +stay , Fswiteh then any conditional cortrol point of the form (M; #switeh; d; Mm% 49 is a
suaessor of c. A path is a nite sequencecy; c1; ¢¢¢; ¢, of one or more cortrol points such
that for i 2 [1::n], ¢ is a successomnf ¢;; 1. We will generally usethe symbol ° to denote
a path. o

We now note some facts about the successorrelation. First, a cortrol point either has
a single unconditional successoror multiple conditional successors.Second,considertwo
cortrol points ¢ and c® such that c®is a successopf c. If ¢ (respectively, ¢ is unconditional,

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 178

let (m; #) = c (respectively, let (m%19 = ¢9. Otherwise, let (¢ ¢ ¢m;+) = c (respectively,
let (M%+%¢ ¢ = . Then obsene that m = m%and +< +° In this sensethe successor's
initial mode m%is determined uniquely from the previous mode m. In fact, it can be seen
from De nition 6.2 that the successor'snitial mode time +° is also determined uniquely
from m and + However, if the successorcortrol point c®is a conditional cortrol point
(M +% ¢ m99+%, then the successor'ssecondmode m®and mode time +°are not uniquely
determined from m®and +% there are multiple choicesof m®and +%°

The following de nition will later be useful:

De nition 6.3 (duration dur (°) of a path °). Let ¢ and c° be cortrol points suc
that c%is a successomnf c. If cis unconditional, let (¢ 1) = c; otherwise, let (¢G¢¢GGE) = c.
Similarly, if c®is unconditional, let (¢+% = c® otherwise, let (¢+° ¢ ¢ ¢ = c® The duration
dur(c;c9 of the pair (c;c9 is £2; + The duration dur(®) of a path © = cp;cy; ¢¢¢; ¢, is

in:1 dur(ci; 1;Gi). a

We now introduce a variant of the notions of actions and activities from Sec-
tion 2.4.1. Each control point on a path requires the execution of a set of activities. For
an unconditional cortrol point, theseactivities may include actuator updates, sensorreads,
task driver evaluations, or task invocations (micro steps2, 3, 7, and 8 of the Giotto seman-
tics). For a conditional control point, theseactivities may additionally include mode switch
guard evaluations and mode port updates (micro steps4 and 5). As in Section 2.4.1, we
shall assumethat the guardsof all actuator and task driversevaluate to true; this represerts
a worst casefor the scheduler. For brevity we will write d for the action of driver d, instead
of true(d); and s for the action of reading sensors, instead of read(s). In order to model
accurately the mode switching behavior of a Giotto program, we assumethat the guard of
ead mode switch driver may evaluate to true or false. We therefore separatethe actions
of a mode switch driver d into a guard action g that evaluates the guard and is always
executed, and a function action h that updates modes ports and is executedif the guard
evaluates to true. For the purposesof this chapter, the actions of a Giotto program are
therefore either a task t 2 Tasks a sensorread s 2 Sensebprts, a driver d 2 Drivers or the
guard g or function h of adriverd 2 Drivers We assumea function wcetthat assignsto each
action a a positive, integral worst-caseexecution time wcet(a). For a driver d with guard g
and function h, we assumethat wcet(d) = wcet(g) + wcet(h). We de ne the setsr(a) p Ports

of ports read by action a and w(a) p Ports of ports written by action a as follows:

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 179

2 If a=t fort 2 Tasks then r(a) = In[t][Priv[t] and w(a) = Out[t][Priv[t].

2 |f a= dfor d 2 Drivers then r(a) = Srdd] and w(a) = Dst[d].

2 |f a= g, whereg is the guard of driver d, then r(a) = Srdd] and w(a) = ;.

2 If a= h, whereh is the function of driver d, then r(a) = Srdd] and w(a) = Dst[d].
2 If a= s, thenr(a) = ; andw(a) = fsg.

We now turn to the activities of a multi-mo de Giotto program. As discussedabove,
we index activities by path and micro step number, rather than con guration number and

micro step number asin Section2.4.1. We now de ne the activities A[°] of a path °.

De nition 6.4 (activities A[°] of a path °). Let ° be a path, the nal cortrol point of
which is c. If cis conditional, let (m; = d;m% 49 = c. If cis unconditional, let (m; +) = c, let

m®= m, and let £°= + We st de ne the six setsA[°;i] for i 2 f2;3:4:;5;7; 8g as follows:
2 Al°;2]= fd[°; 2]j xis a (m; d)-update timeg.

2 If ¢ is conditional, then g[°;4] 2 A[°;4] for ead guard g of a driver d° such that
(m; £d® ¢ ¢ is a conditional control point. If ¢ is unconditional, then A[°;4] = ;.

2 If ¢ is conditional and d 6 #, then A[°;5] = fh[°;5]g, where h is the function of

driver d. If cis unconditional or d = %, then A[°;5]= ;.
2 A[°;7]= fd[°;7]j £%is an (m& ¢ d)-invoke timeg.
2 A[°;8]= ft[°;8]j £is an (m%t; §-invoke timeg.

2 Al°;3] = fs[°;3]] s 2 Senselrts and s 2 r(a) for someactivity a[°;q 2 A[°;4]]
Al 7][Al°; 8]g.2

S
Finally, the activities A[°] of path © are 5 5.3.4.5.7.50 A[%; 1] a

2Note that if © endsin a conditional control point, A[°;4] includes all mode switch driver guards that
needto be evaluated, whereasA[°; 5] includes at most one mode switch driv er function. Sincefor a driver d
with guard g and function h, r(g) = r(h), it follows that the setfs 2 Ports j s 2 r(a) for some activity
a[®;4] 2 Al[°;4]g is a superset of the setfs 2 Ports j s 2 r(a) for someactivity a[°;5] 2 A[°;5]g. Thus we
need not mention the casewhere s 2 r(a) for someal®; q 2 A[°;5] in the de nition of A[°;3].

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 180

Supposethat ° and °°are two paths which are identical up to but not including
their last control points, which are in C[m;] for somemode m and mode time +. The sets
of actuator update activities of © and °% A[°; 2] and A[°® 2], may be regardedasidentical,
sincethese activities take place beforethe mode change occurs. Note also that

P P
p2a iy WOBHA) = popa ooy Woet(A9)
Similarly, the setsof sensorread activities of © and °% A[°; 3] and A[°% 3], may be regarded

asidentical, and
P P
A2A [o ,3] cht(A) = A02A [o 0'3] cht(A(b

Finally, the setsof mode switch driver guard activities of © and °% A[°; 4] and A[°® 4], may
be regardedas identical, and
P P

A2 4] WCEHA) = popp o0 g) WCET(AY

We now de ne a partial orderto model the inter-activit y communication of a multi-
mode Giotto program. This de nition is similar to the de nition of the partial order @E in
Section2.4.1. However, herewe usethe path © of an activity a[°;i9 to determineits placein
the order (rather than the con guration number i of an activity a[i; i9, asin Section2.4.1).

Deniton 6.5 (activit y A writes port p to activit y A9. For any path °© and any
i 211;2;3;4;5; 79, an activity A completesat (°;i) if either:

2 A2 A[°;i]fori 2f2;3;4;5;7g.

2 i=1,A=t[%8]2 A[°%8]for somepre x °%of°, and the following further conditions
hold. Let c® be the Tnal cortrol point of °© If ¥is unconditional, let (m®+% = 2
elselet (¢ ¢ ¢m%+9 = & Then:

{ #%is an (m;t; §-invoke time.
{ dur(®)i dur(o% = V{qul task -

The special caseis necessaryfor task activities t[°® 8] becausethe path index °° indicates
the path on which task t started, not the path on which t completed. In Section2.4.1, this
special casewas not necessary becausefor task activities t[i; i9, the index i indicated the
con guration number at which task t completed, not the con guration number at which t

started.

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 181

Al 1,2 Al%; 2]

dur(“’ii 1) de‘(c’i)

Figure 6.3: A conceptual aid for the de nition of the pending computation function.

As in Section 2.4.1, we de ne an order < the set f(°;i) j © is a path and i 2
f2;3;4;5;7;8gg, asfollows: (°1;i1) < (°2;i2) if either ©4 is a proper pre x of °,, or °; = °,
and i; < ip. Considertwo activities A1 = a1[¢ § and A, = a,[°2;i2]. We say that A1 writes
port p to A, (in symbols, A1 @ A») if the following conditions hold:

2 p2w(ap)\ r(ag), Ay completesat (°1;i1), and (°1;i1) < (°2;i2).

2 There is no activity Az = as[¢{§ such that p 2 w(asz), Az completesat (°3;i3), and

(°1;11) < (°3;i3) < (°2:i2).
We write A; @A if there is someport p 2 Ports suc that A1 @ A». o}

This concludesour exposition of the multi-mo de view of the activities of a Giotto program.
In Section 6.4, we will put this multi-mo de view to use in dewveloping an algorithm to
synthesize schedulesfor multi-mo de Giotto programs.

6.3.2 Pending computation function of a Giotto program

In this section, we de ne a multi-mo de variant of the pending computation func-
tion p from Section 4.3.3 (De nition 4.7). We introduce this de nition in order to de ne
the notion of a rest point in the multi-mo de context. Rest points play a di®erert role in
this chapter than they did in Chapter 4. In Chapter 4, the existenceof a rest point was
a necessarycondition on feasibility for instancesof 1 j rj; d;; prec; pmtn; period j i . In
this chapter, rest points are usedto guarantee that the conditional scheduling problems
that our scheduling algorithm produces(Section 6.4, below) are nite, and to guarantee the
termination of our algorithm.

Recall that in Chapter 4, the pending computation function p was a function
from the integral timeline Z- © to the non-negative integers. Here, in keeping with our
focus on multi-mo de programs, the pending computation function is a function from paths

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 182

to the non-negative integers. Speci cally, for a path °;, we de ne the amournt p(°;) of
computation pending on entering the nal cortrol point ¢; of °;. This de nition admits a
simple recursive formulation. If ©; consistsonly of the singlecontrol point ¢;, then p(°;) = 0.
Otherwise, °; consistsof a path °;; 1 followed by the cortrol point ¢, i.e., °; = °;; 1;G. As
a rst cut, p(°i) is the minimum of 0 and fthe amourt p(°;; 1) of computation already
pending, plus the sum of worst-case execution times of activities in A[°;; 1], minus the
available time dur (°;)j dur(°j; 1) in which to executeactivitiesg. To obtain a more accurate
de nition, the readeris advisedto examine Figure 6.3, which shaws two successie paths
i 1= Co; €CC¢; c; 1 and®; = cp; ¢¢C; ¢i. The logical time at which the nal cortrol point ¢j; 1
of path °;; 1 is entered is dur(®;; 1). As in Chapter 4, we execute actuator updates of
path ©;; 1 just before time dur(°;; 1). Thus, the actuator updates in A[°j; 1;2] do not
consumeany time betweendur (°;; 1) and dur(°;). Howewer, the actuator updatesin A[°;; 2]
occur just beforetime dur(°;), sothey do consumetime betweendur(°;; 1) and dur(°;).
We therefore obtain the following de nition:

De nition 6.6 (pending computation function, rest point). For any path °;, we
de ne the amount p(°;) of computation pending on entering the nal control point c; of °;.
If °; consistsof the one cortrol point ¢; then p(°;) = 0. Otherwise, °; = °;; 1;¢ for some
path °;; 1. Let S be the set of activities (A[°; 1] NA[°i; 1;2]) [A[°i;2]. Then p(°;) is the
minimum of 0 and

X
p(%i; 1)+ weet(A) i (dur(®)i dur(®i 1))
A2S
Path °; is a rest point if p(°;) = O. o

We now intro duce a condition similar to the condition, in Theorems4.14and 4.17,
that there be a rest point in the range[; ;2j]. Intuitiv ely, this condition is that a Giotto
program always read a rest point within a bounded amourt of time. We formalize this
condition asfollows. We say that a Giotto program guarantees rest points within n control
points if all paths of length at leastn+ 1 have a pre x that is a rest point and that contains

at least two cortrol points.

De nition 6.7 (guaran tees rest points). Let G be a multi-mo de Giotto program, and
let n 2 Z>° be a positive integer. Then G guarantees rest points within n control points if,
for every path cg; ¢¢¢; cy, with m | n, there existsani 2 [1:: n] such that cp; ¢¢¢; ¢ is a

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 183

rest point. We say that G guarantees rest points if there existsan n 2 2”9 suc that G

guaranteesrest points within n corntrol points. o

It follows from argumerts similar to those of Section 4.3.3 that a single-made Giotto pro-
gram G has a feasible schedule only if G guaranteesrest points. This is not the casefor
multi-mo de Giotto programs:there exist multi-mo de programs which do not guaranee rest
points but have feasibleschedules. However, our algorithm for translating Giotto programs
into conditional scheduling problems(Algorithm 6.1) requiresthat the input Giotto program

guararteesrest points.

6.4 From Giotto to conditional scheduling

This section describes the main algorithm of this chapter, for scheduling multi-
mode Giotto programs on a single processor.As mertioned in Section 6.1, the structure of
this section parallels that of Section 4.4. First, Section 6.4.1 describesthe classof Giotto
programs the sceduling algorithm will accept as inputs. The most signi cant require-
ment on this classis that ead program in it must guarantee rest points; this requiremen
guaranteesthe termination of our algorithm. Next, Section 6.4.2 de nes the concept of "-
feasibility for multi-mo de Giotto programs (Section 4.4.2de ned the corresponding concept
for single-made Giotto programs.) Section 6.4.2 then presens three scheduling questions.
These questions are the analogues,in the multi-mo de context, of Questions 4.26, 4.27,
and 4.28 from Section4.4.2.

Section 6.4.3 describes Algorithm 6.1, the scheduling algorithm for multi-mo de
Giotto programs. Givena Giotto program G, Algorithm 6.1 generatesa guardedconditional
scheduling problem P[m;] for eadh mode m and mode time + such that an execution of G
may be at mode m and mode time + with no pending computation. For ead generated
problem P[m; 4], Algorithm 6.1 attempts to generatea feasible guarded schedule S[m; 4].
If such a schedule exists for ead problem P[m; 4], then Algorithm 6.1 returns the schedules
S[m; 4] it generates;otherwise; Algorithm 6.1 reports that the input program G does not
possess feasibleguarded schedule.

Section 6.4.4 completesthe preseriation of the scheduling algorithm by describing
the construction of the guarded conditional sdheduling problems P[m; £]. This construc-
tion is the analogue, in the multi-mo de context, of the construction in Section 4.4.4 of

the instance P[G;wcef] of 1] r;j; dj; prec; pmtn; period j j . As an illustrativ e example,

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 184

Section 6.4.4 then describes the problem P[mg; 0] for the Giotto program of Section 6.2,
and concludeswith a complete guarded schedule for this program. Finally, Section 6.4.5
discusseghe running time and optimalit y of Algorithm 6.1. Though the running time can
be doubly exponertial in the sizeof the description of the input program G, Algorithm 6.1

doesallow the three questionsposedin Section6.4.2to be answered.

6.4.1 A class of multi-mo de Giotto programs

In Section6.4.3,we will presert an algorithm that synthesizesschedulesfor multi-
mode Giotto programs. In order for this algorithm to correctly synthesize schedules, its
input program must satisfy three conditions. We rst presen these conditions, and then

explain why they are necessary The three conditions are:

I. Every task invocation driver or mode driver readsa sensor. More formally, for every
driver d such that (¢ ¢d) 2 Invokegdm] or (¢ ¢d) 2 Switche$m] for somemode m 2
Modes there is somesensors 2 Senseprts such that s 2 Srdd].

Il. G guaranteesrest points.

I11. Consider two cortrol points c;c® such that c is the successorof c. Let ° be the
path consisting of just the cortrol point ¢, and let °% be the path c;c® Let S =
P
A[°; 3]+ A[°%2]. Then we require that A2 WCEt(A) - dur(°9.

Condition | allows the easyde nition of a releasetime for ead activity. This condition
may be removed using techniques similar to those of Section 4.4.3. Howewer, we retain
condition | becauseit simpli es the preseration of our algorithm without sacri cing the
essetial featuresof the algorithm. Condition 11 guaranteesthat the graphs(V; E) produced
by our algorithm are nite, a property required by the scheduling algorithm of Section5.2.4,
which the algorithm of this section will use as a subroutine. Condition IIl requires that
the total execution time of sensorread activities of one cortrol point ¢ plus the total
executiontime of actuator update activities of a successorcortrol point ¢ doesnot exceed
the duration dur(°9 = dur(c;c9. This is analagousto the requiremert, in Chapter 4, that
the jitter tolerance™ be lessthan ¥#!, where Y4is the period of the single mode m, and !
is the least common multiple of the frequenciesof task invocations and actuator updates
of m. If the sumin Condition |11 were larger than dur(°9, then either the sensoractivities

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 185

of path © would have to be executedafter dur(®9, or the actuator activities of ©% would

have to be executedbeforedur(°), which is either unacceptably early or late.

6.4.2 The scheduling problem for multi-mo de Giotto programs

This brief section preseris three scheduling questionsthat are the analogues,n the
multi-mo de context, of Questions4.26,4.27, and 4.28 from Section 4.4.2. First, we de ne
a notion of "-feasibility for multi-mo de Giotto programs. The presen de nition is a minor
modi cation of De nition 4.25("-feasibility in a single-made corntext), and is necessaryonly

becausethe notation is di®eren in the presert multi-mo de context.

De nition 6.8 ("-feasibilit y). We say that a multi-mo de Giotto program is "-feasible if
there exists a guarded schedule S, in the senseof De nition 5.19, for which the following
condition holds. For any in nite sequencecy;c;; ¢¢¢ of cortrol points, all of whose nite

pre xes cp; ¢¢¢; ¢ (for eachi 2 [0:: 1]) are paths:

2 If A= a[¢qisanactivity in A[°;] for somei 2 [0:: 1], then S executesA for wcet(a)

time units.

2 Foranyi;i%2 [0::1], for any activities A; 2 A[°;]and Ajo 2 A[°;0] sudh that A; @Ajo,

A;j completesin schedule S before Ajo begins.

2 Foranyi 2 [0: 1], any actuator driver update activity a[®;; 2] 2 A[°;; 2] is executed
by S only in the interval [dur(°;) i "; dur(°;)], and further betweenthe start time of

a[°;; 2] and dur(°;) only actuator driver update activities are executed.

2 Foranyi 2 [0: 1], any sensorread activity a[°;;3] 2 A[°; 3] is executedby S only
in the interval [dur(°;); dur(®;) + "], and further betweendur(°;) and the completion

time of a[°;; 3] only sensorread activities are executed. a
We now presen three scheduling questions,akin to Questions4.26,4.27,and 4.28.

Question 6.9. Doesa multi-mo de Giotto program G have an "-feasible schedule for any

"> 0?
Question 6.10. If so,what is the smallest"” such that G hasan ""-feasibleschedule?

Question 6.11. Given this minimum "7, synthesize an ""-feasibleschedule.

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 186

Algorithm 6.1 Conditional scheduling algorithm for Giotto programs.
1. Algorithm Sdedule(G: Giotto program satisfying conditions I, 11, and I11)
Frontier := f(start;0)g
Explored := ;
while Frontier 6 ; do
let (m;£) be any member of Frontier in
Frontier := Frontier nf(m; £)g
Problems:= Problems[fP[m; £]g
Explored := Explored [f(m; £)g
for all verticesv of P[m; #] such that v has nho successodo
if (m[v]; v] mod ¥Im[v]]) 2 Explored then
Frontier := Frontier [f(m][v]; £[v] mod ¥Im[v]])g
: Solutions = ;
: for all P[m;] 2 Problemsdo
Attempt to synthesize a feasible guarded schedule S[m; 4] for P[m; 4], using Algo-
rithm 5.4 of Section5.2.4.
15 if sud a feasibleguarded schedule exists then

I e S T
AW NMNRO

16: Solutions := Solutions[f(P[m; #]; S[m; 4])g.
17: else
18: Report that P[m; 4] has no feasibleguarded schedule, and return.

The readerwill notice that, whereasQuestion 4.26 asksif there exists an "-feasibleschedule
with " - ¥&!', Question 6.9 asks if there exists an "-feasible schedule for any " > 0.
The di®erencebetweenthe two questionsis not as large as it may seem:for single-made
programs, condition |11 above implies that if there is an "-feasibleschedule for some" > 0,
then there is an "-feasiblesthedulefor " - ¥&! .

6.4.3 The scheduling problems generated by a Giotto program

We now present Algorithm 6.1, that can be usedto answer Questions 6.9, 6.10,
and 6.11 from the previous section. Let G be a program which satis es conditions I, I,
and |1l of Section 6.4.1. Algorithm 6.1 generatesa conditional scheduling problem P[m; %]
for eath mode m and mode time + sudh that G may be in mode m at mode time +°= +
(mod ¥Im]) with no pending computation. We call these problemsthe scheduling problems
geneated by G. The construction of P[m;] will be presened later, in Section 6.4.4. Algo-
rithm 6.1 hastwo stages;the rst stageis in lines 2 through 11, and the secondstageis in
lines 12through 18. The rst stagegeneratesa set Problemsof guardedconditional schedul-

ing problems, and the secondstage attempts to synthesize a feasible guarded schedule for

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 187

ead of theseproblems.

In the rst stage of Algorithm 6.1, two sets are maintained: the set Explored of
pairs (m; £) such that the problem P[m; 4] hasalready beengenerated,and the set Frontier
of pairs (m;) such that the P[m; 4] still needsto be generated. Initially , Explored = ;
and Frontier = (start;0) (lines 2 and 3). As long as Frontier 6 ;, the algorithm selects
and removesan elemen (m; £) from Frontier, generatesthe conditional scheduling problem
P[m; 4] and addsit to Problems and adds (m; +) to Explored (lines 4 through 8). Corre-
sponding to ead vertex v of the problem P[m; 4] is a mode m[v] and a mode time #[v].
The vertices of P[m; 1] that have no successordiave the following property: for ead such
vertex v, m[v] and #[v] are the rst mode and mode time after m and + at which no compu-
tation is pending. Thus, the pair (m[v]; #[v] mod ¥Im[v]]) is addedto Frontier if this pair
is not already in Explored (lines 9 through 11).

In the secondstage,in lines 12 through 18, for ead problem P[m; 4] in Problems
Algorithm 6.1 attempts to generatea feasibleguarded schedule S[m; 1], using the guarded
conditional scheduling algorithm of Section 5.2.4 (Algorithm 5.4). If no such scedule
exists, the algorithm reports that it cannot nd a feasible guarded schedule for P[m; 4].
Otherwise, upon termination the set Solutions contains a feasible guarded schedule for
eadt problem in Problems This concludesour preseration of Algorithm 6.1. In the next
section, we discusshow to construct the guarded conditional scheduling problem P[m; 4].
We postpone a discussionof the running time of Algorithm 6.1 until after the de nition
of P[m; 4] (Section 6.4.5).

6.4.4 The guarded conditional scheduling problem P [m; %]

Suppose that a Giotto program satisfying conditions I{I I| can be in mode m
at mode time + with no pending computation. We now give a top-down de nition of
the guarded conditional scheduling problem P[m;] that captures the constraints of this
situation. (The guarded conditional scheduling model was de ned in Section5.2.4.)

De nition 6.12 (the guarded conditional scheduling problem P [m; %]). For any
be a Giotto program G that satis es conditions I{l |1, any mode m 2 Modes and any mode
counter =2 Q, the guarded conditional scheduling problem P [m; 4] is:

(F [m; £, W[m; £1; A s ; G[m; 1])

where F [m; 1], W[m; 1], A, and G[m; 4] are de ned below. o

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 188

We describe the problem P[m; 4] in three parts: rst the nite state machine F [m; 4], then

the workload W [m; 4], and "nally the precedenceelation A .. and guard function G[m;]).

The nite state machine F[m; 4]

We begin by de ning the nite state machine F [m; 1] of the problem P[m; 4]. The
verticesand edgesof this nite state machine are nite subsetsof the setsof possiblevertices
and possibleedges

De nition 6.13 (p ossible vertices, possible edges). We de ne a partition V, of the
set of paths. Two paths © = cg; ¢¢¢; ¢, and °%= ¢§; ¢¢¢; c? are in the sameelemert of the
partition if ¢ = cPforalli 2 [0::nj 1]andc,; g 2 C[m; #] for somemode m 2 Modesand
mode time + 2 Q. Each elemer v, of the partition V, is called a possiblevertex Let v,
and vJ be possiblevertices; we say that (vp;Vvp) is a possibleedgeif there exist paths © 2 v,
and °°2 vj such that °%= ©°;c for somecortrol point c. In this casewe also sa that v is

a °-suaessor of vp,. a

We now note se\eral properties of the structure of possiblevertices. First, by the
remarks following De nition 6.2, if © and °° are members of a possible vertex v,, and °
and °° end in unconditional cortrol points, then © = °% Conversely if a possiblevertex
contains a single path °, then the last control point of © is unconditional. Second,also by
the remarks following De nition 6.2, if two members® and °° of the samepossiblevertex
end in conditional cortrol points (m; % ¢¢ ¢ and (M%+%¢ ¢ @, then m = mPand + = +°
Third, it may beveried that for any members®;° °of the samepossiblevertex, p(°) = p(°9
and dur(°) = dur(®°9. Thesepoints justify the following de nition:

De nition 6.14 (mo de, mode time, and pending computation of a possible ver-
tex). Let vp be a possiblevertex, and let ¢ be the nal cortrol point of any path in vp.
If ¢ is unconditional, let (m;+) = c. Otherwise, let (m;£¢¢@ = c. Then m[vy] = m
and Hvp] = + We extend the functions p and dur to V,, as follows: p(vp) = p(°) and

dur(vp) = dur(®) for any © 2 vp. o

We now de ne the nite state machine F[m;]. The graph (V;E) of F[m;] has
an intuitiv e structure: the possiblevertex C[m; 1] is in V; if (C[m; 4];Vv) is a possibleedge
then v isin V; and if v is a vertex with p(v) > 0 and (v;Vv9 is a possibleedge,then vCis in

V. The set of edgesof F [m; 4] is the restriction of the set of possibleedgesto V; that is,

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 189

Al°; 3] A[%2]

dur‘(°) dur(®9

Figure 6.4: A conceptual aid for the de nition of the duration of the edgesof F[m; 4].

e= (v;v‘b isin Eif eis a possibleedgeand v;v22 V. Note that, under this denition, the

graph (V;E) is a tree rooted at the possiblevertex C[m; 4]. The de nition of the duration

of the edgesis slightly more involved. We choosenot to include actuator update activities

or sensorread activities in our job set: sincesud activities must be executedat xed times,
they may be accourted for by shortening the durations of edgesinstead. Consider an edge
e= (v;v9 2 E. By the remarks following De nition 6.4, the setsof sensorread activities of
any two paths in v may be regardedasidentical, and the setsof actuator update activities
of any two paths in v® may be regarded as identical. Now consider any two paths © 2 v
and °92 v% As in Section 4.4, we executethe sensorread activities of path ©, A[°; 3], just
after time dur(®), and we executethe actuator update activities of path ©% A[°® 2], just
before time dur(®°9 (seeFigure 6.4). Thus, the amourt of time available between dur (v)

and dur (v9 for jobs that are neither actuator updates nor sensorreadsis:

X
dur(v® i dur(v); weet(A)
A2S

where S = A[°; 3][A[°%2]. We now de ne F[m; #] precisely
De nition 6.15 (F [m; %]). The nite state machine F [m; 1] isatuple (V;vo; E; D), where:
2 The setV of verticesis a set of possiblevertices, de ned recursively as follows:

{ C[m;42V.
{ v 2V for eath possiblevertex v such that (C[m; 4];V) is a possibleedge.

{ If v2V, andv is not arest point, and (v;Vv9 is a possibleedge,then v02 V.
2 The initial vertex vg is C[m; 4].

2 The set E of edgesis f (v;Vv9 j (v;Vv9 is a possibleedgeand v;v°2 Vg.

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 190

2 The duration function D : E! Z>9 is de'ned asfollows. Let (v;v9 2 E be an edge.
Then:

X
D(v;v9) = dur(v) i dur(v9®; weet(A)
A2S
whereS = A[°;3][A[°%2]. Note that condition |1l above guaranteesthat D(v;v% , 0

for any v;v°2 V, asis required by De nition 5.1. a

If a Giotto program G guarartees rest points, then the recursive de nition of V
only \pulls in" a nite number of possiblevertices, sothat the setsof vertices and edgesof
F [m; 4] are nite for any mode m and mode courter +. We are therefore justi ed in calling
F[m; 4] a nite state machine. Note that if G guaranteesrest points within n, then eadh
path in F[m; 4] haslength at most n. Howewer, the number jVj of vertices of F [m;], and
the number of such paths, may be exponertial in n. If G hasat most k mode switches per
mode, then jVj = O((k + 1)"*?1). (The k + 1 term results from the fact that ead vertex
of the tree (V;E) has at most k + 1 successorssince the depth of (V;E) is at most n, V

contains at most (k + 1)"*1 ; 1 vertices.)

The workload W [m; %]

We now de ne the workload W [m; 2] = (J[m; 4]; t[m; 4]; r[m; 4]; d[m; 4]). We begin
with the jobs releasedat a vertex v 2 V. If v hasno successorsthen v is a rest point, and
the schedule for mode m[v] and mode time Hv] will be synthesized using the nite state
machine F [m[v]; 4v] mod ¥4m|[v]] instead of F [m;] (see Section 6.4). In this case,we let
r(v) = ;. If v contains a single path °, then by the remarks following De nition 6.13, the
last cortrol point of © is unconditional. Thus, the jobs releasedat v are the task driver
activities A[°; 7] and the task activities A[°; 8]. If v contains more than one path, then the
last cortrol point of ead path in v is conditional. Thus, the jobs releasedat vertex are the
mode switch driver guard activities required to determine the new mode, the mode switch
driver function activities that update the ports of the new mode, and the task driver and

task activities of the possiblenew modesand mode times. More precisely:

De nition 6.16 (J[m; %], r[m; %], and t[m;]). Consider the nite state machine
F[m; 4] = (V;vo; E; D). We now de ne a function r[m; 4] that assignsto ead vertex v 2 V

a set r[m; J(v) of jobs releasal at v. If v has no successorsn the graph (V;E) then

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 191

rim; #J(v) = ;. Otherwise, if v contains a single path °, then r[m; £(v) = A[°;7][A[°;8].
Otherwise, by the remarks following De nition 6.13,v is a setf°1; ¢¢¢;°,g of paths, with
n , 2, endingrespectively in the conditional cortrol points cz; ¢¢¢; c,. One of thesecortrol
points hasthe form (m; £ £; m; 1); without lossof generality, supposethis cortrol point is c;.
Then:

[n
rim;2(v) = APu4[(APKSIL ARG TIL AL 8)
i=1
The set J[m; %] of jobs of F[m; 4] is szv r{m; z](v). The time t[m; £](j) required by a job
j = al¢q2 J[m;] is wcet(a). a

We now de ne the jobs d[m; #](v) p J[m; 4] due at a vertex v of F [m; 4]. If v is the
initial vertex vp, then no jobs have yet beenreleased,so dm; #J(v) = ;. Otherwise, let v°
be the predecessonf v. If j @" a[°; 2] for someactuator update activity a[°;2] 2 A[°; 2],
with © 2 v, then j 2 d[m;#](v). If j is a mode switch driver guard releasedat v° then
j 2 dim;#(v). If j is a mode switch driver function releasedat v® and this driver is the
driver for the mode switch from m[v9 to m[v], then j 2 d[m;#(v). Finally, if v has no
successorsthen all jobs previously releasedalong any path © 2 v are due. In particular, if
Co; 0¢C; ¢, is a path in v, and j is a task driver activity or a task activity in A[co; ¢¢¢; G; 7]
or Afcp; ¢¢¢; c;; 8] for somei 2 [0::nj 1],thenj 2 d[m; £](v). More precisely:

De nition 6.17 (d[m; £]). Considerthe nite state machine F[m; 4] = (V;vo; E;D). We
de ne a function d[m; 4] which assignsto ead vertex v 2 V a set d[m; £](v) p J[m; 4] of
jobsdue at v. If v = vg then d[m; #](v) = ;. Otherwise, let v®be the predecessoof v. Then
job j is a member of the set d[m;](v) if j 2 J[m; 4] and one of the following conditions
holds:

S
2 j @ a[°; 2] for someactuator update activity a[°;2]2 .,, A[°;2].
2 j 2r(v9 andj hasthe form g[¢ 4].
2 j2r(\9,j = h/t5],and v is the °%successomof v°.

2 v has no successorsand for somepath cp; ¢¢¢; c, 2 v:
il
i 2 Alco; ¢¢¢;ci; 7][Alco; ¢¢¢;ci; 8] o
i=0

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 192

The precedence relation A . and the guard function G[m;]

As in Chapter 4, we use precedencerelations to model the data °ow of a Giotto
program: if A provides data to AC then A precedesA®. Thus, the precedencerelation A ..
of the conditional scheduling problem P[m; 4] is the restriction of the relation @to the set
J[m; 4]. The guard function G[m; 4] simply assignsto ead vertex v the set of all mode

switch driver predicatesreleasedat v.

Denition 6.18 (A and G[m; £]). The precedenc relation Am;i is de ned asfollows:
j Ame jOif and only if j;j%2 J[m;4] andj @j° Consider the Tnite state machine
F[m; 4] = (V;vo; E; D). For any vertex v 2 V, G[m;](v) is the set of all jobs in r[m; £](v)
of the form g[¢ 4. o

An example

We now present an extended example, in which we use the construction of this
section to synthesize a complete scdhedule for the Giotto program of Section 6.2. We will
concerrate on the de nition of the guarded conditional scheduling problem P[my;0].

Paths, activities, and rest points. We rst give symbolic namesto somepaths of the
program of Section6.2. Thesepaths will soon be of interest in the construction of P[m; O].

1= (m1;0;+,my;0) 2= (M31;0;dm,; mM2; 0)
°3 = (My; 0;dms; M3; 0) 4 = (Mmy; 0;1,my; 0); (My; 15 £, my; 15)
°5 = (My; 0,2, my; 0); (My; 15 dm,; M2; 15) 6 = (M1; 0;+ my; 0); (My; 15 dm,; m3; 15)

7 = (Mq; 0; dm,; M2; 0); (M2; 30) °g = (My; 0; dmy; M3; 0); (M3; 30)

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING

193

path °| A[°;2] Al°; 3] Al°; 4] Al°; 5] Al°; 7] Al°; 8]

°1 | dam [°2:2] | s[®2;3] |Om, [°1: 4] Om 5 [°1: 4] dtym o, [°2; 7h dty;m 1 P23 7] | ta[%158];t2[1; 8]
°2 | dam 1[°2;2] | s[°2;3] |9m,[°2; 4] Om5[°2; 4] | hm 5 [°2; 5] | dtyim o [°2; 7] dtoim 5 [P2: 71 | ta[°2; 8] t2[°2; 8]
°3 | dam 1[°3;2] | S[°3;3] |Om,[°3; 4] Om5[°3;4] | hm 3 [°2; 5] | diyim5[°3; 7] diim 5 [°3: 71 | t2[°3; 8] t2[°3; 8]
4 S[°4; 3] |Om, [°4; 4] gm 3[°4; 4]

°s s[°5:3] |gm,[°5; 4] Im5[°5: 4] |hm , [°s5; 5]

6 s[°6:3] |gm,[°6;4]; Im3[°6: 4] |hm 5 [°6; 5]

°7 | dam ,[°7:2] | s[°7:3] diym,[°7: 7L A m ,[°7: 7] | ta[°7: 8] t2[°7; 8]
°g | dam 5[°s;2] | S[°s;3] diy:m3[®8: 7] di;:m 5[°8: 7] | ta[%s: 8] t2[%8; 8]
°12 |dam ,[°12;2]|S[°12; 3] diym o [°12: 7] dtyim o [P 125 71| t1[°12; 8] t2[°12; 8]
°13 |dam 5[°13;2]|S[°13; 3] diymg[°13; 7] dtyim 5 [0 135 71| t1[°13; 8]; t2[°13; 8]

Figure 6.5: The activities of paths ©1; ¢¢¢;°g, ©15, and °13.

9 = (my;0;+ my; 0); (My; 15,4 my; 15); (my; 30; 1, my; 30)

10 = (M1;0; 4 my;0); (My; 15+ my; 15); (My; 30, dm,; M2; 30)

°11 = (mg; 0,4 my;0); (My; 15+ my; 15); (My; 30; dm; m3; 30)

©12 = (m1; 0; £, mq;0); (M1; 15, dm,; m2; 15); (m2; 30)

©13 = (m1; 0; £, mq;0); (M1; 15 dm,; m3; 15); (m3; 30)

©14 = (m1; 0; dm,; m2; 0); (m2; 30); (m2; 60)

15 = (M1; 0; dm,; M3; 0); (M3; 30); (M3; 60)

16 = (My; 0; £ my;0); (My; 15, dm,; My; 15); (m2; 30); (M2; 60)

°17 = (M1; 0;£,my; 0); (M1; 15; dm,; M3; 15); (M3; 30); (M3; 60)

The activities of paths °;; ¢¢¢;°g, °15, and °13 are shawn in Figure 6.5. The amourts of

pending computation at ead of the paths °1; ¢¢¢;° 417 are:

p(°1) = p(°2) = p(°3) = O
p(°7) = p(°s) = 5
P(°12) = p(°13) = 5

P(°4) = p(°s) = p(°e) = 10
P(°9) = p(°10) = P(°121) = O
P(°14) = P(°15) = P(°16) = P(°17) = O

Paths ©1;95;°3, %9;%10;°11, and ©14; ¢¢¢; © 17 are rest points.

It may be veri ed that the Giotto program of Section 6.2 guarantees rest points

within 3. Starting with no pending computation at mode m; and mode time 0 mod 30,

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 194

f04;95;°30 £94;°5;,°0
(my;0; £, my;0) (my; 15 %, m;; 15)
(my; 0; dm,; My; 0) (my1; 15, dy,; my; 15)
(my; 0; dm,; M3; 0) (my; 15, dp,; mg3; 15)

£99;°10;°110
(my; 30+, my; 30)

(my; 30, dy,; M2; 30)
(m1; 30, dm,; m3; 30)

Figure 6.6: The nite state machine F[mg;0].

the amount of pending computation decreasego 0 again after encourtering at most three
subsequeh cortrol points, since®g;°10;°11 and °14; ¢¢¢; %17 are rest points. Similarly, it
may be seenthat starting with no pending computation at modesm, or ms and mode time
0 mod 30, the amourt of pending computation decreasego 0 after at most one subsequeh
control point.

The problem P[mg;0]: Recall from De nition 6.13that ead possiblevertex is a set
of paths. The possiblevertices which contain paths ©1; ¢¢¢;°,7 aref®1;°5;°309, f°4;°5; %60,
970, 1989, °9;°10;°120, T°129, f°139, 149, f°150, f°160, and f°179. The nite state
machine F[m3; 0] is shawvn in Figure 6.6. In the gure, ead vertex v of F[my; 0] is labeled
with the set of paths contained in v, and with the nal cortrol points of eat path in v.

In order to reducethe jobs in our exampleto a comprehensiblenumber, we simplify
the job setJ[my; 0] slightly by counting the task driversasbeingpart of the task invocations.
For example,instead of including in J[m; 0] the two separatejobs dm,t,[°1; 7] and t1[°1; 8],
we will include only the onejob t1]°1;8]. The jobs releasedat the vertices of F[my; 0] are
as follows:

r[ma;0](f°1;°2;°30) fOm,[°1;4]; Om,[°1; 4]; t1[°1; 8]; t2[°1; 8];
hm,[®2; 5]; t1[°2; 8]; t2[°2; 8]; hm,;[°3; 5]; t1[°3; 8]; t2[°3; 8l

fOm,[°4;4]; Om3[°4: 4], hm,[°5; 5], hm, [®6; 519

r[ma; 0](f°4;°5;°60)

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 195

r[ma; 0](f°7g) = ft1[°7; 8];t2[°7; 8lg r[ma; 0](f°gg) = ft1[°g; 8]; t2[°s; 8l9

rfmq; 0](f°9;°10;°110) = ; rfmq; 0](f°120) = ft1[°12; 8], t2[°12; 8lg
r[mq; 0](f°139) = ft1[°13;8];t2[°13;8]g r[m1;0](f°140) = ;
rmq; O](f°159) = ; r[my;0](f°160) = ;

r[mgq; 0](f°179) = ;

Sincein this example we treat task driver jobs as being included in the task invocation
jobs, the worst-caseexecution times of tasks t; and t, are ead 11, since eat task has a
worst-caseexecutiontime of 9 and ead task is invoked with a driver that hasa worst-case
executiontime of 2. Thus, the times required by jobs in J[my; 0] are:

tfmy; 0](t2[¢ q) = t[my; 0](t2[¢ q) = 11 t[my; 0](9m, [€ @) = t[m1;0l(gm,[6) = 1
tfmy; 0](hm, [@) = t[my; O](hm,[€) = 5

The due function d[m1; 0] is as follows:

d[ma; 0](f°1;°2;°30) = ;
dmy; 0](f°4;°5:°69) = fOm,[°1: 4] Gms[°1; 410
d[ma; 0](f°79) = fgm,[°1; 4] Ims[°1: 4] hm, [°2: B ta[°2; 8lg
d[my; 0](f°8Q) = fgm,[°1; 4] Ims[°1: 4] hm, [°3: B t2[°3; 8lg
dimy; 0](f°9;°10;°119) = FOm,[°4; 4] Oms[°4; 4] t2[°1; 8]; t2[°1; 8]g
d[m1; 0](F°129) = f0m,[°4; 4], Gma[°4: 4] hm, [°s; 5T t2[°1; 8]g
d[m; 0](F°130) = fOm,[°4; 4], Gma[°4: 41 hm,[°6; ST t1[°1; 8]g
dima; 0](f°140) = fta[°7; 8] t2[°7; 8] t2[°2; 8]g
dlmy; 0](f°150) = fta[%s; 8] t2[%; 8] t1[°3; 89
dimy; 0](f°169) = ft2[°1; 8]; ta[°12; 8]; t2[°12; 8]g
dlm1; 0](f°170) = ft1[°1; 8]; ta[°13; 8]; t2[°13; 8]g

The precedencerelation A, .o cortains the following precedenceconstraints:

hm,[°2; 5] Am,.0 t1[°2; 8] t2[°2; 8] Am, .0 t1[vz; 8] hm,[°3; 5] Am, 0 t2[°3; 8]
t1[°3; 8] Am,:0 t2[°s; 8] t1[°1; 8] Am,:0 t2[°13; 8] t2[°1; 8] Am,:0 t1[°12; 8]

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 196

s Gm.[°1; 4]
da;m1 ms ° '4
||| poren

1: jump to 2,4, 0r5 Om, [°4; 4]

s ‘ - olaid]

2: t1[°1;8] | t2[°1;8] % jump to 3,6,0r7

dams T F SF t5[%2; 8]

4 Pim [°2:5] t1[°2; 8] t5[°2; 8] t1[°7; 8] t2[°7; 8] —= jump to 8
da; S
a;ms T F C t1[°3: 8]
5: hm [°3;5] t2[°3; 8] t1[°3; 8] t2[s; 8] t1[°s; 8] — jump to 9
am, s
1
6: hm [°5:5] t1[°1; 8] t2[°1; 8] t1[°12; 8] t2[°12; 8] = jump to 8
da; s
1
7: hm°6:5] t2[°1; 8] t1[°1; 8] t2[%13; 8] t1[%13; 8] > jump to 9
da:mz T F S
8: t1 t2 — jump to 8
da;m3 T F S
9: t2 t1 — jump to 9
\ \ \ \ \ \ \ \ \ \ \ \ \
0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 6.7: A complete schedule for the Giotto program of Section 6.2.

Finally, the guard function G[m1; 0] is as follows:

G[my; 0](f°1;°2;°30)
G[my; 0](f°4;°5;°60)

fOm,[°1; 4] Im;[°1; 410
fOm,[°4; 4], Im;[°4: 410

For eadth other vertex v of the nite state machine F [m1;0], G[my;0](v) = ;. This completes

the description of the conditional stheduling problem P[m71; 0].

A schedule for the program of Section 6.2. Algorithm 6.1 generatesa total of three
scheduling problems, P[m3; 0], P[m2; 0], and P[m3;0]. The nite state machines F[my; 0]
and F [m3; 0] each have a vertex setV = fv;v%, and an edgeset cortaining the single edge

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 197

v ! VO Becauseof the simple nature of P[m»;0] and P[m3; 0], we omit the description of
these problems.

A complete schedule for the program of Section 6.2 is shown in Figure 6.7. Lo-
cations 1 through 7 show the guarded schedule S[m1;0]. The program begins at loca-
tion 1. After executing the mode switch driver guard activities gm,[°1;4] and gm,[°1; 4],
the program either stays in m1 (location 2) or branchesto m, or mz (locations 3 and 4,
respectively), all at mode time O.

At location 2, the schedule executestasks t; and t, ead for 6 time units. After
executing the mode switch guards activities gm,[°4; 4] and gm,[°4; 4], the program either
stays in m; (location 3) or branchesto m, or ms (locations 6 and 7, respectively), all at
mode time 15.

At location 3, the sdhedule completestasks t; and t,, reades a rest point, and
jumps bad to location 1. At location 6, the schedule updates the mode ports of mode m»
using the mode switch driver function hpy,[°s;5]. The sdedule then completestask t;
beforeit is due at time 28. At time 31, the schedule completestask t», then executesthe
invocations of t; and t, of mode m, at mode time 0. Location 7 is similar to location 6,
with the rolesof t; and t, reversed.

Location 4 (respectively, location 5) represens a switch from mode m; to mode m»
(respectively, m3) at mode time 0. Location 8 (respectively, 9) represeins the execution
of m, (respectively, m3), starting at mode time 0, with no computation pending. We omit

the descriptions of thesefour locations.

6.4.5 The running time and optimalit y of Algorithm 6.1
The running time of Algorithm 6.1

We now analyze the running time of Algorithm 6.1. Note that the number of
iterations of the while loop in lines 4 through 11 is equal to the number of iterations of
the for loop in lines 13 through 18. We rst bound this number from above, and then we
considerthe time required by a single iteration. For eadh mode m, the number of possible

valuesfor + such that (m; £) may be an elemen of Frontier is

P P P

(1 692swichesm] | T (1 :¢921nvokesm] ! T (1 :692 Updatesim] !

We therefore obtain the following:

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 198

Prop osition 6.19. For any Giotto program G, the number of iterations of the while loop
in lines 6 through 11 of Algorithm 6.1, and of the for loop in lines 13 through 17, is at most
P "P . I+ P I+ P [! (6.1)
m2Modes (! ;692 Switchegm] * (! ;692 Invokegm] * (! ;692 Updategm] * -
The readerwill note that (6.1) is exponertial, but pseudomlynomial, in the description of
the program G.

We now discussthe time required by a single iteration of lines 4 through 11 and
lines 13 through 17. If a Giotto program G guarantees rest points within n, and has at
most k mode switchesper mode, then by the remarks following De nition 6.15,the number
of vertices of the problem P[m; 4] is O((k + 1)"*1). It may be veri ed that the size of the
ertire description of P[m; #] is O(2f (™IC)), whereGj is the sizeof the description of G, and
f (n; jGj) is a polynomial function of n and jGj. Unfortunately, it is possibleto construct
a class of Giotto programs such that, for any program G in the class, the minimum n
such that G guararteesrest points within n is -(2 1¢1).3 For such a program G, sincen is
exponertial in jGj, and the size of P[m;] is exponertial in n, the number of vertices of
P[m; 1] is doubly expnential in the sizeof G. In particular, for sud a program G, steps7
and 14 require time doubly exponertial in the sizeof G. This is, of course,an undesirable
feature of Algorithm 6.1. It would be even worseif the running time of Algorithm 6.1 could
be, say, triply exponertial in the size of G. We now prove that the running time is only
doubly exponertial, by bounding the size of P[m; 4]. To determine this bound, we need
to calculate, given a Giotto program G, an upper bound on the smallest n suc that G
guaranteesrest points within n. We now de ne the two quartities of interest in this upper
bound:

De nition 6.20 (T, similar control points, C). For this section,de ne T to be the
P
maximum, over all paths consisting of a single control point c, of a[62A [d] wcet(a). Note

that T is alsoequalto the maximum, over all paths °, of a[642A [olwcet(a).

3Such a class of programs may be obtained by modifying the program of Section 6.2 as follows. First,
multiply the period of mode m; and execution times of the tasks of mode m1 by a positive integeri. Second,
modify modes m, and ms so that they invoke tasks and update actuators that do not need any results
computed in mode m1, and sothat m, contemplates a mode switch to ms with frequency 1 (and vice versa).
Modes m; and m3 retain their original period 30. The result is that, upon switching to mode m, or ms at
time i ¢15, the total remaining computation time of tasks t; and t, will be proportional to i, requiring O(i)
additional control points before no computation is pending. The size of the description of such a modi ed
program is O(log i) bits longer than the description of the program of Section 6.2, but whereasthe original
program guaranteed restpoint within O(1), the modi ed program guaranteesrest points within O(i).

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 199

Two unconditional control points (m1; ;) and (m3y; &) are similar if m; = m, and
+ = % mod ¥Jm;]. Two conditional cortrol points (my;+;d;;m$;+) and (my, &, da, m9,
+J) are similar if my = my, £ = + mod ¥jmy], d; = dp, m§ = m9, and 0 = 8 mod ¥fm9)].
We write ¢; » ¢, if control points ¢; and ¢, are similar. For this section, we let C be the
number of equivalenceclassesof » . a

We will prove below that if a Giotto program G guararteesrest points, then G guarantees
rest points within (C¢T + 1)C (Proposition 6.22and Corollary 6.24). It may be veri ed that
the quartities T and C are eadh O(29UC)), where g(jGj) is a polynomial function of jG;.
From the discussionfollowing Proposition 6.19, it follows that the size of the description of
P[m; 4] is O(Zzh(jG”), where h(jGj) is a polynomial function of the size of the description
of G. SinceAlgorithm 5.4runsin time polynomial in the sizeof its input P[m; 4], it therefore
follows that the running time of Algorithm 6.1 is O(22i“G”), where i(jGj) is a polynomial
function of the size of the description of G.

We now set about proving Proposition 6.22 and Corollary 6.24. We will assume
that each modetime *is a positive integer; more precisely we assumethat for each mode m,
foread 2 Qnz>9, Clm; 4 = ; 4 We st introduce seweral de nitions that will be useful

in our analysis.

De nition 6.21 (simple path, cycle, p”). Let © = cp; ¢¢¢; cy, be a path. We say that °
is simple if, for all i;k 2 [0::mj 1] such that i 6 k, ¢; and ¢k are not similar. We say
that © is a cycleif ¢y and ¢y, are similar. We de ne p° to be the suprenmum, over all paths ©,
of p(°). Note that p® may be in nite. o

We now shaw that for a certain classof well-formed programs: (1) the maximum
amount p® of pending computation is nite; (2) there is some some simple path ° suc
that after following © the amount p(°) of pending computation is the maximum p°; and
(3) p°- C¢T.

4This assumption may be removed by multiplying eac worst-case execution time and each mode period
of G by the product - of all frequenciesof G. The resulting program G°is only polynomially longer than G,
sothat Algorithm 6.1 runs in doubly exponertial time on input G° Moreover, the output of Algorithm 6.1
can be used for the original program G: if G°is reported to be unschedulable, then G is unschedulable;
otherwise, the guarded schedules produced for G° can be usedfor G by dividing ead numerical quantity in
the scheduleshy - .

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 200

Prop osition 6.22. Supposethat

for all simple cyclescg; ¢¢¢; Cy;

0 aleq2a [coibemn) WEEH(@) - dur (Co; 60¢; Cm)

(6.2)

Then (1) p < 1, (2) there exists a simple path © suc that p® = p(°), and (3) p° - C¢T.

Proof. (1) We rst shav that p® < 1 if condition (6.2) holds. Suppose, to obtain a
cortradiction, that p® = 1 . Then there exists a sequenceof paths °; °1; ¢¢¢ such that, for
i 229 (1) p©) > i and (2) there is no path © such that p(°) > i and ° contains fewer
cortrol points than °;. Let c;o; ¢¢¢; ¢, be the sequenceof cortrol points forming °;. Note
that p(ci.o; ¢¢¢;cix) > Ofor k 2 [1::m;j 1] (otherwise, ® = Cik+1;¢¢C;C:m, would be a
shorter path with p(°) > i).

Note that the path °c¢ must have length at least C + 1, and thus that there must

be two similar cortrol points ¢» c®appearingin °cqr, sothat
°ca = Ceero; 00¢; Coark; C;00¢;C coerr; 00¢; Coarime o

Let the path °%be °c¢ with the cycle c; ¢¢¢; c® removed, i.e.,

°0= cogro; 08¢, Coark; Coarr; O0¢; Coarmeer

Using condition (6.2), it may be veri ed that p(°®% ., p(°ce), cortradicting the de nition
of °c¢ asthe shortest path © suc that p(°) > C ¢T. We have establishedthat p® < 1 .

(2) Let © = cg; ¢¢¢; ¢y be any path sudh that p(°) = p° and for no shorter path ©°
is p(°9 = p°. It may be veri ed that p(co; ¢¢¢;c) > Ofor k 2 [L:: m 1]. Supposethat ©
is not simple. Then there must be two similar control points ¢; » ¢, with i; k2 [0::mj 1],
andi < k; sothat

© = Co; ®CC; Cij 1; Gi; GCC; C; Cysn; CCC; Cm

Let the path °0peo with the cycle c; ¢¢¢; ¢ removed, i.e.,

°00= ¢p; ¢0¢;Gij 1; Cs1; 00C; Cmy

Using condition (6.2), and the fact that no pre x of © cortaining at least two vertices is

a rest point, it may be veried that p(°®% ., p(°), cortradicting our assumption that no

5

path °0shorter than © hasp(®°9 = p°. We have establishedthat there exists a simple path
such that p(°) = p°.

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 201

(3) Consider any simple path © = cp; ¢¢¢;cy, such that p(°) = p°. Note that
m - C. Further,
o PmiP
PC) - 207 aleqea [coreen WeEH@) - C €T

Thus, p” - C¢T. O

We now prove a necessaryand sutcient condition for a program G to guarantee

rest points. The proof establishesour desiredresult, Corollary 6.24, below.

Theorem 6.23. A Giotto program G guaranteesrest points if and only if condition (6.2)

holds and further:

for all simple cyclescg; ¢¢¢; ¢, sud that
M0 2642 [co00mn] WCEH(@) = dur (Co; 60¢; Cm)
for all simple paths c3; ¢¢¢; c% co
there existsan i 2 [0:: m] sud that p(c$; ¢¢¢; c% cp ¢¢¢;) = 0

(6.3)

Proof. ()) Supposethat condition (6.2) doesnot hold, i.e., for somecycle cp; ¢¢¢; Cy,

Xi 1 X
weet(a) > dur(cp; ¢¢¢; cm)
i=0 a[¢q2A [co;¢CEm]

Fori 2 220, dene the path oi asfollows:
°! = (cg; 0¢; Cm; 1)’ o

It may be veri ed that no pre x of °' that consistsof at leastm + 1 cortrol points is a rest
point. Thus program G doesnot guarartee rest points.

Supposethat condition (6.3) doesnot hold. For i 2 Z>°, dene the path °' as
follows:

ol = cg; ¢6¢; c%; (Co; 6¢¢; G 1)'Cm

It may be veri ed that no prex of°' cortaining at least " + 2 cortrol points is a rest point.
Thus program G doesnot guarantee rest points. We have establishedthat if G guarantees
rest points, then both (6.2) and (6.3) must hold.

(() Supposethat (6.2) and (6.3) hold. Considerany path © = cg; ¢¢¢; ¢y, Where
m = (p°+ 1)C. Since® haslength (p°+ 1)C + 1, ° cortains at least p° + 1 similar cortrol

points c¢§ » ¢¢¢» cgnﬂ, ie.,

° = cp; ¢0¢; CY; 60¢; CD; 60C; Coy g 5 G0C; Cy

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 202

We will shaw that there existsa pre x °%of° sud that °Yis a rest point and cortains at least
two cortrol points. (From this fact, it will follow that if a Giotto program G guaranteesrest
points, then G guaranteesrest points within (p®+ 1)C (Corollary 6.24,below.)) To obtain
a cortradiction, supposethat no suc path °%exists. Remove from path © all cyclesthat lay
between adjacert similar cortrol points c® and c”,,, for i 2 [1:: p“], and all cyclesprior to
cortrol point c?, thereby obtaining a path °% Note that the cyclesc? ¢¢¢;c%,, in path %
are all simple, asis the pre’x co; ¢¢¢; c9 of °%° It may be veri ed that, by soremoving cycles
from ©, condition (6.2) guaranteesthat the resulting path °°has the property that there
is no pre x °9%%f 0 0gych that ©%%9s a rest point and contains at least two cortrol points.
Let cf,; ¢¢¢; ¢y, denotethe vertices of the simple cycle ¢ ¢¢¢; ¢, . From condition (6.3)
it follows that for eadh i 2 [1:: p°],
P P

1 afegen (o, oerg, 1 WORK(@) < dur (cGy; 68¢; ciy) (6.4)

Note that p(co; ¢¢¢; cf) - p°. From (6.4), and the fact that all executiontimes and durations
are integral, every subsequen traversal of a cycle after following the pre x c3; ¢¢¢; c§ of ©
decreaseshe amourt of pending computation by at leastone. More precisely fori 2 [1 :: p°]
there exists a path °; sud that (1) co; ¢¢¢;c” is a proper pre x of °;, (2) °; is a pre x of
Co; ¢¢¢; ¢, , and p(°) - maxfo;p(co; ¢¢¢;c?) j ig. Thus, p(°x) = 0. We have found a
pre x ©0%%Gf 200 namely ° e, sudh that ©%s a rest point and cortains at least two cortrol
points; this is a contradiction. We conclude that our supposition is false, i.e., that there
exists a pre x °%of © such that °9 cortains at least two cortrol points and p(°9 = 0. It

follows that program G guararnteesrest points. O
The following corollary follows directly from the preceding proof:

Corollary 6.24. If a Giotto program G guarartees rest points, then G guarartees rest
points within (p°+ 1)C.

The optimalit y of Algorithm 6.1

Though Algorithm 6.1 has a doubly exponertial running time for some Giotto
programs, it is optimal, in a sensethat we now discuss. For any Giotto G program satisfying
conditions I, Il, and Il of Section 6.4.1, Algorithm 6.1 answers the three questions of
Section 6.4.2. To seethis, suppose that, given program G, Algorithm 6.1 generatesa

feasibleguarded schedule S[m;] for ead guarded conditional scheduling problem P [m; 1]

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 203

in Problems Each of the problems P[m; 4] captures the constraints in the de nition of
"-feasibility in Section6.4.2. Thus, the sthedulesS[m; %] together are an "-feasibleschedule
for some" > 0. Further, aslong as a program G satis es conditions I, I, and IIl and
possessean "-feasibleschedule for some" > 0, the optimum "° can be determined from the
program itself: "” is the maximum, over all paths ® consistingof just onecortrol point, of the
sum of the worst-caseexecutiontimes of actuator jobs and sensorjobs of © (whichever sum
is greater). Finally, it may be seenthat the schedulesS[m;] are an ""-feasible schedule.

We summarize these obsenations in the following theorem:

Theorem 6.25. Questions6.9, 6.10,and 6.11 may be solved asfollows. Let G be a multi-

mode Giotto program satisfying conditions I, 11, and I1l. Then

1. G has an "-feasible schedule for some" > 0 if and only if Algorithm 6.1 generatesa

winning schedule S[m; 4] 2 Solutions for ead problem P[m; £] 2 Problems

2. If G hasan "-feasible schedule, tnhen "% is the maximum, over all pathg ° consisting

P P
of a single control point, of max — pop o.g) WCEHA); pop 0.3 WCEHA) .
3. If Algorithm 6.1 generatesa winning schedule S[m; 4] 2 Solutions for ead problem
P[m; 4] 2 Problems then Solutions is an "°-feasible schedule.
Determining whether a program guaran tees rest points

In this section, we present an algorithm for determining whether a Giotto pro-
gram G guaranteesrest points. It may be showvn, in a manner very similar to the proof of
Theorem 6.23, that G guaranteesrest points if and only if there exists no path cg; ¢¢¢; c,

sud that the following four conditions hold:
(1) ¢;¢ee;c, is acyclefor somei 2 [1::n].
(2) Both cg; ¢¢¢; ci+1 and ¢; ¢¢¢; c, are simple.
(3) p(co;¢e¢;c)> Oforall ~ 2 [1::n].
(4) p(co; ¢6C; ci) - p(Co; CCCE; Cn).

Conditions (1) through (4) suggestthe following naive algorithm for determining whether a
Giotto program G guaranteesrest points. First, enumerate all sequence®f control points

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 204

Co; ¢¢¢; c,, with n - 2Cj 1, where C is de ned in De nition 6.20. Then, for ead suc
sequencechedk whether it is a path, and chedk whether conditions (1) through (4) hold.
Sincethere are morethan C! sequences$o be considered,this naive algorithm is prohibitiv ely
expensive. Algorithm 6.2 does slightly better: unlike the naive algorithm, Algorithm 6.2
has the advantage that the number of paths it exploresis no greater than the number of
paths explored by Algorithm 6.1. Algorithm 6.2 can therefore be usedat no additional cost
over that of Algorithm 6.1.

Algorithm 6.2 maintains two sets of paths: Explored, a set of paths known not to
contain a path satisfying conditions (1) through (4), and Frontier, a set of paths one of
which may satisfy these conditions. Each path °© = cp; ¢¢¢; ¢, in Frontier will satisfy two
invariants: rst, that p(co;¢¢¢;c) > Ofor alli 2 [1::nj 1]; and second,that if © satis es
condition (1), it also satis es (2). Initially , Explored = ; and Frontier is the set of paths
c;c®such that ¢ 2 C[start; 0] and c®is a successornf ¢ (lines 2{3). As long as some path
remains to be tested, i.e., Frontier 6 ; (line 4), such a path ° = cg; ¢¢¢; c, is removed
from Frontier and addedto Explored (lines 5{7). If path ° is a rest point, then it cannot
satisfy condition (3), nor can an extensionof © satisfy (3). Howewer, any unexplored path
cn; c® where ¥ is a successorof ¢,, may satisfy conditions (1) through (4). We therefore
add any suc path c,;c®to Frontier if p(c,;c® > 0, maintaining our invariants. If path ©
is not a rest point, then by the rst invariant, condition (3) is satis ed. In line 11, we
ched if conditions (1) and (4) are satis ed. If (1) is satis ed, then by our secondinvariant,
condition (2) is also satis ed. Thus, in line 14, we declarethat G doesnot guararntee rest
points. Otherwise, we add ead unexplored path °;c satisfying the secondinvariant to
Frontier. The algorithm terminates either when a path satisfying (1) through (4) is found,

or when all candidate paths are in Explored.

6.5 Conclusion

This chapter dewveloped an algorithm for scheduling a classof multi-mo de Giotto
programs on a single processor.Though this chapter usedthe guarded conditional schedul-
ing model of Section 5.2.4, some of the other models of Chapter 5 could be used under
certain circumstances. If mode switch guards and functions require negligible computation
time, then the precedence-constrainedanodel of Section’5.2.3would be appropriate. Rather

than createproblemsP [m; £] whosesizeis doubly exponertial in the sizeof the input Giotto

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 205

Algorithm 6.2 Algorithm for testing whether a Giotto program guararnteesrest points.
1. Algorithm Guarantee(G: Giotto program)

2: Frontier := the set of paths fc;c%j ¢ 2 CJ[start; 0] and c®is a successonf cg

3: Explored := ;

4: while Frontier 6 ; do

5 let © = cg; ¢¢C; c, be any member of Frontier in

6 Frontier := Frontier nf°g
7 Explored := Explored [f°g
8
9

if p(°) = Othen
let S bethe set of paths fc,; c®j Cis a successonf ¢,g in

10: Frontier := Frontier [(S nExplored)

11: else if ¢y = ¢ for somei 2 [0::nj 1] and p(co; ¢¢¢; i) - p(co; ¢¢¢; cy) then
12: Report that G doesnot guarantee rest points, and return.

13: else

14: for all paths°®= °;c%do

15: if ©02 Explored and either °°doesnot satisfy (1) or satis es (2) then
16 Frontier := Frontier [f°%

17: Report that G guaranteesrest points, and return.

program G, onecould create DAG sceduling problemswhosesizeis only singly exponertial,
and then use an exponertial-time algorithm to nd winning strategiesfor these problems.
Finally, if a Giotto program has xed deadlines, even in the presenceof mode switching
and precedenceconstraints, then a xed-deadline conditional scheduling model could be
used. To usea xed-deadline model (respectively, a DAG model), the model of Section 5.4
(respectively, Section5.3.2) would have to be elaborated to include precedenceconstraints.

We now summarizethis chapter. Section 6.2 preserted a multi-mo de Giotto pro-
gram in which the deadlinesof the tasks vary, depending on the mode-switching behav-
ior of the program. This program motivated the need for varying-deadline scheduling of
multi-mo de Giotto programs. Section 6.3 preseried preliminary concepts necessaryfor
the scheduling algorithm of this chapter. Finally, Section 6.4 dewveloped the scheduling
algorithm. Section 6.4.1 de ned a classof Giotto programs for which the algorithm cor-
rectly determineswhether feasible schedulesexist. Next, Section 6.4.2 de ned a notion of
"-feasibility for multi-mo de Giotto programs. Sections6.4.3 and 6.4.4 preserted the algo-
rithm. Givena Giotto program G, the algorithm generatesa guardedconditional scheduling
problem P[m; 4] for eadh mode m and mode time + sudc that an execution of G may be at
mode m and mode time + with no pending computation. The algorithm then attempts to

produce a sthedule for ead generatedproblem P[m; 4]. Finally, Section6.4.5discussedthe

CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 206

running time and optimality of the algorithm. Though the running time of this algorithm
may be doubly exponertial in the sizeof its input program, the algorithm correctly deter-
mines whether a multi-mo de Giotto program has an "-feasible schedule for any " > 0, and
if so synthesizesan "“-feasiblesdchedule, i.e., a schedule with minimum jitter "°.

207

Chapter 7

Multi-pro cessor Giotto scheduling

7.1 Intro duction

This brief chapter studies the problem of scheduling Giotto programs on multiple
processors.We show that two of the abstract Giotto scheduling problems of Section 2.4.1
are strongly NP-hard. Next, we review the literature on distributed sdtheduling (parallel
and job shop models). We will seethat it is NP-hard to decide whether instancesof even
quite restricted modelshave feasiblesdedules. Thus, the hardnessof multi-pro cessorGiotto
scheduling is not somefact peculiar to Giotto, but is rather a feature commonto distributed
scheduling problems.

7.2 Hardness of multi-pro cessor Giotto scheduling

We now de ne two sdcheduling problems that we will shov to be strongly NP-
hard. The problem Abstract Giotto schealuling is, informally, the problem of nding a
mapping annotation host sothat a Giotto program G may be feasibly scheduled, given a
platform speci cation P and ajitter tolerance"”. The problem Host-assignel abstract Giotto
schaluling is, informally, the problem of nding a feasibleschedulefor a Giotto program G,

given a mapping annotation host, a platform speci cation P, and a jitter tolerance".

De nition 7.1 (Abstract Giotto scheduling, Host-assigne d abstract Giotto sched-
uling). Let G be a Giotto program, let P be a platform speci cation, and let " be a jitter
tolerance. The tuple (G; P;") is feasibleif there existsa schedule S such that (1) S conforms

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 208

to ", and (2) for every execution E, S realizesE on the platform speci ed by P. The set
Abstract Giotto schealuling is f(G;P;") j (G; P;") is feasible.

Let host be a complete mapping annotation for G on P. The triple (G;P;"; hosf)
is feasible if there exists a schedule S such that (1) S conformsto ", (2) S conformsto
host, and (3) for every execution E, S realizesE on the platform speci ed by P. The set
Host-assignel abstract Giotto scheluling is f (G; P;"; hosf) j (G; P;"; hos)) is feasibleg. =

In Sections7.2.1and 7.2.2, we will show that these problems are strongly NP-hard.

7.2.1 Hardness of Abstract Giotto scheduling

We show that Abstract Giotto scheluling is strongly NP-hard via a reduction from
the strongly NP-hard problem 3-Partition [GJ75]. After de ning 3-Partition , we give the

reduction.

De nition 7.2 (3-partition). An instance of 3-partition is a tuple (m;c;s), wherem 2
Z>9 is a positive integer, c 2 2> % is a size constraint, and s : [1:: 3m] ! Z>9 is a function
that assignsto ead item i 2 [1::3m] a size s(i) 2 Z>°. The function s must satisfy the
conditions that for eadh i 2 [1::3m], c4 < s(i) < ¢=2, and P l?’fi s(i) = mc. A partition
is a set of m disjoint setsS;; ¢¢¢; Sy, such that -, S = [1::3m]. A partition is feasible
if, foreahk 2 [1::m], ,,5 - C The set3-Partition isthe setf(m;c;s)j (m;c;s) hasa

feasible partition g.* a
Prop osition 7.3. Abstract Giotto scheluling is strongly NP-hard.

Proof. We reduce 3-Partition to Abstract Giotto scheluling by de ning a polynomial time
function that, given an instance (m; c;s) of 3-partition, producesatuple (G;P;") such that

(m; c;s) has a feasiblepartition if and only if (G;P;") is feasible.

2 Let n = 3m. The program G is de ned as follows. The set Tasksis ft- j ~ 2 [1:: n]g.
Each task t- has a single input port i+, and a single output port o-. The program G
has one sensorport s, and one actuator port a. For ead task t- there is a driver d
that reads s and writes i-. There is an additional driver d, that reads the ports

01; ¢¢¢; 0, and writes a. The program G has a single mode m®, with period c+ 2. For

Yt may be ver}'b_ed that a partition is feasible if and only if the partition satis es the condition that for
eahhk2[1l:m], ,,5. = c This equivalent condition is usedin the standard de nition of 3-Partition .

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 209

ea i 2 [1::n], the task invocation (1;t-;d") is in InvokedmY. Finally, the actuator
update (1;d,) is in Updategm?.

2 The platform speci cation P is de ned as follows:

{ H="fhjji2[1: m]g.
{ For each " 2 [1: 3m], weet(t:) = s(°), and wecet(true(d-)) = wcet(false(d-)) = 0.
Further,
weet(read(s)) = weet(true(dy)) = weet(false(dy)) = 1

{ wect(p) = 0 for eacth p 2 Ports.
2 Finally, " = 1.

It may easilybeveri ed that (m; c;s) hasafeasiblepartition if and only if (G; P;") is feasible
(a feasiblepartition may be usedto construct the desiredcomplete mapping annotation host,

and vice versa). O

7.2.2 Hardness of Host-assigne d abstract Giotto scheduling

We now show that Host-assigneé abstract Giotto schaluling is strongly NP-hard.
We do so by giving a reduction from a °ow shop scheduling problem. A °ow shopis a set
of m hostshy; ¢¢¢; hy,; for the problem with which we will be concerned,m = 3. A setofn
jobs ji;¢¢¢; |, is to be executedon these hosts. Each job j; has m subjobs ji.1; ¢¢¢;jim .
Subjob ;.1 executeson host hy, subjob ji.» on host hy, and soon. With ead subjob jx is
assaiated a number t(j;k); jixk must executefor t(jix) time units. The order of execution
of the subjobs must satisfy the precedenceconstraint jix A jix+1, for eadi 2 [1::n] and
eahh k 2 [1::mj 1]. In the problem with which we will be concerned,preemptions are
allowed at arbitrary times, and the goal is to chedk whether there is a schedule in which
every job completesbeforea giventime c. We now preciselyde ne the °ow shop scheduling

problem with which we will be concerned.

De nition 7.4 (F3j pmtn j Cmax). An instance of F3j pmtn j Crax is a tuple (J;t; c),

where:

2 The set J is a nite set, called the set of jobs. Let n = jJj, and for simplicity,
let j1;¢¢C;j, be the membersof J. Eacdh job ji is composedof three subjobs, j:1,

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 210

jk:2, and j.3. There are three hosts h1; hz; hz on which subjobs execute. Subjob j -
executeson hosth-, for * 2 [1:: 3]. Further, subjob j. cannotstart until subjob j; 1

completes,for ~ 2 [2:: 3].
2 The function t : J £ [1::3]! Z:© assignsto ead subjob jx-~ an exeution time
tG;)
2 The deadline c2 Z: % is a time beforewhich all jobs must complete. a
We now de ne (1) what a schedule for an instanceof F 3 j pmtn j Crhax is, (2) what

a feasiblesdcheduleis, and (3) the set Flow shop consisting of those instancesof F 3 j pmtn j

Cmax that have feasiblesdcedules.

De nition 7.5 (schedule, feasible schedule, Flow shop). A schealule for an instance

(J;t;¢) of F3j pmtn j Chax is a pair (I;€), where:

2 The set| is a set of intervals of the real line. Each interval must be nonempty and
of the form (a;b), i.e., left- and right-open. Distinct intervals must not overlap, i.e.,
if i;i%21 andi 6 i%heni\ i%= ;.

2 The function e : | £ [1::3]! J assignsto ead interval i 2 | and host number
"2 [1:3]ajob e(i;) 2 J. Intuitiv ely, if e(i;) = jk, then subjob j. is executedon
host h- during the interval i. For ajob j 2 J and a host number ™ 2 [1:: 3], we let

I[j;] bethe setfi 21 je(i;) = jg of intervals that executejob j on host h-.

We say that schedule (1 ; €) is feasible if the following conditions hold:
P
2 Foreac jobj 2 J and eath host number ™ 2 [1:: 3], t(j; ") = @b2i-1Pi &

2 For eath job j 2 J, each host number ~ 2 [1:: 2], eadh interval (a-;b) 2 I[j;"], and
ead interval (a+1;b) 2 1[j; + 1, b - a41.

2 For eadh interval (a;b) 2 1,b- c.

For the purposesof this section, the set Flow shop is f(J;t;¢) j (J;t;¢) has a feasible

scheduleg. o

Flow shop was shown to be strongly NP-hard in [GS78]via a reduction from 3-
Partition . We now show that Host-assignel abstract Giotto schealuling is strongly NP-hard
by giving a reduction from Flow shopto Host-assignel abstract Giotto scheluling.

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 211

Prop osition 7.6. Host-assigne abstract Giotto scheluling is strongly NP-hard.

Proof. We reduce Flow shop to Host-assignél abstract Giotto scheluling by de ning a
polynomial-time function that, given an instance (J;t;c¢) of F3 j pmtn j Cnax, produces
a tuple (G;P;"; host) such that (J;t; ¢) has a feasible schedule if and only if (G;P;"; hosi)

is feasible.

2 The program G is de ned just asin the proof of Proposition 7.3.
2 The platform speci cation P is de ned as follows:

{ H = fhy;h3g. (The network of the Giotto problem will take the place of the

host h, of the °ow shop problem.)

{ Foread " 2 [1:n], weet(true(d-)) = wcet(false(d-)) = t(j+;1). Further,
weet(read(s)) = weet(true(dy)) = weet(false(dy)) = 1

For eadh * 2 [1:: n], weet(t:) = t(j-; 3).
{ For ™ 2 [1:n], wect(i~) = t(j-;2).

2 Finally, the function hostis de ned as follows:

{ hosf{(read(s)) = h;.
{ For " 2 [1:: n], hosf(true(d-)) = host(false(d-)) = hj.
{ host(true(dy)) = host(false(dy)) = hs.
{ For ™ 2 [1:n], hosf{t-) = hj.
It may be veri ed that the instance (J;t; ¢) of F3j pmtn j Chax has a feasible schedule if

and only if (G; P;"; hos)) is feasible (the feasibleschedule for the °ow shop problem may be

usedto construct a feasiblesdedule for the Giotto problem, and vice versa). O

7.3 Parallel and job shop scheduling models

The NP-hardnessproofs of Section 7.2 are two among many in the parallel and

job shop scheduling literature, which we brie®y review in this section. Most parallel and job

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 212

shopsceduling problemsare NP-hard [LLKS93], and the presenceof precedenceonstraints
and releasetimes often makes a model intractable. The structure of this section is as
follows. Section 7.3.1 discussesthe relevance of the ® j ~ j ° notation for classifying
the dixcult y of scheduling problems. Section 7.3.2 examinesjob shop scheduling models.
Finally, Section 7.3.3 examinesparallel scheduling models.

7.3.1 The ®j j° notation revisited

The ®] j ° notation introducedin Chapter 4 is commonly usedto classify the
computational complexity of scheduling problems[LLLK82]. The 4536sceduling problems
formed by all combinations of ®, , and ° comprisea directed graph with the property that
P ! P%mpliesthat the decisionversionof P reducesto the decisionversionof P °[LLKS93].
For example,consider® = Cnhax and ° = Lnax, the costfunctions maximum job completion
time and maximum job lateness respectively.? Supposean algorithm A exists that, when
given an instance of a scheduling problem and an integer k, decidesif there exists a feasible
schedule for which Lmax - k. If the deadline of ead job is setto 0, the completion time of
a job equalsits lateness,sothat minimizing L max actually minimizes Cmax. Thus, A may
be usedto decideif there is a schedule for which Cmax - k. Conversely for a given choice
of ®and , the NP-hardnessof the decisionversionof ®] j Cmax implies the NP-hardness
of the decisionversionof ®] j L max-

Of the 4536 sctheduling problems, 417 are known to be solvable in polynomial
time, 3821are NP-hard, and 298 are still open.? Each of thesethree classeg polynomial-
time, NP-hard, and open| possessesubclassesof minimal and maximal problems,in the
following sense. A problem P is minimal (respectively, maximal) if there exists no other
problem PYin its classsudh that P9! P (respectively, P ! P9. The minimal problems
are the easiestknown problemsin their class,and the maximal problems are the hardest.
Researtr e®ort has frequertly focusedon trying to showv the maximal open problems to
be NP-hard, and to shon the minimal open problems to be solvable in polynomial time.
In this section, we will considerminimal NP-hard problems, and maximal polynomial-time
problems. We will seethat for distributed sceduling, the minimal NP-hard problems and
maximal polynomial-time problems are both quite simple.

2Cmax is also called the makesm@n or maximum °ow time.

3These numbers were accurate in 1993; a revised count will have to wait until the successorsurvey
of [LLKS93]. An up-to-date classi cation, using a slightly di®erert notation than [LLKS93], appears in
[BKO2].

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 213

7.3.2 Job shop scheduling models

A job shopsdeduling problem consistsof a set of n jobs. Each job j; is a sequence
of subjobs: j; = (ji.1;¢¢¢;j;~,). The number °; of subjobs may depend on the job j;.
Subjob jix must complete before subjob jix+1 begins,for eadr k 2 [1:: ;i 1]. Job shop
scheduling therefore models a simple kind of precedencerelation in which A consists of
chains of subjobs. There are m hosts h1; ¢¢¢; hy, on which the subjobs are to be scheduled.
Each subjob j;x is assignedto a particular host host(jx) 2 fhy; ¢¢¢; hy,g.* Each subjob
requires time t(jix) on the host to which it is assigned. The hosts may be sdeduled
preemptively if — includes pmtn, and must be scheduled nonpreemptively otherwise. If
includes r;, then jobs may have nonzero releasetimes; otherwise, all jobs are releasedat
time 0. There are two common cost functions, Cmax Of Lmax- In the latter case,ead job j;
is assumedto have a deadline d(j;).

Job shop scheduling is one of the hardest problemsin combinatorial optimization.
As practical evidenceof this dixcult y, an instance with 10 jobs and 10 hosts of J jj Cmax
(minimize the maximum completion time of a set of jobs scheduled nonpreemptively) that
was posedin 1963remained unsolved until 1988[FT63, CP89]. From a theoretical perspec-
tive aswell, job shop scheduling is extremely dixcult. In the remainder of this section, we
will review the theoretical evidencefor the dixcult y of job shop scheduling. We concerrate
on polynomially solvable and strongly NP-hard problems, leaving out pseudomlynomially
solvable and weakly NP-hard problems for the sake of simplicity. For the samereason,we
ignore algorithms that are polynomial-time if the number of hostsis xed, but exponertial-
time if the number of hosts varies. For job shop problems with nonzeroreleasetimes, two

maximal polynomially solvable problems are:

2 J2jpj = 1] Lmax, the problem of sdheduling two hosts nonpreemptively to minimize

the maximum latenessof unit-time subjobs [Bru81, Bru82].

2. J2jpj = Lri j Cmax, scheduling two hosts nonpreemptively to minimize the maxi-
mum completion time of unit-time subjobs with releasetimes [Tim97].

In the words of [LLKS93], this \is probably as far as we can get," since the following

problems are NP-hard:

“Flow shop models, of which Denition 7.4 dened one particular type, are thus a special sort of job shop
model in each job has m subjobs, i.e., i = m for all i 2 [1::n], and host(jixk) = hk for all i 2 [1::n] and
k2 [1:m].

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 214

2.J2jmj - 3 Chnax (respectively, J3 j mj - 2] Cmax), stheduling two (respec-
tively, three) hosts nonpreemptively to minimize the maximum completion time of
jobs consisting of at most three (respectively, at most two) subjobs [LKB77, GS78§.

2.J2jpj 211,29) Cmax, scheduling two hosts nonpreemptively to minimize the
maximum completion time of subjobs requiring either one or two units of time. This

problem is strongly NP-hard, even if preemption is allowed [LK79].

2 J3] pj = 1j Cmax, scheduling three hostsnonpreemptively to minimize the maximum
completion time of unit-time subjobs. Like the previous problem, this problem is
strongly NP-hard, even if preemption is allowed [LK79].

7.3.3 Parallel scheduling models

A related set of scheduling models are the parallel models. In these models, a
job is not assignedto a particular host, but is allowed to execute on any host, provided
that no host executesmore than onejob at any time, and that no job is executedon more
than one host at any time. If preemption is allowed, then a preempted job may resume
execution on any host, not just on the host on which it started. This feature of preemptive
parallel scheduling models is unattractiv e for the sdheduling of Giotto programs, sincethe
intended execution environment for Giotto is not a shared memory multi-pro cessor, but
rather networked processorswith disjoint memory spaces. Nor are nonpreemptive models
the best match for scheduling Giotto programs, since preemption is such a common and
useful feature of real-time operating systems. Nonetheless for the sake of thoroughnesswe
will review the results for both preemptive and nonpreemptive parallel scheduling.

In a parallel scheduling scenario, there are m hosts on which a set J of jobs is
to be executed. The m hosts may be either identical (meaning a givenjob j 2 J requires
the sameamourt of time t(j) on ead host), uniform (meaning that with ead host h; is
assaiated a speeds; sud that the time required by job j on h; is s; ¢t(j)), or unrelated (the
running times of jobs on one processorgive no information about the running times of jobs
on another processor). Thesecasesare ® = P, ® = Q, and ® = R, respectively. The hosts
may be scheduled preemptively if — includes pmtn, and must be scheduled nonpreemptively
otherwise. If ~ includesrj, then jobs may have nonzeroreleasetimes; otherwise, all jobs
are releasedat time 0. Finally, if ~ includes prec, then a precedencerelation A constrains

the order in which jobs execute. Restricted types of precedenceconstraints may instead

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 215

be present: if includes chains, then only chains of jobs are allowed; if includes intree
(respectively, outtree) , then the graph (J; A) must form a tree in which ead job has at
most one successoilrespectively, predecessor).

To narrow our discussion,we focus on models with either nonzero releasetimes
or precedenceconstraints, sincemodelsthat lack both featuresare unlikely to be useful for
scheduling Giotto programs. We focus on polynomially solvable problemsin which the cost
function is L max, the minimization of maximum lateness. We alsofocuson strongly NP-hard
problemsin which the costfunction is Chax Or Lmax, Sinceother objective functions are less
relevant to Giotto. For nonpreemptive parallel scheduling, two maximal polynomial-time
solvable problems are:

2 P jp = 1;chains;r; j Lmax, stheduling identical hoststo minimize maximum lateness

of chains of unit-time jobs with releasetimes [BBKTO02].

2 P2jp = 1;precj Lmax, stheduling identical hoststo minimize the maximum lateness
of precedence-constrainedunit-time jobs [GJ76].

For nonpreemptive parallel scheduling, seweral minimal NP-hard problems are:

2 P jj Cmax, scheduling jobs on identical hosts to minimize maximum completion
time [GJ78].

2 Pjp = liintree;ri j Cmax, stheduling unit-time jobs with releasetimes and an
intree precedencerelation on identical hosts to minimize maximum completion time
[BGJ7T7].

2 P jp = l;outtree | Lmax, Scheduling unit-time jobs with an outtree precedence
relation on identical hoststo minimize maximum lateness[BGJ77].

2 P jp = 1;prec j Chax, scheduling unit-time jobs on identical hosts to minimize
maximum completion time [UII75].

2 P2 j chains j Cnax, sdeduling jobs on two identical hosts to minimize maximum
completion time [DLY91].

For Giotto, one would like a model at least as expressive as P j prec;ri j Lmax, Which is
NP-hard sinceead of the preceding v e problems reduceto it.

CHAPTER 7. MULTI-PROCESSORGIOTTO SCHEDULING 216

For preemptive parallel scheduling, two maximal polynomial-time solvable prob-

lems are:

2 Q2j prec; pmtn j Lmax, scheduling precedence-constrainegobs on two uniform hosts

to minimize maximum lateness[Law82].

2 Rjpmtn;r;j Lmax, sStheduling jobs with releasetimes on unrelated hoststo minimize

maximum lateness[LL78].
Se\eral minimal NP-hard parallel preemptive scheduling problems are:

2 P jp = 1;prec;pmtn j Cmax, Scheduling unit-time, precedenceconstrained jobs on
identical hoststo minimize maximum completion time [UlI82].

2 P jintree;pmtn;r; j Cmax, Stheduling jobs with releasetimes and an intree precedence
relation on identical hoststo minimize maximum completion time [Len].

2 P j outtree; pmtn j L max, Scheduling jobs with an intree precedencerelation on iden-

tical hoststo minimize maximum lateness[Len].

2 R2j chains; pmtn j Cnax, sdheduling chains of jobs on two uniform hoststo minimize

maximum completion time [Len].

For Giotto, one would like a model at least as expressive as P j prec;pmtn;ri j Lmax,
preemptively scheduling precedence-constrainedobs with releasetimes on identical hosts
to minimize maximum lateness. This model is NP-hard becausethe rst three of the above

problems reduceto it.

7.4 Conclusion

In this chapter, we argued that the problem of scheduling Giotto on multiple
processorsis computationally infeasible. In Section 7.2, we shaved that two distributed
Giotto scheduling problemsare strongly NP-hard. In Section7.3, we reviewed the literature
on job shopand parallel scheduling problems, sawv that NP-hardnessis not a feature peculiar
to Giotto scheduling, but rather a commonfact for many distributed scheduling problems.

217

Bibliograph y

[AMMMAO1] H. Aydin, R. Melhem, D. Mosd, and P. Mejfa-Alvarez. Optimal reward-based

[B*01]

[Bar98a]

[Bar9sb]

[BBO1]

[BBKTO2]

[BG92]

[BGJ77]

scheduling for periodic real-time tasks. IEEE Transactions on Computers
50(2):111{130,2001.

J. Bazewicz et al. Scheluling Computer and Manufacturing Processes

Springer-Verlag, 2nd edition, 2001.

S.K. Baruah. Feasibility analysis of recurring branching tasks. In Proc. 10th
EUROMICR O Workshopon Real-Time Systems pages138{145.1EEE, 1998.

S.K. Baruah. A generalmodel for recurring real-time tasks. In Proc. 19th
IEEE Real-Time SystemsSymposium, pagesl114{122.|EEE, 1998.

A. Benvenisteand G. Berry. The synchronous approach to reactive and real-
time systems. Proc. of the IEEE, 79(9):1270{1282,1991.

P. Baptiste, P. Brucker, S. Knust, and V.G. Timkovsky. Fourteen notes on
equal-processing-time scheduling. Tednical Report P246, Universitat Os-
nabrick, 2002.

G. Berry and G. Gonthier. The Esterel syndironous programming lan-
guage: design, semartics, implementation. Sciene of Computer Program-
ming, 19(2):87{152, November 1992.

P. Brucker, M.R. Garey, and J.S. Johnson. Sceduling equal-length tasks
under treelike precedenceconstraints to minimize maximum lateness. Math-
ematics of Operations Research, 2(3):275{284,1977.

BIBLIOGRAPHY 218

[BHRO3]

[BKO2]

[BKM *91]

[BKS99]

[BA&76]

[BLLKS3]

[Bru8i]

[Bru8?2]

[Bru01]

[BS93]

S.K. Baruah, R.R. Howell, and L.E. Rosier. Feasibility problemsfor recurring
tasks on one processor. Theoretical Computer Scienc, 118(1):3{20, 1993.

P. Brucker and S. Knust. Complexity results for scheduling problems (http:
[lIwww.mathematik.uni- osnabrueck.de/research/OR/class/). Tednical
report, Universitdt Osnabrick, 2002.

S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier,and D. Shasha.
On-line sdheduling in the presenceof overload. In 32nd IEEE Sympsium on
the Foundations of Computer Scienc, pages100{110. |IEEE, 1991.

P. Brucker, S.A. Kravchenko, and Y.N. Sotskov. Preemptive job-shop
sctheduling problems with a xed number of jobs. Mathematical Methods
of Operations Resarch, 49(1):41{76, 1999.

J. Blazewicz. Scheduling dependert taskswith di®erert arrival times to meet
deadlines.In Proc. Intl. Workshopon Modelling and Performance Evaluation
of Computer Systems pages57{65. North-Holland, 1976.

K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Preemptive
scheduling of a single macdhine to minimize maximum cost subject to release

dates and precedenceconstraints. Operations Resarch, 31(2):381{386,1983.

P. Brucker. Minimizing maximum latenessin a two-madine unit-time job
shop. Computing, 27(4):367{370,1981.

P. Brucker. A linear time algorithm to minimize maximum latenessfor the
two-madine, unit-time, job-shop scheduling problem. In System Modeling
and Optimization, volume 38 of Lecture Notes in Control and Information
Scienes pages566{571. Springer-Verlag, 1982.

P. Brucker. Scheluling Algorithms. Springer-Verlag, 2001.

G.C. Buttazzo and J.A. Stankovic. RED: Robust earliest deadline rst
stheduling. In Proc. 3rd Intl. Workshop on Resmnsive Computer Systems
pages100{111.IEEE, 1993.

BIBLIOGRAPHY 219

[Bur94]

[But97]

[BW96]

[Car84]

[CCT77]

[CCP98]

[CEK* 99]

[CETO1]

[Cha03]

[Cle96]

[Col99]

A. Burns. Preemptive priorit y-basedsceduling: An appropriate engineering
approach. In S.H. Son, editor, Advanesin Real-Time Systems pages225{
248. Prentice-Hall, 1994.

G.C. Buttazzo. Hard Real-Time Computing Systems: Algorithms and Appli-
cations. Kluwer, 1997.

A. Burns and A. Wellings. Real-Time Systemsand Their Programming Lan-

guages Addison-Wesley 2nd edition, 1996.

G.D. Carlow. Architecture of the spaceshuttle primary avionics software
system. Communications of the ACM, 27(9):926{936,1984.

P. Cousotand R. Cousot. Abstract interpretation: A uni ed latice model for
static analysisof programs by construction or approximation of xp oints. In
Proc. of the 4th ACM Symposium on Principles of Programming Languages
pages238{252. ACM, 1977.

J.E. Corban, A.J. Calise, and J.V.R. Prasad. Implementation of adaptive
nonlinear cortrol for °ight test on an unmanned helicopter. In Proc. 1998

Conference on Decision and Control, pages3641{3646,1998.

J. Chapuis, C. Eck, M. Kottmann, M.A.A. Sarvido, and O. Tanner. Control
of helicopters. Control of Complex Systems pages359{392, 1999.

S. Chakraborty, T. Erlebach, and L. Thiele. On the complexity of schedul-
ing conditional real-time code. In Proc. Workshop on Algorithms and Data
Structures pages38{49. Springer-Verlag, 2001.

S. Chakraborty. Personalcommunication, 2003.

P. Clemerts. A survey of architecture description languages.In Proc. of the
Intl. Workshop on Software Speci c ation and Design, pages 16{25. |IEEE,
1996.

R.P.G. Collinson. Fly-by-wire °ight corntrol. Computing and Control Engi-
neering, 10(4):141{152,1999.

BIBLIOGRAPHY 220

[Con95]

[CP89]

[DB8S]

[Dij65]

[DLY91]

[Dou99)

[DRVOO]

[EKP* 98]

[FHL*01]

[Foh94]

[FT63]

A.R. Conway. Autonomous Control of an Unstable Model Helicopter Using
Carrier PhaseGPS Only. PhD thesis, Stanford University, 1995.

J. Carlier and E. Pinson. An algorithm for solving the job-shop problem.
ManagementSciene, 35(2):164{176,1989.

T.L. Deanand M. Boddy. An analysis of time-dependert planning. In Proc.
AAAI 1988 pages49{54. Morgan Kaufmann, 1988.

E.W. Dijkstra. Cooperating sequetial processesin F. Genuys, editor, Pro-

gramming Languages Academic Press, 1965.

J. Du, J.Y.-T. Leung, and G.H. Young. Sceduling chain-structured tasks
to minimize makespanand mean °ow time. Information and Computation,
92(2):219{236,1991.

B.P. Douglass. Real-Time UML: Developing Excient Objects for Embeddel
Systems Addison-Wesley 2nd edition, 1999.

A. Darte, Y. Robert, and F. Vivien. Scheluling and Automatic Paralleliza-
tion. BirkhAuser, 2000.

P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Scheduling of condi-
tional processgraphsfor the synthesisof embeddedsystems.In Proc. Design,
Automation and Testin Europe, pages132{138.|EEE, 1998.

C. Ferdinand, R. Hedkmann, M. Langerbach, F. Martin, M. Sdcmidt,
H. Theiling, S. Thesing, and R. Wilhelm. Reliable and preciseWCET deter-
mination for a real-life processor.In Proc. 1st Intl. Workshop on Embeddel
Software, LNCS 2211, pages469{485, 2001.

G. Fohler. Flexibility in Statically Scheluled Hard Real Time Systems PhD
thesis, Vienna University of Tecnology, April 1994.

H. Fisher and G.L. Thompson. Probabilistic learning combinations of lo-
cal job-shop scheduling rules. In J.F. Muth and G.L. Thompson, editors,
Industrial Scheluling, pages225{251. Prentice-Hall, 1963.

BIBLIOGRAPHY 221

[GJI75]

[GJ76]

[GJ77]

[GIT78]

[GJ79]

[GLLK79]

[GS78]

[Halo3]

[HCRP91]

[HenOO]

[HHKO1]

[HHKO3]

M.R. Garey and D.S. Johnson.Complexity results for multipro cessorschedul-
ing under resourceconstraints. SIAM Journal on Computing, 4(4):397{411,
1975.

M.R. Garey and D.S. Johnson. Scheduling tasks with nonuniform deadlines
on two processors.Journal of the ACM, 23(3):461{467,1976.

M.R. Garey and D.S. Johnson. Two-processorsceduling with start-times
and deadlines. SIAM Journal on Computing, 6(3):416{426,1977.

M.R. Garey and D.S. Johnson. Strong NP-completenessresults: motivation,
examples,and implications. Journal of the ACM, 25(3):499{508,1978.

M.R. Garey and D.S. Johnson. Computers and Intr actability: A Guide to
the Theory of NP-Completeness Freeman, 1979.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Opti-
mization and approximation in deterministic sequencingand scheduling: a
survey. Annals of Discrete Mathematics, 4:287{326,1979.

T. Gonzalezand S. Sahni. Flowshop and jobshop schedules: complexity and

approximation. Operations Resarch, 26(1):36{52, 1978.
N. Halbwacdhs. Synchronous Programming of Reactive Systems Kluwer, 1993.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
°ow programming language Lustre. Proc. of the IEEE, 79(9):1305{1320,
1991.

T.A. Henzinger. Masaccio: A formal model for embedded componerts. In
Proc. of the IFIP Conferenae on Theoretical Computer Sciene, LNCS 1872,
pages549{563. Springer-Verlag, 2000.

T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Embedded cortrol systems
dewvelopmert with Giotto. In Proc. Intl. Workshop on Languages,Compilers,
and Tools for Embedded Systems(LCTES '01), pages64{72, 2001.

T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered
languagefor embedded programming. Proc. of the IEEE, 91(1):84{99, 2003.

BIBLIOGRAPHY 222

[HKO02]

[HKMMO2]

[HLM * 03]

[HLVO7]

[Hoa74]

[HP85]

[ITM90]

[Jac55]

[IM02]

[Jon97]

[Kim94]

T.A. Henzinger and C.M. Kirsch. The Embedded Machine: Predictable,
portable real-time code. In Proc. of the Conferenee on Programming Lan-
guageDesign and Implementation, pages315{326. ACM, 2002.

T.A. Henzinger, C.M. Kirsch, R. Majumdar, and S. Matic. Time safety
cheding for embeddedprograms. In Proc. 2nd Intl. Workshop on Embeddel
Software, LNCS 2491, pages76{92. Springer-Verlag, 2002.

B. Horowitz, J. Liebman, C. Ma, T.J. Koo, A. Sangios/anni-Vincentelli, and
S. Sastry. Platform-based embedded software designand system integration
for autonomousvehicles. Proc. of the IEEE, 91(1):198{211,2003.

J.A. Hoogeeen,J.K. Lenstra, and S.L. van de Velde. Sequencingand schedul-
ing. In Annotated Bibliographiesin Combinatorial Optimization, pages181{
197. Wiley, 1997.

C.A.R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the ACM, 17(10):549{557,1974.

D. Harel and A. Pnueli. On the dewelopmen of reactive systems. In Logics

and Models of Concurrent Systems pages477{498. Springer-Verlag, 1985.

Y. Ishikawa, H. Tokuda, and C.W. Mercer. Object-oriented real-time
language design: Constructs for timing constraints. SIGPLAN Notices
25(10):289{298,1990.

J. Jackson. Sdheduling a production line to minimize tardiness. Tednical
Report 43, Managemen ScienceReseart Project, University of California,
Los Angeles, 1955.

E.N. Johnsonand S. Mishra. Flight simulation for the dewvelopmert of an ex-
perimental UAV. In Proc. of the AIAA Modeling and Simulation Technolagy
Conferenae, 2002.

M. Jones. What really happened on Mars rover Path nder. Risks Digest
19(49), 1997.

Y.S. Kim. An optimal scheduling algorithm for preemptable real-time tasks.
Information Processingletters, 50(1):43{48, 1994.

BIBLIOGRAPHY 223

[KMW67]

[Kop97]

[KRP* 93]

[KS86]

[KSHPO02]

[KZF*91]

[Law82]

[Led99]

[Lee02]

[Len]

[Len77]

[Lev0O]

R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations
for uniform recurrenceequations. Journal of the ACM, 14(3):563{590,1967.

H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer, 1997.

M. Klein, T. Ralya, B. Pollak, R. Obenza, and M.G. Harbour. A Practi-
tioner's Handlook for Real-Time Analysis: Guide to Rate Monotonic Analy-

sis for Real-Time Systems Kluwer, 1993.

E. Kligerman and A.D. Stoyenko. Real-time Euclid: a languagefor reliable
real-time systems. IEEE Transactions on Software Engineering, 12(9):941{
949, 1986.

C.M. Kirsch, M.A.A. Sarvido, T.A. Henzinger, and W. Pree. A Giotto-
basedhelicopter cortrol system. In Proc. 2nd Intl. Workshop on Embedded
Software, LNCS 2491, pages46{60, 2002.

H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner, and W. Schiiz.
The design of real-time systems:from speci cation to implementation and

veri cation. Software Engineering Journal, 6(3):72{82, 1991.

E.L. Lawler. Preemptive scheduling of precedence-constrainegbbs on parallel

madhines. In Deterministic and Stochastic Scheluling, pages101{123,1982.

J.A. Ledin. Hardware-in-the-loop simulation. Embedded SystemsProgram-
ming, 12(2):42{60, 1999.

E.A. Lee. Embeddedsoftware. In M.V. Zelkowitz, editor, Advanasin Com-
puters, volume 56, pages55{95. Academic Press,2002.

J.K. Lenstra. Unpublished.

J.K. Lenstra. Sequencingby enumerative methods. Tednical Report 69,
Mathematisch Centrum, Amsterdam, 1977.

N. Leveson. Embeddedsystem. In Encyclopadia of Computer Sciene, pages
646{647. Macmillan, 4th edition, 2000.

BIBLIOGRAPHY 224

[Lie02]

[LK79]

[LKB77]

[LL73]

[LL78]

[LLK82]

[LLKS93]

[LLLK82]

[LLSY91]

[LRR92]

J. Liebman. The time-based approacdh to embedded programming: a
hardware-in-the-loop simulation framework. Master's thesis, University of
California, Berkeley, 2002.

J.K. Lenstraand A.H.G. Rinnooy Kan. Computational complexity of discrete
optimization problems. Annals of Discrete Mathematics, 4:121{140,1979.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343{362,1977.

C. Liu and J. Layland. Sdieduling algorithms for multiprogramming in a
hard-real-time ervironment. Journal of the ACM, 20(1), 1973.

E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated par-
allel processordby linear programming. Journal of the ACM, 25(4):612{619,
1978.

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Recen dewelopmerts
in deterministic sequencingand scheduling: a survey. In Deterministic and
Stochastic Schaluling, pages35{73. Reidel, 1982.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequenc-
ing and scheduling: Algorithms and complexity. In S.C. Graves,A.H.G. Rin-
nooy Kan, and P.H. Zipkin, editors, Handlooks in Operations Resarch and
ManagementScienc, volume 4, pages445{522. Elsevier Science,1993.

B.J. Lageweg, J.K. Lenstra, E.L. Lawler, and A.H.G. Rinnooy Kan.
Computer-aided complexity classi cation of combinatorial problems. Com-
munications of the ACM, 25(11):817{822,1982.

J.W.S. Liu, K. Lin, W. Shih, and A.C. Yu. Algorithms for scheduling impre-
cisecomputations. IEEE Computer, 24(5):58{68, 1991.

D. Langer, J. Rauch, and M. RéYler.Fly-by-wire systemsfor military high-
performanceaircraft. In Real-Time Systems: Engineering and Applications,
pages369{395. Kluwer, 1992.

BIBLIOGRAPHY 225

[LSD89]

[Ma02]

[Man94]

[MD78]

[ML99]

[MTK99]

[MTKOO]

[Pap94]

[Pin02]

[PTVF92]

[RIBOY]

J.P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: exact characterization and averagecasebehavior. In Proc. 11th IEEE
Real-Time SystemsSympmsium, pagesl166{171.|EEE, 1989.

C. Ma. Platform-based design of a time-based cortrol system architecture
and embedded software for a rotorcraft unmanned aerial vehicle. Master's

thesis, University of California, Berkeley, 2002.

J.H. Manley. Embedded systems. In Encyclopadia of Software Engineering,
pages454{458. Wiley, 1994.

A.K. Mok and M.L. Dertouzos. Multipro cessorscheduling in a hard real-time
ervironment. In Proc. 7th Texas Conferenee on Computing Systems pages
5.1{6.12,1978.

S. Malik and Y. Li. Performance Analysis of Real-Time Embedded Software.
Kluwer, 1999.

B. Mettler, M.B. Tischler, and T. Kanade. Systemidenti cation of small-size
unmanned helicopter dynamics. In American Helicopter Scciety 55th Forum,
1999.

B. Mettler, M.B. Tischler, and T. Kanade. System identi cation modeling
of a model-scalehelicopter. Tednical Report CMU-RI-TR-00-03, Carnegie
Mellon University Robotics Institute, 2000.

C. Papadimitriou. Computational Complexity. Addison Wesley 1994.

M. Pinedo. Schealuling: Theory, Algorithms, and Systems Prentice-Hall,
2002.

W.H. Press,S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipesin C: the Art of Scienti ¢ Computing. Cambridge University Press,
2nd edition, 1992.

J. Rumbaugh, I. Jacobson,and G. Booch. The Uni e d Modeling Language
Referene Manual. Addison-Wesley 1999.

BIBLIOGRAPHY 226

[RWO1]

[SBS95]

[SDF* 98]

[Sha99]

[Shi00]

[SKHS98]

[SKS03]

[SLCO1]

[SRL90]

[SRLR89]

S.J. Russelland E.H. Wefald. Do the Right Thing: Studiesin Limited Ra-
tionality . MIT Press,1991.

M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodic scheduling under
dynamic priority systems. In Proc. 16th IEEE Real-Time SystemsSympmb-
sium, pages210{219. IEEE, 1995.

C.P. Sanders,P.A. DeBitetto, E. Feron, H.F. Vuong, and N. Leveson. Hier-
archical cortrol of small autonomous helicopters. In Proc. 1998 Conference
on Decision and Control, pages3629{3634,1998.

O. Shakernia. Landing an unmanned air vehicle: vision-based motion esti-

mation and nonlinear cortrol. Master's thesis, UC Berkeley, 1999.

D.H. Shim. Hierarchical Flight Control SystemSynthesisfor Rotorcraft-basel
Unmanned Aerial Vehicles PhD thesis, University of California, Berkeley,
2000.

D.H. Shim, T.J. Koo, F. Ho®mann,and S. Sastry. A comprehensie study
of cortrol designfor an autonomoushelicopter. In Proc. 1998 Conference on
Decision and Control, pages3653{3658,1998.

D.H. Shim, H.J. Kim, and S. Sastry. Decertralized nonlinear model predictive
cortrol of multiple °ying robots. In Proc. 2003 Conference on Decision and
Control, 2003.

W. Shih, J.W.S. Liu, and J. Chung. Algorithms for scheduling imprecisecom-
putations with timing constraints. SIAM Journal on Computing, 20(3):537{
552,1991.

L. Sha,R. Rajkumar, and J.P. Lehoczky. Priorit y inheritance protocols: An
approad to real-time syndironization. IEEE Transactions on Computers
39(9):1175{1185,1990.

L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change
protocols for priorit y-driven preemptive scheduling. Real-Time Systems
1(3):243{264, 1989.

BIBLIOGRAPHY 227

[SS01]

[SSL89]

[Sta8s]

[TC94]

[TFWO00]

[Tim97]

[TK88]

[TomO0]

[Ull75]

[U182]

[VB93]

[Ves94]

M.A.A. Sarvido and W. Scaufelberger. Designof a framework for hardware-
in-the-loop simulation and its application to a model helicopter. In Proc. 4th
Intl. Eurosim Congress June 2001.

B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard
real-time systems. Real-Time Systems 1(1):27{60, 1989.

J. Stankovic. Misconceptionsabout real-time computing: A seriousproblem
for next generation systems. [IEEE Computer, 21(10):10{19, 1988.

K. Tindell and J. Clark. Holistic schedulability analysisfor distributed hard
real-time systems.Micr oprocessingand Micr oprogramming, 40(2{3):117{134,
1994.

H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and preciseWCET predic-
tion by separatedcade and path analyses.Real-Time Systems 18(2{3):157{
179, 2000.

V.G. Timkovsky. A polynomial-time algorithm for the two-madine unit-time
release-datejob-shop schedule-length problem. Discrete Applied Mathemat-
ics, 77(2):185{200,1997.

H. Tokuda and M. Kotera. A real-time tool setfor the ARTS kernel. In Proc.
9th IEEE Real-Time SystemsSymmsium, pages298{299, 1988.

J.E. Tomayko. Computers Take Flight: A History of NASA's Pioneering
Digital Fly-by-Wire Project. NASA, 2000.

J.D. Ullman. NP-complete scheduling problems. Journal of Computer and
System Scienes 10(3):384{393,1975.

J.D. Ullman. Complexity of sequencingproblems. In Computer and job-shop
schaluling theory, 1982.

S. Vestal and P. Binns. Sdieduling and communication in MetaH. In Proc.
of the 14th Real-Time SystemsSympsium, pages194{200. IEEE, 1993.

S. Vestal. Mode changesin a real-time architecture description language. In

Proc. of the Intl. Workshop on Con gurable Distributed Systems 1994.

BIBLIOGRAPHY 228

[Ves97]

[WG92]

[Wir96]

[WKS* 01]

S. Vestal. MetaH support for real-time multi-pro cessoravionics. In Proc. of
the Joint Workshop on Parallel, Distributed, and Object-Oriented Real-Time
Systems pages11{21. IEEE, 1997.

N. Wirth and J. Gutknecht. Project Oberon: The Design of an Operating
Systemand Compiler. ACM, 1992.

N. Wirth. Tasksversusthreads: An alternative multipro cessingparadigm.
Software: Concepts and Tools, 17:6{12, 1996.

L. Wills, S.Kannan, S.Sander,M. Guler, B. He, J.V.R. Prasad,D. Scrage,
and G. Vadtsevanos. An open platform for recon gurable cortrol. |IEEE
Control SystemsMagazing 21(3):49{64, 2001.

