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Abstract

Giotto: A Time-TriggeredLanguagefor EmbeddedProgramming

by

Benjamin Horowitz

Doctor of Philosophy in Computer Science

University of California, Berkeley

ProfessorThomas A. Henzinger,Chair

Giotto provides a time-triggered programmer's model for the implementation of embedded

control systemswith hard real-time constraints. Giotto's precisesemantics and predictabil-

it y make it suitable for safety-critical applications.

Giotto is basedaround the idea that time-triggered task invocation together with

time-triggered mode switching can form a useful programming model for real-time systems.

To substantiate this claim, we describe the useof Giotto to refactor the software of a small,

autonomoushelicopter. The easewith which Giotto expressesthe existing software provides

evidencethat Giotto is an appropriate programming languagefor control systems.

SinceGiotto is a real-time programming language,ensuring that Giotto programs

meet their deadlinesis crucial. To study precedence-constrainedGiotto scheduling, we ¯rst

examinesingle-mode, single-processorscheduling. We extend to an in¯nite, periodic setting

the classicalproblem of meeting deadlinesfor a set of tasks with releasetimes, deadlines,

precedenceconstraints, and preemption. We then develop an algorithm for scheduling

Giotto programs on a single processorby representing Giotto programs as instancesof the

extendedscheduling problem.

Next, we study multi-mo de, single-processorGiotto scheduling. This problem is

di®erent from classicalscheduling problems, sincein our precedence-constrainedapproach,

the deadlinesof tasks may vary depending on the mode switching behavior of the program.

Wepresent conditional scheduling modelswhich capture this varying-deadlinebehavior. We

develop polynomial-time algorithms for someconditional scheduling models,and prove oth-

ers to be computationally hard. We show how to represent multi-mo de Giotto programs as
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instancesof the model, resulting in an algorithm for scheduling multi-mo deGiotto programs

on a single processor.

Finally, we show that the problem of scheduling Giotto programs for multiple net-

worked processorsis strongly NP-hard.

ProfessorThomas A. Henzinger
Dissertation Committee Chair
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Chapter 1

In tro duction

An embedded system is, for the purposesof this dissertation, a computer system

that is physically incorporated into, and integral to the proper functioning of, a larger sys-

tem, the larger systembeing not ¯rst and foremost a computer [Man94, Lev00]. Embedded

systemsmay be found in aircraft control systems,medical instruments, automobiles,mobile

phones,and kitchen appliances. Embedded systemsare often hard real-time systems:the

correctnessof such a system is dependent not only on the value of its outputs but also

on the timing of its outputs [Sta88]. Embedded systemsare normally reactive: an execu-

tion of such a system consistsof an ongoing reaction to its environment, at the speed of

the environment [HP85]. Finally, embeddedsystemsare often safety-critical: the improper

functioning of such a system can have negative e®ectson human health. This dissertation

will study the programming of hard real-time, reactive, safety-critical embeddedsystems.

1.1 Time in embedded systems programming

Embeddedsoftware systemsinteract with and often control their physical environ-

ment, and thereforecannot be understood in isolation from that environment. Gaining such

an understanding requires the recognition that embedded systemsare physical processes,

interacting with other physical processes.Crucial to this interaction is timing. In order to

analyze,simulate, or predict the physical e®ectsof an embeddedsoftware system,especially

to the degreerequired for safety-critical systems,one needsto know when the interactions

take place.

As an example, consider an aircraft °igh t control computer, in particular the
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SpaceShuttle's primary avionics software [Car84]. A °igh t control computer is frequently

responsible for a multitude of functions, from guidance,navigation and control (GNC), to

monitoring subsystemhealth and diagnosingfaults, to management of the pilot/mac hine in-

terface. Many of thesefunctions, and especially the GNC functions, require reading sensors,

such as an inertial measurement unit (IMU) that measuresvehicle velocities and acceler-

ations; followed by computing with these sensorvalues, such as estimating system state

or calculating control laws; followed by using the results of this computation to physically

in°uence actuators, such as ailerons and elevators. These sense-compute-actuateactions

commonly take place in a periodic cycle. On the Shuttle, the rates of the periodic GNC

processesrangefrom 25 Hz for °igh t control down to 0.25Hz for pilot display updates. The

tight timing and phasing relationships between the Shuttle's GNC functions were a major

in°uence on the designof the GNC subsystem[Car84].

Sincetimed software plays an essential role in many embeddedsystems,it is highly

desirableto have tools for its reliable construction. Sadly, however, the commonly usedtools

of embeddedsystemsprogramming are consideredoutdated in other branchesof computer

science.The Shuttle's software, complete circa 1980,is much closerto the current state-of-

the-art in embeddedsystemsprogramming than, say, databaseimplementation from 1980

is to current databaseimplementation.

The reasonsfor this state of a®airsmay be traced to two root causes.First, em-

beddedsystemsoften have di±cult-to-meet performancerequirements, and are subject to

the cost pressuresof high-volume production. The combination of thesefactors often makes

for implementations optimized for speedand cost at the expenseof principled design. Sec-

ond, computer sciencehas tended to view the physicality of embeddedsoftware as untidy;

in particular, the notion of time has beenabstracted out of computer science[Lee02]. The

models of computer science| from Turing machines, to the ¸ -calculus, to procedural pro-

gramming languages,to concurrent formalisms such ascommunicating sequential processes

| all abstract out the notion of real, physical time. At best, the notion of time available

within such models is looseor imprecise:witness UML, which allows one to annotate mod-

els with timing constraints, but does not o®er a precise interpretation of the meaning of

such constraints [Dou99]. Though the successesof computer scienceare partly due to ab-

straction, the timing behavior abstracted out is essential for real-time systems. The lack of

attention paid to time leadsmany embeddedsystemsprogrammers to shun contemporary

programming languagesin favor of tools like assembly languagethat at least allow them
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control over timing behavior.

As embeddedsystemsprogramming tools and practiceslanguish, the needfor such

tools is becomingmore pressing. The increasing speedof processorsmeansthe tasks that

once required several central processingunits (CPUs) to accomplish can now be accom-

plished by a single CPU. At the sametime that more functionalit y is getting packed into

embedded software, embedded software is getting packed into more places. Such software

is often not simply a feature that, though providing some added convenience, is mainly

unessential. Instead, from automobiles to satellites, we rely up embedded software every

day. What then can be done to improve tools for building embedded software in which

timing is critical?

1.1.1 Real-time operating system solutions

One response to this question is that tools for controlling timing in embedded

systemsalready exist, in the form of ¯xed-priorit y scheduling and real-time operating system

(RTOS) services[Bur94, BW96]. Consistent with this view, and often expressedalongside

it, is the opinion that a lack of education is the main reason that common practice has

not caught up with a perfectly good engineeringsolution. After all, the argument goes,

embedded systemsengineersare often well-trained in their own specialty, be it chemical

processcontrol or signalprocessing;what is missingis training in the appropriate techniques

of computer science.

Let us explore this position. Under an RTOS, the functions to be performed by

embedded software are partitioned into interrupt handlers on the one hand, and threads

or processeson the other. The usual purposeof an interrupt handler is to interact with

a physical device. The execution of an interrupt handler is often triggered by a source

exogenousto the CPU, such as a button pressor a timer. Interrupt handlers can provide

very precise control over the timing behavior of embedded software. However, if many

interrupts require servicewithin a short time interval, someinterrupts may not be handled

at all, and the CPU may becomeoverloaded. Thus, typically the only activities processed

by interrupt handlers are those for which immediate responseis crucial.

The remaining tasks of an embeddedsoftware system are executedby threads or

processes.A thread or processis sequential stream of instruction execution, normally re-

quiring computation time that is substantially longer than the time required by an interrupt
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8 10
output 1

18 20
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8 209
output 1
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0

t:

t0:

t:

0

Thread t runs to completion, starting at time 0:

Thread t is preemptedat time 9 by t0, and resumesat time 19:

Figure 1.1: The outputs of a multi-threaded program.

handler. Threads and processesare equivalent for the purposesof this discussion;we will

usethe term thread to stand for both.1 Each thread usually possessesits own ¯rst-in, ¯rst-

out stack for executing function calls. Threads may operate independently , or they may

communicate or share resources.In the latter case,semaphores[Dij65], monitors [Hoa74],

or messagequeuesare normally used.

Thread-basedsystemshave one signi¯cant disadvantage: they may possessa high

degreeof nondeterminism, unlessvery carefully designed. Supposethat one thread t pro-

ducestwo outputs, normally 10 ms and 20 ms after t beginsexecution, but perhapsasearly

as 8 ms and 18 ms. Such nondeterminism in execution time is common in software with

conditional behavior, or on CPUs that have architectural features such as caching. If t is

preempted by another thread t0 9 ms after t begins, and t0 retains control of the CPU for

10 ms, the ¯rst output of t may appear at 20 ms, and the secondmay appear at 30 ms

(seeFigure 1.1). On the other hand, the outputs of t may appear at 8 ms and 28 ms. The

timing behavior of the observable outputs of the systemhasbecomedi±cult to predict: the

outputs may be separatedby as little as 8 ms or as much as 22 ms.

The above phenomenonis symptomatic of a larger problem, the problem of inter-

leaving nondeterminism: in a multi-threaded system, the actions of one thread get inter-

leaved with those of other threads | shu²ed, like two decks of cards, due to the choicesof

the system scheduler. Since the behavior of the scheduler is typically beyond the reach of

1Threads and processesdi®er in that a thread separatesthe concept of a sequential stream of instructions
from the additional state that may be desirable for running a program, for example an addressspace.
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the applications programmer, such e®ectsare di±cult to predict, and, when they do occur,

di±cult to reproduce. Moreover, in the above example, the threads did not communicate.

If communication is intro duced, threads may needto wait for oneanother, and the situation

becomeseven more di±cult to analyze. Interleaving nondeterminism greatly complicates

the design and debugging of multi-threaded systems. In an embedded system, where a

rapidly operating environment possessesits own degreeof nondeterminism or randomness,

the software engineeringtask can easily becomeunbearably complex.

RTOSs have another disadvantage: they provide only low-level mechanisms for

controlling the scheduling of threads. Typically, a programmer is allowed to assignto each

thread a number, called the thread's priority . Among the threads available to execute

at any moment, the thread that actually executes is the one with the largest priorit y.

Priorities are often thought to be an insu±ciently abstract means of controlling thread

scheduling, and, sothe argument goes,their useshould be avoided. A staunch proponent of

¯xed-priorit y scheduling would reply that, when usedproperly, priorit y-basedscheduling is

e®ective for guaranteeing that deadlinesare met, and that rate-monotonic (RM) scheduling

theory provides instructions for this proper use. In order to explore this reply, we brie°y

intro duce RM scheduling; a more detailed intro duction may be found in [But97].

RM scheduling has its origins in C. Liu and J. Layland's seminal paper [LL73],

where the setting studied is as follows. Each task t i in a set of n tasks f t1; t2; ¢¢¢; tng

must be executed on a single CPU. Task t i has a period ¼i , and a worst-case execution

time ei . Task t i must be executed for ei time units between times k¼i and (k + 1)¼i ,

for k = 0; 1; 2; ¢¢¢. For a number ¿ ¸ 0, we say that task t i is complete at ¿ if it has

executed for ei time units since the greatest integral multiple of ¼i less than ¿. At any

time instant ¿, from among all the tasks not complete at ¿, the RM algorithm executesa

task t i with minimum period ¼i . It was shown in [LL73] that the RM algorithm produces

a feasible schedule if
P n

i=1 ei =¼i · n(21=n ¡ 1). The RM algorithm may be implemented

in a priorit y-based RTOS by assigninga priorit y pi to each task t i in such a way that if

¼i < ¼i 0, then pi > pi 0. The RM algorithm has beenextendedto cover many variants of the

model of [LL73]: for example, settings in which the invocation of task t i at time k¼i must

complete at sometime k¼i + di strictly before time (k + 1)¼i [LSD89]; settings in which

tasks interact through sharedresources[SRL90]; and settings in which aperiodic tasks are

present in the task set [SSL89].

The author of this dissertation doesnot wish to ¯nd fault with RM theory per se:
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RM theory has proved useful in a variety of contexts, including ¯xing a software failure on

the Mars Path¯nder [Jon97]. Instead, the author wishesto arguethat the typical scenarioin

which RM analysisis usedmakesits successfulapplication di±cult. Few programmershave

knowledgeof, or experiencein using, RM analysis. If the job of assigningpriorities to tasks

is given to a programmer, the programmer may choosepriorities that optimize performance,

instead of instead of choosingpriorities that meet the conditions of RM analysis. Moreover,

the choice of RM theorem or type of analysis most appropriate to a given implementation

often requires extensive knowledge[KRP + 93]. For thesereasons,the work of RM analysis

is often given to a specialist who does not have direct involvement in the production of

the actual code. Such a division of labor not only requires employing a separateperson,

but may also result in a lack of consistencybetween the design that is analyzed and the

program that is implemented.

Rather than leaving the proper assignment of priorities to the programmer or to

a specialist, we advocate the useof software tools to automatically analyzethe schedulabil-

it y of, and produce schedulesfor, embedded programs. Further, we advocate automating

schedulabilit y analysisby placing it within the compiler. Though RM theory can serve use-

fully in such a role, in order to use lessrestricted task models, and to analyze conditional

real-time programs, we will employ scheduling theory in the style of operations research

(seeSection 1.3).

1.1.2 Synchronous programming languages

The synchronousprogramming languagesaddressthe problemsof interleaving non-

determinism discussedin Section1.1.1[Hal93]. The main idea of the synchronouslanguages

is to supposethat a reactive computer program computes its outputs instantaneously (at

least notionally) upon receiving inputs from its environment. This supposition is called the

synchronous hypothesis. The instantaneity of the synchronous hypothesis has three com-

ponents. First, a synchronous program changesstate instantaneously upon receiving input

events. Second,the elements of a synchronousprogram communicate instantaneously upon

changing state, in the processinstantaneously generating further internal events. Third, a

synchronous program generatesoutput events instantaneously upon receiving input events

and generating internal events. In sum, the environment of a synchronous program gen-

erates a sequenceof input events, and the program's changeof state, internal events, and
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output events are simultaneous with each input event.

The synchronous languageshave two advantagesover multi-threaded systems. In

a multi-threaded system, each thread constitutes its own time line; these individual time

lines are interleaved by the scheduler. In contrast, the reactions of a synchronous program

can all be dated on the sametime line, sincethesereactionsare instantaneous. The problem

of interleaving nondeterminism therefore disappearsin the synchronous languages.Second,

synchronouslanguageshavea formal semantics that rigorously de¯nesthe possiblebehaviors

of a synchronous program. This ¯xes the meaning of a synchronous program independent

of any implementation.

The two main exemplars of the synchronous languagesare Esterel and Lustre

[BG92, HCRP91]. Esterel is called a control-dominated language becauseit emphasizes

control °ow, and Lustre is called a data-dominated languagebecauseit emphasizesdata

°ow. Esterel and Lustre also di®er in their treatment of a key semantic di±cult y. The

fact that the components of a synchronousprogram communicate instantaneously may lead

to paradoxes. For example, an Esterel program may be written that is equivalent to the

instruction \emit a signal S if and only if S is not present" [BG92]. In Lustre, instantaneous

cyclic dependenciesof the abovesort areexpresslyforbidden: data°ow cyclesmust bebroken

by delay elements [HCRP91]. In classicalEsterel, such cyclesare allowed so long as they

satisfy the requirements of Esterel's ¯xed-point semantics.

The synchronous languageshave two main problems. Both problems stem from

the synchronoushypothesisitself, in particular from the supposition that computation takes

no time. The ¯rst problem is that the synchronous languagesdo not provide tools, whether

conceptual tools or software tools, for precisely characterizing the temporal relationship

betweenthe environment and the implementation of a synchronous program. The authors

of the synchronous languagesrecognizethat the synchronous hypothesiscannot truly hold

in an implementation, becauseall computation takes time, even if only a small amount,

and therefore an implementation cannot react truly instantaneously. For an implementa-

tion, the synchronous hypothesis is therefore relaxed to essentially the condition that the

environment remain unchanged during a reaction of a synchronous program [BB91]. In

other words, a synchronous program can react as slowly as it pleases,so long as the envi-

ronment doesnot changeduring a reaction. Though such a relaxation of the synchronous

hypothesisaids in implementing a synchronous program, it also weakens the analyzability

of the temporal connectionbetweena synchronous program and its environment. Continu-
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Figure 1.2: The reactions of a synchronous program.

ous physical environments are always changing, and as we have argued, to understand the

relation between a real-time program and its environment, it is desirable to know exactly

when the program produces its outputs. One would like to be able to characterize this

temporal relationship | indeed, one would like the compiler to do so automatically | but

the synchronous languagesdo not o®ersupport for such a characterization.

Ideally, a synchronous program should react quickly to input events. The second

problem of the synchronous languagesis that a program that reactsquickly to input events

will have a low CPU utilization. Supposethat a synchronousprogram, upon receiving a set

of input events, always responds within " time units, for somesmall " 2 R (seeFigure 1.2).

If the synchronous program reacts quickly | i.e., if " is very small | then CPU utilization

is very low, as we now explain. For a sequenceof input events at times ¿1; ¿2; ¿3; ¢¢¢, the

proportion of time the CPU is active can easily be seento be " ¢lim i !1 E(¿i )=¿i , where

E(¿i ) is the number of input events up to time ¿i . If on averagea constant number of input

events occur per unit of time, and " is small, then CPU utilization is asymptotically low.

1.1.3 Fixed logical execution times: a disciplined return to threads

The two fundamental problems just discussedlead us to look for alternativ es to

the synchronous languages.Since the low CPU utilization causedby exclusive reliance on

interrupt handlers motivated the intro duction of threads, it is reasonableto ask whether a

principled reintro duction of threads can ameliorate the low CPU utilization of synchronous

languages.

Let us therefore consider the following scenario. Supposewe have a set of tasks.

With each task is associated a start time an end time. Also associated with each task is a

set of read ports, a set of written ports, and a function that, given valuesof the read ports,

computesvaluesfor the written ports. Each task logically beginsexecutingat its start time.
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A task may physically start executing after its start time, but logically it beginsat its start

time. When a task begins, it reads data values from its read ports, and then commences

to compute the value of its function. Logically, this computation continuesuntil the task's

end time; physically, the computation may completebeforethe end time, with the valuesof

the output ports bu®ereduntil then. At the end time, the computed value of the function

is placed in the written ports.

We call the supposition that each task logically executesfrom its start time to its

end time, the ¯xed logical execution time (FLET) hypothesis. The FLET hypothesis con-

trasts with the synchronoushypothesisin that all computation takessomepositive amount

of time, rather than being instantaneous. The behavior of a FLET program possessesan

intuitiv e, deterministic semantics that may easily be formalized: given initial port values,

one may de¯ne, for each time ¿ and port p, the value of p at ¿; speci¯cally, port values

changeonly when a task starts or ends.

Furthermore, the problem of scheduling a FLET program can easily be modeled

as an instance of the scheduling problem 1 j r i ; pmtn j L max , which is the problem of

preemptively scheduling a set of tasks with execution times, releasetimes, and deadlines,

on a single processorso that maximum latenessof the tasks is minimized.2 We say that a

scheduling algorithm is optimal for 1 j r i ; pmtn j L max if, given any instanceof 1 j r i ; pmtn j

L max asinput, the algorithm always producesa schedulethat minimizes maximum lateness.

The earliestdeadline¯rst (EDF) algorithm is optimal for 1 j r i ; pmtn j L max [Jac55].3 Wesay

that a schedule is feasible if every task meetsits deadline in the schedule. Given worst-case

execution times (WCETs) for each task of a FLET program P, the translation from P to an

instanceof 1 j r i ; pmtn j L max is straightforward.4 The modeling of a FLET program and the

application of a scheduling algorithm can be performed by the compiler, which then hasthe

abilit y to generatea feasibleschedule from a FLET program whenever a feasibleschedule

2The three-¯eld notation ® j ¯ j ° [LLLK82] is commonly used to classify scheduling problems, and will
be discussedfurther in Chapters 4 and 7.

3There also exist algorithms optimal for more general problems, such as the algorithm of [BLLK83 ]. For
the periodic task setsdescribed in Section 1.1.1, a necessaryand su±cient condition on schedulabilit y is thatP n

i =1 ei =¼i · 1. This utilization test can be applied to an instance of 1 j r i ; pmtn j L max only if the instance
has a periodic structure. In contrast, the EDF algorithm determines whether any instance of 1 j r i ; pmtn j
L max has a feasible schedule.

4The problem of estimating WCETs is orthogonal to the FLET model and scheduling techniques for FLET
programs. Estimating WCETs is, of course,an undecidable problem in general, becauseof a straightforw ard
reduction from the halting problem. For CPUs with architectural features such as caches and pipelines, the
problem is also practically very di±cult. However, recent research [TFW00 , FHL + 01] has made progress in
accurately estimating WCETs for complex architectures using abstract interpretation [CC77].
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exists. This shift in the responsibilit y of schedule generation, from the operating system

or the programmer to the compiler, has two advantages. First, the compiler-generated

schedules are e±cient, since the compiler's scheduling algorithm is aware of the timing

constraints of the FLET program. In contrast, it would be di±cult to make an RTOS aware

of theseconstraints, sinceRTOSs typically possessonly simplistic, priorit y-basedscheduling

policies. Second,the compiler-generatedschedulesrelieve the programmer of the di±cult

and error-prone work of manually generating schedulesor assigningpriorities. The FLET

programming model, and the automatic synthesisof schedules for FLET programs, are the

central ideas of this dissertation.

The ideaof usinga compiler to check the schedulabilit y of real-time programsis not

new: the compilers of the languagesMetaH [VB93, Ves97],Real-Time Euclid [KS86], and

RTC++ [ITM90, TK88] performed schedulabilit y checks. In contrast to theseapproaches,

this dissertation usesprecedence-constrained scheduling models to expresscommunication

dependencies.The useof precedenceconstraints will be described in Section 1.3, below.

1.2 The Giotto abstraction

Though the simpleFLET model presented in Section1.1.3canbegivenan intuitiv e

mathematical semantics, and is amenableto automatic schedule synthesis, the model does

not by itself form an abstract model for programming embedded control systems,for two

reasons:

1. The simple FLET model requires that the programmer specify tasks individually ,

which would result in verbose programs. Moreover, the simple FLET model has a

¯nite set of activities, whereasreactive programsare usually nonterminating, and thus

contain an in¯nite number of activities. In real-time systems,tasks are often periodic.

Periodic task invocations naturally allow terse descriptions of nonterminating task

sets.

2. Second, many real-time systems have a set of operational modes, which permit a

dynamic changeduring runtime of the set of tasks invoked. For example,the Shuttle's

modes include pre°ight GNC checkout, ascent/ab orts, on-orbit, and entry . Switches

between modes result from crew input or automatically as a result of a condition

detectedby the software [Car84]. Modechangesallow a limited but analyzableamount
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Figure 1.3: A °y-b y-wire °igh t control system.

of dynamic changeof behavior at runtime.

To motivate a more applicable abstract programmer's model for embeddedcontrol

systems,considera typical °y-b y-wire °igh t control system[LRR92, Col99], which consists

of the interconnected sensors,¯lters, control laws, and actuators pictured in Figure 1.3.

The sensorsinclude an IMU; a global positioning system receiver (GPSR), for measuring

position; an air data measurement system, for measuring such quantities as air pressure;

and the pilot's controls, such as the pilot's stick. Each sensorhas its own timing properties:

the IMU, for example,outputs its measurement 1,000times per second,whereasthe pilot's

stick outputs its measurement only 100times per second.Three separatecontrol laws | for

pitch, lateral, and throttle control | needto be computed. The systemhas four actuators:

two for the ailerons, one for the tailplane, and one for the rudder. Approximate timing

requirements for the control laws and actuator tasks are also shown in Figure 1.3.

We have just described one operational mode of the °y-b y-wire °igh t control sys-

tem, namely the cruise mode. There are four additional modes: the take-o®, landing,

autopilot, and degradedmodes. In each of these modes, additional sensingtasks, control

laws, and actuating tasks needto be executed,as well as someof the cruise tasks removed.

For example, in the take-o®mode, the landing gear must be retracted. In the autopilot

mode, the control systemtakesinputs from a supervisory °igh t planner, instead of from the

pilot's stick. In the degradedmode, someof the sensorsor actuators have su®ereddamage;
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the control system compensatesby not allowing maneuvers that are as aggressive as those

permitted in the cruise mode.

The Giotto programming languageprovides a programmer's abstraction for speci-

fying control systemsthat are structured like the °y-b y-wire example. The basic functional

unit in Giotto is the task, which is a periodically executedpiece of, say, C code. Several

concurrent tasks make up a mode. Taskscan be added or removed by switching from one

mode to another. Taskscommunicate with each other, aswell aswith sensorsand actuators,

by so-calleddrivers, which is code that transports and converts valuesbetweenports. The

periodic invocation of tasks, the reading of sensorvalues, the writing of actuator values,

and the mode switching are all triggered by real time. For example, one task t1 may be

invoked every 2 ms and read a sensorvalue upon each invocation, another task t2 may be

invoked every 3 ms and write an actuator value upon each completion, and a mode switch

may be contemplated every 6 ms. This time-triggered semantics enablese±cient reasoning

about the timing behavior of a Giotto program, in particular, whether it conforms to the

timing requirements of a mathematical model of the control design.

A Giotto program doesnot specify where,how, and when tasksare scheduled. The

Giotto program with tasks t1 and t2 can be compiled on platforms that have a single CPU

(by time sharing the two tasks) as well as on platforms with two CPUs (by parallelism); it

can be compiled on platforms with preemptive priorit y scheduling (such as most real-time

operating systems)as well as on truly time-triggered platforms (such as the time-triggered

architecture (TT A) [Kop97]). All the Giotto compiler needsto ensureis that the semantics

of the program | i.e., functionalit y and timing | is preserved. To this end, the compiler

needsto solve a possibly distributed scheduling problem. This can be di±cult, and to make

the job of the compiler easier,a Giotto program can be annotated with compiler directives

in the form of platform constraints. A platform constraint may map a particular task to a

particular CPU, assigna particular priorit y to a particular task, or schedule a particular

communication event between tasks in a particular time slot. Such annotations, however,

in no way modify the functionalit y and timing of a Giotto program; they simply aid the

compiler in realizing the semantics of the program.

Giotto is similar to architecture description languages(ADLs) [Cle96]. LikeGiotto,

ADLs shift the programmer's perspective from small-grained features such as lines of code

to large-grained features such as tasks, modes, and inter-component communication, and

they allow the compilation of scheduling code to connect tasks written in conventional
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programming languages. The design methodology for the Mars system, a predecessorof

the TTA, distinguishes in a similar way \programming in the large" from \programming

in the small" [KZF + 91]. The inter-task communication semantics of Giotto is particularly

similar to the MetaH language[VB93, Ves97],which is designedfor real-time, distributed

avionics applications. MetaH supports periodic real-time tasks, multi-mo de control, and

distributed implementations. However, MetaH di®ersfrom Giotto in two respects: it does

not have a formal semantics, and mode switches may occur at any time [Ves94],not only

at times speci¯ed prior to runtime, as with Giotto. Giotto can be viewed as capturing a

time-triggered fragment of MetaH in an abstract and formal way. Unlike MetaH, Giotto

doesnot constrain the implementation to a particular scheduling scheme.

The goal of Giotto | to provide a platform-independent programming abstraction

for real-time systems| is of courseshared by the synchronous programming languages.

The semantics of Giotto are particularly similar to those of Lustre. While the synchronous

reactive languagesare designedaround zero-delay value propagation, Giotto is basedon the

formally weaker notion of unit-delay value propagation, becausein Giotto, the ¯xed logical

execution time is always strictly positive. This decision shifts the focus and the level of

abstraction in essential ways. In particular, for analysis and compilation, the burden for

the well-de¯nednessof values is shifted from logical ¯xed-p oint considerationsto physical

scheduling constraints (in Giotto all values are, semantically , always well-de¯ned). Thus,

Giotto can be seenas identifying a class of synchronous reactive programs that support

typical real-time control applications and e±cient code generation [HK02].

1.3 Precedence-constrained scheduling

A key element of our approach to scheduling Giotto programs is to use prece-

denceconstraints for modeling data°ow dependencies.In previousapproachesto scheduling

Giotto, the scheduling model was unnecessarilyrestrictiv e, becauseintertask communica-

tion was assumedto occur at prede¯ned instants [HKMM02]. We relax this assumption,

instead requiring that only the communication with the external world happens at prede-

¯ned instants, all other communications being constrained by data°ow dependencies. In

this relaxed context, the relevant scheduling question is: Can a precedence-constrainedset

of activities with releasetimes, deadlines,and worst-caseexecution times be scheduled to

meetall deadlines?Our useof precedenceconstraints allowsmoreprogramsto bescheduled;
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we now sketch why this is so.

The basic idea of the precedence-constrainedapproach is illustrated by the fol-

lowing FLET program, consisting of two tasks t and t0. Supposethat t samplesa sensor

at 0 ms and writes port o at 10 ms. Task t0 reads o at 10 ms and modi¯es an actuator

at 20 ms. In the programmer's model, the requirement that t ¯nish at 10 ms and that t0

start at 10 ms de¯ne the data°ow dependencebetween t and t0. However, let us suppose

that the write and read at 10 ms are purely internal to the program, and that the only

externally observable activities are the sensorread at 0 ms and the actuator modi¯cation

at 20 ms. The constraint that t ¯nish before 10 ms, and that t0 start after 10 ms, do not

therefore hold for an actual implementation. Instead, the only requirements are that t not

begin before 0 ms, since it is at 0 ms that the sensorneedsto be sampled; that t ¯nish

before t0 begins(in symbols, t Á t0), since t supplies t0 with an input; and that t0 not com-

plete after 20 ms, since it is at 20 ms that the actuator needsto be modi¯ed. Indeed, if t

requires 15 ms of CPU time, and t0 requires 5 ms, then executing t from 0 to 15 ms, and

t0 from 15 to 20 ms, meets the relaxed constraints. Modeling data°ow dependencieswith

precedenceconstraints therefore allows more programs to be scheduled, while preserving

both the timing of observable behaviors and the programmer's abstraction of ¯xed logical

execution times.

The use of precedenceconstraints also allows us to borrow algorithms and con-

cepts from operations research. For single-processor,single-mode settings, we adapt an

algorithm for a precedence-constrainedversion of the problem 1 j r i ; pmtn j L max [BÃla76].

The extensionof this algorithm to in¯nite, periodic task setsis a contribution of this disser-

tation (Chapter 4). For multi-pro cessorsettings, the standard classi¯cation of scheduling

problems [LLKS93, LLK82 ] has assisted us in classifying as NP-hard the complexity of

multi-pro cessorGiotto scheduling (Chapter 7).

For multi-mo de Giotto programs, a precedence-constrainedview of scheduling in-

tro ducesa feature not found in traditional traditional scheduling models: the deadlinesof

a task may change depending on the branching behavior of the program. This feature

motivates the development of algorithms for conditional scheduling with varying dead-

lines (Chapter 5). Though ¯xed-deadline conditional scheduling has recently been stud-

ied [Bar98a, Bar98b, CET01], to the author's knowledge this dissertation constitutes the

¯rst study of varying-deadline conditional scheduling. The algorithms developed in the

courseof this study are not only novel and of independent interest, but also allow Giotto
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programs to be scheduled that cannot be scheduled with ¯xed-deadline techniques (Chap-

ter 6).

This dissertation advocatespre-runtime scheduling approach, in which a complete

schedule for the implementation of a FLET program is produced before runtime. The pre-

runtime approach contrasts with an online approach, in which the scheduler decidesat

runtime how to allocate the CPU to tasks. For safety-critical systems,an online approach

needsto be complemented either with pre-runtime analysisto determine whether the online

schedulerwill producea feasibleschedule[LL73, BHR93], or with an online algorithm whose

performancedegradesgracefully in the presenceof overload [BKM + 91, BS93]. Pre-runtime

scheduling has two advantages. First, it minimizes the time required for runtime actions,

since all but the very simplest decisionsare made prior to runtime. Second,it produces

schedules which can be can be veri¯ed prior to runtime, independently of the algorithm

that produced them; for safety-critical systemsthis latter feature is desirable.

Pre-runtime scheduling is also usedin the TTA. Giotto was inspired by the TTA,

particularly by the idea that time-based programming could serve as a means for imple-

menting safety-critical real-time systems. However, Giotto and the TTA are conceptually

of di®erent sorts: while the TTA is a hardware- and protocol-basedrealization of the time-

triggered paradigm, Giotto is a hardware- and protocol-independent programmer's model

for time-based applications. Thus, while the TTA provides a natural platform on which

to run Giotto programs, it is by no meansthe only such platform. Indeed, a platform for

running Giotto neednot even be a time-based implementation; an EDF- or priorit y-based

implementation may insteadbesu±cient. Existing platforms will bediscussedin Chapter 2.

1.4 Overview of the chapters

This dissertation is structured as follows. Chapter 2 presents the syntax and

semantics of Giotto. Section 2.2 informally describes the elements of a Giotto program:

ports, tasks, and modes. Section 2.3 then formally de¯nes Giotto's semantics. Section 2.4

describes an abstract version of the scheduling problem that the Giotto compiler needs

to solve, and describes how a Giotto program can be annotated to assist the compiler in

distributed code generation.

Chapter 3 shows how Giotto may be used to redesignthe software of an existing

real-time system, a small autonomous helicopter. Section 3.2 brie°y intro duceshelicopter
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°igh t. Section3.3 discussesthree commonshortcomingsof the designof software for control

systems.Giotto addressestwo of theseshortcomings,and the third is addressedby carefully

designingthe software that interacts with sensors.Finally, Section3.4 describesa protot ype

Giotto-based °igh t control computer, including a Giotto program for helicopter control

(Section 3.4.1), an implementation of the EmbeddedMachine [HK02] for executing Giotto

programs (Section 3.4.2), and a hardware-in-the-loop helicopter simulator (Section 3.4.3).

The redesignedhelicopter software is more predictable and abstract. At the same time,

the easewith which Giotto expressedthe functionalit y of the original helicopter software

supports our argument that Giotto provides a natural programming model for hard real-

time control systems.

Chapter 4 beginsa study of precedence-constrainedGiotto scheduling. This study

continues for the remainder of the thesis. A Giotto program may be either single-mode

or multi-mo de, and may be executed on either a single processoror a distributed set of

processors.Of the resulting four cases,we consider in detail single-mode, single-processor

Giotto scheduling (Chapter 4); and multi-mo de, single-processorGiotto scheduling (Chap-

ters 5 and 6). Sincemulti-pro cessorscheduling problems are often hard, both theoretically

and practically, our brief treatment of multi-pro cessorGiotto scheduling is limited to a

discussionof hardnessresults (Chapter 7).

To begin our study of Giotto scheduling, Chapter 4 ¯rst considersa simple case:

the problem of scheduling a single-mode Giotto program on a single processor.Section 4.2

motivates the needfor precedence-constrainedGiotto scheduling by presenting two Giotto

programs that could not be scheduled by previous approaches,but can be scheduled using

the techniquesof Chapter 4. Section4.3 developsa scheduling model appropriate for single-

mode Giotto programs. Section 4.3.1 intro ducesthe standard three-¯eld notation ® j ¯ j °

for classifyingscheduling problems[GLLK79 , LLK82 , HLv97]. The three-¯eld notation aids

in locating a standard scheduling problem similar to single-processorGiotto scheduling.

This standard problem is called 1 j r j ; dj ; prec; pmtn j ¡ , and is described in Section 4.3.2.

This problem asks whether a ¯nite set of precedence-constrainedtasks with releasetimes

and deadlines may be feasibly scheduled on a single processor. To develop a scheduling

algorithm appropriate for Giotto programs,which are nonterminating, Section4.3.3de¯nes

a variant of 1 j r j ; dj ; prec; pmtn j ¡ . We call this variant 1 j r j ; dj ; prec; pmtn; period j ¡

becauseof its periodic nature. Section 4.3.3 then develops an algorithm for scheduling

instancesof the periodic variant that producesfeasiblescheduleswhenever such schedules
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exist.

Section 4.4 shows how to use the model of Section 4.3.3 to schedule Giotto. We

call the algorithm of Section 4.4 a synthesisalgorithm to distinguish it from the algorithm

of Section4.3.3. Section4.4.1 ¯rst de¯nes a classof single-mode Giotto programs on which

the synthesis algorithm operates. Section 4.4.2 then de¯nes the notion of " -feasibility:

informally, a Giotto program G is "-feasible if there exists a feasible schedule for G that

executesevery sensorand actuator within " time units of its ideal time of execution as

speci¯ed in the Giotto semantics. The quantit y " is termed jitter tolerance. Section4.4.2also

intro ducesthree scheduling problemsfor Giotto: (1) Givena single-modeGiotto program G,

does there exist an " > 0 such that G has an "-feasible schedule? (2) If so, what is the

minimum "¤ such that G has an "¤-feasible schedule? (3) Given G and " ¤, synthesize an

"¤-feasibleschedule. In the remainder of Chapter 4, we present the synthesisalgorithm that

solvestheseproblems. Section 4.4.3 describesa data structure, the reduced data°ow graph,

that is usedby the synthesisalgorithm. Section4.4.4describesthe synthesisalgorithm itself,

which translates a single-mode Giotto program that is a member of the classof programs

de¯ned in Section 4.4.1 into an instance of the scheduling problem 1 j r j ; dj ; prec; pmtn;

period j ¡ . The synthesis algorithm runs in time pseudopolynomial in the description of its

input Giotto program, and solvesthe problems of Section 4.4.2.

Chapters 5 and 6 study the problem of scheduling multi-mo de Giotto programs

on a single processor.Chapter 5 contains just the scheduling theory, with little mention of

Giotto, and Chapter 6 contains the application of this theory to Giotto. The reader wish-

ing to understand only the smallest portion of Chapter 5 necessaryfor Giotto scheduling

needsto read only Sections5.2.1, 5.2.3, and 5.2.4. Chapter 5 intro ducesa novel scheduling

model, conditional scheduling with varying deadlines, in which the scheduling problem is

naturally viewed asa gamebetweenthe scheduler and the environment. Section5.1 surveys

related work; existing conditional scheduling models require that the deadline of a task be

¯xed when the task is released. Section 5.2 de¯nes the model that will be used through-

out Chapter 5. In this model, the deadlines of jobs are given by a ¯nite state machine.

Certain variants of this model are computationally easy, and others are computationally

hard. For the easyvariants, we provide a polynomial-time algorithm; for the hard variants,

we provide a proof of NP- or coNP-hardness. The easyvariants are tree scheduling (Sec-

tion 5.2.1), in which the ¯nite state machine's graph is constrained to be a tree; imprecise

tree scheduling (Section 5.2.2), in which the tree scheduling model is augmented with an
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anytime reward function; precedence-constrainedtree scheduling (Section 5.2.3), in which

the tree scheduling model is augmented with precedenceconstraints; and guarded schedul-

ing (Section 5.2.4), in which the precedence-constrainedmodel is augmented with jobs that

make mode switching decisions. The hard variants are discrete-time tree scheduling (Sec-

tion 5.3.1), in which the scheduler is constrained to switch between tasks only at integer

points in time; and directed acyclic graph scheduling (Section 5.3.2), in which the ¯nite

state machine's graph is allowed to be an arbitrary acyclic graph (instead of just a tree).

Finally, Section 5.4 examines¯xed-deadline conditional scheduling problems, in which the

deadline of each task is ¯xed at the time that the task is released.

Chapter 6 usesthe guardedconditional scheduling model of Section5.2.4for multi-

mode, single-processorGiotto scheduling. The structure of Chapter 6 mirrors that of Chap-

ter 4. Section6.2motivatesvarying-deadlineconditional scheduling for Giotto by presenting

a Giotto program where tasks' deadlinesvary, depending on the program's mode-switching

behavior. Section 6.3 intro ducesconceptsthat aid the de¯nition of the synthesis algorithm

of Section 6.4. Section 6.4 usesthe guarded conditional scheduling model to synthesize

schedulesfor multi-mo de Giotto programs. Section6.4.1de¯nes a classof Giotto programs

on which the synthesisalgorithm operates. Section6.4.2de¯nes "-feasibility for multi-mo de

Giotto programs,and de¯nes three scheduling problemsanalogousto thoseof Section4.4.2.

Sections6.4.3 and 6.4.4 de¯ne the synthesis algorithm, and Section 6.4.5 analyzesits run-

ning time and optimalit y. Though the running time may be doubly exponential in the size

of the input Giotto program G, it is singly-exponential if the numbers of G are written in

unary. Moreover, the algorithm solvesthe scheduling problems posedin Section 6.4.2.

Finally, Chapter 7 examines the complexity of scheduling Giotto programs for

multiple processors.Section7.2 shows that two scheduling problemsassociated with Giotto

are strongly NP-hard. The ¯rst problem (Section 7.2.1) is the problem of determining

how to assign the activities of a Giotto program to CPUs so that the activities may be

feasibly scheduled. The secondproblem (Section 7.2.2) is the problem of ¯nding a feasible

schedule,given such an assignment. Section7.3 reviewsthe parallel and job shopscheduling

literature, and shows that thesenegative results are not peculiar to Giotto, but are common

to many distributed scheduling problems.
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1.5 Notation

We brie°y describe somesymbols used in this dissertation; the remainder of the

notation will be intro duced as the dissertation proceeds. We use the following symbols to

denote sets:

Symbol Set
Z the set of integers
Z¸ 0 f x 2 Z j x ¸ 0g
Z> 0 f x 2 Z j x > 0g
Q the set of rational numbers
Q¸ 0 f x 2 Q j x ¸ 0g
Q> 0 f x 2 Q j x > 0g
R the set of real numbers
R¸ 0 f x 2 R j x ¸ 0g
R> 0 f x 2 R j x > 0g
[i :: j ] f k 2 Z j i · k · j g
B f true; falseg

A relation R over a set S is a subsetof S £ S. For a relation R, the symbol R+ will denote

the transitiv e closureof R, and R¤ will denote the transitiv e and re°exive closureof R.



20

Chapter 2

The Giotto programming language

2.1 In tro duction

Giotto provides a programming abstraction for hard real-time applications that

exhibit time-periodic and multimo dal behavior, as in automotive, aerospace,and manufac-

turing control.

Traditional control designhappensat a mathematical level of abstraction, with the

control engineermanipulating di®erential equations and mode-switching logic using tools

such as Matlab or MatrixX. Typical activities of the control engineerinclude modeling of

the plant behavior and disturbances, deriving and optimizing control laws, and validating

functionalit y and performanceof the model through analysisand simulation. If the validated

design is to be implemented in software, it is then handed o® to a software engineerwho

writes code for a particular platform (we usethe word \platform" to stand for a hardware

con¯guration together with a real-time operating system). Typical activities of the software

engineer include decomposing the necessarycomputational activities into periodic tasks,

assigning tasks to CPUs and setting task priorities to meet the desired hard real-time

constraints under the givenscheduling mechanismand hardwareperformance,and achieving

the desireddegreeof fault tolerancethrough replication and error correction. While limited

automation for theseactivities is available in the form of code-generationtools, the software

engineer has ¯nal authorit y over putting the implementation together through an often

iterativ e processof code integration, testing, and optimization.

Giotto providesan intermediate level of abstraction, which (i) permits the software

engineer to communicate more e®ectively with the control engineer, and (ii) keeps the
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Control design
² plant modeling

² control law derivation

+

Giotto program
² functionalit y and timing

² periodic software tasks and mode switches

+

Code for real-time
platform

² hardware mapping

² computation and communication scheduling

Figure 2.1: Giotto-based control-systems development.

implementation and its properties more closelyaligned with the mathematical model of the

control design. Speci¯cally, Giotto de¯nes a software architecture of the implementation

which speci¯es its functionalit y and timing. Functionalit y and timing are su±cient and

necessaryfor ensuring that the implementation is consistent with the mathematical model.

On the other hand, Giotto abstracts away from the realization of the software architecture

on a speci¯c platform, and freesthe software engineerfrom worrying about issuessuch as

hardware performance and scheduling mechanism while communicating with the control

engineer. After writing a Giotto program, the secondtask of the software engineerremains

of courseto implement the program on the givenplatform. In Giotto, this secondtask, which

requiresno interaction with the control engineer,is e®ectively decoupledfrom the ¯rst, and

can in large parts be automated by increasingly powerful compilers. Giotto compilation

guarantees the preservation of functionalit y and timing, and thus removes the need for a

tedious and error-prone iteration of code evaluation and optimization.

The Giotto design °ow is shown in Figure 2.1. The separation of logical correct-

nessconcerns(functionalit y and timing) from physical realization concerns(mapping and

scheduling) has the added bene¯t that a Giotto program is entirely platform independent

and can be compiled on di®erent, even heterogeneous,platforms.

The structure of the rest of this chapter is as follows. We ¯rst give an informal

intro duction to Giotto in Section 2.2, followed by a formal de¯nition of the language in
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Section 2.3. In Section 2.4, we de¯ne an abstract version of the scheduling problem that

needsto besolvedby the Giotto compiler, and we illustrate how a program canbeannotated

to guide distributed code generation. In Section 2.5, we give pointers to current Giotto

implementations and relate Giotto to the literature.

2.2 Informal description of Giotto

Ports

In Giotto all data is communicated through ports. A port represents a typed

variable with a unique location in a globally shared name space. We use the global name

spacefor ports asa virtual concept to simplify the de¯nition of Giotto. An implementation

of Giotto is not required to be a shared-memorysystem. Every port is persistent in the

sensethat the port keepsits value over time, until it is updated. There are mutually disjoint

setsof sensorports, actuator ports, and task ports in a Giotto program. The sensorports

are updated by the environment; all other ports are updated by the Giotto program. The

task ports are used to communicate data between concurrent tasks. Task ports can also

be usedto transfer data from one mode to the next: task ports can be designatedas mode

ports of a given mode, and assigneda value every time the mode is entered.

Tasks

A typical Giotto task t is shown in Figure 2.2. The task t hasa set In of two input

ports and a set Out of two output ports, all of which are depicted by bullets. The input

ports of t are distinct from all other ports in the Giotto program. The output ports of t

may be sharedwith other tasks as long as the tasks are not invoked in the samemode. In

general,a task may have an arbitrary number of input and output ports. A task may also

maintain a state, which can be viewed asa set of private ports whosevaluesare inaccessible

outside the task. The state of t is denotedby Priv. Finally, the task hasa function f from its

input ports and its current state to its output ports and its next state. The task function f

is implemented by a sequential program, and can be written in an arbitrary programming

language. It is important to note that the execution of f has no internal synchronization

points and cannot be terminated prematurely; in Giotto all synchronization is speci¯ed

explicitly outside of tasks. For a given platform, the Giotto compiler will needto know the



CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 23

In t Out

Privf

Figure 2.2: A task t.
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Figure 2.3: An invocation of task t.

worst-caseexecution time of f on each available CPU.

Task in vocations

Giotto tasksare periodic tasks: they are invoked at regularly spacedpoints in time.

An invocation of a task t is shown in Figure 2.3. The task invocation has a frequency! task

given by a non-zero natural number; the real-time frequency will be determined later by

dividing the real-time period of the current mode by ! task . The task invocation speci¯es a

driver d which provides valuesfor the input ports In. The ¯rst input port is loadedwith the

value of someother port p, and the secondinput port is loaded with the constant value · .

In general, a driver is a function that converts the values of sensorports and mode ports

of the current mode to values for the input ports, or loads the input ports with constants.

Driv ers can be guarded: the guard of a driver is a predicate on sensorand mode ports.

The invoked task is executedonly if the driver guard evaluates to true; otherwise, the task

execution is skipped.

The time line for an invocation of the task t is shown in Figure 2.4. The invo-

cation starts at some time ¿start with a communication phase in which the driver guard

is evaluated and the input port values are loaded. The Giotto semantics prescribes that

the communication phase| i.e., the execution of the driver d | is performed in logically

zero time. In other words, a Giotto driver is an atomic unit of computation that cannot be
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Figure 2.4: The time line for an invocation of task t.

interrupted. The synchronous communication phase is followed by a scheduled computa-

tion phase. The Giotto semantics prescribes that at time ¿stop the state and output ports

of t are updated to the (deterministic) result of f applied to the state and input ports of

t at time ¿start . The length of the interval between ¿start and ¿stop is determined by the

frequency ! task . We say that the task t is logically running from time ¿start to time ¿stop .

The Giotto logical abstraction doesnot specify when, where, and how the actual computa-

tion of f is physically performed between ¿start and ¿stop . However, the time at which the

task output ports are updated is determined, and therefore, for any given real-time trace

of sensorvalues,all valuesthat are communicated betweentasks and to the actuator ports

are determined [HK02]. Instantaneouscommunication and time-deterministic computation

are the two essential ingredients of the Giotto logical abstraction. A compiler must be

faithful to this abstraction; for example, task inputs may be loaded after time ¿start , and

the execution of f may be preempted by other tasks, as long as at time ¿stop the valuesof

the task output ports are those speci¯ed by the Giotto semantics.

Mo des

A Giotto program consistsof a set of modes,each of which repeats the invocation

of a ¯xed set of tasks. The Giotto program is in one mode at a time. Possibletransitions

from a mode to other modes are speci¯ed by mode switches. A mode switch can remove

sometasks, and add others.

Formally, a modeconsistsof a period, a set of modeports, a set of task invocations,

a set of actuator updates, and a set of mode switches. Figure 2.5 shows a mode m which
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contains invocations of two tasks, t1 and t2. The period ¼ of m is 10 ms; that is, while

the program is in mode m, its execution repeats the samepattern of task invocations every

10ms.1 The task t1 hastwo input ports, i 1 and i 2, two output ports, o2 and o3, a state Priv1,

and a function f1. The task t2 is de¯ned in a similar way. Moreover, there is one sensor

port, s, one actuator port, a, and a mode port, o1, which is not updated by any task in

mode m. The value of o1 stays constant while the program is in mode m; it can be used

to transfer a value from a previous mode to mode m. In addition to o1, all output ports of

tasks invoked in the mode | o2, o3, o4, and o5 | are, by default, also mode ports; they

must be initialized upon entering mode m. The mode ports are visible outside the scope

of m, as indicated by the dashedlines. A mode switch may copy the valuesat theseports

to mode ports of a successormode. The invocation of task t1 in mode m has the frequency

! 1 = 1, which meansthat t1 is invoked onceevery 10 ms while the program is in mode m.

The invocation of t1 in mode m hasthe driver d1, which copiesthe value of the mode port o1

into i 1 and the value of the output port o4 of t2 into i 2. The invocation of task t2 has the

frequency ! 2 = 2, which meansthat t2 is invoked onceevery 5 ms as long as the program

is in mode m. The invocation of t2 has the driver d2, which connectsthe output port o3 of

t1 to i 3, the sensorport s to i 4, and the output port o5 of t2 to i 5. The mode m has one

actuator update, which is a driver d3 that copiesthe value of the output port o2 of t1 to

the actuator port a with the actuator frequency ! act = 1; that is, onceevery 10 ms.

Figure 2.6 shows the exact timing of a single round of mode m, which takes

10 ms. As long as the program is in mode m, one such round follows another. The

round begins at the time instant ¿0 with an instantaneous communication phase for the

invocations of tasks t1 and t2, during which the two drivers d1 and d2 are executed. The

Giotto semantics doesnot specify how the computations of the task functions f1 and f2 are

physically scheduled; they could be scheduled in any order on a single CPU, or in parallel

on two CPUs. The Giotto semantics speci¯es only that after 5 ms, at time instant ¿1, the

results of the scheduledcomputation of f2 are madeavailable at the output ports of t2. The

secondinvocation of t2 begins with another execution of driver d2, still at time ¿1, which

samplesthe most recent value from the sensorport s. However, the two invocations of t 2

start with the samevalue at input port i 3, becausethe value stored in o3 is not updated

until time instant ¿2 = 10 ms, no matter whether or not f1 ¯nishes its actual computation

1While any choice of time unit is possible, we use milliseconds throughout this chapter.
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Figure 2.5: A mode m.

before¿1. According to the Giotto semantics, the output valuesof the invocation of t1 must

not be available before ¿2. Any implementation that schedulesthe invocation of t1 before

the ¯rst invocation of t2 must therefore keep available two sets of values for the output

ports of t1. The round is ¯nished after writing the output values of the invocation of t1

and of the secondinvocation of t2 to their output ports at time ¿2, and after updating the

actuator port a at the sametime. The beginning of the next round shows that the input

port i 3 is loaded with the new value produced by t1.

Mo de switc hes

In order to give an example of mode switching we intro duce a secondmode m0,

shown in Figure 2.7. The main di®erencebetweenm and m0 is that m0 replacesthe task t2

by a new task t3, which has a frequency ! task;3 of 4 in m0. Note that t3 has a new output

port, o6, but also usesthe sameoutput port o4 as t2. Moreover, t3 has a new driver d4,

which connectsthe output port o3 of t1 to the input port i 6, the sensorport s to i 7, and

the output port o6 of t3 to i 8. The task t1 in mode m0 has the samefrequencyand usesthe

samedriver as in mode m. The period of m0, which determines the length of each round,

is again 10 ms. This meansthat in mode m0, the task t1 is invoked onceper round, every

10 ms; the task t3 is invoked 4 times per round, every 2.5 ms; and the actuator a is updated

onceper round, every 10 ms.
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Figure 2.6: The time line for a round of mode m.

t3

t1

f1

f3

Priv1

! task ;1 = 1

Priv3

¼0 = 10 ms

d4

i 1

i 2

i 7

i 8

i 6

d1

o2 o3 o4 o6

d3
! act = 1

o1

! task ;3 = 4

a

s

Figure 2.7: A mode m0.
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A mode switch describesthe transition from one mode to another mode. For this

purpose,a mode switch speci¯es a switch frequency, a target mode, and a driver. Figure 2.8

showsa modeswitch ´ from modem to target modem0with the switch frequency! switch = 2

and the driver d5. The guard of the driver is called exit condition, as it determineswhether

or not the switch occurs. The exit condition is evaluated periodically, as speci¯ed by the

switch frequency. As usual, the switch frequency of 2 meansthat the exit condition of d5

is evaluated every 5 ms, in the middle and at the end of each round of mode m. The exit

condition is a boolean-valued condition on sensorports and the mode ports of m. If the

exit condition evaluates to true, then a switch to the target mode m0 is performed. The

mode switch happensby executing the driver d5, which provides values for all mode ports

of m0; speci¯cally, d5 loads the constant · into o1, the value of the mode port o5 into o6,

and ensuresthat o2, o3, and o4 keep their values (this is omitted from Figure 2.8 to avoid

clutter). Like all drivers, mode switchesare performed in logically zero time.

Figure 2.9 shows the time line for the mode switch ´ performed at time ¿1. The

program is in mode m until ¿1 and then enters mode m0. Note that until time ¿1 the time

line corresponds to the time line shown in Figure 2.6. At time ¿1, ¯rst the invocation of

task t2 is completed, then the mode driver d5 is executed. This ¯nishes the mode switch.

All subsequent actions follow the semantics of the target mode m0 independently of whether

the program entered m0 just now through a mode switch, at 5 ms into a round, or whether

it started the current round already in mode m0. Speci¯cally, the driver for the invocation

of task t3 is executed,still at time ¿1. Note that the output port o6 of t3 has just received

the value of the output port o5 from task t2 by the mode driver d5. At time ¿2, task t3

is invoked a secondtime, and at time ¿3, the round is ¯nished, becausethis is the earliest

time after the mode switch at which a completenew round of mode m0 can begin. Now the

input port i 1 of task t1 is loaded with the constant · from the mode port o1. In this way,

task t1 can detect that a mode switch occurred.

A mode switch may occur while a task is logically running; in this casewe say that

the mode switch logically interrupts the task invocation. For a mode switch to be legal, the

target mode is constrainedso that all task invocations that may be logically interrupted by

a mode switch can be continued in the target mode. In our example, the mode switch ´

can occur at 5 ms into a round of mode m, while the task t1 is logically running. Hence

the target mode m0 must also invoke t1. Moreover, since the period of m0 is 10 ms, as for

mode m, the frequencyof t1 in m0 must be identical to the frequencyof t1 in m, namely, 1.
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If, alternativ ely, the period of m0 were 20 ms, then the frequencyof t1 in m0 would have to

be 2.

2.3 Formal de¯nition of Giotto

2.3.1 Syntax

Rather than specifying a concretesyntax for Giotto, we formally de¯ne the com-

ponents of a Giotto program in a more abstract way. In practice, Giotto programs can be

written in a concrete,C-like syntax. A Giotto program consistsof the following components:

1. A set of port declarations. A port declaration (p;Type; init) consistsof a port name

p, a type Type, and an initial value init 2 Type. We require that all port namesare

uniquely declared; that is, if (p;¢; ¢) and (p0; ¢; ¢) are distinct port declarations, then

p 6= p0. The set Ports of declared port namesis partitioned into a set SensePorts of

sensor ports, a set ActPorts of actuator ports, a set InPorts of task input ports, a set

OutPorts of task output ports, and a set PrivPorts of task private ports. Given a port

p 2 Ports, we usenotation such as Type[p] for the type of p, and init[p] for the initial

value of p. A valuation for a set P µ Ports of ports is a function that maps each port

p 2 P to a value in Type[p]. We write Vals[P] for the set of valuations for P.

2. A set of task declarations. A task declaration (t; In; Out; Priv; f) consistsof a task name

t, a set In µ InPorts of input ports, a set Out µ OutPorts of output ports, a set Priv µ

PrivPorts of private ports, and a task function f : Vals[In [ Priv] ! Vals[Out [ Priv].

If (t; In; Out; Priv; ¢) and (t0; In0; Out0; Priv0; ¢) are distinct task declarations, then we

require that t 6= t0 and In \ In0 = Priv \ Priv0 = ; . Tasksmay share output ports as

long as the tasks are not invoked in the samemode; seebelow. We write Tasksfor

the set of declaredtask names.

3. A set of driver declarations. A driver declaration (d;Src; g; Dst; h) consistsof a driver

name d, a set Src µ Ports of source ports, a driver guard g : Vals[Src] ! B, a set

Dst µ Ports of destination ports, and a driver function h : Vals[Src] ! Vals[Dst].

When the driver d is called, the guard g is evaluated, and if the result is true, then

the function h is executed. We require that all driver namesare uniquely declared,

and we write Driversfor the set of declareddriver names.
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4. A set of mode declarations. A mode declaration (m; ¼; ModePorts; Invokes; Updates;

Switches) consistsof a modenamem, a positivemodeperiod ¼2 Q> 0, a set ModePorts

µ OutPorts of mode ports, a set Invokesof task invocations, a set Updatesof actuator

updates, and a set Switchesof mode switches. We require that all mode namesare

uniquely declared,and we write Modesfor the set of declaredmode names.

(a) Each task invocation (! task ; t; d) 2 Invokes[m] consistsof a task frequency! task 2

Z> 0, a task t 2 Taskssuch that Out[t] µ ModePorts[m], and a task driver d 2

Drivers such that Src[d] µ ModePorts[m] [ SensePorts and Dst[d] = In[t]. The

invoked task t only updatesmode and private ports; the task driver d readsonly

mode and sensorports, and updatesthe input ports of t. If (¢; t; ¢) and (¢; t0; ¢) are

distinct task invocations in Invokes[m], then we require that Out[t] \ Out[t0] = ; ;

that is, tasks sharing output ports must not be invoked in the samemode.

(b) Each actuator update (! act ; d) 2 Updates[m] consists of an actuator frequency

! act 2 Z> 0, and an actuator driver d 2 Driverssuch that Src[d] µ ModePorts[m]

and Dst[d] µ ActPorts. The actuator driver d reads only mode ports, no sensor

ports, and updates only actuator ports. If (¢; d) and (¢; d0) are distinct actuator

updates in Updates[m], then we require that Dst[d] \ Dst[d0] = ; ; that is, in each

mode, an actuator can be updated by at most one driver.

(c) Each mode switch (! switch ; m0; d) 2 Switches[m] consists of a mode-switch fre-

quency ! switch 2 Z> 0, a target mode m0 2 Modes, and a mode driver d 2 Drivers

such that Src[d] µ ModePorts[m] [ SensePorts and Dst[d] = ModePorts[m0].

The mode driver d reads only mode and sensorports, and updates the mode

ports of the target mode m0. If (¢; ¢; d) and (¢; ¢; d0) are distinct mode switches

in Switches[m], then we require that for all valuations v 2 Vals[Ports] either

g[d](v) = false or g[d0](v) = false. It follows that all mode switches are deter-

ministic.

5. A start mode start 2 Modes.

The program is well-timed if for all modes m 2 Modes, all task invocations (! task ; t; ¢) 2

Invokes[m], and all mode switches(! switch ; m0; ¢) 2 Switches[m], if ! task =! switch =2 Z> 0, then

there exists a task invocation (! 0
task ; t; ¢) 2 Invokes[m0] with ¼[m]=! task = ¼[m0]=! 0

task . The

well-timedness condition ensuresthat mode switches do not terminate tasks: if a mode
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switch occurs when a task is logically running, then the sametask must be present also in

the target mode.

2.3.2 Semantics

A program con¯guration C = (m; ±; v; ¾active ; ¿) consistsof a mode m 2 Modes, a

mode time ± 2 Q, a valuation v 2 Vals[Ports] for all ports, a set ¾active µ Tasksof active

tasks, and a time stamp ¿ 2 Q. The set ¾active µ Taskscontains all tasks that are logically

running, whether or not they are physically running by expending CPU time. The number

± ¸ 0 measuresthe amount of time that haselapsedsincethe last mode switch, unlesssome

tasks were logically running at the time of the last mode switch, in which case± \dates

back" the mode switch to the closesttime instant beforethe mode switch when the current

mode could have started from its beginning with all its tasks. For a program con¯guration

C and a set P µ Ports, we write C[P] for the valuation in Vals[P] that agreeswith C on the

valuesof all ports in P.

The mode frequenciesof a mode m 2 Modesinclude (i) the task frequencies! task

for all task invocations (! task ; ¢; ¢) 2 Invokes[m], (ii) the actuator frequencies! act for all

actuator updates (! act ; ¢) 2 Updates[m], and (iii) the mode-switch frequencies! switch for

all mode switches (! switch ; ¢; ¢) 2 Switches[m]. Let ! lcm [m] be the least common multiple

of the mode frequenciesof m. During an execution, as long as the program is in mode m,

the program con¯guration is updated every ¼[m]=! lcm [m] time units. Each update results

from a sequenceof ¯v e typesof events: ¯rst, sometasks are completed (i.e., removed from

the active set); second,someactuators are updated; third, somesensorsare read; fourth, a

mode switch may occur; ¯fth, somenew tasks are activated.

Let us be more precise. Consider a program con¯guration C = (m; ±; v; ¾active ; ¿).

We needthe following auxiliary de¯nitions:

² A task invocation (! task ; t; ¢) 2 Invokes[m] is completed at con¯guration C if t 2 ¾active ,

and ± is an integer multiple of ¼[m]=! task .

² An actuator update (! act ; d) 2 Updates[m] is evaluated at con¯guration C if ± is an

integer multiple of ¼[m]=! act .

² A mode switch (! switch ; ¢; d) 2 Switches[m] is evaluated at con¯guration C if ± is an

integer multiple of ¼[m]=! switch .
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² A task invocation (! task ; ¢; d) 2 Invokes[m] is evaluated at con¯guration C if ± is an

integer multiple of ¼[m]=! task .

The actuator update (! act ; d), mode switch (! switch ; ¢; d), or task invocation (! task ; ¢; d) is

enabled at con¯guration C if it is evaluated at C and g[d](v) = true.

The program con¯guration Csucc is a successorcon¯guration of C if Csucc results

from C by the following nine steps,called Giotto micro steps. Theseare the stepsa Giotto

program performs whenever it is invoked, initially with ± = 0, ¾active = ; , and ¿ = 0:

1. [Up date task output and priv ate ports ] Let ¾completed be the set of tasks t such

that a task invocation of the form (¢; t; ¢) 2 Invokes[m] is completedat con¯guration C.

Consider a port p 2 OutPorts [ PrivPorts. If p 2 Out[t] [ Priv[t] for some task t 2

¾completed , then de¯ne vtask (p) = f[t](C[In[t] [ Priv[t]])(p); otherwise, de¯ne vtask (p) =

v(p). This givesthe new valuesof all task output and private ports. Note that ports

are persistent in the sensethat they keep their values unlessthey are modi¯ed. Let

Ctask be the con¯guration that agreeswith vtask on the valuesof OutPorts [ PrivPorts,

and otherwise agreeswith C.

2. [Up date actuator ports ] Consider a port p 2 ActPorts. If p 2 Dst[d] for some

actuator update (¢; d) 2 Updates[m] that is enabledat con¯guration Ctask , then de¯ne

vact (p) = h[d](Ctask [Src[d]])(p); otherwise, de¯ne vact (p) = v(p). This gives the new

values of all actuator ports. Let Cact be the con¯guration that agreeswith vact on

the valuesof ActPorts, and otherwise agreeswith Ctask .

3. [Up date sensor ports ] Consider a port p 2 SensePorts. Let vsense(p) be any value

in Type[p]; that is, sensorports change nondeterministically. This is not done by

the Giotto program, but by the environment. All other parts of a con¯guration are

updated deterministically, by the Giotto program. Let Csense be the con¯guration

that agreeswith vsense on the valuesof SensePorts, and otherwise agreeswith Cact .

4. [Up date mo de] If a mode switch (¢; mtarget; ¢) 2 Switches[m] is enabled at con¯gu-

ration Csense, then de¯ne m0 = mtarget; otherwise, de¯ne m0 = m. This determines if

there is a mode switch. Recall that at most one mode switch can be enabledat any

con¯guration. Let Ctarget be the con¯guration with mode m0 that otherwise agrees

with Csense.
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sensor
port s1 type R
port s2 type B

actuator
port a type R init 0

input
port i 1 type R
port i 2 type R
port i 3 type R

output
port o1 type R init 0
port o2 type R init 0

private
port p1 type R init 0
port p2 type R init 0
port p2 type R init 0

task t1 input i 1 output o1 private p1 function f1
task t2 input i 2 output o2 private p2 function f2
task t3 input i 3 output o2 private p3 function f3

driver d1 source o2 guard g1 destination i 1 function h1

driver d2 source s1 guard g1 destination i 2 function h2

driver d3 source s1 guard g1 destination i 3 function h3

driver d4 source o1 guard g1 destination a function h4

driver d5 source s2 guard g5 destination o1, o2 function h5

modem1 period 6 ports o1, o2

frequency 1 invoke t1 driver d1

frequency 2 invoke t2 driver d2

frequency 1 update d4

frequency 2 switch m2 driver d5

modem2 period 12 ports o1, o2

frequency 2 invoke t1 driver d1

frequency 3 invoke t3 driver d3

frequency 2 update d4

frequency 3 switch m1 driver d5

start m1

Figure 2.10: The abstract syntax of a Giotto program with two modes.
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5. [Up date mo de ports ] Consider a port p 2 OutPorts. If p 2 Dst[d] for somemode

switch (¢; ¢; d) 2 Switches[m] that is enabledat con¯guration Csense, then de¯ne:

vmode(p) = h[d](Ctarget[Src[d]])(p)

Otherwise, de¯ne vmode(p) = Ctarget[OutPorts](p). This gives the new values of all

mode ports of the target mode. Note that mode switching updates also the output

ports of all tasks t that are logically running. This does not a®ect the execution

of t. When t completes, its output ports are again updated, by t. Let Cmode be the

con¯guration that agreeswith vmode on the valuesof OutPorts, and otherwise agrees

with Ctarget.

6. [Up date mo de time ] If no mode switch in Switches[m] is enabled at con¯gura-

tion Csense, then de¯ne ±0 = ±. Otherwise, suppose that a mode switch is enabled

at con¯guration Csense to the target mode m0. Let ¾running = ¾active n ¾completed . If

¾running = ; , then de¯ne ±0 = 0. Otherwise, let ° be the least common multiple of

the set f ¼[m]=! task j (! task ; t; ¢) 2 Invokes[m] for somet 2 ¾running g of task periods

for running tasks; then ° is the time it takesduring a round of mode m to complete

all running tasks simultaneously. Let " be the least integer multiple of ° such that

" ¸ ±; then " ¡ ± is the time until the next simultaneous completion point. De¯ne

±0 = ¼[m0] ¡ (" ¡ ±). Thus a mode switch always jumps as closeas possibleto the end

of a round of the target mode. Let Clocal be the con¯guration with mode time ±0 that

otherwise agreeswith Cmode.

7. [Up date task input ports ] Consider a port p 2 InPorts. If p 2 Dst[d] for sometask

invocation (¢; ¢; d) 2 Invokes[m0] that is enabled at con¯guration Clocal , then de¯ne

vinput (p) = h[d](Clocal [Src[d]])(p); otherwise, de¯ne vinput (p) = v(p). This gives the

new values of all task input ports. Let Cinput be the con¯guration that agreeswith

vinput on the valuesof InPorts, and otherwise agreeswith Clocal .

8. [Up date activ e tasks ] Let ¾enabled be the set of tasks t such that a task invocation

of the form (¢; t; ¢) 2 Invokes[m0] is enabled at con¯guration Clocal . The new set of

active tasks is ¾0
active = (¾active n¾completed ) [ ¾enabled . Let Cactive be the con¯guration

with the set ¾0
active of active tasks that otherwise agreeswith Cinput .

9. [Adv ance time ] Let ±succ be the least integer multiple of ¼[m0]=! lcm [m0] such that
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Figure 2.11: The time line for an execution of the program from Figure 2.10.

±succ > ±0; this is the time of the next event (task invocation, actuator update, or mode

switch) in mode m0. The next time instant at which the Giotto program is invoked is

±succ ¡ ±0 time units in the future; an implementation may use a timer interrupt for

this. Let ¿succ = ¿ + ±succ ¡ ±0. Let Csucc be the con¯guration with mode time ±succ

and time stamp ¿succ that otherwise agreeswith Cactive .

An execution of a Giotto program is an in¯nite sequenceC0; C1; C2; ¢¢¢ of program

con¯gurations Ci such that (i) C0 = (start; 0; v; ; ; 0) with v(p) = init[p] for all ports p 2 Ports,

and (ii) Ci +1 is a successorcon¯guration of Ci for all i ¸ 0. Note that there can be a mode

switch at the start time of the program, but there can never be two mode switchesin a row

without any time passing.

2.3.3 Example

Weusethe simpleGiotto program from Figure 2.10to illustrate Giotto's semantics.

This program contains two modes,m1 and m2. Mode m1 hasa period of 6 ms, and invokes

two tasks, t1 and t2, with frequenciesof 1 and 2, respectively. Mode m2 has a period of

12 ms, and invokest1 and the task t3, with frequenciesof 2 and 3, respectively. The tasks t2

and t3 both read the sensorport s1 and write to the sameoutput port o2. This is possible

becauset2 and t3 are invoked in di®erent modes. The task t1 reads o2 and writes to the

output port o1, which is read by the actuator driver d4 to write the actuator port a. In both

modes the actuator update occurs every 6 ms. Mode m1 evaluates a possiblemode switch
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to mode m2 every 3 ms; m2 contemplates switching back to m1 every 4 ms. These mode

switches are controlled by the driver d5, which reads the sensorport s2. A mode change

occurs if s2 contains the value 1. Both mode switches,when enabled,write the ports o1 and

o2. We assumethat with the exception of g5 the guards g1 of all other drivers are always

true. The initial valuesof the sensorand input ports are omitted from the ¯gure, as they

are written beforebeing read.

To illustrate the semantics of this program, consideran execution Ê = C0; C1; ¢¢¢

that beginswith the following program con¯gurations:

C0 = (m1; 0; ¢; ; ; 0)

C1 = (m2; 2; ¢; f t1; t3g; 2)

C2 = (m2; 4; ¢; f t1; t3g; 4)

C3 = (m2; 6; ¢; f t1; t3g; 6)

C4 = (m2; 8; ¢; f t1; t3g; 8)

C5 = (m1; 3; ¢; f t1g; 9)

C6 = (m1; 6; ¢; f t1; t2g; 12)

C7 = (m1; 9; ¢; f t1; t2g; 15)

The execution Ê starts in mode m1, but switches immediately to mode m2. At con¯gura-

tion C4, the executionswitchesback to modem1 (note that a modeswitch in a con¯guration

Ci is re°ected only in the successorcon¯guration Ci +1 ). The execution remains in mode

m1 until con¯guration C7.

Figure 2.11 shows an initial segment of the time line for Ê . At 0 ms, the port

o1 is used to update the actuator port a. The sensorport s2 is read by the mode driver

d5. The guard of d5 evaluates to true, indicating a mode change, and thus the port o2 is

updated (port o1 is also updated but not used, and therefore omitted in the ¯gure). Port

o2 provides the input to task t1. The sensors1 provides the input to task t3. At 4 ms, task

t3 completes;the sensorport s2 is updated, but no mode changeoccurs; and the sensors1

provides input to a new invocation of task t3. At 6 ms, task t1 completes;the actuator port

a is updated using the output of t1; and a new invocation of task t1 starts. At 8 ms, task

t3 completes;sensors2 is updated; and the guard of the mode driver d5 evaluates to true,

indicating a switch to mode m1 and updating ports o1 and o2 (neither port is used, and

therefore both are omitted in the ¯gure). At 9 ms, sensors2 is updated again, but no mode

change occurs; sensors1 is updated; and an invocation of task t2 begins. At 12 ms, both
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tasks t1 and t2 complete; a, s2 and s1 are all updated; and new invocations of t1 and t2

start. Note that at the time of the mode switch at 8 ms, the mode time of the target mode

m1 is 2 ms, becausetask t1 has beenlogically running for 2 ms. For the duration of 1 ms,

task t1 is the only running task, until at mode time 3 ms (real time 9 ms), an invocation

of task t2 is added. At mode time 6 ms (real time 12 ms), the partial round of mode m1 is

¯nished, and a new round begins.

2.4 Platform constrain ts for Giotto

In order to compile a Giotto program, the compiler needstwo additional piecesof

information: (i) a platform speci¯c ation, which de¯nes the number and topology of hosts

(CPUs), and worst-caseexecution times for all Giotto activities (tasks, drivers, and sensor

readings);and (ii) a jitter tolerance, which speci¯es how much the actual timing can deviate

from the Giotto semantics. The jitter tolerance is neededbecauseit may be impossibleto

implement the Giotto semantics exactly. For example, if according to Giotto semantics,

several actuators are written at the same point ¿ in time, and there is only one host,

then the actual writes cannot all occur exactly at time ¿. The Giotto compiler takes a

Giotto program, a platform speci¯cation, and a jitter tolerance, and if possible,generates

platform code that lies within the jitter toleranceof Giotto semantics. Speci¯cally, for every

program execution, the compiler must attempt to produce a schedule that indicates when

and where the Giotto activities are performed. Such a schedule may not exist, becausethe

scheduling problem can be overconstrained. An overconstrained scheduling problem may

becomesolvable without changing the Giotto program, by a combination of the following:

increasethe number of hosts, decreasethe worst-caseexecution times, or increasethe jitter

tolerance.

2.4.1 Abstract Giotto scheduling

We de¯ne an abstract Giotto scheduling problem. The problem is abstract, as we

include only scheduling constraints that needto be met by all Giotto implementations. Any

particular, concrete implementation may have to take into account additional scheduling

constraints.
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Activities

Let G be a Giotto program. An activity of G is a pair a[k] consisting of an action

a and an index k 2 I , chosenfrom someindex set I . We distinguish betweencomputation

activities and communication activities. The action of a computation activit y is either a

task t 2 Tasks, or true(d) or false(d) for a driver d 2 Drivers, or read(s) for a sensorport

s 2 SensePorts. The action t executesthe task t; the actions true(d) and false(d) represent

the execution of driver d in caseswhere the outcome of the driver guard is true or false,

respectively; the action read(s) loads a new sensorvalue into the port s. We write

Acts = Tasks[

f true(d); false(d) j d 2 Driversg[

f read(s) j s 2 SensePortsg

for the set of computation actions. For every computation action a 2 Acts, the set r (a) µ

Ports of read ports and the set w(a) µ Ports of written ports are de¯ned as follows:

² If a = t for t 2 Tasks, then r (a) = In[t] [ Priv[t] and w(a) = Out[t] [ Priv[t].

² If a = true(d), then r (a) = Src[d] and w(a) = Dst[d].

² If a = false(d), then r (a) = Src[d] and w(a) = ; .

² If a = read(s), then r (a) = ; and w(a) = f sg.

The action of a communication activit y has the form send(p), for a port p 2 Ports, and its

purposeis to broadcast the value of p over a network to all hosts of the platform. Other

models of communication are possible,but not addressedhere.

Let E = C0; C1; C2; ¢¢¢ be an execution of G. For each position i ¸ 0 and 1 · ` ·

9, we write Ci;` for the program con¯guration obtained from Ci by performing the Giotto

micro steps1 through `, as de¯ned in Section2.3.2. The execution E givesrise to a set A E

of computation activities. For theseactivities we usethe index set I E = Z¸ 0£ [1 :: 9], where

the index (i; `) refers to the program con¯guration Ci;` . We write < for the lexicographic

order on I E ; that is, (i 1; `1) < (i 2; `2) if either i 1 < i 2, or both i 1 = i 2 and `1 < `2. The set

A E is the smallest set of activities containing the following:

² [Task activities] If (¢; t; ¢) is a task invocation that is completed at con¯guration Ci ,

then t[i; 1] 2 A E .
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² [Actuator activities] If (¢; d) is an actuator update that is enabled at con¯guration

Ci; 1, then true(d)[i; 2] 2 A E . If (¢; d) is evaluated but not enabled at Ci; 1, then

false(d)[i; 2] 2 A E .

² [Sensoractivities] If (¢; ¢; d) is a mode switch that is evaluated at con¯guration Ci; 3,

or (¢; ¢; d) is a task invocation that is evaluated at con¯guration Ci; 6, and s 2 Src[d]

for a sensorport s 2 SensePorts, then read(s)[i; 3] 2 A E .

² [Mode-driver activities] If (¢; ¢; d) is a mode switch that is enabled at con¯guration

Ci; 3, then true(d)[i; 4] 2 A E . If (¢; ¢; d) is evaluated but not enabledat con¯guration

Ci; 3, then false(d)[i; 4] 2 A E .

² [Task-driver activities] If (¢; ¢; d) is a task invocation that is enabledat con¯guration

Ci; 6, then true(d)[i; 7] 2 A E . If (¢; ¢; d) is evaluated but not enabled at Ci; 6, then

false(d)[i; 7] 2 A E .

The activities in A E are called the computation activities induced by the execution E of the

program G.

The interaction between the activities in A E constrains the order in which these

activities can be performed: if activit y A1 supplies a value to activit y A2 via a port, then

A1 must ¯nish before A2 can begin. For two activities A1 = a1[k1] and A2 = a2[k2] in

A E and a port p 2 Ports, we say that A1 writes p to A2 (in symbols, A1 @p
E A2) if

(i) p 2 w(a1) \ r (a2) and k1 < k2, and (ii) there is no activit y A3 = a3[k3] in A E such that

p 2 w(a3) and k1 < k3 < k2. Wewrite A1 @E A2 if there is someport p such that A1 @p
E A2.

Note from the de¯nition of A E that a task activit y t[i; 1] is added to A E with i set to the

con¯guration number of the activit y's completion in order to make the relation @E capture

the fact that the output ports of t are written when the task completes. Figure 2.12 shows

the precedenceconstraints betweenthe activities in A E .

Platform speci¯cations

A Giotto program can in principle be run on a single su±ciently fast CPU, in-

dependent of the number of modes and tasks. However, taking into account performance

constraints, the timing requirements of a program may or may not be achievable on a single

CPU. We therefore considerdistributed platforms. For simplicit y, we restrict our attention

to platforms that connect a set of hosts through a broadcast channel, called the network;
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for example, all hosts may be on a common bus. A platform speci¯c ation for the program

G is a triple P = (H ; wcet; wcct):

² H is a ¯nite set of hosts, which represent the processingelements on which compu-

tation activities may execute. We write H N = H [ f N g for the set of hosts together

with the network, which is denoted N .

² wcet : Acts £ H ! Q¸ 0 is a function that assignsto each pair (a; h), where a is a

computation action and h is a host, a worst-caseexecution time, which represents an

upper bound on the time required for processingan activit y of the form a[¢] on host

h. For driver activities of the form true(d)[¢; ¢], the worst-caseexecution time takes

into account both the guard and the function of driver d; for driver activities of the

form false(d)[¢; ¢], only the driver guard. Methods for obtaining worst-caseexecution

times can be found, for example, in [ML99, TFW00].

² wcct : Ports ! Q¸ 0 is a function that assignsto each port p a worst-case communi-

cation time, which represents an upper bound on the time required for broadcasting

the value of p over the network.

Jitter tolerance

A jitter tolerance " 2 Q> 0 is a positive rational number. Intuitiv ely, " represents

the maximal tolerable di®erencebetween the actual time of an actuator write (or sensor

read), and the time at which the write (or read) is supposed to occur according to the

Giotto semantics. In particular, if Giotto speci¯es an actuator write at 12 ms, then an

implementation that conforms with the jitter tolerance " must write the actuator in the

interval [12 ¡ "; 12]; and if Giotto speci¯es a sensor read at 12 ms, then a conforming

implementation must read the sensorin the interval [12; 12+ " ] (seeFigure 2.12).

Schedules

A schedule speci¯es a possible timing for the activities that are induced by a

program execution. Formally, a schedule of the program G on the set H is a function

S : R £ HN ! A that maps every time ¿ 2 R and host h 2 H N (including the network) to

an activit y in someset A . An element in A may represent a computation or communication

activit y of G, or a non-Giotto activit y. We require that activities do not migrate between
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Figure 2.12: The precedenceand timing constraints for computation activities.

hosts: if S(¿; h) = S(¿0; h0), then h = h0. We alsorequire that schedulesare ¯nitely varying:

for all h 2 HN , there is no bounded in¯nite sequence¿1 < ¿2 < ¿3 < ¢¢¢ of reals such that

S(¿1; h) 6= S(¿2; h) 6= S(¿3; h) 6= ¢¢¢.

Given a scheduleS and an activit y A 2 A, we say that A occurs in S if there exist

¿ 2 R and h 2 HN such that S(¿; h) = A. In this case,we de¯ne hostS(A) = h and the

following:

² The start time start S(A) of the activit y A in the scheduleS is inf f ¿ 2 R j S(¿; ¢) = Ag.

The start time may be ¡1 .

² The ¯nish time ¯n S(A) of the activit y A in the scheduleS is supf ¿ 2 R j S(¿; ¢) = Ag.

The ¯nish time may be + 1 .

² The total execution time total S(A) of the activit y A in the schedule S is
Z

t2f ¿2 RjS(¿;¢)= Ag
1

The total execution time may be in¯nite.

Let E be an execution of the program G, and let P be a platform speci¯cation for G. The

schedule S realizes the program execution E on a platform speci¯ed by P if the following

conditions hold:

² [Computation activities] Every activit y A 2 A E occurs in S and hostS(A) 6= N .

Second, if A = a[¢] and hostS(A) = h, then total S(A) = wcet(a;h). Third, for all

activities A1; A2 2 A E , if A1 @E A2 and hostS(A1) = hostS(A2), then ¯n S(A1) ·

start S(A2).



CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 43

² [Communication activities] For all activities A1; A2 2 A E , if A1 @p
E A2 and hostS(A1)

6= hostS(A2), there exists a communication activit y A = send(p)[A1] such that (i) A

occurs in S and hostS(A) = N , (ii) total S(A) = wcct(p), and (iii) ¯n S(A1) ·

start S(A) and ¯n S(A) · start S(A2). In this case,we say that A is a communica-

tion predecessor of A2.

Note that becauseS is a schedule, rather than an actual run of the Giotto program, it

allocates the worst-caseexecution time for each computation activit y, and the worst-case

communication time for each communication activit y. The scheduleS conforms to the jitter

tolerance " if the following conditions hold:

² [Actuator timing] For every actuator activit y A = true(d)[i; 2] or A = false(d)[i; 2] in

A E , whered is an actuator driver, we have ¿i ¡ " · start S(A) and ¯n S(A) · ¿i . Here

¿i is the time stamp of the i -th con¯guration of the program execution E.

² [Sensortiming] For every sensoractivit y A = read(s)[i; 3] in A E , where s is a sensor

port, we have ¿i · start S(A) and ¯n S(A) · ¿i + ".

Given a Giotto program G, a platform speci¯cation P, and a jitter tolerance " , a

scheduling function S mapsevery executionE of G to a scheduleSE that realizesE on P in

conformancewith " . The scheduling function S is feasible if for any two executionsE and

E 0 that agreeon the valuesof all sensorports up to time ¿, the schedulesSE and SE 0 are

identical up to time ¿; more precisely, if E = C0; C1; C2; ¢¢¢ and E 0 = C0
0; C0

1; C0
2; ¢¢¢ and

Ci [SensePorts] = C0
i [SensePorts] for all i · k, then SE (¿; h) = SE 0(¿; h) for all ¿ · ¿k and all

h 2 H , where ¿k is the time stamp of con¯guration Ck .2 Feasibility rules out clairvoyant

scheduling functions, which can predict future sensorvalues. The abstract Giotto scheduling

problem asks,given G, P, and " , if there exists a feasiblescheduling function. If not, then

the scheduling problem (G; P; " ) is overconstrained.

The scheduling constraints presented in this section are intended to capture a

minimal set of constraints: precedences,sensorand actuator timing, and execution and

communication times. These constraints are necessaryfor any implementation of Giotto,

but they may not be su±cient. For example, a particular implementation may restrict

the amount of information on which a scheduler can base its decisions(according to our

2Note that for an execution C0 ; C1 ; ¢¢¢; Ci ; Ci +1 ; ¢¢¢, vi +1 [SensePorts] re°ects the value of sensor ports
at time ¿i .
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de¯nitions, a scheduling decisionmay depend on all past sensorvalues),or it may bound the

bu®ersizefor storing previous valuesof a port (according to our de¯nitions, a schedulemay

sendany number of valuesof a port over the network beforeany of the valuesis used),or it

may require the transmission of mode-changemessagesbetweenhosts, etc. By considering

the constraints of concreteimplementations, the abstract Giotto scheduling problem can be

re¯ned into a number of di®erent concretescheduling problems.

2.4.2 Giotto annotations

An ideal compiler must solve a Giotto scheduling problem by producing a feasible

scheduling function or determining that the given problem instance is overconstrained.

However, for distributed platforms, the abstract Giotto scheduling problem is NP-hard

(it is a generalization of multi-pr ocessor scheduling [GJ79]). Algorithms and heuristics

for solving similar distributed scheduling problems can be found, for example, in [TC94,

EKP + 98, Bru01, Pin02]. In practice, a compiler will have a third outcome, namely, that it

succeedsneither in generating code nor in proving non-schedulabilit y. In order to aid the

compiler in ¯nding a feasible scheduling function in di±cult situations, we intro duce the

concept of Giotto annotations.

The most basic Giotto annotation is the mapping annotation. A particular ap-

plication may require that tasks be located on speci¯c hosts, e.g., close to the physical

processesthat the tasks control, or on processorsparticularly suited for the operations of

the tasks. A mapping annotation can be usedto expresssuch constraints, and alsoto reduce

the sizeof the spacein which the compiler must look for a feasiblescheduling function. Let

G be a Giotto program, and let P be a platform speci¯cation for G. A mapping annotation

for G on P is a partial function host : Acts ,! H that assignsa host of P to somecom-

putation actions of G. The mapping annotation is complete if the function host is total.

Consider a schedule S that realizesan execution E of G on P. The schedule S conforms to

the mapping annotation host if for all activities A 2 A E , if A = a[¢] and host(a) is de¯ned,

then hostS(A) = host(a).

A more detailed Giotto annotation is the scheduling annotation. The exact form

of scheduling annotations depends on the platform: a scheduling annotation speci¯es task

priorities, relative deadlines,or time slots, depending on whether the underlying real-time

operating system usesa priorit y-driv en, deadline-driven, or time-triggered scheduler. We
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choose an uncomplicated platform | with preemptive priorit y scheduling of tasks, and

round-robin time-slice scheduling of messageson the network | in order to demonstrate

that a precisede¯nition of scheduling annotations is possible. More elaborate annotations

would require longer de¯nitions, but not a fundamental change in approach. One can de-

¯ne partial scheduling annotations, which leave some decisions to the system scheduler,

but for simplicit y, we de¯ne only a complete form of scheduling annotation. To be pre-

cise, a scheduling annotation for the program G on a platform speci¯ed by P is a tuple

(host; priority; slot; ±):

² [Mapping] The function host : Acts ! H is a complete mapping annotation for G on

P.

² [Task priorities] The function priority : Tasks! Z> 0 assignsa priorit y to every task.

² [Communication times] For simplicit y, we assumethat all communication proceedsin

rounds, with each round providing a time slot to every port. The value of a port p

can be broadcast once per round, in the slot provided to p. Let P = jPortsj be the

number of ports. The function slot : Ports ! [0 :: P ¡ 1] is a bijection that assignsa

slot number to every port. The positive rational ± 2 Q> 0 is the duration of each time

slot. We assumethat only onebroadcast is possibleper time slot; that is, wcct(p) = ±

for all ports p 2 Ports.

Consider a schedule S that realizesan execution E of G on P. The schedule S conforms

to the scheduling annotation (host; priority; slot; ±) if S conformsto the mapping annotation

host and the following conditions hold:

² [Task priorities] Consider an activit y A that occurs in the scheduleS. The activit y A

is completed in S at time ¿ if ¯n S(A) · ¿. The activit y A is enabled in S at time ¿ if

for all activities A0 that occur in S, if A0 @E A or A0 is a communication predecessor

of A, then A0 is completed at ¿. For all times ¿ 2 R, all hosts h 2 H , and all task

activities A1 = t1[i 1; 1] and A2 = t2[i 2; 1] in A E , if S(¿; h) = A1 and host(t2) = h and

A2 is enabledin S at time ¿, then priority(t1) ¸ priority(t2).

² [Communication times] For every communication activit y A = send(p)[¢] that occurs

in S, there exists a number n 2 Z¸ 0 such that ± ¢(n ¢P + slot(p)) · start S(A) and

¯n S(A) · ±¢(n ¢P + slot(p) + 1).
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A Giotto program with annotations is a formal re¯nement of the program: the

Giotto semantics, as de¯ned in Section 2.3.2, is not changed by the annotations, but the

number of feasiblescheduling functions may be reduced. The annotated Giotto scheduling

problem asks, given a Giotto program G, a platform speci¯cation P, a jitter tolerance " ,

and a (mapping or scheduling) annotation A, if there is a feasible scheduling function S

such that for every execution E of G, the schedule SE conforms to the annotation A. If

the abstract Giotto scheduling problem (G; P; " ) has a solution, but the annotated problem

(G; P; "; A) does not, then the annotation A is invalid. Invalid annotations constrain the

program in a way that rules out all feasiblescheduling functions.

Mapping and scheduling annotations, as de¯ned above, provide only one example

of how a Giotto program canbemappedonto a particular kind of platform. According to the

de¯nitions, mapping annotations occur strictly prior to scheduling annotations. In general,

we believe that it is advantageousto arrange Giotto annotations in multiple levels. Such a

structured view supports the incremental re¯nement of a Giotto program into an executable

image. The multila yered approach suggestsa modular architecture for the Giotto compiler

with separate modules for, say, mapping and scheduling. The compiler may attempt to

solve the scheduling problem on any annotation level, and if it fails to do so, it may ask for

more detailed annotations at a lower level. At every level, the annotation must be checked

for validit y, that is, for consistencywith the annotations at the higher levels and with the

Giotto semantics. Such a compiler can be evaluated along several dimensions:(i) how many

annotations it requiresto generatecode, and (ii) what the cost is of the generatedcode. For

instance, a compiler can usea cost function that minimizes jitter of the actuator updates.

2.4.3 Example

To illustrate the °exibilit y a®orded to the Giotto compiler, we present several

possibleschedulesfor an execution of the Giotto program from Figure 2.10. The platform

speci¯cation P̂ = (H ; wcet; wcct) consists of a single host (H = f hg) and the following
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worst-caseexecution times:

wcet(read(s1); h) = 0:25

wcet(read(s2); h) = 0:25

wcet(t1; h) = 0:25

wcet(t2; h) = 0:5

wcet(t3; h) = 1:0

wcet(true(d1); h) = 0:25

wcet(true(d2); h) = 0:5

wcet(true(d3); h) = 1

wcet(true(d4); h) = 1

wcet(true(d5); h) = wcet(false(d5); h) = 0:5

SinceH is a singleton set, we neednot de¯ne wcct. The jitter tolerance is "̂ = 1.

Consider the sampleexecution Ê pictured in Figure 2.11. In Ê , sensorsare read

and actuators are written at precisely the time instants speci¯ed by the Giotto semantics.

This precision is clearly impossible to attain if sensor reads and actuator writes take a

non-negligible amount of time. Further, in Ê , the secondinvocation of task t1 executes

between 6 and 12 ms. This requirement may be too strict, and if insisted upon would

prevent someGiotto programs from being schedulable. Instead, what is required is that

the secondinvocation of t1 executesafter all t1's input port valuesare available, and before

any activit y that needst1's output port values.

Figure 2.13 shows the constraints on timing and precedencesfor the computation

activities that are induced by the execution Ê ; theseare the constraints that appear in the

de¯nition of the realization of an execution, and in the de¯nition of conformancewith the

jitter tolerance. Boxes with a thick border represent sensorand actuator activities. These

activities are special, becausetheir execution is constrained to happen at speci¯c times.

The remaining boxes are activities that execute tasks, mode drivers, and task drivers.

These activities may executeat any time, provided they meet all precedenceconstraints.

For example, read(s1)[0; 3] precedestrue(d3)[0; 7], becausethe sensoractivit y read(s1)[0; 3]

provides the sensorvalue to the task-driver activit y true(d3)[0; 7]. Note also that in Figure

2.13 activities of the form false(d5)[¢; ¢] do not precedeother activities, as a driver doesnot

write any ports if its guard evaluates to false.

Figure 2.14 shows a schedule that realizes the execution Ê on a platform spec-
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t3[2;1] t3[4;1]

R3

R4

R1

R2

R6

R7

true(d4)[0;2]

¿2 = 4 ¿3 = 6 ¿4 = 8 ¿5 = 9 ¿6 = 12¿0 = 0

true(d5)[0;4]

t1[3;1]

true(d4)[3;2] true(d4)[6;2]

t2[6;1]true(d2)[5;7]true(d3)[0;7]

false(d5)[2;4] false(d5)[5;4]

R5

true(d3)[2;7]

true(d1)[3;7]true(d1)[0;7]

true(d5)[4;4]t1[6;1]

Figure 2.13: The precedenceand timing constraints for the program execution of Fig-
ure 2.11. Here R1 is an abbreviation for read(s1)[0; 3]. Similarly, R2; ¢¢¢; R7 are,
respectively, abbreviations for read(s2)[0; 3], read(s1)[2; 3], read(s2)[2; 3], read(s2)[4; 3],
read(s1)[5; 3], and read(s2)[5; 3].

0¡ 1 1 2 3 4 5 6 7 8 9 10 11 12

t3[2;1]

t1[3;1]

t3[4;1]

read(s1)[0;3]

read(s2)[0;3]

true(d1)[0;7]

true(d4)[0;2] true(d1)[3;7]

true(d5)[0;4]

t1[6;1]

read(s1)[2;3]

read(s2)[2;3]

true(d3)[0;7]

false(d5)[2;4]

true(d4)[3;2]

true(d3)[2;7]

read(s1)[5;3]

read(s2)[5;3]

false(d5)[5;4]

true(d2)[5;7]

t2[6;1]

true(d4)[6;2]

read(s2)[4;3]

true(d5)[4;4]

Figure 2.14: A schedule for the program execution of Figure 2.11.
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0¡ 1 1 2 3 4 5 6 7 8 9 10 11 12

true(d1)[0;7]

true(d5)[0;4]

read(s2)[0;3]

read(s1)[0;3]

t3[2;1]

true(d4)[0;2]

t1[3;1]

true(d1)[3;7]

t1[6;1]

read(s1)[2;3]

read(s2)[2;3]

false(d5)[2;4]

true(d4)[3;2]

true(d3)[2;7]

read(s1)[5;3]

read(s2)[5;3]

false(d5)[5;4]

true(d2)[5;7]

t2[6;1]

true(d4)[6;2]

read(s2)[4;3]

true(d5)[4;4]

true(d3)[0;7]

t3[4;1]

Figure 2.15: A secondschedule for the program execution of Figure 2.11.

0¡ 1 1 2 3 4 5 6 7 8 9 10 11 12

t3[4;1]

read(s2)[5;3]

false(d5)[5;4]

true(d2)[5;7]

t2[6;1]

true(d4)[6;2]

true(d4)[0;2]

read(s1)[0;3]

read(s2)[0;3]

true(d5)[0;4]

true(d3)[0;7]

t3[2;1]

true(d1)[0;7]

t1[3;1]

t3[2;1]

true(d1)[3;7]

t1[6;1]

read(s1)[2;3]

read(s2)[2;3]

false(d5)[2;4]

true(d4)[3;2]

true(d3)[2;7]

read(s2)[4;3]

true(d5)[4;4]

read(s1)[5;3]

Figure 2.16: A third schedule for the program execution of Figure 2.11.
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i¯ed by P̂ and conforms to the jitter tolerance "̂ = 1. To understand what Figure 2.14

represents, consider the interval from ¡ 1 to 3:5. First the actuator activit y true(d4)[0; 2]

executes;this activit y updates the actuator port a. Then the sensoractivities read(s1)[0; 3]

and read(s2)[0; 3] execute; these activities update the sensorports s1 and s2. Next, the

mode-driver activit y true(d5)[0; 4] executes, indicating a mode change, followed by the

task-driver activities true(d1)[0; 7] and true(d3)[0; 7]. Finally, the task activities t1[3; 1]

and t3[2; 1], corresponding to the ¯rst invocations of tasks t1 and t3, execute. Note that

the driver activit y for the secondinvocation of task t1, namely true(d1)[3; 7], as well as the

task itself, t1[6; 1], execute in advance of 6 ms. This is permissible, becausetrue(d1)[3; 7]

needsonly the value of port o2 produced by the ¯rst invocation t3[2; 1] of task t3, which is

complete at 3.5 ms. The schedule of Figure 2.14 conforms to a scheduling annotation with

priority(t1) > priority(t3): for example,at 2.25 ms, t1[3; 1] and t3[2; 1] are both enabled,but

t1[3; 1] executes.

Figure 2.15 shows a secondschedule that realizesthe execution Ê on a platform

speci¯ed by P̂ and conforms to the jitter tolerance "̂ = 1. The schedule of Figure 2.15

conformsto a scheduling annotation with priority(t3) > priority(t1). Figure 2.16showsa third

schedule for the sameexecution, conforming to a scheduling annotation with priority(t1) >

priority(t3). In this schedule, task t3 is preempted at 2.5 ms by the driver for task t1 and

then by task t1 itself.

2.5 Discussion

While many of the individual elements of Giotto are derived from the literature,

we believe that the study of strictly time-triggered task invocation together with strictly

time-triggered mode switching as a possible organizing principle for abstract, platform-

independent real-time programming is an important step towards separatingreactivity from

schedulability. The term reactivit y expresseswhat we meanby control-systems aspects: the

system'sfunctionalit y, in particular, the control laws, and the system'stiming requirements.

The term schedulabilit y expresseswhat we mean by platform-dependent aspects, such as

platform performance, platform utilization (scheduling), and fault tolerance. Giotto de-

composesthe development processof embedded control software into high-level real-time

programming of reactivit y and low-level real-time scheduling of computation and commu-

nication. Programming in Giotto is real-time programming in terms of the requirements of
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control designs,i.e., their reactivit y, not their schedulabilit y.

The strict separationof reactivit y from schedulabilit y is achieved in Giotto through

time- and value-determinism: given a real-time trace of sensorvaluations, the correspond-

ing real-time trace of actuator valuations produced by a Giotto program is uniquely de-

termined [HK02]. The separation of reactivit y from schedulabilit y has several important

rami¯cations. First, the reactive (i.e., functional and timing) properties of a Giotto pro-

gram may be subject to formal veri¯cation against a mathematical model of the control

design [Hen00]. Second,a Giotto program speci¯es reactivit y in a modular fashion, which

facilitates the exchangeand addition of functionalit y. For example, functionalit y code (i.e.,

tasks and driver functions) can be packagedas software components and reused. Third, as

increasingly powerful Giotto compilers becomeavailable, the embedded-software develop-

ment e®ort is signi¯cantly reduced. The tedious programming of scheduling code is replaced

by compilation, which eliminates a common sourceof errors. Fourth, Giotto is compatible

with any scheduling strategy, which therefore becomesa parameter of the Giotto compiler.

There are essentially two reasonswhy even the best Giotto compiler may fail to gener-

ate executablecode: not enoughplatform utilization, or not enoughplatform performance.

Then, independently of the program's reactivit y, utilization can be improved by a better

scheduling module, and performancecan be improved by faster or more parallel hardware

or leaner functionalit y code.

Curren t Giotto implemen tations

We brie°y review the existing Giotto implementations. The ¯rst implementa-

tion of Giotto was a simpli¯ed Giotto run-time system on a distributed platform of Lego

Mindstorms robots. The robots used infrared transceivers for communication. Then we

implemented a full Giotto run-time system on a distributed platform of Intel x86 robots

running the real-time operating system VxWorks. The robots used wirelessEthernet for

communication. We also implemented a Giotto program running on ¯v e robots, three Lego

Mindstorms and two x86-basedrobots, to demonstrate Giotto's applicabilit y for hetero-

geneousplatforms. The communication between the Mindstorms and the x86 robots was

done by an infrared-Ethernet bridge implemented on a PC. For an informal discussionof

theseimplementations, and embeddedcontrol-systems development with Giotto in general,

we refer to the earlier report [HHK01].



CHAPTER 2. THE GIOTTO PROGRAMMING LANGUA GE 52

In collaboration with Marco Sanvido and Walter Schaufelberger at ETH ZÄurich,

Christoph Kirsch built a high-performance implementation of a Giotto system on a sin-

gle StrongARM SA-110 processorthat controls an autonomously °ying model helicopter

[KSHP02]. This implementation started from an existing implementation of the helicopter

control system [CEK + 99], which included a custom-designedreal-time operating system

called HelyOS and control software written in a subset of Oberon [WG92] suited for em-

bedded real-time systems. The existing software was reimplemented as a combination of

a Giotto program and Oberon code that implements the task and driver functions. Much

of the existing functionalit y code could be reused. The Giotto program for the helicopter

consistsof six Giotto modessuch as \tak e-o®" and \hover." The hover mode, for example,

contains a 40 Hz controller task and a 200 Hz data-fusion task.

The author has implemented a similar run-time system for UC Berkeley's au-

tonomous helicopters. This implementation will be further discussedin Chapter 3. In this

case,the target languagewas C rather than Oberon, and the target operating system was

VxWorks rather than HelyOS.

For the Oberon helicopter project, C. Kirsch developed a Giotto compiler that tar-

getsa virtual real-time machine, called the Embedded Machine [HK02]. EmbeddedMachine

code, also called E code, supervisesthe timing of functionalit y code, which can be written

in any conventional programming languagesuch asC. An EmbeddedMachine-basedGiotto

run-time systemconsistsof an implementation of the EmbeddedMachine together with the

scheduler of a real-time operating system. While E code is interpreted by the Embedded

Machine, functionalit y code is native code that is scheduled for execution by the system

scheduler. For E code that is generated from a Giotto source program, the scheduling

problem is more constrained than the abstract Giotto scheduling problem de¯ned in Sec-

tion 2.4.1, but still independent of any particular systemscheduler; it is only required that

the scheduler be compatible with the schedulabilit y test of the Giotto compiler [HKMM02].

E code produced by the compiler can be executedon any platform for which an Embedded

Machine implementation is available. For the helicopter project, C. Kirsch and M. Sanvido

implemented the EmbeddedMachine on top of HelyOS.

C. Kirsch alsoimplemented a Giotto-based electronic throttle controller on a single

Motorola MPC 555processorrunning the real-time operating systemOSEKWorks. For this

purpose, the Embedded Machine was ported to OSEKWorks, which is widely used in the

automotive industry. In addition to thesereal-time versionsof the EmbeddedMachine, non-
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real-time implementations of the EmbeddedMachine are available for Linux and Windows.
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Chapter 3

Autonomous helicopter

implemen tation

3.1 In tro duction

Chapters 1 and 2 argued that the Giotto programming languageprovides an ap-

propriate programmer's model for real-time control systems. This chapter substantiates

the argument by showing how the author used Giotto to refactor a portion of the control

software of a small, autonomoushelicopter. After a very brief intro duction to autonomous

helicopters is given, three common shortcomings of control systems software design are

presented, shortcomings that result in nondeterministic and nonabstract implementations.

The Giotto programming languageaddressestwo of theseshortcomings,and a careful imple-

mentation of sensordevicedrivers addressesthe third. This chapter then further describes

how Giotto was used to redesignof the control system of an autonomous helicopter. We

will seethat the e®ort of integrating Giotto into the existing control systemdesignwas not

prohibitiv e, and that the useof Giotto resulted in a more deterministic and more abstract

implementation.

An alternativ e approach to addressingthe limitations of current control systems

software is presented by the Open Control Platform (OCP), being developed at the Boeing

Phantom Works [WKS+ 01]. The OCP sharescertain of its designgoalswith Giotto: recon-

¯gurabilit y (the abilit y to changethe connectionsbetweensoftware elements at run-time),

extensibility (the abilit y to add new tasks to a system), and distributabilit y (the abilit y to
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executecomponents on multiple processors).WhereasGiotto addressesthe ¯rst two goals

using modes,the behavior of which is speci¯ed prior to runtime, the OCP usesdynamic re-

con¯guration at runtime. Unlike Giotto, the OCP doesnot have a deterministic semantics,

nor does it provide guarantees that real-time tasks will meet their deadlines. Giotto has

previously beenusedto refactor the software on a small autonomoushelicopter [KSHP02].

In contrast to [KSHP02], here a commercial o®-the-shelf(COTS) embeddedcomputer and

real-time operating system (RTOS) are used, which allows the software supporting the

Giotto program to executeon potentially many other platforms.

The structure of this chapter is as follows. Section 3.2 presents background ma-

terial on autonomous helicopters. Control of helicopters is far beyond the scope of this

chapter and this thesis. We present only a small amount of material that will be helpful

in understanding the example in this chapter. In particular, we give a brief intro duction

to the actuator inputs of a typical helicopter (which are the outputs of an autonomous

helicopter's °igh t computer). We also give a brief intro duction to a typical, minimal sensor

set | consisting of an inertial navigation system and a global positioning system receiver

| onboard an autonomoushelicopter, and we describe the typical typesand rates of data

produced by thesetwo sensors.

Section 3.3 describes three shortcomings of control system software that lead to

nondeterministic and nonabstract designs.Berkeley'shelicopter systemis usedto illustrate

these problems, not for the purposeof singling this system out for criticism, but instead

becauseit is a system with which the author is familiar. The author believes that the

problems discussedare not particular to Berkeley's helicopter system, but are also present

in many other control system implementations. We show how Giotto addressestwo of the

problems. The third problem is not solved by Giotto, but is included nonethelessbecause

it explains an important feature of our Giotto-based control system: the implementation of

devicedrivers for communicating with sensors.

Section 3.4 describes somedetails of our implementation of a protot ype Giotto-

based°igh t control computer for Berkeley's Yamaha R-MAX autonomous helicopter. We

present the high-level featuresof the protot ype system, rather than the low-level details, in

order to keepthe presentation concise.We ¯rst present a Giotto program for controlling the

helicopter that matchesthe typical useto which the helicopter is put. We then describe the

EmbeddedMachine (E machine) [HK02], usedto executeGiotto programs. The E machine

is a platform-independent virtual machine for controlling the interaction betweensoftware
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processesand physical processesin a real-time embedded computer system. We brie°y

describe our implementation of the E machine for the protot ype °igh t control computer.

Finally, we describe the implementation of a hardware-in-the-loop simulator (HILS) that

we usedto test and debug our protot ype control system. The HILS is a separatecomputer

running in parallel with the control computer, that executesa real-time dynamical model of

the helicopter. The HILS producesasoutputs duplicates of the sensormessagessent to the

control computer, and acceptsasinputs the actuator messagessent by the control computer.

Thus, the physical outputs of the control computer are fed into the HILS as inputs, and

the physical outputs of the HILS are fed into the control computer as inputs. The HILS

allowed the discovery and correction of logical and functional bugs in the protot ype control

system.

3.2 Background on an autonomous helicopter

In this section, we give a very brief intro duction to helicopter °igh t, which we use

as an example in this chapter. Our goal is to present only enoughbackground necessaryto

understand later sectionsof this chapter. For a more detailed intro duction, see[Shi00]. In

its most common form, a helicopter has a fuselage,a main rotor assembly, and a tail rotor

assembly. The fuselagecontains the helicopter's engine, and, for Berkeley's autonomous

helicopters, the °igh t control computer. The main rotor assembly gives the °igh t control

computer control over the collective pitch and cyclic pitch of the main rotor blades. The

collective pitch of the main rotor bladesa®ectsthe vertical thrust applied to the fuselage,

and the cyclic pitch a®ectsthe lateral and longitudinal thrust applied to the fuselage.The

control computer alsocontrols the collective pitch of the tail rotor blades. The tail rotor op-

posesthe torque around the vertical axis induced by the rotation of the main rotor. Finally,

a pilot normally has control over the throttle, and adjusts the throttle to keepconstant the

angular velocities of the main and tail rotors; the throttle of Berkeley's autonomous heli-

copters is governedby an independent control systemthat maintains constant rotor angular

velocity, and that doesnot communicate with the °igh t computer.

For Berkeley's autonomoushelicopters, control over the main rotor collective and

cyclic pitch and over the tail rotor collective pitch is e®ectedusing servomotors. During

autonomous°igh t, the °igh t computer rather than the pilot sendsmessagesto theseservo-

motors. In order to stabilize the °ying autonomoushelicopter, the °igh t computer adjusts
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INS
¿ sensorÀ

¿ actuatorÀ

Servos

GPSR
¿ sensorÀ

FlightComputer
¿ processorÀ

¿ RS232À

¿ RS232À

¿ RS232À

Figure 3.1: UML deployment diagram of the topology of the helicopter control system's
hardware.

(1) the cyclic pitch, to keep the helicopter from tipping over and to move the helicopter

forward or backward and left or right; (2) the main rotor collective pitch, to move the

helicopter up or down; and (3) the tail rotor collective pitch, to point the helicopter in the

desireddirection.

Several research groups have succeededin demonstrating autonomous helicopter

°igh t, including but not limited to [Con95, CCP98, SDF+ 98, SKHS98]. Of utilit y to most

of theseprojects has beenthe commercial availabilit y of small, accurate inertial navigation

systems(INSs) and global positioning system receivers (GPS receivers or GPSRs). Typ-

ically, an INS provides inaccurate but frequent measurements of velocity and orientation

(e.g., about every 10 ms), and a GPSR provides accurate but infrequent measurements

of position (e.g., about every 250 ms). Typically, in order to develop control laws for an

autonomous helicopter, an INS, a GPSR, and a °igh t computer are mounted on the heli-

copter. Test °igh ts are then made in which both the pilot's commandsand the helicopter's

responsesare recorded. Next, systemidenti¯cation techniquesare usedto determine values

for the parametersof a dynamical model of the helicopter. Finally, controllers are synthe-

sized for this dynamical model. A dynamical model for the Berkeley R-50 helicopter will

be later described in Section 3.4.
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Figure 3.1 shows a typical hardware con¯guration for an autonomous helicopter.

This ¯gure is a Uni¯ed Modeling Language(UML) deployment diagram [RJB99]. Each box

is called a node and depicts a computational resourcethat exists at runtime and is physical.

The nodes of Figure 3.1 are an INS, a GPSR, a °igh t computer, and the helicopter's

servomotors. The INS and GPSR are stereotyped as sensors(indicated by ¿ sensorÀ ),

meaning that their primary purposeis to make measurements of the physical world. The

servomotors are stereotyped as actuators, meaning that their primary purposeis to a®ect

the physical world. Finally, the °igh t computer is stereotyped as a processor,meaning

that its primary purpose is to processdata. The communication between the nodes of

Figure 3.1 is depicted with the lines betweenthe nodes. The °igh t computer receivesdata

from the INS and GPSR, processesthis data, and sendsdata to the servomotors. For

Berkeley'sYamahaR-MAX, communication takesplaceover RS232serial channels,soeach

line is stereotyped with ¿ RS232À . For simplicit y, Figure 3.1 omits several nodes of a

typical autonomoushelicopter system,such asa ground station, that would not add to this

chapter's presentation.

As the capabilities of autonomous helicopters have grown, so has the complex-

it y of their control software. This software is normally hierarchical in nature, with the

\lo west" level responsible for control | especially stabilization | of vehicle dynamics. At

UC Berkeley, additional layers of software include a ground station, waypoint navigation

basedon a vehicle control language[Shi00], a vision-basedlanding system [Sha99], and a

collision avoidance system based on nonlinear model-predictive control [SKS03]. As the

software grows more complicated, so does the choice of helicopter vehicle: either Yamaha

R-50 or Yamaha R-MAX, with other helicopters being contemplated for addition to the

°eet. Given this growing complexity, deterministic and abstract software is neededto re-

duce the di±cult y of developing and extending the helicopter system. In the next section,

we discussseveral common shortcomings of control systemssoftware design that lead to

nondeterministic and nonabstract software, and how theseshortcomingsmay be addressed.

3.3 Common shortcomings of control systems design

In this section,we discussthree commonshortcomingsof control systemssoftware

design. Though theseproblemsare present on the Berkeley helicopters, the author believes

they are not the special fault of the implementers of the helicopter system, but are rather
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DQIGPS

DQICONT

SharedMemory

i3: readPosition()
f every10 msg

g2: writePosition()
f every250 msg

f every20 msg
i2: sendServoCommands()i1: sendVelAngles()

f every10 msg

g1: sendPosition()
f every250 msg

g: GPSR

i: INS Servos

Figure 3.2: UML collaboration diagram of the processesof the current helicopter system,
and the communication betweentheseprocesses.

typical of many control systemdesigns.In Section3.3.1,we show how a careful designof the

software that interacts with sensorsmay be usedto addressthe ¯rst of theseshortcomings.

In Sections3.3.2 and 3.3.3, we show how Giotto may be usedto addressthe remaining two

shortcomings.

We use the UML to motivate and explain our design principles, wherever possi-

ble. Though UML cannot fully expressall the behavior to which we wish to call attention,

it serves adequately in its role as a lingua franca for software design. UML allows us to

highlight in language-neutral terms the di®erencebetween a typical control system and a

Giotto-based control system. UML has an additional bene¯t: whereasthe use of an ex-

perimental programming languagefor constructing a safety-critical systemmay be deemed

too risky, UML allows the suggestionsof Sections3.3.1 and 3.3.2 to be incorporated into

existing designswithout the adoption of an experimental language. Without further ado,

we begin our discussionof the common problems.

3.3.1 In terlea ving nondeterminism

Figure 3.2 depicts the interaction between the elements of the current helicopter

system. We have already encountered three of theseelements, the INS, the GPSR, and the

servomotors. The remaining elements are deployed on the °igh t computer. DQICONT is

a process(a thread of control with its own addressspace)that is responsible for receiving
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messagesfrom the INS, processingthesemessages,and sendingcommandsto the servomo-

tors.1 DQIGPS is a processresponsible for receiving messagesfrom the GPSR and writing

these messagesto shared memory. DQICONT reads this memory to update its position

estimate. Every element of Figure 3.2 except for the shared memory is an active object ;

active elements can initiate activit y. That an element is active is indicated by a rectangle

with thick lines. The sharedmemory cannot initiate activit y, and is thereforepassive. That

an element is passive is indicated by a rectangle with thin lines.

The communications from the INS and GPSR and to the servomotors take place

via the sending of messages.These messagesare asynchronous, meaning that the sender

does not pauseto wait for results from the receiver. In the UML, asynchronous messages

are indicated by a half stick arrow, as for the velocity and Euler anglesmessagesent by the

INS, the position messagesent by the GPSR, and the servomotor command messagesent

by DQICONT. In addition to the communication via messages,two of the active elements,

DQICONT and DQIGPS, communicate via sharedmemory. In particular, DQIGPS writes

to the sharedmemory, and DQICONT reads from the sharedmemory. Thesewriting and

reading actions are synchronous, meaning that the initiating processpausesto wait for

results from the shared memory. In the UML, synchronous actions are indicated by a

¯lled-in arrow.

The current helicopter system has two interleaved sequencesof actions. The ¯rst

sequenceconsistsof the INS sending a message(action i1 in Figure 3.2), followed by the

control computer sending a servomotor command messageevery other INS message(i2),

followed by the control computer reading a GPSR messagefrom the shared memory (i3).

The secondsequenceconsistsof the GPSR sendinga message(g1), followed by the control

computer writing the GPSR messageto shared memory (g2). The ¯rst sequenceoccurs

every 10 ms, with servomotor commands occurring every 20 ms. The secondsequence

occurs every 250 ms. The internal clocks of the INS and GPSR are unsynchronized and

may drift; further, there is initially someamount of skew betweenthe two clocks.

The interaction depicted in Figure 3.2 decreasesthe determinism of the helicopter

control system. On the current system, the shared memory is not protected by a mutual

exclusion mechanism. As is well-known, this does not ensure data consistency:since ac-

tion g2 is non-atomic, and may be preemptedaction i3, the sharedmemory read in action i3

1The name DQICONT is derived from \DQI-NP ," the INS used,and \CONT," short for \con trol" [Shi00].
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i2: sendVelAnglesPos()
f every10 msg

i3: sendServoCommands()
f every20 msg

i1: sendVelAngles()
f every10 msg

g1: sendPosition()
f every250 msg

SensorReceiver GiottoImpl Servos

g: GPSR

i: INS

Figure 3.3: UML collaboration diagram of the processesof the helicopter system that
removesthe interleaving nondeterminism present in Figure 3.2.

may contain a garbled message.This may lead to a large jump in the position estimate

of the INS process,and therefore to the calculation of inappropriate control values. Of

course,it is possibleto ensureconsistencyusing a mutual exclusion mechanism. However,

as was argued in Chapter 1, the problem runs deeper: independent streamsof computation

lead to interleaving nondeterminism, which greatly complicates debugging, especially in a

rapidly changing real-time setting. With only two processespresent, the task is perhaps

manageable;but were the helicopter system to grow in functionalit y, the debugginge®ort

would call for a redesign.

Figure 3.3 presents a refactoring of the interprocesscommunication that mitigates

the interleaving nondeterminism pictured in Figure 3.2. The INS and GPSR each generate

their own stream of messages,as before. Here, however, these streams of messagesare

received by a singleprocessrunning on the °igh t computer. This processis called the sensor

receiver. The sensor receiver usesa select() system call to wait for data on multiple

serial ports. When a GPSR messageis received, the sensorreceiver bu®ersthe position

data in the GPSR messagefor later use. When an INS messageis received, the sensor

receiver aggregatesthe velocities and Euler anglesof the INS messagetogether with the

position of the previously received GPSR message,and sendsthe aggregationto the Giotto

implementation. The receipt by the Giotto implementation of a messagefrom the sensor

receiver constitutes a clock tick. The INS data is assumedby the Giotto implementation

always to be fresh. If the GPSR data wasreceived more than 10 ms ago, the sensorreceiver
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sendVelAngles()
f every10 msg

sendServoCommands()
f every20 msg

control
laws

INS DQICONT Servos

Figure 3.4: UML sequencediagram of the processesof the current helicopter system.

indicates to the Giotto implementation that the GPSR data is stale.

Synchronized INS and GPSR clocks would be more deterministic than unsynchro-

nized clocks, and are therefore preferable. However, synchronized clocks are not possible

with the sensorset currently on the Berkeley Yamaha helicopters. Further, switching to

a new sensorset would be prohibitiv ely costly. The sensorreceiver processrepresents a

compromise solution in which drifting clocks causea varying but acceptable amount of

skew between GPSR messagesand INS messages. The interleaving of the reception of

sensormessagestherefore cannot be eliminated onboard the helicopter, but the e®ectsof

the interleaving are ameliorated by the uniform interface presented by the sensorreceiver

process.

The sensorreceiver processis not part of the Giotto program or implementation

discussedin Sections3.4.1 and 3.4.2, below. Rather, the sensorreceiver processis software

infrastructure that enablesthe Giotto program to control the helicopter without getting

embroiled in communication with the sensors.Using a sensorreceiver processis appropriate

for sensorsthat are active, i.e., that send data of their own accord. We believe that the

management of active sensorsusing a sensorreceiver processhas advantages independent

of the Giotto implementation that is described below: a sensorreceiver processrepresents

an intuitiv e and modular division of computational labor, and sparesthe control process

from knowing the protocols necessaryfor initializing and communicating with the sensors.

3.3.2 Jitter

Figure 3.4 shows the sequenceof execution of the processesof the current heli-

copter system. This diagram omits the interaction with the GPSR, and focuseson the
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interaction with the INS. The DQICONT processreceives a messagefrom the INS every

10 ms. Using this message,DQICONT computes the control laws, and sendsthe result

of this computation to the servomotors every 20 ms. The computation of the control laws

does not always take the same amount of time; if one conditional branch in DQICONT

is followed, rather than another, the amount of time may di®er. Even if DQICONT had

no conditional branches, its execution time might be shortenedor lengthenedduring some

invocations, for exampleby architectural featuressuch ascaching. Thus, if the INS message

is received at time ¿, then the time ¿ + ¢ ¿ at which the servomotor command is sent may

vary. Put another way, ¢ ¿ is not constant, but instead depends on many hard-to-predict

factors.

Such unpredictable variation in timing is known as jitter . Jitter makes more dif-

¯cult the task of analyzing or simulating the behavior of the closed-loop helicopter system

(sensors+ °igh t computer + actuators + helicopter dynamics), sincethe time at which the

°igh t computer producesits outputs is unknown a priori . We take issuewith the common

view that a real-time systemrequiresonly that the time betweenan event and the response

to it be bounded from above. In order to develop mathematical models of a control system

plus its environment, it is necessaryto know when the system interacts with its environ-

ment. For this purpose,bounding the responsetime from above is not su±cient. Instead,

it is desirable that the responsetime be bounded both from above and below.

Figure 3.5 shows a sequenceof the execution of processesthat removes the jitter

present in Figure 3.4. Every 10 ms, the INS triggers the sensorreceiver process,which

immediately triggers the Giotto implementation. The Giotto implementation consists of

the E machine and the control laws, both of which will be discussedin Section 3.4. Every

20 ms, the Giotto implementation immediately sendscommandsto the servomotors. These

commandswerecomputedduring the previoustriggering of the Giotto implementation. The

Giotto implementation then invokesthe computation of the control laws. This computation

will producethe servomotor commandsfor the next triggering of the Giotto implementation.

The 10 ms of latency intro duced is acceptablefor the helicopter application. The variation

in execution time of the sensorreceiver processis small, as is the variation in execution time

of the portion of the Giotto implementation precedingthe sendingof servomotor commands;

thus, the amount of jitter is reduced. The technique presented in this section for reducing

jitter is a bene¯t of using Giotto, but may of course be implemented independently of

Giotto.
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GiottoImpl

sendVelAngles()
f every10 msg

sendVelAnglesPos()
f every10 msg sendServoCommands()

f every20 msg

sendVelAccelPos()
f every10 msg

INS SensorReceiver EMachine ControlLaws Servos

Figure 3.5: UML sequencediagram of the processesof the helicopter system that removes
the jitter of Figure 3.4.

Pro cedure 3.1 Structure of the main control loop of the current helicopter system.
1: count := 0
2: while true do
3: Wait for messagefrom INS.
4: count := count + 1
5: Update position estimate using INS messageand previous position estimate.
6: if count = 0 mod 2 then
7: Compute control laws using position estimate and waypoint.
8: Sendcommand messageto servomotors.

3.3.3 Implicit rates

Procedure3.1shows the structure of the main control loop of the current helicopter

system. In line 3, the procedurewaits for a messagefrom the INS; this is a blocking wait

with no timeout. After this messageis received, the number count of messagesreceived is

incremented, and for each messagereceived, the position estimate is updated. For every

secondINS messagereceived, the control laws are computed and a command is sent to the

servomotors in lines 6{8. The timing behavior of the main control loop is thus implicitly

given by the useof the variable count. In this simple example, the timing behavior is easy

enoughto understand; but if count were usedin a more complicated way, or more counters

were added, the timing behavior would becomedi±cult to comprehend.

The implicit timing behavior we have just seencontrasts with the explicit timing
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sensor port INS
actuator port servos
output port estimates
input

port INS-input
port estimates-input

task ¯lter
input INS-input , estimates-input
output estimates

driver ¯lter-driver
source INS , estimates
guard true
destination INS-input , estimates-input

driver servos-driver
source estimates
guard true
destination servos

modecontrol period 20 ms
frequency 2 invoke ¯lter driver ¯lter-driver
frequency 1 update servos-driver

Figure 3.6: The main control loop of the helicopter systemexpressedas a Giotto program.

servos

estimates

servos

estimates

¯lter ¯lter

INS INS INS

¼[control] = 20 ms

¿ ¿ + 20 ms

estimates

Figure 3.7: A timing diagram for the Giotto program for the main control loop.
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behavior of the Giotto program of Figure 3.6, and its associated timing diagram (Figure 3.7)

This program invokesa single task, ¯lter , which usesthe most recent INS messageand the

previous position estimate to update the current position estimate. The program also

updates a single actuator, servos, at half the frequency of ¯lter . The frequenciesmay be

read o®directly from the program. Unlike the suggestionsof Section 3.3.1, the suggestions

of this section cannot be implemented using a conventional programming languagelike C

or Ada: the explicit timing behavior that Giotto o®ers is not available in conventional

languages.

3.4 A protot yp e Giotto-based °igh t control computer

The arguments of Section 3.3 in favor of Giotto, though they may be convinc-

ing on a conceptual level, need to be substantiated on a concrete and practical level. In

this section, we complement those arguments with a description of the implementation

of a protot ype Giotto-based °igh t control computer. This implementation is designedto

stabilize Berkeley's Yamaha R-MAX helicopters. Section 3.4.1 presents a Giotto program

for helicopter control that meets the requirements of the typical use of the helicopters.

Section 3.4.2 describesthe E machine, usedfor executing Giotto programs, and brie°y de-

scribesour implementation of the E machine on the real-time operating system VxWorks.

Finally, Section 3.4.3 describes a hardware-in-the-loop simulator that we used to validate

the protot ype Giotto-based °igh t control computer.

We ¯rst describe the typical use of the Berkeley helicopters: a test °igh t. We

describe this as a UML use case,without belaboring the point by presenting a use case

diagram. The actors are a safety pilot and a computer operator. In the normal °ow of

events, the pilot °ies the helicopter from the ground to a prespeci¯ed location. The pilot

then announces\Enable control." The operator enablesthe autonomous behavior of the

helicopter, and then announces\Con trol enabled." The experiment is performed by the

°igh t control computer. The pilot then announces\Disable control." The operator disables

automatic control, then announces\Con trol disabled." The pilot lands the helicopter. An

exceptional °ow of events occurs if the operator or pilot believes the °igh t computer is

malfunctioning, and announces\Disable control" before the experiment is complete. In

this case,the operator disablesautomatic control, announces\Con trol disabled," and the

pilot lands the helicopter.



CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 67

sensor
port GPS

type GPSMessage
port INS

type INSMessage
port isEnabled

type bool
port waypoint

type double[4]
actuator

port servos
type ServosMessage

output
port position

type double[6]
port controls

type double[4]

input
port GPSin

¯lter
type GPSMessage

port INS in
¯lter

type INSMessage
port position in

¯lter
type double[4]

port GPSin
contr ol

type GPSMessage
port INS in

contr ol
type INSMessage

port position in
contr ol

type double[4]
port waypoint in

contr ol
type double[4]

Figure 3.8: Ports of the Giotto helicopter control program.

3.4.1 A Giotto program for helicopter control

This section presents a Giotto program for helicopter control that satis¯es the re-

quirements of the usecasejust discussed.(The Giotto program of Figure 3.6doesnot match

the usecase;for illustrativ e purposes,the program of Figure 3.6 simpli¯ed the program of

this section.) The program of this sectionacceptsas inputs INS messages,GPSR messages,

waypoints, and a booleanvalue isEnabled from the operator, and producesestimatesof the

helicopter's position and control values for the servomotors as output. We concentrate on

the program structure and timing behavior, rather than the functions implemented by the

tasks. Descriptions of thesefunctions may be found in [Shi00, Ma02]. The Giotto program

currently running on the protot ype °igh t control computer is functionally identical to the

program presented here when the operator input isEnabled is true. We ¯rst present the

ports of the program, then the tasks and drivers, and ¯nally the modes.

Ports of the Giotto program. The port declarations of the Giotto helicopter

control program appear in Figure 3.8. Sensorports INS and GPS contain the most recent

messagesreceived from the INS and GPSR. The boolean sensorport isEnabled is true if

and only if control is currently enabled by the operator. The sensorport waypoint is the

waypoint most recently generated by the waypoint controller. This waypoint includes a

desired x; y; z position, plus a desired heading angle. The actuator port servos contains



CHAPTER 3. AUTONOMOUS HELICOPTER IMPLEMENT ATION 68

values for the collective and cyclic pitch of the main rotor, and the collective pitch of

the tail rotor. The remaining ports are task output and input ports. The output port

position contains the Giotto program's estimate of the helicopter's position. This estimate

includes the helicopter's x; y; z coordinates, plus the helicopter's Euler angles. The output

port controls contains the results of computing the control laws, and is usedto update the

actuator port servos. The task input ports (GPSin
¯lter , etc.) are set by the task drivers to be

copiesof the corresponding sensorand output ports (GPS, etc.). For simplicit y, Figure 3.8

omits initial values.

Tasks and driv ers of the Giotto program. The tasksand driversof the Giotto

helicopter control program appear in Figure 3.9. There are two tasks, ¯lter and control.

Both tasks are responsible for updating the position estimate position ; for this purpose,

the tasks need the current INS and GPSR messages,as well as the previously computed

position. In addition, control is responsible for updating the port controls; for this purpose,

control needsthe current waypoint. A high-level picture of the structure of the function of

control is as follows:

1: if GPSin
contr ol is a fresh GPSR messagethen

2: Correct position using GPSin
contr ol and position in

contr ol .
3: Predict position using INS in

contr ol and position in
contr ol .

4: Set controls using position and waypoint .

The function of ¯lter omits step 4 but is otherwise similar. The drivers for the two tasks,

¯lter-driver and control-driver , simply copy their source ports to the tasks' input ports.

Similarly, the driver for the actuator port, servos-driver , copiescontrols into servos. We

will discussthe mode switch drivers actuate-switch and estimate-switch when we discuss

the modes.

Mo des of the Giotto program. Figure 3.10presents the modesof the helicopter

control program. There are two modes, estimate and actuate. Mode estimate invokes the

task ¯lter every 10 ms, thereby updating the position estimate. As long as isEnabled is

false, the guard of actuate-switch is false, and the program stays in mode estimate. When

isEnabled becomestrue, the guard is true, and the program switches to mode actuate.

Mode actuate invokes the task control every 10 ms, and updates the actuator port servos

every 20 ms. The program switchesfrom actuate to estimate when isEnabled becomesfalse.

This completesthe description of the Giotto program for helicopter control.
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task ¯lter
input GPSin

¯lter , INS in
¯lter , position in

¯lter
output position
function f¯lter

task control
input GPSin

contr ol , INS in
contr ol , position in

contr ol , waypoint in
contr ol

output position , controls
function fcontr ol

driver ¯lter-driver
source GPS, INS , position
guard true
destination GPSin

¯lter , INS in
¯lter , position in

¯lter
function h¯lter

driver control-driver
source GPS, INS , position , waypoint
guard true
destination GPSin

contr ol , INS in
contr ol , position in

contr ol , waypoint in
contr ol

function hcontr ol

driver servos-driver
source controls
guard true
destination servos
function hservos-driver

driver actuate-switch
source isEnabled, position
guard isEnabled
destination position , controls
function hactuate

driver estimate-switch
source position
guard : isEnabled
destination position
function hestimate

Figure 3.9: Tasksand drivers of the Giotto helicopter control program.
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modeestimate period 10 ms ports position
frequency 1 invoke ¯lter driver ¯lter-driver
frequency 1 switch actuate driver actuate-switch

modeactuate period 20 ms ports position , controls
frequency 2 invoke control driver control-driver
frequency 1 update servos
frequency 2 switch estimate driver estimate-switch

start estimate

Figure 3.10: Modesof the Giotto helicopter control program.

3.4.2 An Em bedded Mac hine implemen tation

A Giotto program does not run itself, but instead requires a run-time system

for executing tasks and drivers, and for communicating with sensorsand actuators. In

this section, we describe one such run-time system, the Embedded Machine (E machine,

for short) [HK02]. We used an implementation of the E machine onboard our protot ype

°igh t control computer in order to executethe Giotto program for helicopter control. The

E machine is a virtual machine that managesthe communication betweenand amongtasks,

drivers, sensors,and actuators. The E machine controls how a real-time software system

reacts to an event in the environment, for examplea sensormessageor the tick of a timer.

At the occurrence of such an event, the E machine executesa sequenceof instructions.

Theseinstructions, called E code, are essentially of three types.

² First, an E code instruction may be a call driver (or call ) instruction. In the present

context, drivers are parameter-free routines that communicate data between and

among sensors,tasks, and actuators. In the model of the E machine, drivers are

synchronous, i.e., if a driver is called in responseto an event in the environment, then

the driver terminates beforeany other event occurs.2 Thus, after calling a driver, the

E machine waits until the driver completes.

² Second,an E code instruction may be a schedule task (or schedule ) instruction. In

the present context, tasks, like drivers, are parameter-free routines. Unlike drivers,

tasks perform signi¯cant computation, and thus do not executesynchronously. The

2This assumption may be overly restrictiv e, especially if driv ers require non-negligible computation time.
Chapters 4 and 5 investigate scheduling models which allow this assumption to be removed.
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E machine does not block until a scheduled task is complete, but instead informs

the operating system that the task is ready to execute. The operating system then

schedules the task according to the operating system's scheduling policy. Like the

environment, the operating system is beyond the jurisdiction of the E machine.

² Third, an E code instruction may be a future E code (or future ) instruction. A

future instruction determines how the E machine will respond to a future event.

Such an instruction has two arguments: a predicate p and a block e of E code. The

instruction future (p;e) inserts the pair (p;e) into a trigger queue. At each future

event, if (p;e) is the ¯rst pair in the queuewhosepredicate is true, then e is executed,

and (p;e) is removed from the trigger queue.

E codeis portable, predictable, and real-time. A morecompletedescription of the E machine

may be found in [HK02].

For the compilation of a Giotto program to be executed using the E machine,

the elements of the Giotto program are separatedinto two automatically-generated parts,

functionalit y and timing. The functionalit y part includesports and parameter-freeroutines

for each task and driver. Theseroutines call, with the appropriate arguments, programmer-

de¯ned functions for the tasks and drivers. The timing part includes the E code and, for

each schedule (t) instruction, a positive integer that denotes the relative deadline of the

task t that is scheduled. In Figure 3.7, for example, the relative deadline of ¯lter is 10 ms.

An earliest deadline ¯rst scheduler is thus appropriate for use with the current Giotto

compiler.3

In order to run the Giotto program for helicopter control, the author ported the

E machine to run on the real-time operating system VxWorks. This port started from the

Linux-basedE machine described in [HK02], in which the E machine runs asa high-priorit y

thread, and each task runs asa lower-priorit y thread. With each task is associated a unique

semaphore. Each task t is an in¯nite loop that ¯rst waits for a post to its semaphore,

then executesupon receiving this post, then waits for a post to its semaphore,and so on.

To execute the instruction schedule (t), the E machine posts to the semaphoreof task t.

Our port is di®erent from the port described in [HK02] in several respects. First, our port

3Here, the deadline of a task is taken to mean its logical deadline [HK02]. In particular, the deadline of a
task doesnot here mean the earliest time at which its outputs may a®ectan actuator. Lik e the requirement
that driv ers execute synchronously, this requirement may be overly restrictiv e. Chapters 4 and 5 examine
models in which this restriction is removed.
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of the E machine does not use the POSIX features of VxWorks; the author has found

that the VxWorks-native features function more reliably. Second,the dynamic linking and

distributed featuresof the E machine werenot neededfor our implementation. Finally, our

port implements EDF scheduler on top of the priorit y-based scheduler of VxWorks. The

result is a lean implementation of the EmbeddedMachine, consistingof fewer than 600lines

of code.4

3.4.3 Validation using hardw are-in-the-lo op simulation

This section describes the hardware-in-the-loop simulator built by the author in

conjunction with J. Liebman and C. Ma to test the protot ype Giotto-based °igh t control

computer. A hardware-in-the-loop simulator (HIL simulator or HILS) is a computer that

is distinct from the control computer, that has physical interfaces that mate with those

of the control computer, and that executesin real-time a dynamical model of the control

computer's environment. The timing, data formats, and protocols of the environment's

sensorsand actuators are duplicated by the HILS. This enablesthe testing of the protot ype

°igh t control computer against a real-time model of the actual vehicle. HIL simulation

replacescostly, dangerous,and time-consuming °igh t tests with inexpensive, safe, short,

and repeatable laboratory tests.

HIL simulation is commonly used in the aerospaceindustry to validate control

systems,and has been in use since at least the early 1970s[Tom00]. HIL simulation has

previously been used to test both autonomous helicopters [JM02, SS01] and Giotto-based

helicopter control software [KSHP02]. In contrast to [JM02], our HILS runs on an RTOS,

allowing real-time performance. In contrast to [SS01, KSHP02], our HILS usesstandard

COTS hardware and software, enabling us to port the HILS to new platforms.

Before describing our HILS, we brie°y describe the hardware used for both the

simulator and the protot ype °igh t control computer. We chose two matching computers

from SBS Technologies,each of which is essentially a compact PC. One computer runs the

Giotto program described above, and the other runs the hardware-in-the-loop simulator

4The author also improved the shutdown of E machine threads by cleanly releasing all resourcesupon
shutdown. Surprisingly, of any single improvement made, this one had the greatest bene¯cial e®ect. Prior
to this improvement, in order to test out a new version of control computer software, the control computer
itself had to be switched o® and on, requiring about 120 seconds.After this improvement, the power could
be left on, and the time reduced to about 15 seconds.This enabled many more bugs to be found and ¯xed
in a given amount of time.
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Figure 3.11: Hardware for protot ype helicopter control computer: CompactPCI computer,
serial communications card, and chassis.

described below. Each computer has an 850 MHz Pentium I I I CPU, 256 MB of RAM,

192MB of nonvolatile Flash memory, and an Ethernet port. 5 The speedof thesecomputers

is more than su±cient for the execution of our simulator and control program (for example,

the averageexecutiontime of the task control is 0.052ms) and allowsroom for growth. Since

communication with the sensorsand actuators on the R-MAX is over RS232serial channels

(seeFigure 3.1), we used a four-port RS232card, also from SBS, with each CC7 control

computer. In all, four serial ports are needed:one for the GPSR, one for the servomotors,

and two for the INS. In our protot ype implementation, we only usedone serial line for the

INS, omitting the additional serial line necessaryfor di®erential GPS correction. Figure 3.11

shows one of the computers, with serial card and chassis. In the remainder of this section,

we describe the dynamical model and software structure of the HILS.

Hardw are-in-the-lo op sim ulator: dynamical mo del

A dynamical model has previously been developed for the Berkeley R-50 heli-

copters [Shi00]. The similarit y between the R-50 and the R-MAX makes the structure

of this model appropriate for the R-MAX, and the Berkeley helicopter group plans to

derive an R-MAX model with the same structure. The model of [Shi00] was obtained

5These computers have the CompactPCI form-factor, which possessesthe advantage, over the more
traditional PC-104 form factor, of allowing easier accessto the °igh t computers: rather than disassembling
a PC-104 stack, one merely has to slide cards out of the CompactPCI backplane.
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using system identi¯cation techniques, starting from the generic small helicopter model

of [MTK99 , MTK00 ]. This genericmodel is:

_x = Ax + Bu (3.1)

where:

x = [u v w p q r Álin µlin Ãlin a b r fb]T 2 R12 (3.2)

u = [ua ub uµ ur fb ]T 2 R4

u; v; w = velocities in body coordinates

p;q; r = angular rates in body coordinates

Álin ; µlin ; Ãlin = linearized approximation of roll, pitch, yaw

a;b = longitudinal and lateral °apping anglesof main rotor blades

r fb = yaw stabilization subsystemstate

ua = input to main rotor blades longitudinal °apping angle

ub = input to main rotor blades lateral °apping angle

uµ = input to main rotor bladescollective pitch

ur fb = input to yaw-stabilization subsystem

and the structure of A and B are asfollows (here, ¤ indicates that the corresponding matrix

entry may be any real number):

A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

¤ 0 0 0 0 0 0 ¡ g 0 ¤ 0 0

0 ¤ 0 0 0 0 g 0 0 0 ¤ 0

0 0 ¤ 0 0 ¤ 0 0 0 ¤ ¤ 0

¤ ¤ 0 0 0 0 0 0 0 ¤ ¤ 0

¤ ¤ 0 0 0 0 0 0 0 ¤ ¤ 0

0 0 ¤ ¤ 0 ¤ 0 0 0 0 0 ¤

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 ¡ 1 0 0 0 0 ¤ ¤ 0

0 0 0 ¡ 1 0 0 0 0 0 ¤ ¤ 0

0 0 0 0 0 ¤ 0 0 0 0 0 ¤

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
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B =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0

0 0 0 0

0 0 ¤ 0

0 0 0 0

0 0 0 0

0 0 ¤ ¤

0 0 0 0

0 0 0 0

0 0 0 0

¤ ¤ 0 0

¤ ¤ 0 0

0 0 0 0

3
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7
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7
7
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5
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By equipping the helicopter with hardware and software to record the pilot's input

and the vehicle's response,D. Shim identi¯ed A and B [Shi00]:

A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

¡ 0:1257 0 0 0 0 0 0 ¡ g 0 ¡ g 0 0

0 ¡ 0:4247 0 0 0 0 g 0 0 0 g 0

0 0 ¡ 0:7598 0 0 8:4231 0 0 0 ¡ 38:9954 9:6401 0

¡ 0:1677 0:0870 0 0 0 0 0 0 0 36:7050 161:1087 0

¡ 0:0823 ¡ 0:0518 0 0 0 0 0 0 0 63:5763 ¡ 19:4931 0

0 0 0:0566 ¡ 1:3300 0 ¡ 5:5105 0 0 0 0 0 ¡ 44:8734

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 ¡ 1 0 0 0 0 ¡ 3:4436 0:8287 0

0 0 0 ¡ 1 0 0 0 0 0 0:3611 ¡ 3:4436 0

0 0 0 0 0 1:8157 0 0 0 0 0 ¡ 11:0210
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(3.3)

B =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0

0 0 0 0

0 0 70:5041 0

0 0 0 0

0 0 0 0

0 0 23:6260 44:8734

0 0 0 0

0 0 0 0

0 0 0 0

¡ 0:8417 2:8231 0 0

¡ 2:4090 ¡ 0:3511 0 0

0 0 0 0

3

7
7
7
7
7
7
7
7
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7
7
7
7
7
7
7
7
7
7
7
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(3.4)

Equations (3.1), (3.3), and (3.4) are the core of the model of our HILS. For the

Euler angles,we improve upon this core model, as suggestedin [Shi00]. In (3.2), Álin , µlin ,

and Ãlin are approximations to the Euler angles,derived from a linearization of the heli-

copter dynamics. To obtain a more accurate representation of the Euler angles,we usethe

following standard equation to transform the angular rates p;q; r in body coordinates into

the derivatives _Á; _µ; _Ã of the Euler angles:
2

6
6
4

_Á
_µ
_Ã

3

7
7
5 =

2

6
6
4

1 sÁ¢tµ cÁ¢tµ

0 cÁ ¡ sÁ

0 sÁ=cµ cÁ=cµ

3

7
7
5

2

6
6
4

p

q

r

3

7
7
5 (3.5)

Here, cx, sx, and tx are abbreviations for cosx, sinx, and tan x, respectively. Note that

the accuracyof equation (3.5) is limited by the fact that p, q, and r are linearized approx-
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Pro cedure 3.2 Simulator software implementation.
1: count := 0
2: while continue = true do
3: Set timer to post to semaphoresem at time ¿+ 1 ms, where¿ ms is the current time.
4: if new actuator messageis present then
5: Update inputs u.
6: if count = 0 mod 10 then
7: SendINS message,using the valuesof state variables for time ¿ ms.
8: if count = 0 then
9: SendGPSR message,using the valuesof state variables for time ¿ ms.

10: Compute the valuesof state variables for time ¿ + 1 ms.
11: count := (count + 1) mod 250
12: Wait on sem.

imations to the angular rates.6 Another coordinate transformation may be used to obtain

the velocities _x tp , _ytp , and _ztp in tangent plane coordinates from the velocities u, v, and w

in body coordinates:

2

6
6
4

_x tp

_ytp

_ztp

3

7
7
5 =

2

6
6
4

cÃ ¢cµ ¡ sÃ ¢cÁ+ cÃ ¢sµ¢sÁ sÃ ¢cÁ+ cÃ ¢sµ¢cÁ

sÃ ¢cµ cÃ ¢cÁ+ sÃ ¢sµ¢sÁ ¡ cÃ ¢sÁ+ sÃ ¢sµ¢cÁ

¡ sµ cµ¢sÁ cµ¢cÁ

3

7
7
5

2

6
6
4

u

v

w

3

7
7
5 (3.6)

The dynamical model of the HILS thus has24 states: the 12 statesof the vector x,

the three non-linearized Euler angles Á;µ; Ã and their derivatives, and the three tangent

plane coordinates x tp ; ytp ; ztp and their derivatives. The dynamics of x are governed by

the di®erential equation _x = Ax + Bu , where A and B are given in (3.3) and (3.4). The

dynamics of the remaining statesare governedby equations(3.5) and (3.6). This concludes

our discussionof the dynamical model of the HILS. In the next section, we describe the

software structure of the HILS.

Hardw are-in-the-lo op sim ulator: soft ware structure

We now discuss the software structure of the HIL simulator. Our goal was to

build a simulator useful for debugging the protot ype °igh t control computer, rather than

to build a simulator itself in need of debugging. This goal mandated the complementary

designcharacteristics of simplicit y and determinism. Thesecharacteristics are exhibited by

6Note also that four entries of the transformation matrix may tend to §1 as µ tends to § ¼=2, i.e., as
pitch facesdirectly up or down. This phenomenon, known as gimbal lock, is not of concern here, since the
helicopter is never put through such extreme maneuvers by our simulator.
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Procedure3.2, which shows the structure of the simulator. First, the iteration count count

is set to 0. The procedurethen enters a while loop, at the top of which it is checked whether

the global variable continue is true. An external proceduremay halt the simulator by setting

continue to false. A timer is set in line 3 to begin another iteration of the simulator by

posting to the semaphoresemafter 1 ms.7 In lines 4{5, if a new actuator messageis present,

the simulator updates the input vector u. Lines 6{7 sendan INS messageevery 10 ms, and

lines 8{9 senda GPSR messageevery 250 ms. Thesemessagesare created using the values

of the state variables computed 1 ms previously (cf. Section 3.3.2). Line 10 computesnew

values for the state variables. These values may be used during the next iteration of the

while loop, at time ¿ + 1 ms, to send messages.Line 11 updates count. Finally, line 12

waits on the semaphoresem.8

The computation of new values for the state variables (line 10) usesthe fourth-

order Runge-Kutta implementation of [PTVF92 ]. BecauseRunge-Kutta methods require

that derivativesbe calculated at future time instants, they are an imperfect match for HIL

simulation: the outputs of the controller at times ¿0 > ¿ cannot be known by the simulator

at time ¿ [Led99]. We therefore assume,in the calculation at time ¿ of the values of the

state variables at time ¿ + 1 ms, that the inputs at time ¿0 > ¿ are identical to those

at time ¿. This assumption, though a sourceof inaccuracy, was su±cient to validate the

stabilit y both of the current helicopter control laws and of our Giotto control program, and

moreover to uncover logical bugs in the implementation of the control software. Though

it would be desirable to remove this inaccuracy by using a causal numerical integration

method (e.g., an Adams-Bashforth method, as suggestedby [Led99]), an implementation

of such a method was not available when we wrote the simulator.

An earlier, alternativ esoftwarestructure wasdescribed in [HLM + 03,Lie02, Ma02].

This earlier implementation had two additional tasks: one for sending INS messages,and

another for sending GPSR messages.The implementation described here is simpler and

more deterministic, and adds other improvements, including: noise in the sensormodels,

morefrequent computation of vehicledynamics,sensorand actuator messagesthat duplicate

that data formats of the actual GPSR and INS (respectively, the Novatel MillenRT-2 and

7The 1 ms interval was chosenbecauseshorter intervals (e.g., 0.1 ms) overloaded the simulator computer
with interrupts.

8The model of the simulator would naturally permit an implementation in Giotto. However, it seemed
circular to test and debug a Giotto-based system with a Giotto-based system, so we instead used more
traditional tools: C and VxW orks.
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the C-MIGITS I I), a heartbeat monitor for the simulator, and improved thread startup and

shutdown.

The use of a HIL simulator to debug the protot ype Giotto-based °igh t control

computer resulted in an extremely reliable system: in a reliabilit y test, the simulator com-

puter in parallel with the control computer ran for over onemonth without any failure (and

only stopped running becausethe author had to power down the systemfor transport to a

demo).

3.5 Conclusion

In this chapter, we argued that the Giotto programming languageaddressescom-

mon shortcomingsof control systemssoftware. We exhibited three such shortcomings,using

the UML to describe two of them. We showed how a Giotto implementation, together with

a careful implementation of device drivers for communication with sensors,leads to more

deterministic and abstract control systemssoftware. To substantiate our argument about

the determinism and abstraction of Giotto, we described the development of a protot ype

Giotto-based°igh t control computer for Berkeley'sYamahaR-MAX autonomoushelicopter.

We presented a Giotto program for controlling the helicopter. We described the E machine,

and our implementation of it for the protot ype °igh t control computer. Finally, we de-

scribed the designand implementation of a hardware-in-the-loop simulator to validate the

reliabilit y of our protot ype °igh t control computer.
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Chapter 4

Single-mo de, single-pro cessor

Giotto scheduling

4.1 In tro duction

In this chapter, we addressthe problem of scheduling single-mode Giotto programs

for a single processor.This is an important case,as many control algorithms have a single

mode of operation, and many implementations usea single processorto reducecost, design

time, and debugginge®ort. Though using multiple processorsincreasesoverall processing

speed,sodoesthe ever-growing power of modern processors,but without the addedoverhead

of interprocessorsynchronization and communication. In addition, though multi-pro cessor

systemspermit greater fault tolerance,experienceshows that extremecaremust be taken in

the designand debuggingof such systems. The amount of e®ort involved tends to decrease

rather than increasecon¯dence in their purported fault tolerance.

Instead of only developing scheduling algorithms for Giotto, we adopt a more

inclusive approach. Our strategy is to embed the scheduling problem for single-mode,

single-processorGiotto programs into a more general problem. It is this more general

problem that we solve. The algorithms that we develop are useful not only for Giotto, but

also for more expressive time-triggered programming languages,e.g., languagesin which

the unit-delay requirements of Giotto are relaxed.

Our approach has two main ingredients. The ¯rst is that we useprecedencecon-

straints to model data °ow. Speci¯cally, if an activit y A1 writes a value to a port p, and A2
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reads that value from p, then A1 must complete before A2 begins. The timing of sensors

and actuators in a Giotto program should be ¯xed, sincesensorsand actuators interact with

the external world at times speci¯ed a priori by the Giotto program. However, besidessen-

sorsand actuators, all other activities may be executedat any time, subject to precedence

constraints imposedby data °ow. In this chapter, we show that the precedence-constrained

view of single-processorscheduling lets more Giotto programsbe scheduled than wasprevi-

ously possible. The secondkey ingredient is that we start from a the precedence-constrained

scheduling algorithm, EDFÁ , developed in of operations research. This algorithm provides

a useful departure point, but to make it appropriate for scheduling Giotto, we extend it

to handle an in¯nite, periodic set of jobs. The algorithm that we develop has two desir-

able properties. First, it is optimal : it ¯nds a schedule satisfying timing and precedence

constraints whenever such a schedule exists. Second,it is reasonably fast: it runs in time

polynomial in its input size,and pseudopolynomial in the frequenciesof the Giotto program.

Though precedence-constrainedmulti-pr ocessor scheduling of programming languagesis an

active area of research [DRV00], to the author's knowledge precedence-constrainedsingle-

processorscheduling of programming languageshas not been extensively studied. As we

show in Chapter 7, the results of this chapter do not generalizeto a multi-pro cessorsetting.

An EDF-basedschedulabilit y test was previously presented in [HKMM02]. Prece-

denceconstraints play no part in this algorithm. This earlier algorithm optimally schedules

Giotto programs for a single processor,under three restrictions:

1. Each task driver executesat the time instant ¿i speci¯ed in the Giotto semantics.

2. Each task invocation executesin the interval [¿i ; ¿i + ¼=! ], where ¼ is the period of

the mode invoking the task, and ! is the invocation's frequency.

3. Sensors,actuators, and task drivers require \negligible" computation time. Exactly

how much computation time is negligible was not speci¯ed.

It wassubsequently arguedin [HHK03] that, from a semantic perspective, theserestrictions

can be relaxed in a systematic way. In this chapter, we continue the line of argument

of [HHK03], showing how the restrictions can be relaxed from a scheduling perspective as

well. It should be noted that though our algorithm allows more programs to be scheduled,

it runs in time pseudopolynomial in the frequenciesof the input program, whereasthe test

of [HKMM02] is polynomial-time. This disadvantage seemsrather slight, as the frequencies
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of a Giotto program are typically small.

For simplicit y, the algorithm that we develop is a pre-runtime scheduling algo-

rithm: before runtime, it produces a complete schedule of the implementation's threads.

This schedule speci¯es when to start, suspend, resume, and stop each thread. A pre-

runtime scheduling algorithm has two advantages. First, it minimizes the complexity of the

actions at runtime. The runtime \scheduler" becomeshighly deterministic, which greatly

simpli¯es debugging. Second,the generatedschedulescan be independently veri¯ed prior to

runtime. This provides an important double-check in situations wheresafety and reliabilit y

are primary concerns. The advantagesof pre-runtime scheduling are thoroughly discussed

in [Kop97]. Of course,other approachesare also possible. For example, one might provide

a schedulabilit y test prior to runtime, but relegateall decisions about processorallocation

to a runtime scheduler. The ¯rst useof this approach is perhaps[LL73]; a recent exemplar

is [BHR93]. Additionally , one might make the runtime scheduler more clever about how to

handle situations of overload (see,e.g., [BS93]). Neither of theseapproachesis inconsistent

with the approach pursued here; we have adopted a pre-runtime approach only in order to

study scheduling models and algorithms in as simple a setting as possible.

Throughout this chapter, we assumethat actuators are invoked in an interval

[¿i ¡ "; ¿i ] beforethe timestamps ¿i in the Giotto semantics, and that sensorsare invoked in

an interval [¿i ; ¿i + "] after the timestamps. Indeed, the Giotto scheduling algorithm of this

chapter (Algorithm 4.3) will produce schedules that minimize the jitter tolerance " . We

shall alsoassumethat the scheduling algorithm doesnot have accessto port values. In this

sense,our approach is °ow-insensitive. A more °ow-sensitive problem, without precedence

constraints, is shown to be PSPACE-complete in [HKMM02]. Our °ow-insensitive analysis

thus gains e±ciency at the expenseof accuracy, as one would expect. Finally, we assume

for simplicit y that the guard of each driver evaluates to true, though this assumption does

not a®ectour results (in the worst casefor the scheduler, each guard evaluates to true, so

that actions conditional on the guard are also executed).

The structure of this chapter is as follows. Section 4.2 presents two examples

that motivate the need for precedence-constrainedscheduling. These examplescannot be

scheduled by the current Giotto compiler, but can be scheduled by the algorithm in this

chapter. Section4.3 discussesmodelsand algorithms for precedence-constrainedscheduling

problems. Weextend the model 1 j r j ; dj ; prec; pmtn j ¡ to an in¯nite, periodic variant. We

then present an optimal, polynomial-time scheduling algorithm for this variant. Section4.4
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shows how to translate single-mode Giotto programs into instancesof the model developed

in Section 4.3.

4.2 The need for °exible scheduling

In this section, we motivate the need for precedence-constrainedsingle-processor

scheduling of single-mode Giotto programs. We present several examplesthat the current

Giotto compiler is not able to schedule,but that arenonethelessschedulable. The ¯rst exam-

ple, in Section4.2.1, indicates that all activities of a Giotto program should be preemptible,

not just task invocation activities. The secondexample, in Section 4.2.2, arguesthat the

execution of activities of one round of a Giotto program should be allowed to continue into

the next round of the program. These examplesare two among many; we have included

theseparticular examplesin order to argue that the scheduling requirements of the current

compiler are overly restrictiv e (e.g., the requirement that drivers execute\synchronously,"

and that tasks ¯nish beforetheir \logical" deadlines;cf. [HK02] and [HKMM02]). We shall

usethe exampleof Section 4.2.2 as a running example in Section 4.3.

4.2.1 Preemptible driv ers

Figure 4.1 shows a Giotto program. This program has two sensorss1 and s2, each

taking 1 unit of time to read.1 There are two tasks t1 and t2, and their respective driversd1

and d2. Each of thesetakes1 unit of time to execute,except driver d2, which takes2 units.

A third driver d3 writes actuator a and takes 1 unit of time. There is a single mode m

with period 12. Mode m invokes t1 with frequency 2, t2 with frequency 1, and d3 with

frequency2.

We now describe someof the timing requirements of the program of Figure 4.1.

Figure 4.2 depicts theserequirements in graphical form. Boxeswith a thick border indicate

activities that execute at a ¯xed time. Thin boxes indicate activities that may execute

at any time, subject to precedenceconstraints and timing constraints on predecessorsand

successors.Note that d1 reads s1, and d2 reads s2. To minimize jitter, both sensorsare

read between times 0 and 2; thus the activities true(d1)[0; 7] and true(d2)[0; 7] must start

after time 2. Similarly, since sensors1 is read between times 6 and 7, true(d1)[1; 7] must

1What exactly the unit of time is, whether seconds,milliseconds, microseconds,etc., is not of importance
in this chapter.
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sensor
port s1 type int time 1
port s2 type int time 1

actuator
port a type int init 0

input
port i 1 type int
port i 2 type int

output
port o1 type int init 0
port o2 type int init 0

task t1 input i 1 output o1 function f1 time 1
task t2 input i 2 output o2 function f2 time 1

driver d1 source s1 guard true destination i 1 function h1 time 1
driver d2 source s2 guard true destination i 2 function h2 time 2
driver d3 source o1; o2 guard true destination a function h3 time 1

modem period 12 ports o1; o2

frequency 2 invoke t1 driver d1

frequency 1 invoke t2 driver d2

frequency 2 update d3

start m

Figure 4.1: Preemptible drivers program.
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true(d3)[0; 2]

true(d3)[1; 2]t1[1; 1]true(d1)[0; 7]read(s1)[0; 3]

t2[2; 1]true(d2)[0; 7]read(s2)[0; 3]

¡ 1 0

0 2

0 2

5 6

read(s1)[1; 3] true(d1)[1; 7] t1[2; 1]

6 7

true(d3)[2; 2]

11 12

¢¢¢

Figure 4.2: Preemptible drivers timing constraints.

t1[1;1] t1[2;1] t2[2;1]

0 6 12

read(s2)[2; 3]

read(s1)[2; 3]

true(d3)[2; 2]

true(d2)[0; 7]

true(d1)[1; 7]

read(s1)[1; 3]

true(d3)[1; 2]

true(d2)[0; 7]

true(d1)[0; 7]

read(s2)[0; 3]

read(s1)[0; 3]

true(d3)[0; 2]

Figure 4.3: Preemptible drivers schedule.

start after time 7. Finally, note that d3 readsthe output ports of t1 and t2 betweentimes 5

and 6, and betweentimes 11 and 12. Thus, the activit y t1[1; 1] must completebeforetime 5.

Similarly, the activities t2[2; 1] and t1[2; 1] must start after time 11. It may be veri¯ed that

no schedule can meet these constraints unless the activit y true(d2)[i; 7] is preempted, for

each i = 0; 2; 4; ¢¢¢.

Figure 4.3 shows a schedule for the program of Figure 4.1. Note that d2 ¯nishes

half of its execution between times 4 and 5. At time 5, d2 is preempted by d3, s1, d1,

and t1. Finally, at time 9, d2 is able to ¯nish. The schedule from time 11 to time 23 repeats

the schedule from ¡ 1 to 11, with the indices of activities incremented by 2. Similarly, the
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sensor
port s type int time 1

actuator
port a1 type int init 0
port a2 type int init 0

input
port i 1 type int
port i 2 type int

output
port o1 type int init 0
port o2 type int init 0

task t1 input i 1 output o1 function f1 time 1
task t2 input i 2 output o2 function f2 time 4

driver d1 source s;o2 guard true destination i 1 function h1 time 1
driver d2 source s guard true destination i 2 function h2 time 1
driver d3 source o1 guard true destination a1 function h3 time 1
driver d4 source o1 guard true destination a2 function h4 time 4

modem period 22 ports o1; o2

frequency 2 invoke t1 driver d1

frequency 2 invoke t2 driver d2

frequency 1 update d3

frequency 2 update d4

start m

Figure 4.4: Spillover program.

schedule from 23 to 34 repeats the schedule from ¡ 1 to 11, and so on forever.

4.2.2 Spillo ver

Figure 4.4 shows another Giotto program. Mode m invokes tasks t1 and t2 with

frequency 2. Using driver d1, t1 readssensors and the output port o2 of t2. Task t2 reads

only s. Using drivers d3 and d4, respectively, mode m also updates actuators a1 and a2

with frequencies1 and 2. Both d3 and d4 read the output port o1 of task t1. To read o1, a1

usesd3, and a2 usesd4. There are two important timing requirements to note:

1. Becausetrue(d1)[0; 7] receives an input from read(s)[0; 3], true(d1)[0; 7] must begin

after time 1. Sincethe output of t1[1; 1] is readby actuator driver true(d4)[1; 2], t1[1; 1]
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true(d4)[0; 2] t2[1; 1] t2[2;1]

true(d4)[2; 2] t2[3; 1]t2[2;1] t2[4;1]

read(s)[2; 3]

true(d3)[2; 2]

true(d2)[2; 7]

true(d1)[2; 7]

t1[3; 1]

true(d2)[3; 7]

t1[4; 1]

true(d1)[3; 7]

read(s)[3; 3]

true(d3)[3; 2]

3322

true(d2)[0; 7]

read(s)[0; 3]

true(d3)[0; 2]

true(d1)[0; 7]

t1[1; 1]

true(d2)[1; 7]

t1[2; 1]

true(d1)[1; 7]
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Figure 4.5: Spillover schedule.

must ¯nish by time 10. In general, true(d1)[i; 7] and t1[i + 1; 1] must begin after time

11i + 1 for i = 0; 1; 2; ¢¢¢. Also, true(d1)[i; 7] and t1[i + 1; 1] must ¯nish by 11i + 10

for i = 0; 2; 4; ¢¢¢, and by 11i + 6 for i = 1; 3; 5; ¢¢¢.

2. Similarly, true(d2)[0; 7] must beginafter time 1. In general,true(d2)[i; 7] and t2[i + 1; 1]

must begin after time 11i + 1, for i = 0; 1; 2; ¢¢¢. Note that the actuator drivers d3

and d4 read only t1's output, not t2's output. Since t1 reads t2's output, t2 inherits

its deadline from t1. Thus, true(d2)[i; 7] and t2[i + 1; 1] must ¯nish by time 11i + 17

for i = 0; 2; 4; ¢¢¢, and by 11i + 21 for i = 1; 3; 5; ¢¢¢.

Under the assumption that sensorsand actuators executeduring times [11i ¡ 5; 11i + 1] for

i = 0; 2; 4; ¢¢¢, and during times [11i ¡ 1; 11i + 1] for i = 1; 3; 5; ¢¢¢, it may be veri¯ed that

no schedule can meet these constraints unless the activit y t2[i; 1] ¯nishes after its logical

deadline at time 22i for i = 2; 4; 6; ¢¢¢. We call this phenomenonspillover.

Figure 4.5 shows a schedule for the program of Figure 4.4. Note that the second

invocation of t2, t2[2; 1], cannot complete before its logical deadline at time 22, because

actuator drivers d3 and d4 need to execute. These actuator drivers need the output of

t1[2; 1], which is complete,so the fact that t2[2; 1] is not completedoesnot causea problem.
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Activit y t2[2; 1] is able to complete at time 25, though its execution spills over into what is

logically the secondround of the Giotto program. The schedule from time 33 until time 55,

most of which is not shown, repeats the schedule from 11 until 33, with the indices of

activities incremented by 2. Similarly, the schedule from time 55 until 77 repeats that

from 11 until 33, and so on forever.

4.3 Scheduling mo dels

4.3.1 The three-¯eld notation ® j ¯ j °

In scheduling theory, a standard notation is used to describe scheduling prob-

lems [GLLK79 , LLK82 , HLv97]. This notation has been in use since the 1970s. By that

time, the number of scheduling problemshad grown largeenough(onecount put the number

at 4536[LLLK82 ]) that mathematical methods wereneededto understand the relationships

betweenthe problems. The standard notation helps to classify the computational complex-

it y of the problems, by making it apparent when one problem is more expressive than

another. The standard notation consistsof three ¯elds, ®, ¯ , and ° , and is typically written

® j ¯ j ° . The meaning of these¯elds is as follows:

² ® describes the machines which are to be scheduled. For example, ® = 1 meansa

single-machine, ® = P means parallel identical machines, and ® = J means a job

shop.2

² ¯ describes job parametersand capabilities. To take two examples,¯ = pmtn means

that preemption is allowed, and ¯ = r j ; pmtn meansthat jobs have releasetimes and

preemption is allowed.

² ° represents the cost function. For instance, ° = Cmax meansthe cost of a schedule

is the maximum job completion time, and ° = L max meansthe cost is maximum job

lateness(which assumesa deadline has beengiven for each job).

We now discusshow to chooseappropriate valuesof ®, ¯ , and ° for the problem

of scheduling single-mode Giotto programs on a single processor.

² Sincethis chapter is concernedwith single-processorscheduling, ® = 1.
2 In parallel models, including ® = P, jobs are allowed to migrate between machines. In shop models,

including ® = J , a job consistsof a set of operations, each such operation being ¯xed to a particular machine.
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² The selectionof ¯ is more involved. A job that is required to executeat a ¯xed time

can be modeledwith an appropriate choiceof releasetime and deadline. For example,

an actuator activit y A that must execute up to time 0, and that requires 1 unit of

time, may be modeled by setting the releasetime of A equal to ¡ 1, and the deadline

of A equal to 0. Thus, it is useful to have ¯ include r j and dj (releasetimes and

deadlines). In addition, in order to model data°ow dependencies,̄ should include prec

(precedences). Finally, ¯ should include pmtn, not only becausepreemption is a

commonfeature of real-time operating systems,but alsobecausemany problemsthat

are otherwise computationally easybecomehard when preemption is disallowed.3

² The choice of ° is simpler. Were we to adhere strictly to the standard notation, we

would use the cost function ° = L max , maximum lateness. However, we are really

only concernedwith determining whether there is a schedule for which L max · 0, and

synthesizing such a schedule if so. For this reason,we usethe variant of the standard

notation in which ° = ¡ [B+ 01]. This variant asks whether there is a schedule in

which every job ¯nishes before its deadline.

In conclusion, the scheduling problem for single-mode, single-processorGiotto programs is

similar to 1 j r j ; dj ; prec; pmtn j ¡ , which asks whether a set of jobs with releasetimes,

deadlines,and precedenceconstraints is schedulable with preemption on a single machine

such that all deadlinesare met.

4.3.2 The problem 1 j r j ; d j ; pr ec; pmtn j ¡

This similarit y of single-mode Giotto scheduling for a single processorto 1 j r j ;

dj ; prec; pmtn j ¡ allows us to use an optimal algorithm for 1 j r j ; dj ; prec; pmtn j ¡ as

a starting point. This section precisely de¯nes the problem 1 j r j ; dj ; prec; pmtn j ¡ , and

presents an algorithm for it due to J. BÃla_zewicz[BÃla76].

De¯nition 4.1 (1 j r j ; d j ; pr ec; pmtn j ¡ ). An instance P of 1 j r j ; dj ; prec; pmtn j ¡

is a tuple (J; t; r ; d;Á), where:

² J is a ¯nite set, called the set of jobs.

3For example, the problem 1 j r j ; pmtn j L max is in P, whereas1 j r j j L max is NP-hard [Len77]. There are
job shop scheduling problems for which the preemptive version is NP-hard and the non-preemptive version
is easy [BKS99], but such problems are exceptions.
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² t : J ! Z> 0 is a function that assignseach job a positive integer, called the job's

execution time.

² r : J ! Z¸ 0 is a function that assignseach job a nonnegative integer, called the job's

release time.

² d : J ! Z> 0 is a function that assignseach job a positive integer, called the job's

deadline.4

² Á µ J £ J is a relation on J , called the precedence relation. We shall normally write

j Á j 0 instead of (j ; j 0) 2 Á. ¤

Several remarks are in order. For Giotto, a job might be an invocation of a sensor,

an actuator driver, a task driver, or a task. However, as far as 1 j r j ; dj ; prec; pmtn j ¡

is concerned,a job is simply something that takes time. A precedenceconstraint j Á j 0

requires that j ¯nish before j 0 can begin. If j Á j 0, we say that j is a predecessor of j 0, and

that j 0 is a successor of j . Similarly, if j Á + j 0, we say that j is a transitive predecessor

of j 0, and that j 0 is a transitive successor of j .5 A job j may executeat any time after r (j ),

as long asall its predecessorsare complete,and j must ¯nish befored(j ). It will follow from

the fact that t(j ) > 0 for each j 2 J , and from De¯nition 4.2, that an instance of 1 j r j ; dj ;

prec; pmtn j ¡ is feasibleonly if Á is acyclic.

De¯nition 4.2 (schedule, feasibilit y). A schedule S is a pair (I ; e), where:

² I is a ¯nite set of intervals of the real line R. Each interval in I must be nonempty

and of the form (`; r ), i.e., left-open and right-open. Intervals in I must also be

non-overlapping; i.e., if i; i 0 2 I and i 6= i 0, then i \ i 0 = ; .

² e : I ! J is a function that assignsa job e(i ) to each interval i . We say that the job

e(i ) is executed in interval i .

Given a job j in the range of e, let I [j ] be the set of intervals in which j is executed, i.e.,

the set f i 2 I j e(i ) = j g. Given a schedule S and a job j , we de¯ne several functions:

² The start time of job j in S, start S(j ), is inf (`;r )2 I [j ] `.

4For simplicit y, we require that t(j ), r (j ), and d(j ) are integers, for all jobs j 2 J . The results of this
chapter would contin ue to hold if these quantities were allowed to be rational.

5The relation Á + is the transitiv e closure of Á .
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² The ¯nish time of j in S, ¯n S(j ), is sup(`;r )2 I [j ] r .

² The total execution time of j in S, total S(j ), is
P

(`;r )2 I [j ] r ¡ `.

We say that scheduleS satis¯es (or is feasible for) problem instanceP = (J; t; r ; d;Á) if the

following two conditions are met:

I. For each job j 2 J , r (j ) · start S(j ), ¯n S(j ) · d(j ), and t(j ) = total S(j ).

I I. For each j ; j 0 2 J such that j Á j 0, ¯n S(j ) · start S(j 0).

We say that P is feasible if there is a schedule S that satis¯es P. ¤

In 1976, J. BÃla_zewicz developed a polynomial-time algorithm EDF Á that, given

an instanceP of 1 j r j ; dj ; prec; pmtn j ¡ , ¯nds a schedulesatisfying P if oneexists. EDFÁ

relies on transitiv e releasetime and deadline functions r ¤ and d¤, de¯ned by:

r ¤(j ) = max
f j 0j j 0Á ¤ j g

r (j 0)

d¤(j ) = min
f j 0j j Á ¤ j 0g

d(j 0)

We say that job j is enabled at time ¿ if r ¤(j ) · ¿ and, for all j 0 such that j 0 Á+ j , j 0

has executed for at least t(j 0) time units up to ¿. EDFÁ schedules jobs according to the

following rule:

At each time ¿, executea job j that is enabledat ¿ and has minimal d¤(j ) value. (4.1)

The O(jJ j2) running time of EDFÁ was reducedto O(jJ j log jJ j) by [Kim94]. A clear proof

of the optimalit y of EDFÁ may be found in [Bru01].6

4.3.3 Our problem 1 j r j ; d j ; pr ec; pmtn ; perio d j ¡

The problem 1 j r j ; dj ; prec; pmtn j ¡ is a not a perfect match single-mode,

single-processorGiotto programs, since such programs have in¯nite, periodic streams of

activities. In this section, we de¯ne a periodic version of 1 j r j ; dj ; prec; pmtn j ¡ ; this

periodic version is not a standard model but rather our own contriv ance. We then develop

a scheduling algorithm for this periodic version.
6A variant of EDF Á is presented in [SBS95], in which r ¤ (j ) and d¤ (j ) are de¯ned by:

r ¤ (j ) = max(r (j ); maxf j 0j j 0Á + j g r ¤ (j 0) + t(j ))
d¤ (j ) = min( d(j ); min f j 0j j Á + j 0g d¤ (j 0) ¡ t(j ))

and jobs are scheduled according to the rule (4.1). This variant is also optimal.
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De¯nition 4.3 (1 j r j ; d j ; pr ec; pmtn ; perio d j ¡ ). An instance of 1 j r j ; dj ; prec;

pmtn; period j ¡ is a tuple P = (J; t; r ; d;Á; ¦), where:

² J is the union of disjoint sets J0; J1; ¢¢¢, each with the same number n 2 Z> 0 of

elements. For notational convenience,let j hi; 1i ; ¢¢¢; j hi; ni be the members of J i .

² ¦ 2 Z> 0 is called the period.

² The functions t, r , d, and the relation Á are de¯ned as they were in De¯nition 4.1,

and must satisfy the following additional conditions:

{ t(j hi; ki ) = t(j h0; ki ) for all i 2 [1 :: 1 ] and k 2 [1 :: n].

{ r (j hi; ki ) = r (j h0; ki ) + i ¦, and d(j hi; ki ) = d(j h0; ki ) + i ¦, for all i 2 [1 :: 1 ]

and k 2 [1 :: n].

{ For all k 2 [1 :: n],

r (j h0; ki ) 2 [0 :: ¦ ¡ 1] (4.2)

(This requirement, though not essential, simpli¯es the proofs below.)

{ The precedencerelation Á satis¯es the uniformit y condition:

j hi; ki Á j hi 0; k0i i® j h0; ki Á j hi 0¡ i; k0i (4.3)

for all i; i 0 2 [0 :: 1 ] and all k; k0 2 [1 :: n]. (Equivalently , j hi; ki Á j hi 0; k0i i®

j hi ¡ i; ki Á j hi 0¡ i; k0i .)

{ If j hi; ki Á j hi 0; k0i then i · i 0 for all i; i 0 2 [0 :: 1 ] and all k; k0 2 [1 :: n]. ¤

De¯nition 4.4 (schedule, feasibilit y). This de¯nition follows De¯nition 4.2, with a

modi¯cation to account for the in¯nite nature of the problem instance P. A schedule S is

a pair (I ; e), where I is de¯ned as it was in De¯nition 4.2, except that I neednot be ¯nite;

and e is de¯ned as it was in De¯nition 4.2. Further, start S, ¯n S, total S, satisfaction, and

feasibility are de¯ned as they were in De¯nition 4.2.7 ¤

7Note that start S (j ) may be ¡1 , ¯n S (j ) may be + 1 , and total S (j ) may be 1 . A schedule in which
start S (j ) = ¡1 or ¯n S (j ) = + 1 is of no interest, since it cannot satisfy P . A schedule S in which
total S (j ) = 1 is also of no interest, since it can be tranformed into a schedule S0, with total S 0(j ) < 1 (by
deleting intervals that execute j ), such that S0 is feasible if S is.
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The rest of this section extends EDFÁ to our new setting. It is not immediately

obvious how to do so, since EDFÁ works on ¯nite problem instances. We ¯rst develop a

necessarycondition on feasibility for our periodic problem. We then extend this condition

into a necessaryand su±cient condition that provides us with an optimal, polynomial-time

algorithm for 1 j r j ; dj ; prec; pmtn; period j ¡ .

A necessary condition on feasibilit y for 1 j r j ; d j ; pr ec; pmtn ; perio d j ¡

We begin our analysiswith a de¯nition of active schedules,in which the processor

eagerlyexecutesany available job.

De¯nition 4.5 (activ e schedule). Let S = (I ; e) be a schedule. We say that ¿ 2 R is an

idle time if ¿ =2 [`; r ] for any (`; r ) 2 I . A job j 2 J is complete at ¿ if

t(j ) ·
X

i 2 I [j ]

ji \ [¡1 ; ¿]j

S is active if (1) for all idle times ¿, there is no job j 2 J such that r ¤(j ) · ¿ and j is not

complete at ¿, and (2) for every job j 2 J , total S(j ) = t(j ). ¤

Intuitiv ely, a feasible schedule is active if no job can be executed earlier without some

other job being executed later. In the remainder of this section, we consider only active

schedules. The justi¯cation for this restriction is provided by the following proposition,

which is evident:

Prop osition 4.6. If P is a feasibleinstanceof 1 j r j ; dj ; prec; pmtn; period j ¡ , then there

exists an active schedule that satis¯es P.

Activ e scheduleshave the following convenient property: for any two active schedules,the

amount of computation pending at time ¿ (the amount of computation releasedbut not

completed) is the same.

Wenow developa condition that any instanceP of 1 j r j ; dj ; prec; pmtn; period j ¡

must satisfy in order to be feasible. This condition centers around the notion of a rest

point , an instant when no jobs remain to execute,i.e., when all jobs that have beenreleased

are completed. We will establish several lemmas concerning rest points, leading up to

Theorem 4.14: P is feasibleonly if the set [¦ :: 2¦] contains a rest point.



CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 93

0

1

2

3

4

5

pending
computation

p(i )

time i

0 5 9 12 14 156

Figure 4.6: An illustration of the concept of rest points.

De¯nition 4.7 (p ending computation function, rest poin t). Let

T(i ) =
P

f j 2 J j r ¤ (j ) = i g t(j )

T(i ) is the amount of computation whosetransitiv e releasetime is i . We de¯ne the pending

computation function p : Z¸ 0 ! Z¸ 0 as follows:

² p(0) = T(0).

² For i > 0,

p(i ) = T(i ) +

8
<

:
p(i ¡ 1) ¡ 1 if p(i ¡ 1) > 0

0 if p(i ¡ 1) = 0

Let p¡ : Z¸ 0 ! Z¸ 0 be de¯ned by p¡ (i ) = p(i ) ¡ T(i ). We say that i 2 Z¸ 0 is a rest point

if p¡ (i ) = 0.8 ¤

Note that 0 is a rest point, sincep¡ (0) = p(0) ¡ T(0) = T(0) ¡ T(0). Finally, note

that T(i ) = T(i + ¦) for i 2 [0 :: 1 ].

Example 4.8. We usean example to illustrate the concept of a rest point. Supposethat

T(0) = 5 T(5) = 3 T(6) = 1 T(9) = 3 T(12) = 2 T(14) = 1

8 If p werede¯ned on R¸ 0 instead of Z¸ 0 , then a rest point would bean instant ¿ at which lim ¿0! ¿ ¡ p(¿0) =
0. The de¯nition of p as a function on Z ¸ 0 is simpler, though it makes the de¯nition of a rest point less
intuitiv e.



CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 94

Algorithm 4.1 An algorithm for computing all rest points in the set [0 :: 2¦] .
1: Rest points(P = (J; t; r ; d;Á; ¦): an instance of 1 j r j ; dj ; prec; pmtn; period j ¡ )
2: for all jobs j 2 J0 [ J1 do
3: Compute the transitiv e releasetime r ¤(j ) of j .
4: Sort J0 [ J1 in order of nondecreasingtransitiv e releasetime r ¤. We assumethat the

sorting puts the jobs into an array j [i ], i 2 [1 :: 2n], with the following property: if
i; i 0 2 [1 :: 2n] and i < i 0, then r ¤(j [i ]) · r ¤(j [i 0]).

5: i := 1, inInterval := true, ¿prev := ¡ 1, p(¿prev) := 0
6: Report that time 0 beginsan interval of rest points.
7: while i · 2n do
8: ¿ := r ¤(j [i ]), T := t(j [i ]), i 0 := i + 1
9: if inInterval = true then

10: Report that time ¿ endsan interval of rest points.
11: while i 0 · 2n and r ¤(j [i 0]) = r ¤(j [i ]) do
12: T := T + t(j [i 0]), i 0 := i 0+ 1
13: i := i 0, p(¿) := min f 0; p(¿prev) ¡ (¿ ¡ ¿prev) + Tg, ¿prev := ¿
14: if i · 2n and ¿ + p(¿) · r ¤(j [i ]) then
15: inInterval := true
16: Report that time ¿ + p(¿) beginsan interval of rest points.

and that T(i ) = 0 for i 2 [0 :: 14] n f 0; 5; 6; 9; 12; 14g. Figure 4.6 presents an graph of the

pending computation p(i ). Times i 2 f 0; 5; 9; 12; 14g are rest points. All other i 2 [0 :: 14]

are not rest points. ¤

Algorithm 4.1 ¯nds all rest points in the range[0 :: 2¦] by determining the integers

i 2 [0 :: 2¦] at which p¡ (i ) = 0. The running time of Algorithm 4.1 is O(n3), wheren = jJ0j:

steps 2{3 can be implemented to run in O(n3) time, step 4 can be implemented to run in

O(n logn) time, and steps 7{16 can be implemented to run in O(n) time. The main loop

in lines 7{16 determinesthe value p(¿) of the pending computation function at all times ¿

such that r ¤(j ) = ¿ for somejob j 2 J0 [ J1.

Corollary 4.9. Algorithm 4.1 ¯nds all rest points in the range [0 :: 2¦ ] in O(n3) time,

where n = jJ0j.

We next derive a simple but useful fact about the pending computation function.

Lemma 4.10. Let i 1 < i 2 be nonnegative integers. If p(i ) > 0 for all i in both [i 1 :: i 2] and

[i 1 + ¦ :: i 2 + ¦], then for i 2 [i 1 :: i 2],

p(i + ¦) = p(i ) ¡ p¡ (i 1) + p¡ (i 1 + ¦) (4.4)

p(i + ¦) = p(i ) ¡ p(i 1) + p(i 1 + ¦) (4.5)
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Figure 4.7: A diagram for Lemma 4.10.

Figure 4.7 may aid the reader in understanding the signi¯cance of the Lemma.

Proof. Sincep(i ) > 0 for i 2 [i 1 :: i 2],

p(i ) = p¡ (i 1) ¡ (i ¡ i 1) +
iX

k= i 1

T(k) (4.6)

Similarly, sincep(i + ¦) > 0 for i 2 [i 1 :: i 2],

p(i + ¦) = p¡ (i 1 + ¦) ¡ (( i + ¦) ¡ (i 1 + ¦)) +
i +¦X

k= i 1+¦

T(k) (4.7)

Since
P i

k= i 1
T(k) =

P i +¦
k= i 1+¦ T(k), (4.7) simpli¯es to

p(i + ¦) = p¡ (i 1 + ¦) ¡ (i ¡ i 1) +
iX

k= i 1

T(k) (4.8)

Comparing (4.6) and (4.8), we seethat

p(i + ¦) = p(i ) ¡ p¡ (i 1) + p¡ (i 1 + ¦) (4.9)

which yields (4.4). Sincep(i ) = p¡ (i ) + T(i ), and T(i ) = T(i + ¦),

¡ p¡ (i 1) + p¡ (i 1 + ¦) = T(i 1) ¡ p(i 1) ¡ T(i 1 + ¦) + p(i 1 + ¦)

= ¡ p(i 1) + p(i 1 + ¦) (4.10)

From (4.9) and (4.10),

p(i + ¦) = p(i ) ¡ p(i 1) + p(i 1 + ¦)

which yields (4.5).
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Lemma 4.11. If there is no rest point in [¦ :: 2¦], then p(2¦) > p(¦).

Proof. Let r be the latest rest point in [0 :: ¦]. Since0 is a rest point, there is at least one

such rest point. We now verify that the conditions of Lemma 4.10 are satis¯ed for i 1 = r

and i 2 = ¦. Since r is the latest rest point, p(i ) > 0 for i 2 [r :: ¦]. Since there is no rest

point in [¦ :: 2¦], a fortiori p(i ) > 0 for i 2 [¦ + r :: 2¦]. The conditions of Lemma 4.10

are thus ful¯lled. Applying (4.4) with i = ¦, we obtain:

p(2¦) = p(¦) ¡ p¡ (r ) + p¡ (¦ + r ) (4.11)

Sincer is a rest point, p¡ (r ) = 0, and since¦ + r is not a rest point, p¡ (¦ + r ) > 0. Thus,

by equation (4.11), p(2¦) > p(¦).

Lemma 4.12. Let k be a member of Z¸ 0. If p(i ) > 0 for all i 2 [k¦ :: (k + 2)¦ ], then

p((k + 2)¦) = 2p((k + 1)¦) ¡ p(k¦)

Proof. Let i 1 = k¦ and i 2 = (k + 1)¦. The conditions of Lemma 4.10 are ful¯lled. Setting

i = (k + 1)¦, and applying (4.5), we obtain that

p((k + 1)¦ + ¦) = p((k + 1)¦) ¡ p(k¦) + p(k¦ + ¦)

which yields our result.

Lemma 4.13. If there is no rest point in [¦ :: 2¦], then for k = 1; 2; ¢¢¢:

² there is no rest point in [k¦ :: (k + 1)¦], and

² p((k + 1)¦) = p(¦) + k(p(2¦) ¡ p(¦)).

Proof. For k = 1, the lemma reducesto the claims (1) that there is no rest point in [¦ :: 2¦ ],

which is true by assumption, and (2) that p(2¦) = p(¦) + (p(2¦) ¡ p(¦)), which is trivially

true. For the induction step, supposeas induction hypothesisthat the lemma is true for all

j · k. We needto show that the lemma remains true for k + 1.

By Lemma 4.11, p(2¦) > p(¦). From this, and the induction hypothesis for k,

it follows that p((k + 1)¦) > p(k¦). Also, by the induction hypothesis for k, there is no

rest point in [k¦ :: (k + 1)¦ ]. Thus, there is no rest point in [(k + 1)¦ :: (k + 2)¦ ], since
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in this range the initial pending computation is greater. Since[k¦ :: (k + 2)¦ ] contains no

rest point, p(`) > 0 for all ` 2 [k¦ :: (k + 2)¦]. By Lemma 4.12,

p((k + 2)¦) = 2p((k + 1)¦) ¡ p(k¦) (4.12)

By the induction hypothesis,

p((k + 1)¦) = p(¦) + k(p(2¦) ¡ p(¦)) (4.13)

Also by the induction hypothesis,

p((k + 1)¦) ¡ p(k¦) = p(2¦) ¡ p(¦) (4.14)

Thus,

p((k + 2)¦) =
h
p((k + 1)¦)

i
+

h
p((k + 1)¦) ¡ p(k¦)

i
(by (4.12))

=
h
p(¦) + k(p(2¦) ¡ p(¦))

i
+

h
p(2¦) ¡ p(¦)

i
(by (4.13) and (4.14))

= p(¦) + (k + 1)(p(2¦) ¡ p(¦))

as desired.

If there is no rest point in [¦ :: 2¦], then Lemma 4.13 states that at the succes-

sive times 2¦ ; 3¦ ; ¢¢¢, the amount of pending computation increasesby p(2¦) ¡ p(¦). By

Lemma 4.11, the quantit y p(2¦) ¡ p(¦) is positive. Thus, the amount of pending compu-

tation at times i ¦ increaseswithout bound. Intuitiv ely, this indicates that eventually some

job must be late. The following theorem con¯rms this intuition.

Theorem 4.14. An instanceP = (J; t; r ; d;Á) of 1 j r j ; dj ; prec; pmtn; period j ¡ is feasible

only if the set [¦ :: 2¦ ] contains a rest point.

Proof. We will use Lemma 4.13 to show that if [¦ :: 2¦] contains no rest point, then P is

infeasible. Let D = maxj 2 J (d¤(j ) ¡ r ¤(j )). If, at time i ¦, somejob j with r ¤(j ) · i ¦ ¡ D

is not complete, then j or somesuccessorof j has missed its deadline. We now examine

how large i has to be so that the following stronger condition attains:

At time i ¦, somejob j with r ¤(j ) ·
µ

i ¡
»

D
¦

¼¶
¦ is not complete.

Let T =
P

j 2 J0
t(j ). By the pigeonhole principle, if p(i ¦) > T, then some job j with

r ¤(j ) < i ¦ is not complete at time i ¦. Similarly, if p(i ¦) > kT, then some job j with
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r ¤(j ) < (i ¡ k + 1)¦ is not complete at time (i ¡ k + 1)¦. Thus, we needto choosek such

that

i ¡ k + 1 ·
µ

i ¡
»

D
¦

¼¶

It su±ces to set

k ¸
»

D
¦

¼
+ 1

We now choosei such that p(i ¦) > kT. By Lemma 4.13, p(i ¦) = p(¦) + (i ¡ 1)(p(2¦) ¡

p(¦)). Setting p(¦) + (i ¡ 1)(p(2¦) ¡ p(¦)) > kT, and solving for i , we obtain

i >
kT + p(2¦) ¡ 2p(¦)

p(2¦) ¡ p(¦)

Choosing any i satisfying this inequality (e.g., one plus the ceiling of the right hand side)

will su±ce. We have shown that by time i ¦ somejob will have missedits deadline. Thus, P

is infeasible.

An exact condition on feasibilit y for 1 j r j ; d j ; pr ec; pmtn ; perio d j ¡

The previous section presented a necessarycondition on feasibility for an in-

stanceP of 1 j r j ; dj ; prec; pmtn; period j ¡ , namely, that there be a rest point in [¦ :: 2¦ ].

However, P may have such a rest point, but still be infeasible: this occurs if the jobs can-

not be scheduled to meet their deadlines.9 In this section, we extend Theorem 4.14 into a

necessaryand su±cient condition on feasibility (Theorem 4.17). This extensionrelieson an

attractiv e property of the pending computation function, namely, that if i 2 [¦ :: 2¦ ] is a

rest point, then p \lo oks the same" on the intervals

[i ¡ ¦ :: i ¡ 1] ; [i :: i + ¦ ¡ 1] ; [i + ¦ :: i + 2¦ ¡ 1] ; ¢¢¢

In other words, p is periodic, with period ¦, beginning at i ¡ ¦, as we now show.

Lemma 4.15. If there is a rest point in i 2 [¦ :: 2¦], then p(k) = p(k + ¦) for k 2

[i ¡ ¦ :: 1 ].

9For example, consider an instance (J; t; r ; d; Á ; ¦) of 1 j r j ; dj ; prec; pmtn ; period j ¡ , where:

J = f j hi; 1i j i 2 Z¸ 0g; Á = ; ; ¦ = 10

and for each i 2 Z¸ 0 :
t (j hi; 1i ) = 2; r (j hi; 1i ) = 10i; d(j hi; 1i ) = 10i + 1

For each i 2 Z¸ 0 , time 10i + 2 is a rest point. In particular, time 12 2 [10 :: 20] is a rest point. However, the
job j hi; 1i releasedat time 10i cannot meet its deadline at time 10 + 1, since the execution time of j hi; 1i
is 2.
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Proof. Recall that T(¢) is periodic, i.e., T(k) = T(k ¡ ¦) for k 2 [¦ :: 1 ]. Note that

p(0) · p(¦), since

p(0) = T(0) = T(¦) · T(¦) + p¡ (¦) = p(¦)

Supposethat i 2 [¦ :: 2¦] is a rest point. Then p¡ (i ¡ ¦) = 0, since T(¢) is periodic and

the initial pending computation p(0) is greater than p(¦). SinceT(¢) is periodic, and both

i ¡ ¦ and i are rest points,

p(k) = p(k + ¦) for k 2 [i ¡ ¦ :: i ¡ 1]

A simple argument by induction establishesthat for all ` = 1; 2; ¢¢¢,

p(k) = p(k + `¦) for k 2 [i ¡ ¦ :: i ¡ 1]

A similar argument establishesthe following lemma.

Lemma 4.16. Let k be a positive integer, and let i be a member of [0 :: ¦ ¡ 1]. If i + k¦

is a rest point, then i + k0¦ is a rest point for all nonnegative integersk0 = 0; 1; ¢¢¢.

Intuitiv ely, Lemmas 4.15 and 4.16 allow the time line to be divided into sections

[i ¡ ¦ :: i ¡ 1], [i :: i + ¦ ¡ 1], etc., each of length ¦; thesesectionsmay be scheduledusing

EDFÁ . Indeed, supposethat (1) there is a rest point i in [¦ :: 2¦], and (2) EDF Á produces

a feasible schedule S for jobs releasedin [i ¡ ¦ :: i ¡ 1]. Under these conditions, one can

create a feasibleschedule for all of P by \pasting together" successive copiesof S, as the

following theorem shows.

Theorem 4.17. An instance P of 1 j r j ; dj ; prec; pmtn; period j ¡ is feasible if and only

if:

1. there is a rest point i in [¦ :: 2¦] , and

2. EDFÁ producesa feasibleschedule for jobs j with r ¤(j ) 2 [i ¡ ¦ :: i ¡ 1].

Proof. If the ¯rst condition doesnot hold, then Theorem 4.14shows that P is infeasible. If

the ¯rst condition holdsbut the seconddoesnot, then sinceEDFÁ is optimal, P is infeasible.

We have established the \only if " part. For the \if " part, suppose that i 2 [¦ :: 2¦]

is a rest point, and that EDFÁ produces a feasible schedule S = (I ; e) for jobs j with

r ¤(j ) 2 [i ¡ ¦ :: i ¡ 1]. For the \if " part, suppose that i 2 [¦ :: 2¦] is a rest point, and

that EDFÁ producesa feasibleschedule S = (I ; e) for jobs j with r ¤(j ) 2 [i ¡ ¦ :: i ¡ 1].

We use(I ; e) to construct an in¯nite sequence(I k ; ek ) of schedules: for k = 0; 1; ¢¢¢, let
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Algorithm 4.2 EDF algorithm for an instance of 1 j r j ; dj ; prec; pmtn; period j ¡ .
1: EDF( P = (J; t; r ; d;Á; ¦): an instance of 1 j r j ; dj ; prec; pmtn; period j ¡ )
2: Use Algorithm 4.1 to determine the rest points in [0 :: 2¦ ].
3: if [¦ :: 2¦] doesnot contain a rest point then
4: Report that P is not feasible.
5: else
6: let i be any rest point in [¦ :: 2¦] in
7: Compute the transitiv edeadlined¤(j ) for each job j such that r ¤(j ) 2 [i ¡ ¦ :: i ¡ 1]
8: Schedule all such jobs using EDFÁ .
9: if the previous step produced a feasibleschedule then

10: Report that P is feasible;construct and return schedules(I ¡ 1; e¡ 1) and (I 0; e0),
as described in the proof of Theorem 4.17.

11: else
12: Report that P is not feasible.

² I k = f (` + k¦ ; r + k¦) j (`; r ) 2 I g.

² ek (` + k¦ ; r + k¦) = j ha + k; bi , where j ha;bi = e(`; r ).

Since (I ; e) is feasible for jobs j with r ¤(j ) 2 [i ¡ ¦ :: i ¡ 1], (I k ; ek ) is feasible for jobs j

with r ¤(j ) 2 [i ¡ ¦ + k¦ :: i ¡ 1 + k¦].

In addition, we need to construct a schedule (I ¡ 1; e¡ 1) for jobs j with r ¤(j ) 2

[0 :: i ¡ ¦ ¡ 1]. A technical point is that for these jobs we must do something slightly

di®erent from the above, since I may contain intervals that intersect [0; ¦] (subtracting ¦

from theseintervals, assuggestedby the above de¯nition of I k , would amount to scheduling

[¡ ¦ ; 0]). Similarly, the jobs executedin I may include members of J0 (subtracting 1 from

the ¯rst index of these jobs would yield jobs in the nonexistent set J ¡ 1). Fortunately, all

members of J1 are executedafter ¦, since j 2 J1 implies r ¤(j ) ¸ ¦. We therefore let

² I ¡ 1 = f (` ¡ ¦ ; r ¡ ¦) j (`; r ) 2 I and e(`; r ) 2 J1g.

² e¡ 1(` ¡ ¦ ; r ¡ ¦) = j ha ¡ 1; bi , where j ha;bi = e(`; r ) 2 J1.

It is straightforward to verify that (I ¡ 1; e¡ 1) is feasiblefor jobs j with r ¤(j ) 2 [0 :: i ¡ ¦ ¡ 1].

Finally, let I 1 =
S 1

k= ¡ 1 I k , let e1 =
S 1

k= ¡ 1 ek , and let S1 = (I 1 ; e1 ). (I 1 ; e1 ) satis¯es P,

thus establishing the \if " part.

Algorithm 4.2 presents an algorithm that tests an instance of 1 j r j ; dj ; prec;

pmtn; period j ¡ for feasibility, using the condition of Theorem 4.17. Steps2 and 7 can be
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implemented to run in O(n3) time, where n = jJ0j. Step 8 can be implemented to run in

O(n logn) time using, say, a priorit y queue. All other stepscan be implemented to run in

O(1) time. Note that the subschedules(I k ; ek ) for k 2 [1 :: 1 ] can easily be constructed

from (I 0; e0). We have establishedthe following:

Corollary 4.18. Algorithm 4.2 determines whether an instance (J; t; r ; d;Á; ¦) of 1 j r j ;

dj ; prec; pmtn; period j ¡ is feasiblein O(n3) time, where n = jJ0j.

Example 4.19. We now present an example to illustrate how Theorem 4.17 schedulesan

instance P of 1 j r j ; dj ; prec; pmtn; period j ¡ . (This example is the problem instance

generatedby the Giotto program of Figure 4.4. Section 4.4 explains how to generatean

instance of 1 j r j ; dj ; prec; pmtn; period j ¡ from a Giotto program.) Let P = (J; t; r ; d, Á,

¦), where:

² The set of jobs, J , is
S 1

k=0 Jk , where Jk = f j hk; `i j ` 2 [1 :: 13]g.10

² For each job j , the execution time of j , t(j ), is:

t(j hk; 1i ) = 1 t(j hk; 2i ) = 4 t(j hk; 3i ) = 1

t(j hk; 4i ) = 1 t(j hk; 5i ) = 1 t(j hk; 6i ) = 1

t(j hk; 7i ) = 4 t(j hk; 8i ) = 1 t(j hk; 9i ) = 1

t(j hk; 10i ) = 1 t(j hk; 11i ) = 1 t(j hk; 12i ) = 1

t(j hk; 13i ) = 4

10 The correspondencebetweenthesejobs and the jobs generatedby the program of Figure 4.4 is as follows:

j hk; 1i = true (d3)[2k; 2] j hk; 2i = true (d4)[2k; 2] j hk; 3i = read(s)[2k; 3]

j hk; 4i = true (d1)[2k; 7] j hk; 5i = true (d2)[2k; 7] j hk; 6i = t1 [2k + 1; 1]

j hk; 7i = t2 [2k + 1; 1] j hk; 8i = true (d3)[2k + 1; 2] j hk; 9i = read(s)[2k + 1; 3]

j hk; 10i = true (d1)[2k + 1; 7] j hk; 11i = true (d2)[2k + 1; 7] j hk; 12i = t1 [2k + 2; 1]

j hk; 13i = t2 [2k + 2; 1]
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² For each job j , the releasetime of j , r (j ), is:

r (j hk; 1i ) = k¦ r (j hk; 2i ) = k¦ r (j hk; 3i ) = k¦ + 5

r (j hk; 4i ) = k¦ + 5 r (j hk; 5i ) = k¦ + 5 r (j hk; 6i ) = k¦ + 5

r (j hk; 7i ) = k¦ + 5 r (j hk; 8i ) = k¦ + 15 r (j hk; 9i ) = k¦ + 16

r (j hk; 10i ) = k¦ + 16 r (j hk; 11i ) = k¦ + 16 r (j hk; 12i ) = k¦ + 16

r (j hk; 13i ) = k¦ + 16

² For each job j , the deadline of j , d(j ), is:

d(j hk; 1i ) = k¦ + 5 d(j hk; 2i ) = k¦ + 5 d(j hk; 3i ) = k¦ + 6

d(j hk; 4i ) = k¦ + 16 d(j hk; 5i ) = k¦ + 27 d(j hk; 6i ) = k¦ + 16

d(j hk; 7i ) = k¦ + 27 d(j hk; 8i ) = k¦ + 16 d(j hk; 9i ) = k¦ + 17

d(j hk; 10i ) = k¦ + 27 d(j hk; 11i ) = k¦ + 38 d(j hk; 12i ) = k¦ + 27

d(j hk; 13i ) = k¦ + 38

² The following precedenceconstraints compriseÁ:

j hk; 3i Á j hk; 4i j hk; 3i Á j hk; 5i j hk; 4i Á j hk; 6i

j hk; 5i Á j hk; 7i j hk; 6i Á j hk; 8i j hk; 7i Á j hk; 10i

j hk; 9i Á j hk; 10i j hk; 9i Á j hk; 11i j hk; 10i Á j hk; 12i

j hk; 11i Á j hk; 13i j hk; 12i Á j hk + 1; 1i j hk; 12i Á j hk + 1; 2i

j hk; 13i Á j hk + 1; 4i

Theseprecedenceconstraints are illustrated in Figure 4.8.

² Finally, ¦ = 22.

Figure 4.9 presents the pending computation function p for our example; p is
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j h0; 3i

j h0; 2i

j h0; 4i

j h0; 1i

j h0; 5i

j h0; 8ij h0; 6i

j h0; 7i

j h0; 9i

j h0; 11i

j h0; 10i

j h1; 4i

j h1; 5i

j h0; 12i j h1; 1i

j h1; 2i

j h0; 13i

j h1; 3i

j h1; 9i

j h1; 7i

j h1; 8ij h1; 6i

j h1; 11i

j h1; 10i

j h1; 13i

j h1; 12i

j h2; 2i

j h2; 1i

¢¢¢

Figure 4.8: Precedenceconstraints for Example 4.19.

0
2
4
6
8

10

pending
computation

p

0 11 22 33 44 55

time

Figure 4.9: Pending computation function p for Example 4.19. Times 5, 13, 14, 15, 37, 38,
59, and 60 are rest points. For i 2 [0 :: 1 ], times 15+ 22i and 16+ 22i are rest points.
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j h1; 7ij h1; 2i

2215

j h1; 5i

j h1; 4i

j h1; 6i

22 33 37

j h0; 12i

j h0; 10i

j h0; 9i

j h0; 8i

j h0; 11i

j h0; 13i

j h1; 1i

j h1; 3i

j h0; 13i

Figure 4.10: A feasible schedule for activities of Example 4.19 that are releasedbetween
i ¡ ¦ and i ¡ 1 (i = 37 is a rest point).

de¯ned by:

p(k) =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

5 ¡ k for k 2 [0 :: 4]

8 ¡ (k ¡ 5) for k 2 [5 :: 13]

0 for k = 14

1 for k = 15

8 ¡ (k ¡ 16) for k 2 [16 :: 21]

7 ¡ (k ¡ 22) for k 2 [22 :: 26]

10¡ (k ¡ 27) for k 2 [27 :: 36]

p(k ¡ 22) for k 2 [37 :: 1 ]

The ¯rst rest point in [¦ :: 2¦] is at i = 37. Note that p is periodic, with period ¦ = 22,

starting at i ¡ ¦ = 15, as claimed by Lemma 4.15. Figure 4.10 presents a feasibleschedule

for jobs j with r ¤(j ) 2 [i ¡ ¦ :: i ¡ 1]. Figure 4.11 shows a pre¯x of the schedule S1 for P

that is produced by the proof of Theorem 4.17. This schedule satis¯es P, as desired. ¤

4.3.4 Tw o optimizations

We now describe two ways to optimize a runtime systemthat executesan instance

of 1 j r j ; dj ; prec; pmtn; period j ¡ . Theseoptimizations may be usedfor any such runtime

system,including any systemthat executesthe instancesof 1 j r j ; dj ; prec; pmtn; period j ¡

produced by the Giotto scheduling algorithm of this chapter (Algorithm 4.3, below). The

¯rst optimization (Section 4.3.4) is to aggregatedistinct jobs into the samethread. This

reducesthe number of threads, and consequently the memory footprin t and the context
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j h0; 2i j h0; 7i

j h1; 7ij h1; 2i

j h0; 5i

j h0; 3i

j h0; 1i

j h0; 4i

j h0; 6i

0 11

44

2215 22

22

j h1; 5i

j h1; 4i

j h1; 6i

22 33 37

j h1; 1i

j h1; 3i

j h0; 13i

j h0; 12i

j h0; 10i

j h0; 9i

j h0; 8i

j h0; 11i

j h0; 13i

j h1; 12i

j h1; 10i

j h1; 9i

j h1; 8i

j h0; 11i

j h1; 13i

Figure 4.11: Pre¯x of a feasibleschedule for Example 4.19.

switch overhead. The secondoptimization (Section 4.3.4) is to usea singlestack to execute

jobs. This makesa context switch not much more expensive than a function call [Wir96].

Job aggregation

Consider an instance P of 1 j r j ; dj ; prec; pmtn; period j ¡ , and the set of jobs

J r
d = f j 2 J j r ¤(j ) = r and d¤(j ) = dg

At runtime, the jobs in J r
d are executedin somenumber of threads. How many threads are

necessary?We claim that a single thread T r
d su±ces. T r

d executesthe jobs in J r
d in any

linear order consistent with the partial order Á. The scheduler usesan earliest deadline¯rst

policy to schedule threads, where the deadline of T r
d is d. Further, the scheduler resolves

ties betweenthreads with the samedeadlinein favor of the thread T r
d with minimum release

time r . The question here is, given that each job j may run for less than its worst-case

time t(j ), can someprecedenceconstraint be violated? To answer this question, consider

two jobs j 1 and j 2 such that j 1 Á j 2. If j 1 and j 2 are in the sameset J r
d , then j 1 will ¯nish
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beforej 2 begins,sinceT r
d linearizesÁ. Supposethat j 1 and j 2 are in distinct setsJ r 1

d1
6= J r 2

d2
,

respectively. By the de¯nition of r ¤ and d¤, since j 1 Á j 2, r1 · r2 and d1 · d2. There are

two casesto consider:

1. If d1 < d2, then T r 1
d1

will execute in preferenceto T r 2
d2

. Thus j 1 will ¯nish before j 2

begins.

2. If d1 = d2, sinceJ r 1
d1

6= J r 2
d2

, r1 < r2. Again in this case,T r 1
d1

will executein preference

to T r 2
d2

.

It follows that no precedenceconstraint can be violated.

For Example 4.19, the setsJ r
d are:

J 0
5 = f j h0; 1i ; j h0; 2ig

J 5
6 = f j h0; 3ig

J 5
16 = f j h0; 4i ; j h0; 6ig

J 5
27 = f j h0; 5i ; j h0; 7ig

J 15
16 = f j h0; 8ig

J 16
17 = f j h0; 9ig

J 16
27 = f j h0; 10i ; j h0; 12ig

J 16
38 = f j h0; 11i ; j h0; 13ig

¢¢¢

Single-stac k implemen tation

De¯nition 4.20 (balanced schedule). Let S be a schedule, as de¯ned by De¯nition 4.2

or De¯nition 4.4. We say that S is balanced if for any two jobs j 1; j 2 2 J , it is not the case

that start S(j 1) < start S(j 2) < ¯n S(j 1) < ¯n S(j 2). ¤

Such schedulesarecalledbalancedbecausethey correspond to strings in a balanced

parenthesis language, where each opening parenthesis ( j denotes the start of job j , and

each closing parenthesis ) j denotesthe completion of j . EDFÁ and Algorithm 4.2 always

produce balancedschedules,as does the rate monotonic scheduling algorithm [LL73]. Any

balanced schedule S may be transformed into a balanced schedule S0 in which, if job j 2

preemptsjob j 1, then j 2 will completebeforej 1 executesagain. More precisely, the following

proposition may be proved using an exchangeargument:



CHAPTER 4. SINGLE-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 107

Prop osition 4.21. Any balancedschedule S = (I ; e) may be transformed into a balanced

schedule S0 = (I 0; e0) with the following properties:

1. For any job j in the range of e,

total S(j ) = total S0(j ); start S(j ) = start S0(j ); ¯n S0(j ) = ¯n S(j )

Thus, if S satis¯es an instance P of 1 j r j ; dj ; prec; pmtn; period j ¡ , then S0 also

satis¯es P.

2. Let j 1 and j 2 be jobs in the range of e such that

start S0(j 1) < start S0(j 2) < ¯n S0(j 2) < ¯n S0(j 1)

Then e0(i 0) 6= j 1 for any interval i 0 2 I 0 such that i 0 \ [start S0(j 2); ¯n S0(j 2)] 6= ; . In

other words, if j 2 preempts j 1, then j 2 ¯nishes before j 1 executesagain.

Balanced schedulesare attractiv e for two reasons. First, in a balanced schedule

the overheaddue to context switchesmay be bounded: each thread gets charged one con-

text switch when its starts, and one when it ¯nishes. For ¯nite schedulesthis bound is 2tc,

where t is the number of threads and c is the time required for a context switch. This

observation is originally due to A.K. Mok and M.L. Dertouzos [MD78] for schedulespro-

duced by EDF-based algorithms. Second,balancedschedulesmay be implemented using a

single stack. In most current programming languageimplementations, each thread usesa

pushdown stack to executefunction calls. Operating systems,including most real-time op-

erating systems,typically useseparatestacks for distinct threads. For balancedschedules,

the samestack spacemay be usedby di®erent threads, as we will explain below. This has

the advantage of saving time during context switches: as we will see,preemption becomes

no more expensive than a jump into an interrupt serviceroutine, plus an invocation of the

runtime scheduler, plus a function call. Storing and restoring additional per-thread infor-

mation is no longer necessary. The observation that a single stack su±ces for ¯xed-priorit y

systemsis due to N. Wirth [Wir96]. The generalization to arbitrary balancedschedulesis,

we believe, original.

We now explain how to sharea single stack in a balancedschedule. We focus on

time instants when the runtime scheduler is active: (1) thread startup (start S(j ) for some
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job j ), and (2) thread termination (¯n S(j )).11 At thread startup, the runtime scheduler

receivescontrol; this is frequently accomplishedusing a timer interrupt. The stack is in the

state in which the interrupted thread has left it. The runtime scheduler placesthe program

counter of the interrupted thread on the stack. The runtime scheduler then jumps to the

start addressof the thread being started. The new thread runs for some time, perhaps

getting preemptedby other threads. We assumethat the new thread leavesthe stack in the

samestate in which it found it, i.e., with the program counter of the preempted thread on

top. At thread termination, the runtime scheduler returns to the program counter at the

top of the stack of the interrupted thread. Becausethe scheduleis balanced,the interrupted

thread neednot execute(and thus usethe stack) betweenthe start time and the ¯nish time

of the interrupting thread.

4.4 From Giotto to 1 j r j ; d j ; pr ec; pmtn ; perio d j ¡

In this section, we will obtain a pseudopolynomial-time schedule synthesis algo-

rithm for a class of single-mode Giotto programs. Our strategy will be to generate an

instanceof 1 j r j ; dj ; prec; pmtn; period j ¡ given a program in this class,and then to apply

Algorithm 4.2 to this instance.

4.4.1 The class of single-mo de Giotto programs

We now de¯ne the class of single-mode Giotto programs for which we synthe-

size schedules. To begin with, we shall limit our attention to Giotto programs which are

unconditional :

De¯nition 4.22 (unconditional program). A single-mode Giotto program is uncondi-

tional if the guard of every driver is true, i.e., for every driver d 2 Driversand every port

valuation v 2 Vals[Ports], g[d](v) = true. ¤

Wewill shortly de¯ne the subclassof unconditional programsthat interestsus. For uncondi-

tional Giotto programs, the result of every driver and task invocation needsto be obtained.

Unconditional programs therefore represent the worst casefor the scheduler. Figure 4.12

11 The scheduler may also be active if a thread terminates before its scheduled ¯nish time. This commonly
occurs if the actual execution time of the thread is less than its worst-case execution time. At such times,
the scheduler may execute soft real-time threads, using separatestacks if necessary. Here we discussthe use
of a single stack only for hard real-time threads.
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sensor
port s type int time 1

actuator
port a type int init 0

output
port o1 type int init 0
port o2 type int init 0

task t1 input i 1 output o1 function f1
task t2 input i 2 output o2 function f2

driver d1 source s guard true destination i 1 function h1

driver d2 source o1 guard true destination i 2 function h2

driver d3 source o2 guard true destination a function h3 time 1

modem period 10 ports o1; o2

frequency 1 invoke t1 driver d1

frequency 1 invoke t2 driver d2

frequency 1 update d3

start m

Figure 4.12: An unconditional Giotto program.

shows an unconditional Giotto program that serves as a running example in this section.

This program has two tasks and one actuator, all of which are invoked with frequency 1.

Task t1 reads sensors (via driver d1). Task t2 reads the output of task t1 (via driver d2).

Actuator driver d3 readsthe output of t2.

Wenow note several facts about unconditional programs. For a single-modeGiotto

program, con¯guration Ci occurs at time ¿i = i (¼=! ), where ¼ is the period of the single

mode m, and ! is the least common multiple of the frequenciesof task invocations and

actuator updates of m. For any executionsE and E 0 of an unconditional program, A E =

A E 0 and @E = @E 0. We thus write A and @instead of A E and @E . For an unconditional

program, there are four typesof activities a[i; k] in A :

² Task activities are of the form t[i; 1].

² Actuator driver activities are of the form true(d)[i; 2].
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² Sensorread activities are of the form read(s)[i; 3].

² Task driver activities are of the form true(d)[i; 7].

Task activities and task driver activities may be executed at any time, subject to the

constraints of @, and are thus called °oating activities. Actuator driver activities d[i; 2]

and sensor read activities s[i; 3] must be executed close to time ¿i , and are thus called

¯xed activities. For the purposesof this chapter, a platform annotation is a function wcet

mapping each action a to a positive integer wcet(a), the worst-caseexecution time of a.

We now further focus on the classof single-mode programs of interest.

De¯nition 4.23 (actuator- and sensor-dep enden t program). A Giotto program is

actuator-dependent if for every °oating activit y a[i; k] 2 A , there exists a ¯xed activit y

a0[i 0; k0] 2 A such that a[i; k] @ a0[i 0; k0]. A Giotto program is sensor-dependent if there

exists i ¤ 2 Z¸ 0 such that for every °oating activit y a[i; k] 2 A with i ¸ i ¤, there exists a

¯xed activit y a0[i 0; k0] 2 A such that a0[i 0; k0] @a[i; k]. ¤

In an actuator-dependent program, every °oating activit y precedessome¯xed activit y.12

In a sensor-dependent program, there is somecon¯guration Ci ¤ after which every °oating

activit y is precededby some¯xed activit y.

Example 4.24. To illustrate the de¯nition of actuator- and sensor-dependence,consider

Figure 4.13,which shows a portion of the graph (A ; @) of the Giotto program of Figure 4.12.

As the ¯gure shows, every °oating activit y precedessome¯xed activit y; thus, the program

of Figure 4.12 is actuator-dependent. Some°oating activities, for example true(d2)[0; 7],

are not precededby a ¯xed activit y. However, every °oating activit y a[i; k] with i ¸ 2 is

precededby a ¯xed activit y; thus, the program of Figure 4.12 is sensor-dependent. ¤

For sensor-dependent programs, a °oating activit y not precededby a ¯xed activit y can

be computed prior to runtime; moreover, some°oating activities a[i; k] may be computed

considerably earlier than ¿i . Sensor-and actuator-dependent programs form an important

classof Giotto programs, sinceGiotto is designedfor applications that processsensordata

and usethe results to e®ectactuators. In the remainder of this chapter, all Giotto programs

will be unconditional, sensor-and actuator-dependent.
12 An weaker but equivalent de¯nition of actuator-dependenceis that a program is actuator-dependent if

there exists i ¤ 2 Z¸ 0 such that for every °oating activit y a[i; k] with i ¸ i ¤ , there exists a ¯xed activit y
A0[i 0; k0] such that a[i; k] @ A0[i 0; k0]. However, the weak and strong de¯nitions for sensor-dependenceare
not equivalent.
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true(d3)[0; 2]

read(s)[0; 3]

true(d1)[0; 7]

true(d2)[0; 7]

true(d3)[1; 2]

read(s)[1; 3]

true(d1)[1; 7]

true(d2)[1; 7]

t1[1; 1]

t2[1; 1]

t2[2; 1]

t1[2; 1]

true(d3)[2; 2]

read(s)[2; 3]

true(d1)[2; 7]

true(d2)[2; 7]

...

...

Figure 4.13: The data°ow graph (A ; @) of the Giotto program of Figure 4.12.
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4.4.2 The scheduling problem for single-mo de Giotto programs

We now de¯ne the scheduling question for which we will develop an algorithm. We

areconcernedwith scheduling only thoseactivities in A that areprecededby a ¯xed activit y.

We wish to schedule theseactivities so that (1) the constraints of @are respected, (2) every

activit y a[i; k] is scheduled for at least wcet(a) time units, and (3) for ¯xed activities a[i; k]

the temporal di®erencebetween¿i and the time at which a[i; k] is scheduled is minimized.

We now formalize theserequirements.

De¯nition 4.25 (" -feasibilit y). Let the set A ¤ be de¯ned as follows: a[i; k] 2 A ¤ if and

only if a[i; k] 2 A , and either a[i; k] is ¯xed or there exists a ¯xed activit y a0[i 0; k0] with

a0[i 0; k0] @+ a[i; k]. A Giotto program G is "-feasible if there exists a schedule S such that

for every activit y a[i; k] 2 A ¤:

² The total execution time total S(a[i; k]) equalswcet(a).

² If a[i; k] precedessomeactivit y a0[i 0; k0], then ¯n S(a[i; k]) · start S(a0[i 0; k0]).

² If a[i; k] is an actuator driver activit y, then ¿i ¡ " · start S(a[i; k]) and ¯n S(a[i; k]) · ¿i ,

and further betweenstart S(a[i; k]) and ¿i no °oating activit y is executed.

² If a[i; k] is a sensorread activit y, then ¿i · start S(a[i; k]) and ¯n S(a[i; k]) · ¿i + ",

and further between¿i and ¯n S(a[i; k]) no °oating activit y is executed. ¤

The quantit y " was termed jitter tolerance in [HHK03]. A large jitter tolerance is clearly

undesirable. In particular, for jitter tolerances larger than ¼=! , the sensorand actuator

activities of one con¯guration Ci can be executed at ¿i ¡ 1 or ¿i +1 , which is unacceptably

early or late. This motivates the following questions, with which the remainder of this

section will be concerned:

Question 4.26. Doesa single-mode Giotto program G have an "-feasibleschedulefor some

" · ¼=! ?

Question 4.27. If so, what is the smallest " ¤ such that G has an "¤-feasibleschedule?

Question 4.28. Given this minimum "¤, synthesizean "¤-feasibleschedule.
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4.4.3 The reduced data°o w graph

The remainder of this sectiondevelopsan algorithm for answering thesequestions.

Our approach is, given G and wcet, (1) to generatean instanceP[G; wcet] of 1 j r j ; dj ; prec;

pmtn; period j ¡ , and (2) to apply Algorithm 4.2 to P[G; wcet]. For (1), we must ¯rst

determine which activities are in A ¤, and we must partition A ¤ into J0; J1; ¢¢¢. To this end,

we intro duce the reduced data°ow graph, which captures the time delays of an execution of

the program G:13

De¯nition 4.29 (reduced data°o w graph). The reduced data°ow graph of an uncon-

ditional Giotto program is a edge-weighted directed graph (V; E; W), where the vertices V,

edgesE µ V £ V, and weight function W : E ! Z¸ 0 are de¯ned as follows:

² The set V is f a[i; k] 2 A j i 2 [0 :: ! ¡ 1]g.

² The pair e = (a[i; k]; a0[i 0; k0]) 2 V £ V is in E if:

{ a[i; k] @a0[i 0; k0]. In this case,we de¯ne W(e) = i 0¡ i .

{ a[i; k] @a0[i 0+ ! ; k0]. In this case,we de¯ne W(e) = i 0+ ! ¡ i . ¤

The reduceddata°ow graph lets us determine an upper bound on the latest time

at which a °oating activit y a[i; k] 2 A ¤ may execute. Let ` = i mod ! . Let L a[`;k ] be

the minimum path length in the reduced data°ow graph from a[`; k] to any ¯xed activit y

a0[`0; k0] 2 V. The earliest con¯guration that invokesa ¯xed transitiv e successorof a[i; k] is

Ci + L a[`;k ] . Thus:

Prop osition 4.30. Let S be a "-feasibleschedule for any " > 0. Then:

¯n S(a[i; k]) · (i + L a[`;k ])(¼=! )

Similarly, the reduced data°ow graph lets us determine a lower bound on the

earliest time at which a °oating activit y a[i; k] 2 A ¤ may execute. Again let ` = i mod ! ,

and let Ea[`;k ] be the minimum path length in the reduced data°ow graph from any ¯xed

activit y a0[`0; k0] 2 V to a[`; k]. The latest con¯guration that invokes a ¯xed transitiv e

predecessorof a[i; k] is Ci ¡ Ea[`;k ] . Thus:

13 The concept of a reduceddata°o w graph ¯rst appearedin [KMW67 ], where the delays wereallowed to be
multidimensional. [KMW67 ] shows that multidimensional delays necessitate the bu®ering of unboundedly
much data as time progresses;fortunately , our delays are unidimensional. Reduced data°o w graphs are
commonly used to study the parallelization of programming languages(cf. [DRV00]).
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Prop osition 4.31. Let S be a "-feasibleschedule for any " > 0. Then:

start S(a[i; k]) ¸ (i ¡ Ea[`;k ])(¼=! )

Finally, the reduceddata°ow graph lets us determine the set A ¤ of activities which

cannot be computed prior to runtime. Consider a °oating activit y a[i; k]: the latest ¯xed

activit y which transitiv ely precedesa[i; k] has a con¯guration number of i ¡ Ea[`;k ]. If

i ¡ Ea[`;k ] < 0, then no ¯xed activit y transitiv ely precedesa[i; k], and a[i; k] =2 A ¤. Thus:

Prop osition 4.32. A ¤ is the union of the following two sets:

f a[i; k] 2 A j a[i; k] is a ¯xed activit yg
©

a[i; k] 2 A j a[i; k] is a °oating activit y and i ¡ Ea[`;k ] ¸ 0
ª

4.4.4 The instance P [G; wcet] of 1 j r j ; d j ; pr ec; pmtn ; perio d j ¡

We are now in a position to de¯ne the scheduling problem instance P[G; wcet]

generatedby a Giotto program G and execution times wcet:

De¯nition 4.33 (the scheduling problem P [G; wcet]). P[G; wcet] is a tuple (J; t; r ; d;Á,

¦), de¯ned as follows:

² For ` = 0; 1; ¢¢¢, let

J` = f ¯xed activities a[i; k] 2 A j i 2 [`! :: (` + 1)! ¡ 1]g

[
©

°oating activities a[i; k] 2 A j i ¡ Ea[i mod ! ;k] 2 [`! :: (` + 1)! ¡ 1]
ª

Let J =
S 1

`=0 J` .

² For a[i; k] 2 J , let t(a[i; k]) = wcet(a).

² Let Acti be the actuator driver activities with con¯guration number i , i.e., the set

f d[i; 2] 2 Ag, and let Sensei be the sensorread activities with con¯guration number i ,

i.e., the set f s[i; 3] 2 Ag. For a[i; k] 2 Acti ,

r (a[i; k]) = i (¼=! ) ¡
P

d[i; 2]2 Act i
wcet(d)

d(a[i; k]) = i (¼=! )

For a[i; k] 2 Sensei ,

r (a[i; k]) = i (¼=! )

d(a[i; k]) = i (¼=! ) +
P

s[i; 3]2 Sensei wcet(s)
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Otherwise, a[i; k] is a °oating activit y, and

r (a[i; k]) = (i ¡ Ea[i mod ! ;k])(¼=! )

d(a[i; k]) = (i + L a[i mod ! ;k])(¼=! )

² The relation Á is de¯ned as follows. Let a[i; `]; a0[i 0; `0] be two members of J . Then

a[i; k] Á a0[i 0; k0] i® a[i; k] @a0[i 0; k0]

² Finally, ¦ is the period ¼of mode m. ¤

The problem instance P[G; wcet] may be generated in time pseudopolynomial in the fre-

quenciesof the task invocations and actuator updates of mode m. It may be veri¯ed that

P[G; wcet] satis¯es the conditions of De¯nition 4.1, with the exception of condition (4.2).

We now investigate the extent to which (4.2) holds. Note that for A 2 J0,

r (A) 2

2

4¡
X

d[! ;2]2 Act !

wcet(d) :: ¼¡ ¼=!

3

5 (4.15)

Consider two adjacent con¯gurations Ci and Ci +1 , where i 2 [0 :: ! ¡ 1]. If it is not the

casethat
X

s[i; 3]2 Sensei

wcet(s) +
X

d[i +1 ;2]2 Act i +1

wcet(d) · ¼=! (4.16)

then the program G cannot be "-feasible for any " · ¼=! . Whether (4.16) holds may be

checked in time polynomial in P[G; wcet], by examining all activities in J0 [ J1. Suppose

on the other hand that (4.16) holds for all i 2 [0 :: ! ¡ 1], and in particular for i = ! ¡ 1. If
P

d[! ;2]2 Act !
wcet(d) = ¼=! , then

P
s[! ¡ 1;3]2 Sense! ¡ 1

wcet(s) = 0. In this case,Sense! ¡ 1 = ; ,

so that the upper bound of (4.15) is strict, i.e., for A 2 J0,

r (A) < ¼¡ ¼=!

= ¼¡
X

d[! ;2]2 Act !

wcet(d)

If
P

d[! ;2]2 Act !
wcet(d) < ¼=! , then by (4.15), for A 2 J0,

r (A) · ¼¡ ¼=!

< ¼¡
X

d[! ;2]2 Act !

wcet(d)

We have establishedthe following proposition:
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Prop osition 4.34. Whether (4.16) holds may be checked in time polynomial in P[G; wcet].

If (4.16) doesnot hold, then G is not " -feasiblefor any " · ¼=! . If (4.16) holds, then

r (A) 2

2

4¡
X

d[! ;2]2 Act !

wcet(d) :: ¼¡ 1 ¡
X

d[! ;2]2 Act !

wcet(d)

3

5 (4.17)

The fact that the releasetimes of P[G; wcet] satisfy the modi¯ed condition (4.17)

presents no di±culties for Algorithm 4.2. Supposethat (4.16) holds, and let S denote the

schedule obtained by running Algorithm 4.2 on input P[G; wcet]. Supposethere exists an

"0-feasibleschedule S0 for some"0 · ¼=! . Using an exchange argument, it may be shown

that S0 can be transformed into S, and that S is " -feasible for some " · " 0. Further, it

may be veri¯ed that S is feasible. Thus, if G has an " 0-feasible schedule for some " 0 ·

¼=! , then S is feasible. The converse also holds: by the construction of P[G; wcet], if S

is feasible, then S is " -feasible for some " · ¼=! . Note that all sensorsand actuators

drivers are executed at con¯guration C0. Thus, the maximum jitter in S occurs at C0,

i.e., "¤ = max
©P

A2 Act0
wcet(A);

P
A2 Sense0 wcet(A)

ª
. Finally, since the jitter tolerance "

attained by S is at most the jitter tolerance " 0 obtained by an arbitrary schedule S0, " is

the minimum jitter tolerance " ¤, and S is a "¤-feasibleschedule. We have establishedthe

following:

Theorem 4.35. Let S be the schedule obtained by running Algorithm 4.2 on input P[G,

wcet]. Questions4.26, 4.27, and 4.28 may be answered as follows:

1. G has an "-feasibleschedule for some" · ¼=! if and only if S is feasible.

2. If S is feasible,then "¤ = max
©P

A2 Act0
wcet(A);

P
A2 Sense0 wcet(A)

ª
.

3. If S is feasible,then S is an " ¤-feasibleschedule.

The procedure implicit in Theorem 4.35 is shown in Algorithm 4.3. Since P[G; wcet] may

be constructed in time pseudopolynomial in the size of the description of G, and since

Algorithm 4.2 runs in time polynomial in the size of the description of P[G; wcet], we

concludethat:

Corollary 4.36. Algorithm 4.3 answersQuestions4.26,4.27,and 4.28in time pseudopoly-

nomial in the sizeof the description of its input program G.
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Algorithm 4.3 Schedule synthesis algorithm for single-mode Giotto programs.
1: Schedule synthesis(G: sensor-and actuator-dependent Giotto program, wcet: mapping

from each action a to the worst-caseexecution time wcet(a) of a)
2: Construct the instance P[G; wcet] of 1 j r j ; dj ; prec; pmtn; period j ¡ .
3: if (4.16) doesnot hold then
4: Report that G doesnot have an "-feasibleschedule for any " · ¼=! .
5: else
6: Attempt to construct a feasibleschedule S for P[G; wcet], using Algorithm 4.2.
7: if no feasibleschedule exists then
8: Report that G doesnot have a "-feasibleschedule, for any " · ¼=! .
9: else

10: Report that "¤ = max
©P

A2 Act0
wcet(A);

P
A2 Sense0 wcet(A)

ª
.

11: Report that S is an " ¤-feasibleschedule.

Whether a fully polynomial-time algorithm for answering thesequestionsexists is an open

question.14

4.5 Conclusion

In this chapter, we have seenhow to schedulesingle-mode, single-processorGiotto

programs. The key element of this chapter's approach has been the use of precedence-

constrainedscheduling algorithms, drawn from the scheduling theory literature, that ¯nd a

feasibleschedulewhenever oneexists. We presented two Giotto programsthat have feasible

schedules,but are rejected as infeasible by previous scheduling algorithms for Giotto. We

arguedthat the scheduling problem 1 j r j ; dj ; prec; pmtn j ¡ is a good match for scheduling

single-mode, single-processorGiotto programs. To account for the in¯nite nature of Giotto

programs, we extendedthis problem to a periodic version, 1 j r j ; dj ; prec; pmtn; period j ¡ .

We developed an optimal algorithm for this extendedproblem, basedon the conceptof rest

points. We then showed how to translate a class of single-processor,single-mode Giotto

programs into instances of this extended problem. This resulted in a pseudopolynomial-

time scheduling algorithm for a classof single-mode, single-processorGiotto programs.

14 For the simpler, periodic setting described of [LL73] consisting of a set of n jobs j i , i 2 [1 :: n], each
with an associated period ¦ i and execution time t i , a necessaryand su±cient condition on schedulabilit y is
that

P n
i =1 t i =¦ i · 1. It is therefore possible that a similar rate-based condition could provide the basis for

a fully polynomial algorithm that answers Questions 4.26, 4.27, and 4.28.
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Chapter 5

Conditional scheduling

5.1 In tro duction

Supposethat an engineerneedsto design one of two devices,either device A or

device B . Each device will require nine months of work. The due date of both A and B

is in one year, but only one device will need to be completed. However, which device will

needto be completed will not be known until six months from now. Building both devices

within one year is clearly impossible,sincethe total amount of time required is 18 months.

Instead, the engineer'snext six months should be divided equally betweenA and B , with

the remaining six months devoted exclusively to either A or B , depending on the decision

six months from now about which deviceto complete. We call such a scenarioa conditional

scheduling problem becausethe execution of the engineer's scheduling strategy depends

conditionally upon decisionsthat are made externally to the schedule (the decision in six

months about which device to build).

In the aboveexample,the scheduling strategy is easyenoughto determine. In more

complicated examples,it may be lessclear how to devisea strategy. What if the devicesto

be built are many, require unequal amounts of time, and have unequal due dates? What if

the decisionsabout which devicesto build occur at di®erent times? What if somedevices

require other devicesto be already completed? This chapter presents generalizationsand

variants of the engineer'sproblem, and locates the dividing line between polynomial-time

and computationally infeasible variants.

Table 5.1 summarizes our results. The structure of this chapter is as follows.

After surveying related work in Section 5.1, Section 5.2 precisely de¯nes the basic condi-
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Problem: Tree scheduling (Section 5.2.1)
Form of graph: tree
Form of strategy: dense-time
Easinessresult: polynomial-time algorithm

Problem: Imprecise tree scheduling (Section 5.2.2)
Form of graph: tree
Form of strategy: dense-time
Additional features: anytime reward function
Easinessresult: polynomial-time algorithm

Problem: Precedence-constrained tree scheduling (Section 5.2.3)
Form of graph: tree
Form of strategy: dense-time
Additional features: precedencerelation
Easinessresult: polynomial-time algorithm

Problem: Guarded scheduling (Section 5.2.4)
Form of graph: tree
Form of strategy: dense-time
Additional features: guard jobs, precedencerelation
Easinessresult: polynomial-time algorithm

Problem: Discrete-time tree scheduling (Section 5.3.1)
Form of graph: tree
Form of strategy: discrete-time
Hardnessresult: strongly NP-hard
Easinessresult: in NP

Problem: DA G scheduling (Section 5.3.2)
Form of graph: directed and acyclic
Form of strategy: dense-time
Hardnessresult: strongly coNP-hard
Easinessresult: in EXPTIME

Problem: Fixed-deadline scheduling (Section 5.4)
Form of graph: any
Form of strategy: discrete-time or dense-time
Additional features: ¯xed deadlines
Hardnessresult: coNP-hard
Easinessresult: in 2EXPTIME; doubly exponential-time algorithm

Table 5.1: Main results of this chapter.



CHAPTER 5. CONDITIONAL SCHEDULING 120

tional scheduling problem. The remainder of Section5.2 then considersconditional schedul-

ing problems for which feasibleschedulescan be found in polynomial time. Section 5.2.1

presents the ¯rst such \easy" classof problems, in which the structure of the underlying

conditional graph is a tree. Sections5.2.2 and 5.2.3 extend the model of Section 5.2.1 with

anytime reward functions and precedenceconstraints, respectively, in such a way that fea-

sible schedulesmay still be found in polynomial time. Section 5.2.4 extends the model of

Section 5.2.3 to model computational jobs that determine which conditional branch needs

to be followed. This feature will be of interest in Chapter 6, for scheduling multi-mo de

Giotto programs on a single processor.

Section5.3 presents two variants of the basicconditional scheduling problem which

are, unfortunately, computationally hard. First, for scheduling real-time software, it is often

desirable that the scheduler be activated periodically by a timer interrupt. This leads us

to consider, in Section 5.3.1, a discrete-time conditional scheduling scenario, in which the

scheduler is restricted to change the running job only at integral points in time. For this

scenario, we show that the problem of ¯nding a feasible schedule is NP-hard. Second,

it would be desirable to allow conditional scheduling problems in which the underlying

conditional graph is acyclic: such directed acyclic graph (DAG) scheduling problems are

more expressive than the tree scheduling problems of Section 5.2. In Section 5.3.2, we

show that determining whether such an DAG scheduling problem has a feasibleschedule is

coNP-hard.

Finally, in Section 5.4, we investigate conditional scheduling problems in which

the deadlineof each job is ¯xed at the time that the job is released.The problem of ¯nding

a feasible schedule for ¯xed-deadline conditional scheduling problems is coNP-hard. We

present a doubly exponential-time scheduling algorithm for ¯xed-deadline problems, even

for problems where the underlying conditional graph contains cycles.

In Chapter 6, we will show how to use the conditional scheduling algorithm of

Section 5.2.4 to synthesizesingle-processorschedulesfor multi-mo de Giotto programs. Al-

though we believe that the scheduling models of this chapter are of interest independent

from their use in scheduling Giotto programs, the reader who wishes to understand only

the minimal amount of this chapter necessaryfor Chapter 6 needsto read only Section5.2,

up to page 129, skipping Section 5.2.2, resuming again at page 133 with Sections 5.2.3

and 5.2.4, and skipping all sectionsafter Section 5.2.4.
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Related work

The model we shall consideris closelyrelated to the model of [Bar98a], which was

further extendedand analyzedin [Bar98b, CET01]. Our model generalizesthesemodels in

two respects. First, and most importantly , the models of [Bar98a, Bar98b, CET01] do not

permit the deadlinesof jobs to changedepending on conditional behavior. Though the idea

of dynamically changing deadlinesmay seemodd, we have already encountered a situation

in which the deadlinesdo so change: the engineer'sproblem. In one scenario,the engineer

had to producedeviceA within 12 months, with deviceB given an in¯nite deadline. In the

other scenario,then engineerhad to producedeviceB within 12months, with deviceA given

an in¯nite deadline. Second,jobs are unrelated in the models of [Bar98a, Bar98b, CET01],

in the sensethat jobs do not admit precedenceconstraints. When precedenceconstraints

are included, conditionally changing deadlinesare alsorequired, even if the deadlineof each

job j is ¯xed when j is released.To seewhy this is so, considera scenarioin which job j 1

precedesboth j 2 and j 3. Initially , j 1 is released,followed some¯xed time later by the release

of either job either j 2 or j 3, but not both. If j 2's deadline is di®erent from j 3's deadline,

then j 1's deadline varies, depending on whether j 2 or rather j 3 is released.

Indeed, as we shall see in Chapter 6, Section 6.2, the phenomenonof varying

deadlines is present when one takes a precedence-constrainedview multi-mo de Giotto

scheduling. Thus, varying-deadline conditional scheduling is appropriate for precedence-

constrained multi-mo de Giotto scheduling. In contrast, ¯xed-deadline conditional schedul-

ing, the subject of Section 5.4, is appropriate for non-precedence-constrainedmulti-mo de

Giotto scheduling, in which the scheduling algorithm considersthe logical deadline of each

task to be its actual deadline. In keeping with the focus of this thesis on precedence-

constrained scheduling, we will use a varying-deadline conditional scheduling algorithm in

Chapter 6 for multi-mo de Giotto scheduling.

Though the model we shall consider in this chapter generalizesthose of [Bar98a,

Bar98b, CET01] in the two respects discussedabove, in two other respects our model

is lessexpressive. First, we do not addressthe parallel composition of two or more condi-

tional scheduling problems. Our techniquescould be extendedto handle such compositions,

though we do not discussthese extensionshere. Second,our models specify exact release

times for tasks, not minimum separations between releasetimes. We believe that these
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di®erencesare slight, and that our varying-deadline model is of independent interest.1

A second line of research that has in°uenced our model is that of G. Fohler,

especially [Foh94], which develops algorithms for multi-pro cessorconditional scheduling.

The model of [Foh94] is a ¯xed-deadline multi-pro cessormodel, whereasours is a varying-

deadlinesingle-processormodel. Wefocuson a single-processormodel to developpolynomial-

time algorithms; as we will seein Chapter 7, multi-pro cessormodels are often NP-hard.

A distinct line of research in real-time scheduling seeksto extend the priorit y ceiling

protocol [SRL90] to handle changesof operational mode, including the addition or deletion

of tasks, modi¯cation of the frequencyof a task, and so on [SRLR89]. Our approach di®ers

substantially from that of [SRLR89]. In our model, jobs interact via precedenceconstraints,

not via sharedresources.Moreover, mode changesseemto be regardedas infrequent events

in [SRLR89], whereasin our model, mode changesare allowed to be frequent. Finally, our

schedulabilit y tests are su±cient and necessary, whereas[SRLR89] only provides su±cient

tests.
1The reader familiar with the techniques of [Bar98a, Bar98b, CET01] may also wonder whether these

techniques may be extended to our setting. We now explain why such an extension seemsimprobable.
These techniques rely on a deadline bound function , which assigns to each nonnegative real number t a
number dbf (t), which is the maximum, over all time intervals I of length t, of the sum of computation times
of jobs that have releasetimes and deadlines within I . In the models of [Bar98a, Bar98b, CET01], each
job j is due at its releasetime plus a ¯xed constant d(j ). It is shown in [CET01] that an instance of such a
model is schedulable if and only if for all t ¸ 0,

dbf (t) · t (5.1)

The proof of the \only if " portion relies in an essential way on the optimalit y of the earliest deadline ¯rst
(EDF) scheduling policy.

However, EDF is not optimal in our setting, as we now explain. Consider the example from the beginning
of this chapter, modi¯ed in the following way. Supposethat device A is due in 12 months, and will require 12
months of work; that device B is due in nine months, and will require three months; and that a decision will
be made in six months about which device to complete. If we de¯ne the deadline d(A) of A (respectively,
the deadline d(B ) of B ) to be the earliest future time when A (respectively, B ) is due, then d(A) = 12 and
d(B ) = 9. If the scheduler uses an EDF policy, then B will be executed ¯rst for three months, followed
by A. But if A is chosenfor completion, then A's deadline will be missed. If instead of using an EDF policy,
if the engineer devotes six months to A, then either six months to A or three months to B (conditional on
the decision about which device to complete), then the deadline will be met in each case.

Thus, the proof of condition (5.1) doesnot extend to our setting. Indeed, it is easyto seethat (5.1) is not
su±cient in our setting. Consider again the example from the beginning of the chapter, modi¯ed so that
both device A and device B require 10 months of time. Then:

dbf (t) =
½

0 if t < 12
10 if t ¸ 12

Though condition (5.1) holds, still there is no solution to the given scheduling problem: A requires four
months of time during the ¯rst six months, and so does B , but only six months are available.
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r : A; B

d : A

d : B
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3

4

1
6

6

6

Figure 5.1: The engineer'sproblem modeled as a conditional scheduling problem.

5.2 The conditional scheduling problem

We begin with a precisede¯nition of the model we shall consider in this chapter.

De¯nition 5.1 (conditional scheduling problem). A conditional scheduling problemP

is a pair (F ; W), where:

² F = (V; v0; E; D) is called the ¯nite state machine of P. Here, V is a ¯nite set, called

the vertices, of which the initial vertex v0 2 V is a member. The set E of edges is a

subset of V £ V; we write v ! v0 instead of (v; v0) 2 E. The function D assignsto

each edgee 2 E a nonnegative rational duration D(e) 2 Q¸ 0.

² W = (J; t; r ; d) is called the workload of P. Here, J is a ¯nite set, called the jobs. The

function t assignsto each job j 2 J an amount t(j ) 2 Q> 0 of time required by j . The

function r assignsto each vertex v 2 V a set r (v) µ J of jobs released at v. Similarly,

the function d assignsto each vertex v 2 V a set d(v) µ J of jobs due at v. ¤

Example 5.2. Figure 5.1presents the engineer'sproblem modeledasa conditional schedul-

ing problem. For convenience,weuseintegersasvertices. At the initial vertex v0 = 1, jobs A

and B are released.The jobs releasedat vertex 1 are indicated with the label r : A; B adja-

cent to vertex 1. The time required by each job A and B is 9 (i.e., t(A) = t(B ) = 9), though

this is not pictured. The duration D(1 ! 2) of the edge1 ! 2 is 6; this is pictured adjacent

to the edge1 ! 2. After this duration has passed,the manager decideswhich device to

build. To build device A, the manager follows the edge2 ! 3. After an additional 6 time
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units (the duration D(2 ! 3) is 6), job A is due at vertex 3. The jobs due at vertex 3 are

indicated with the label d : A adjacent to vertex 3. To build deviceB instead, the manager

follows the edge2 ! 4; after an additional 6 time units, job B is due at vertex 4. ¤

We will be concernedwith a gameplayed by the scheduler versusthe environment.

The environment decideswhat branchesto take in the conditional graph, and the scheduler

decideshow to allocate a single processoramong the jobs J . At time 0, the game is at

the initial vertex v0. The environment choosesany vertex v1 such that v0 ! v1. The

scheduler is informed immediately, at time 0, of the environment's decision. During the

next D(v0 ! v1) time units, the scheduler allocates the processoramong the jobs. In this

section, we let scheduler make preemptions at arbitrary times.2 Each releaseof a job j is

a request for the execution of an additional instance of j . When a vertex v is encountered

such that j 2 d(v), all previously releasedinstances of j must be complete. Thus, the

scheduler losesif some job in both r (v0) and d(v1) is not complete by time D(v0 ! v1).

Otherwise, the game continues, and the environment again choosesany vertex v2 such

that v1 ! v2. The scheduler, informed of this choice, allocates the processoramong jobs

for the next D(v1 ! v2) time units. The scheduler losesif some job in both d(v2) and

(r (v0) n d(v1)) [ r (v1) is not complete at time D(v0 ! v1) + D(v1 ! v2). The game

continues in this way forever, or until a vertex is entered that has no outgoing edges.

Our main goal in this section is to develop an algorithm for ¯nding winning strate-

giesfor the scheduler. To this end, we make precisethe gamewe have informally described

by de¯ning the movesof the environment (runs) and the decisionsof the scheduler (strate-

gies).

De¯nition 5.3 (runs and strategies). Let P be a conditional scheduling problem. A

run ½of P is a sequence(v0; v1; ¢¢¢; vn ) of vertices such that n ¸ 1 and (vi ; vi +1 ) 2 E

for i 2 [0 :: n ¡ 1]. The length of run (v0; v1; ¢¢¢; vn ) is n + 1. Let R be the set of runs

of P. For any run ½= (v0; ¢¢¢; vn ), a run (v0; ¢¢¢; vn ; ¢¢¢; vm ) 2 R is a continuation of ½,

and is a maximal continuation if vertex vm has no successors. We also say that ½ is a

continuation of ½itself. A strategy ¾for P is a function ¾: R £ J ! R¸ 0 such that for any

2 In Section 5.3.1, we will investigate a variant of the conditional scheduling problem in which the scheduler
may preempt only at integral times. This models a periodic timer interrupt, for example. The choice of the
integers over, say, a set of evenly spacedrationals is arbitrary , but is no lessgeneral.
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Run ½in R ¾(½;A) ¾(½;B )

(1; 2) 3 3
(1; 2; 3) 6 0
(1; 2; 4) 0 6

Figure 5.2: A strategy ¾for the problem of Figure 5.1.

run ½= (v0; v1; ¢¢¢; vn ) in R,

X

j 2 J

¾(½;j ) · D(vn¡ 1 ! vn ) (5.2)

If ¾(½;j ) > 0, we say that strategy executes job j along run ½. For each integer i 2 [0 :: n],

let ¿(i ) =
P i ¡ 1

k=0 D(vk ! vk+1 ). We say that ¿(i ) is the time at which the i -th element vi of

run ½is entered. ¤

Note that ¿(vi ) ¡ ¿(vi ¡ 1) = D(vi ¡ 1 ! vi ). Intuitiv ely, a strategy ¾allocates¾(½;j ) time to

job j between times ¿(n ¡ 1) and ¿(n). The inequalities (5.2) expressthe constraint that

for a run (v0; ¢¢¢; vn ), the strategy ¾ allocates at most D(vn¡ 1 ! vn ) from time ¿(n ¡ 1)

until time ¿(n). Strategies are non-clairvoyant in the sensethat, past the next vertex vn

chosenby the environment, the scheduler has no knowledge of the future behavior of the

environment.

Example (5.2 contin ued). For the problem of Figure 5.1, the set R of runs is f (1; 2);

(1; 2; 3); (1; 2; 4)g. The strategy presented at the beginning of the chapter | divide the ¯rst

six months betweenA and B , and spend the next six months exclusively on either A or B

| is presented in Figure 5.2. ¤

We now de¯ne the conditions under which a strategy ¾is winning. Informally , the

de¯nition is as follows. Considera run ½= (v0; v1; ¢¢¢; vn ), and a job j that is releasedat vi

for somei 2 [0 :: n ¡ 1]. If there is no vertex vk , k 2 [i + 1 :: n], at which j is due, then ½

imposesno requirements on ¾. Now supposethere is such a vertex, and let vk¤ be such a

vertex with minimum index k¤. Each vertex at or after vi and before vk¤ that releasesj

incurs a requirement of t(j ) additional time units for j . Let m denote the number of such

vertices. In order to be winning, ¾ must allocate at least m ¢t(j ) time units for j from

time ¿(i ) up to time ¿(k¤). More precisely, we de¯ne a winning strategy as follows.
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De¯nition 5.4. Let P be a conditional scheduling problem. A strategy ¾ is winning for

P if, for every run ½= (v0; v1; ¢¢¢; vn ) 2 R, for every integer i 2 [0 :: n ¡ 1], and for every

job j 2 r (vi ), either the set

f k j k 2 [i + 1 :: n] and j 2 d(vk )g (5.3)

is empty, or the condition, marked (5.4) below, holds. Let k¤ be the minimum over the

set (5.3). Let m be the sizeof the set f ` j i · ` < k¤ and j 2 r (v` )g. Then

k¤X

`= i +1

¾((v0; ¢¢¢; v` ); j ) ¸ m ¢t(j ) (5.4)

must hold. ¤

We now considerhow to ¯nd a winning strategy for a conditional scheduling prob-

lem P. On the positive side, if the graph (V; E) is a tree rooted at v0, we develop in Sec-

tion 5.2.1 a polynomial-time algorithm that determineswhether P has a winning strategy,

and if sosynthesizessuch a strategy. We then show how to enrich the tree scheduling model

with an anytime reward function (Section 5.2.2), precedenceconstraints (Section 5.2.3),

and guard jobs (Section 5.2.4), while retaining a polynomial-time synthesis algorithm. On

the negative side, if (V; E) is a directed acyclic graph (respectively, if strategies must be

discrete-time), we show in Section 5.3 that determining whether P has a feasiblestrategy

is coNP-hard (respectively, NP-hard). Table 5.1 on page119summarizesthe results of this

chapter.

5.2.1 Tree scheduling

We now present an algorithm that decideswhether P has a winning strategy, and

if so returns such a strategy. This algorithm (1) creates a system of linear inequalities

that captures the constraints on a winning strategy, and (2) tests these inequalities for a

solution using a polynomial-time linear programming algorithm. The inequalities have the

property that any solution correspondsto a winning strategy. Further, the inequalities may

be generatedin time polynomial in the sizeof the conditional scheduling problem P, if the

graph (V; E) is a tree rooted at v0. Thus, for such tree-shaped problems we will show that

our algorithm runs in polynomial time.3 It should be emphasizedthat if (V; E) is instead a
3Of course, a nonpolynomial-time algorithm, such as the simplex method, may in practice run more

quickly. Our focus here is not to ¯nd the fastest algorithm in practice, but instead to prove the existenceof
a polynomial-time algorithm.
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directed acyclic graph, the running time may not be bounded by a polynomial, though our

algorithm still synthesizesa winning strategy if one exists.

In order to present our algorithm, we intro duce the system of linear inequalities

generatedin step (1) of our algorithm by meansof an example.

Example (5.2 contin ued). For our running example, the inequalities are

¾((1; 2); A) ¸ 0 ¾((1; 2); B ) ¸ 0

¾((1; 2; 3); A) ¸ 0 ¾((1; 2; 3); B ) ¸ 0

¾((1; 2; 4); A) ¸ 0 ¾((1; 2; 4); B ) ¸ 0

(5.5)

¾((1; 2); A) + ¾((1; 2); B ) · 6

¾((1; 2; 3); A) + ¾((1; 2; 3); B ) · 6

¾((1; 2; 4); A) + ¾((1; 2; 4); B ) · 6

(5.6)

¾((1; 2); A) + ¾((1; 2; 3); A) ¸ 9

¾((1; 2); B ) + ¾((1; 2; 4); B ) ¸ 9
(5.7)

The variables of the inequalities are the members of the set f ¾(½;j ) j ½2 R ^ j 2 J g. The

inequalities (5.5) require that ¾(½;j ) is nonnegative for each run ½2 R and job j 2 J . The

inequalities (5.6) capture the constraint (5.2), that the amount of time allocated by the

scheduler during an interval is at most the duration of that interval. Any assignment of

values to the variables ¾(½;j ) that satis¯es (5.5) and (5.6) also satis¯es the requirements

of De¯nition 5.3; such an assignment is thus a strategy. The inequalities (5.7) expressthe

constraint (5.4), that betweenthe releaseof a job and its next subsequent deadline,su±cient

time is allocated to that job. The readermay verify that the strategy of Figure 5.2 satis¯es

the inequalities (5.5), (5.6), and (5.7). ¤

We now formally de¯ne the system Lin [P] of linear inequalities generatedby a

conditional scheduling problem P. There will be ¯nitely many inequalities if the graph

(V; E) is a directed acyclic graph, and Lin [P] will be polynomial in the sizeof P if (V; E) is

a tree rooted at v0.

De¯nition 5.5 (the system Lin [P ] of linear inequalities). Let P be a conditional

scheduling problem. The set of variables of Lin [P] is f ¾(½;j ) j ½2 R ^ j 2 J g. There are

three typesof constraints in Lin [P]:

² [Nonnegativity constraints] For each variable ¾(½;j ), ¾(½;j ) ¸ 0 is a constraint.
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² [Duration constraints] For each run ½= (v0; ¢¢¢; vn ) 2 R,
P

j 2 J ¾(½;j ) · D(vn¡ 1 !

vn ) is a constraint.

² [Execution time constraints] For each run ½ = (v0; ¢¢¢; vn ) 2 R, for each integer

i 2 [0 :: n ¡ 1], for each job j 2 r (vi ), if the set (5.3) is nonempty, then

k¤X

`= i +1

¾((v0; ¢¢¢; v` ); j ) ¸ m ¢t(j )

is a constraint, where k¤ and m are as de¯ned in De¯nition 5.4. ¤

The reader will note the close correspondence between De¯nition 5.3 and the

nonnegativity and duration constraints of Lin [P]. Based on this correspondence, it is

straightforward to prove the following proposition.

Prop osition 5.6. An assignment of values to the variables of Lin [P] is a strategy if and

only if the assignment satis¯es the nonnegativity constraints and the duration constraints.

The readerwill alsonote the closecorrespondencebetweenDe¯nition 5.4 and the execution

time constraints of Lin [P]. It is thus straightforward to prove that an assignment of values

to the variables of Lin [P] is a winning strategy if and only if the assignment is a strategy

and moreover satis¯es the execution time constraints of Lin [P]. From Proposition 5.6, the

following proposition follows.

Prop osition 5.7. An assignment of values to the variables of Lin [P] is a winning strat-

egy if and only if the assignment satis¯es the nonnegativity, duration, and execution time

constraints.

Algorithm 5.1 constructs the constraint set Lin [P], straightforwardly and accord-

ing to De¯nition 5.5, and then tests whether Lin [P] has a solution. We now show that the

running time of Algorithm 5.1 is polynomial in the sizeof P.

² Since the graph (V; E) is a tree, the number jRj of runs equals the number jEj of

edges.The number of variables of Lin [P] equalsjRj ¢jJ j = jEj ¢jJ j. Sincethere is one

nonnegativity constraint per variable, there are jEj ¢jJ j such constraints.

² Sincethere is oneduration constraint per run, there are jEj such constraints. The left

hand side of each such constraint is the sum of jJ j terms. The right hand side of each

such constraint is the numerical constant D(v ! v0). This constant has size O(jD j),

where jD j is the sizeof the description of D.
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Algorithm 5.1 Tree scheduling.
1: Algorithm Tree scheduling(P = ((V; v0; E; D); (J; t; r ; d)): a tree scheduling problem)
2: Lin [P] := ;
3: for all runs ½= (v0; ¢¢¢; vn ) 2 R do

4: Lin [P] := Lin [P] [
nP

j 2 J ¾(½;j ) · D(vn¡ 1 ! vn )
o

5: for all jobs j 2 J do
6: Lin [P] := Lin [P] [ f ¾(½;j ) ¸ 0g
7: for all integers i 2 [0 :: n ¡ 1] do
8: for all jobs j 2 r (vi ) do
9: if set (5.3) 6= ; then

10: Lin [P] := Lin [P] [
nP k¤

`= i +1 ¾((v0; ¢¢¢; v` ); j ) ¸ m ¢t(j )
o

, wherek¤ and m are
as de¯ned in De¯nition 5.4.

11: Use a polynomial-time linear programming algorithm to test whether Lin [P] has a
solution ¾. If so, report that ¾ is a winning strategy. If not, report that P has no
winning strategy.

² The number of execution time constraints is at most jRj times the length of the

longest run times jJ j. Since the length of the longest run is at most jEj, the number

of execution time constraints is at most jEj2 ¢jJ j. The left hand side of each such

constraint is the sum of at most jEj terms. The right hand sideof each such constraint

is the numerical constant m¢t(j ). This constant hasO((log jEj)+ jt j) size,sincem · jEj,

where jt j is the sizeof the description of the function t.

From these facts, it may be veri¯ed that the running time of steps 2 through 10 of Algo-

rithm 5.1 is polynomial in the sizeof P, and further that the sizeof Lin [P] is polynomial

in the sizeof P. Thus, the running time of step 11 is also polynomial in the sizeof P. We

have establishedthe following:

Theorem 5.8. Let P be a conditional scheduling problem in which (V; E) is a tree rooted

at v0. Then Algorithm 5.1 runs in time polynomial in the sizeof P, determineswhether a

winning strategy for P exists, and if so returns such a strategy.

5.2.2 Imprecise tree scheduling

It has been widely observed within the arti¯cial intelligence communit y that the

amount of time required to compute an optimal result may reduce the utilit y of the re-

sult [RW91]. Sinceearlier results are generally better than later results in a real-time set-

ting, computing the optimal result after a long delay may be lessdesirablethan computing
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a sub-optimal result after a short delay. In order to maximize a utilit y function, decisions

needto be madeabout the amount of time to devote to each job. Anytime algorithms allow

such decisionsto be made °exibly [DB88]. An anytime algorithm is an algorithm in which

computation may be interrupted at any time, producing results of increasingquality as the

amount of computation time increases.

The similar conceptof imprecise computations hasbeenstudied in scheduling the-

ory since the 1980s[SLC91, LLSY91]. An imprecise computation consistsof two parts, a

mandatory part and an optional part. The mandatory part must be completed to produce

a result of minimum acceptablequality. The optional part follows the mandatory part, and

improves the result produced by the mandatory part. [SLC91] presents a polynomial-time

algorithm that ¯nds, from among all schedulessatisfying release,deadline, and mandatory

computation constraints, onethat is optimal in the senseof minimizing the total amount of

remaining optional computation. In addition, [SLC91] permits a positive, rational weight

for each job, and shows how to minimize the weighted sum of remaining computation times.

The per-job weight may be thought of as a linear reward function. [AMMMA01] general-

izes[SLC91] to include concave reward functions, and presents a polynomial-time algorithm

that ¯nds optimal schedulesfor this more general model, as long as strong periodicit y re-

quirements are met.

The conditional scheduling problem of De¯nition 5.1 can easily be adapted to

¯t the framework of imprecise computations. The condition (5.4) speci¯es a lower bound

on the amount of time each job j must be executed| or, in other words, the mandatory

execution time of j . Any additional execution time is optional. To quantify the total reward

of a strategy, we augment the basic conditional scheduling problem with a reward function

f : J ! Q¸ 0. As we will see,this reward function behaves similarly to the linear reward

function of [SLC91].

De¯nition 5.9 (imprecise scheduling problem). An imprecise scheduling problem P

is a triple (F ; W; f ), where the ¯nite state machine F and workload W are de¯ned as in

De¯nition 5.1, and f : J ! Q¸ 0 is a function, called the reward function, assigninga non-

negative rational number f (j ) to each job j . The runs, strategies, and winning strategiesof

an imprecise scheduling problem (F ; W; f ) are the sameas for the underlying conditional

scheduling problem (F ; W). ¤

Our goal is to develop an algorithm for ¯nding a winning strategy of maximum
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reward. Before we de¯ne what the reward of a strategy is, however, we restrict the class

of imprecise scheduling problems that we will consider in four ways. The intent of these

restrictions is (1) to simplify the de¯nition of the reward of a strategy, and (2) to focus on

a classof imprecisescheduling problems for which a polynomial-time algorithm exists. To

theseends,we de¯ne a well-formed imprecisescheduling problem as follows:

De¯nition 5.10 (w ell-formed imprecise scheduling problem). We say that an im-

precisescheduling problem is well-formed if the following conditions hold:

1. In order to develop a polynomial-time algorithm, we require that the graph (V; E) is

a tree rooted at v0.

2. In order to simplify the de¯nition of the reward of a strategy, we require that for

each job j 2 J , there exists exactly one vertex v 2 V such that j 2 r (v). Given this

requirement, for j 2 J we let r (j ) denote the unique vertex v 2 V such that j 2 r (v).

3. Without loss of generality, we require that for any v 2 V and any j 2 d(v), there

exists v0 2 V such that v0 ! + v and j 2 r (v0).4

4. Given1 and 2, without lossof generality we require that there do not exist two vertices

v; v0 2 V such that v ! + v0 and d(v) \ d(v0) 6= ; .5 ¤

We now de¯ne the reward of a strategy. The reward of a run (v0; ¢¢¢; vn ) is the

sum, over all jobs j due at vn , of f (j ) times the amount of time allocated to j since the

vertex releasingj was entered.6 The reward of a strategy is the sum, over all runs ½2 R,

of the reward of ½. We formalize this notion in the following de¯nition:

4Recall that ! + is the transitiv e closure of ! . No generality is lost for the following reason. If j 2 d(v),
but there does not exist a v0 2 V with v0 ! + v and j 2 r (v0), then upon reaching v, j cannot have been
released. Thus, the fact that j is due at v can be ignored. A problem not satisfying 3 may be replaced by
a problem that does satisfy 3, by removing j from d(v); the constraints on a winning strategy remain the
same.

5No generality is lost for the following reason. Given 2, for any run (v0 ; ¢¢¢; vn ) and any job j , there is at
most one vertex vi such that j 2 r (vi ). Now if j were in both d(vk ) and d(vk 0), for somei + 1 · k < k0 · n,
then given 1, vk 0 is only reachable from vi by ¯rst passing through vk . Thus, the fact that j is due at vk 0

can be ignored, since j already had to complete before the predecessorvk of vk 0 is reached. Any problem
satisfying 1 and 2 but not 4 can be replaced by one that satis¯es 1, 2, and 4, by removing j from d(vk 0); the
constraints on a winning strategy remain the same.

6Given the de¯nition of well-formedness,j was releasedby someprevious vertex vi , i 2 [0 :: n ¡ 1]; j was
releasedby exactly one such vertex; and j was not due at someprevious vertex vk , i 2 [i + 1 :: n ¡ 1].
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Algorithm 5.2 Imprecise scheduling.
1: Algorithm Imprecise scheduling(P = (F ; W; f ): an imprecisescheduling problem)
2: if the constraints Lin [F ; W] have a solution then
3: Usea polynomial-time linear programming algorithm to ¯nd a solution ¾that maxi-

mizesthe objective function (5.8) subject to the constraints Lin [F ; W]. Report that ¾
is an optimal strategy.

4: else
5: Report that P has no winning strategy.

De¯nition 5.11 (rew ard of a strategy). Let ¾be a strategy for a well-formed imprecise

scheduling problem. The reward of ¾is

X

(v0 ;¢¢¢;vn )2 R

X

j 2 d(vn )

f (j ) ¢
nX

i = r (j )+1

¾((v0; ¢¢¢; vi ); j ) (5.8)

We use the symbol f [¾] to denote the reward of strategy ¾. We say that a strategy ¾ is

optimal if ¾is winning, and for all winning strategies¾0, f [¾] ¸ f [¾0]. ¤

The third (last) summation in (5.8) measuresthe amount of time allocated to job j between

entering the vertex vr (j ) that releasesj and entering the vertex vn at which j is due. The

secondsummation measuresthe reward of the run (v0; ¢¢¢; vn ). The ¯rst summation, of

course,measuresthe reward of the strategy ¾.7

Wewish to developan algorithm that, whengivena well-formed impreciseschedul-

ing problem P = (F ; W; f ), decideswhether P has a winning strategy, and if so returns an

optimal strategy. Given our linear programming approach, this is quite easilyaccomplished:

we simply usea polynomial-time linear programming algorithm to maximize the objective

function (5.8) subject to the constraints Lin [F ; W]. We summarize this observation in

Algorithm 5.2. We have thus establishedthe following theorem:

Theorem 5.12. Let P be a well-formed imprecisescheduling problem. Algorithm 5.2 runs

in time polynomial in the size of its input P, decideswhether P has a winning strategy,

and if so returns an optimal strategy.

7Other de¯nitions of the reward of a strategy are also possible: one might, for example, weight the last
sum by f (j )=n(j ), where n(j ) is the number of vertices at which j is due. Alternativ ely, one might weight
the second sum by Prob(½), where Prob is a probabilit y distribution over runs. The signi¯can t choice is
not the speci¯c way in which the reward of a strategy is de¯ned, but rather that the de¯nition be a linear
function of the variables ¾((v0 ; ¢¢¢; vi ); j ).
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5.2.3 Precedence-constrained tree scheduling

In this section, we enrich the conditional scheduling model of De¯nition 5.1 by

adding precedenceconstraints. We then develop a polynomial-time algorithm, based on

Algorithm 5.1 of Section 5.2.1, to synthesize schedulesfor the extended model. We begin

by adding a precedencerelation Á ½ J £ J to the conditional scheduling problem:

De¯nition 5.13 (precedence-constrained scheduling problem). A precedence-con-

strained scheduling problem P is a triple (F ; W; Á), where the ¯nite state machine F and

workload W are de¯ned as in De¯nition 5.1, and the precedence relation Á ½ J £ J is an

acyclic binary relation on J . We shall normally write j Á j 0 instead of (j ; j 0) 2 Á. The

runs and strategies of a precedence-constrainedscheduling problem (F ; W; Á) are the same

as for the underlying conditional scheduling problem (F ; W). ¤

Wewill considera restricted subsetof precedence-constrainedscheduling problems.

As in De¯nition 5.10,werequire that the graph (V; E) is a tree rooted at v0, and that each job

is releasedby exactly one vertex. The ¯rst requirement is necessaryfor a polynomial-time

strategy synthesis algorithm. The secondrequirement, in the present context, simpli¯es

the de¯nition of a winning strategy (De¯nition 5.15, below). Without loss of generality,

we also require that conditions 3 and 4 of De¯nition 5.10 hold. Finally, we require that if

j Á j 0, then j is both releasedand due prior to j 0. This requirement is an analogueto the

de¯nition of transitiv e releasetimes r ¤ and deadlinesd¤ from Chapter 4, Section 4.3.2. We

have chosena syntactic meansof enforcing this requirement, rather than the algorithmic

meansof Chapter 4, in order to simplify the de¯nition of a winning strategy below. We now

precisely specify the classof precedence-constrainedscheduling problems we will consider:

De¯nition 5.14 (w ell-formed precedence-constrained scheduling problem). We

say that a precedence-constrainedscheduling problem is well-formed if:

1. Conditions 1, 2, 3, and 4 of De¯nition 5.10 hold.

2. For any two jobs j ; j 0 2 J , if j Á j 0, then r (j ) ! ¤ r (j 0).

3. Let j ; j 0 be any two members of J such that j Á j 0. Suppose j 0 2 d(v0) for some

v0 2 V. Then there exists v 2 V such that j 2 d(v) and v ! ¤ v0.8 ¤

8Recall that ! ¤ is the transitiv e, re°exiv e closure of ! .
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We now consider what it means for a strategy to be winning for a well-formed

precedence-constrainedscheduling problem. Considera run (v0; ¢¢¢; vn ) 2 R, and an integer

i 2 [0 :: n ¡ 1]. SinceÁ is acyclic, for any strategy ¾, it is possibleto topologically sort the

the executionof jobs from time ¿(i ) until time ¿(i + 1), sothat Á is respected. On the other

hand, supposethat for two jobs j ; j 0 2 J such that j Á j 0, there exists a k 2 [i + 1 :: n] such

that

¾((v0; ¢¢¢; vi ); j 0) > 0

¾((v0; ¢¢¢; vk ); j ) > 0

In this case,strategy ¾ violates the precedenceconstraint j Á j 0, since j does not ¯nish

before j 0 begins. If no such violation occurs, ¾ is winning. More precisely, we de¯ne a

winning strategy as follows:

De¯nition 5.15 (winning strategy). Let P = (F ; W; Á) be a well-formed precedence-

constrained scheduling problem. A strategy ¾is winning for P if ¾ is winning for (F ; W)

in the senseof De¯nition 5.4, and the following additional condition holds. Consider any

run (v0; ¢¢¢; vn ) 2 R and any jobs j ; j 0 2 J such that j Á j 0. If ¾((v0; ¢¢¢; vi ); j 0) > 0 for

somei 2 [1 :: n ¡ 1], then ¾((v0; ¢¢¢; vk ); j ) = 0 for all k 2 [i + 1 :: n]. In other words,

8i 2 [1 :: n ¡ 1]

8k 2 [i + 1 :: n]

¾((v0; ¢¢¢; vi ); j 0) > 0 =) ¾((v0; ¢¢¢; vk ); j ) = 0

(5.9)

If (5.9) does not hold for somerun ½= (v0; ¢¢¢; vn ), someprecedenceconstraint j Á j 0,

and somei 2 [1 :: n ¡ 1], then we say that ¾ i -violates precedenceconstraint j Á j 0 along

run ½. ¤

Supposethat (F ; W; Á) is a precedence-constrainedscheduling problem, and that ¾

is a winning strategy for the lessconstrainedconditional scheduling problem (F ; W). Some-

what surprisingly, a strategy ¾0 that is winning for (F ; W; Á) may be derived from ¾ in

polynomial time. The relation betweenprecedenceconstrained scheduling and conditional

scheduling is analogousto the relation between the classical scheduling problems 1 j r j ;

dj ; prec; pmtn j ¡ and 1 j r j ; dj ; pmtn j ¡ (see[BÃla76]). In each case,schedules for the

precedence-constrainedversioncan be derived from schedulesfor the versionwithout prece-

denceconstraints by an appropriate topological sort. In the present case,the topological
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sort required is more complex, but the basic intuition remains the same: if job j precedes

job j 0, then it is always acceptableto execute j in preferenceto j 0. We now show how to

derive a winning strategy for (F ; W; Á) from a winning strategy for (F ; W) in polynomial

time.

Prop osition 5.16. Let P = (F ; W; Á) be a well-formed precedence-constrainedscheduling

problem. Let ¾ be a winning strategy for (F ; W) in the senseof De¯nition 5.4. Then a

winning strategy for P may be obtained from ¾in time polynomial in jVj ¢jJ j.

Proof. Without loss of generality, we assumethat the winning strategy ¾ for (F ; W) has

three additional properties. Let ½= (v0; ¢¢¢vn ) 2 R be any run, and let j 2 J be any job.

Then:

I. If ¾(½;j ) > 0 then there exists a vertex v 2 V such that j 2 d(v) and vn ! ¤ v. Infor-

mally, j is not executedalong run ½unlessit is subsequently due along a continuation

of ½.

I I. If ¾(½;j ) > 0 then j 2 r (vi ) for somei 2 [0 :: n ¡ 1]. Informally , j is not executed

along run ½unlessit has beenreleased.

I I I.
P n

i=1 ¾((v0; ¢¢¢; vi ); j ) · t(j ). Informally , j is not executed for more than t(j ) time

units.

Let runs ½1; ¢¢¢; ½m be the members of R, enumerated in order of nondecreasinglength.

Let ¾0 = ¾. For i = 1; ¢¢¢; m, we construct a strategy ¾i from ¾i ¡ 1, with properties I{I I I

above, and two additional properties:

IV. ¾i remains winning for (F ; W).

V. Consider any run ½i 0 2 f ½1; ¢¢¢; ½i g, and any continuation ½of ½i 0. Let ni 0 be length

of ½i 0. Then for any k 2 [1 :: n i 0 ¡ 1], there is no precedenceconstraint j Á j 0 such

that ¾i k-violates j Á j 0 along ½.

Properties IV and V imply that ¾m is winning for (F ; W; Á). Since (V; E) is a tree, the

number m of runs is O(jVj). It remains to show only that strategy ¾i may be obtained

from strategy ¾i ¡ 1 in time polynomial in jVj ¢jJ j; the remainder of the proof is devoted to

establishing this fact.
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Let (v0; ¢¢¢; vn ) be the sequenceof vertices of run ½i . Let j ; j 0 2 J be any two

jobs such that j Á j 0 and ¾i ¡ 1 n-violates j Á j 0 along somecontinuation of ½i . Consider

any maximal continuation ½ = (v0; ¢¢¢; vn ; ¢¢¢; vn0) of ½i such that j 2 d(vk ) for some

k 2 [n + 1 :: n0]. We call such a continuation a (½i ; j )-continuation . Since ¾i ¡ 1 is winning

for (F ; W) and satis¯es I I I,

n0X

`= n+1

¾i ¡ 1((v0; ¢¢¢; v` ); j ) = t(j ) ¡
nX

`=1

¾i ¡ 1((v0; ¢¢¢; v` ); j )

In other words, for any (½i ; j )-continuation, the amount of time allocated to j after vertex vn

is the same,and is equal to the time t(j ) required by j minus the amount of time allocated

to j beforevn . Figure 5.3 illustrates this situation. In the ¯gure, after vn , the sameamount

of time is allocated to j on each (½i ; j )-continuation (thesecontinuations are (v0; ¢¢¢; e) and

(v0; ¢¢¢; h)). On other continuations, lesstime is allocated to j (this other continuation is

(v0; ¢¢¢; g)).

Select two jobs j ; j 0 such that (1) j Á j 0, (2) ¾i ¡ 1 n-violates j Á j 0 along some

continuation of ½i , and (3) j is minimal in the partial order Á + . Let T be the minimum of

the amount ¾i ¡ 1(½i ; j 0) of time allocated to j 0 along run ½i , and the amount that remains

to be executedof job j , i.e.,

T = min f ¾i ¡ 1(½i ; j 0); t(j ) ¡
P n

i=1 ¾i ¡ 1((v0; ¢¢¢; vi ); j )g

We now perform an exchange of execution times. We move T units of the execution of j

from the (½i ; j )-continuations to ½i , so that ¾i (½i ; j ) = T. At the sametime, we move T

units of the execution of j 0 from ½i to the times just vacated in the (½i ; j )-continuations,

taking care to preserve property I by not executing j 0 along continuations on which j 0 is

not due. This transformation is illustrated in Figure 5.3; strategy ¾i ¡ 1 is pictured in the

upper half of the ¯gure, and strategy ¾i is pictured in the lower half. Note in Figure 5.3

that ¾i executesj 0 along run (v0; ¢¢¢; e), sincej 0 2 d(e); but that to preserve property I, ¾i

doesnot executej 0 along either (v0; ¢¢¢; f ), (v0; ¢¢¢; g), or (v0; ¢¢¢; h), sincej 0 is in neither

d(f ), d(g), nor d(h).

We repeat this processwith additional jobs j ; j 0 satisfying (1){(3) until no such

jobs remain, thus obtaining strategy ¾i . There are at most
¡ jJ j

2

¢
exchangesto perform. Each

exchangetakesO(jVj) time, since there are O(jVj) continuations of ½i . Thus, obtaining ¾i

requires time polynomial in jVj ¢jJ j. We now prove that properties I{V hold for ¾i .
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Strategy ¾i :

Strategy ¾i ¡ 1:

Figure 5.3: A visual aid for the proof of Proposition 5.16.
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I. Consider any jobs j ; j 0 that were exchanged in the construction of ¾i . Since ¾i ¡ 1

satis¯es property I, and j is executed by ¾i ¡ 1 along a continuation of ½i , j is due

along a continuation of ½i . Similarly, j 0 is due along a continuation of ½i , since ¾i ¡ 1

satis¯es I, and j is executedby ¾i ¡ 1 along ½i . Further, by the construction of ¾i , j 0 is

not executedalong those continuations on which j 0 is not due. Thus, I holds for ¾i .

I I. Consideragain any jobs j ; j 0 that wereexchanged. Since¾i ¡ 1 satis¯es I I, and ¾i ¡ 1(½i ;

j 0) > 0, j 0 2 r (vk ) for some k 2 [0 :: n ¡ 1]. By condition 2 of De¯nition 5.14,

j 2 r (vk0) for somek0 2 [0 :: k]. Thus, I I holds for ¾i .

I I I. Consider again any jobs j ; j 0 that were exchanged. For each leaf vertex v` 2 V,

P `
k=1 ¾i ((v0; ¢¢¢; vk ); j ) =

P `
k=1 ¾i ¡ 1((v0; ¢¢¢; vk ); j )

whereas
P `

k=1 ¾i ((v0; ¢¢¢; vk ); j 0) ·
P `

k=1 ¾i ¡ 1((v0; ¢¢¢; vk ); j 0)

Since¾i ¡ 1 satis¯ed I I I, ¾i satis¯es I I I as well.

IV. Consideragain any jobs j ; j 0 that wereexchanged. Job j is not moved earlier than the

vertex that releasesit, by I I. Sinceby the argument for I I I, the total time allocated

to j remains the same,the inequality (5.4) continuesto hold for job j . For job j 0, by

property I for ¾i ¡ 1, the times vacated by j do not occur past the vertices at which j

is due. By condition 3 of De¯nition 5.14, a fortiori the times vacated by j do not

occur past any vertex at which j 0 is due. Thus, j 0 is not moved later than any vertex

at which it is due. Further, along the paths on which j 0 is due, the time allocated

to j 0 remains the same. Thus, (5.4) continuesto hold for job j 0. We concludethat ¾i

remains feasiblefor (F ; W).

V. Each n-violation of a precedenceconstraint by ¾i ¡ 1 was removed in the construction

of ¾i . Further, for k < n, no k-violations were reintro duced in the construction of ¾i ,

sincethe construction of ¾i only modi¯ed the behavior of ¾i ¡ 1 for ½i and continuations

of ½i . Thus, ¾i satis¯es V. ¤

We have shown that ¾i may be obtained from ¾i ¡ 1 in time polynomial in jVj ¢jJ j, thus

completing the proof.
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Algorithm 5.3 Precedence-constrainedtree scheduling.
1: Algorithm Precedence-constrainedtree scheduling(P = (F ; W; Á): a precedence-

constrained tree scheduling problem)
2: if Algorithm 5.1 reports that (F ; W) has a winning strategy ¾then
3: Obtain a winning strategy for P from ¾, using the algorithm described in the proof

of Proposition 5.16.
4: else
5: Report that P has no winning strategy.

Consider a well-formed precedence-constrainedscheduling problem (F ; W; Á). If

(F ; W) hasa winning strategy ¾, then a winning strategy for (F ; W; Á) may be constructed

from ¾ in time polynomial in (F ; W; Á). On the other hand, if (F ; W) has no winning

strategy, then (F ; W; Á) has no winning strategy either, since (F ; W) is a lessconstrained

versionof (F ; W; Á). Thus, to check whether (F ; W; Á) hasa winning strategy, the following

algorithm su±ces: ¯rst, test whether Lin [F ; W] has a feasible solution ¾. If not, then

report that (F ; W; Á) has no winning strategy. If so, usethe algorithm of Proposition 5.16

to obtain a winning strategy from the feasible solution ¾. We summarize this procedure

in Algorithm 5.3. Sincea winning strategy for (F ; W; Á) may be obtained from a winning

strategy for (F ; W) in time polynomial in the sizeof (F ; W) (Proposition 5.16), and since

the running time of Algorithm 5.1 is polynomial in the size of (F ; W) (Theorem 5.8), the

running time of Algorithm 5.3 is polynomial in the sizeof (F ; W; Á). We have established

the following theorem:

Theorem 5.17. Let P = (F ; W; Á) be a well-formed precedence-constrainedscheduling

problem. Then Algorithm 5.3 runs in time polynomial in the sizeof its input P, determines

whether a winning strategy for P exists, and if so returns such a strategy.

5.2.4 Guarded scheduling

In order to use conditional scheduling models to synthesize schedules for Giotto

programs (Chapter 6), we need to add a feature to the precedence-constrainedmodel of

Section5.2.3. For Giotto programs, the environment doesnot immediately communicate to

the program the next modeto enter; rather, though this decisionis madeby the environment

when sensorvaluesare read, the program must perform computation | the evaluation of

mode switch driver guards | before it knows the environment's decision. We now explore

the implications of this addedfeature for the precedence-constrainedconditional scheduling
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model of Section 5.2.3.

We call a precedence-constrainedconditional scheduling problem guarded if a (pos-

sibly empty) set G(v) µ r (v) of guard jobs is associated with each vertex v. Theseguards

jobs are due at each successorof v. The guard jobs ascertain the environment's decision

about which vertex to enter next; for Giotto, the guards are mode switch driver guards.

More precisely, we de¯ne a guarded conditional scheduling problem as follows:

De¯nition 5.18 (guarded scheduling problem). A guarded conditional scheduling prob-

lem P is a tuple (F ; W; Á; G) such that (1) (F ; W; Á) is a well-formedprecedence-constrained

scheduling problem, (2) the function G maps each vertex v 2 V to a set G(v) µ r (v) of

jobs, and (3) for any edge(v; v0) 2 E, G(v) µ d(v0). The runs of a guarded conditional

scheduling problem (F ; W; Á; G) are the sameas for the underlying conditional scheduling

problem (F ; W). ¤

We say that a schedule is guarded if, after entering vertex v, the scheduledoesnot

changeinstantaneously, but rather changesonly after each guard job g 2 G(v) is no longer

executing. More precisely, we de¯ne a guarded schedule as follows:

De¯nition 5.19 (guarded schedule). Let P be a guarded conditional scheduling prob-

lem. A guarded schedule S for P is a function that assignsto each run ½= v0; ¢¢¢; vn of P

a pair S(½) = (I ; e) such that the following conditions hold:

² I is a ¯nite set of intervals, each of which is a nonempty, left-open, and right-open

set (`; r ) µ (¿(n ¡ 1); ¿(n)) with rational endpoints `; r 2 Q. We require that distinct

intervals do not overlap, i.e., if i; i 0 2 I and i 6= i 0, then i \ i 0 = ; .

² e : I ! J is a function mapping each interval i to a job e(i ) 2 J .

² Let ½0 = v0
0; ¢¢¢; v0

n be any run such that vi = v0
i for all i 2 [0 :: n ¡ 1], and let

(I 0; e0) = ¾(½0). Then for any interval (`; r ) 2 I such that e(`; r ) 2 G(vn¡ 1):

{ I · r = I 0
· r , where I · r is the set f (s; t) 2 I j t · r g of intervals in I preceding

time r , and similarly I 0
· r = f (s; t) 2 I 0 j t · r g.

{ For any interval i 2 I · r , e(i ) = e0(i ). ¤
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De¯nition 5.20 (feasible guarded schedule). Let P = (F ; W; Á; G) be a guarded

conditional scheduling problem. For each guarded schedule S for P, each run ½of P, and

for each job j in the job set J of P, de¯ne the set I [S; ½;j ] of intervals as follows:

I [S; ½;j ] = f i 2 I j e(i ) = j g

where (I ; e) = S(½). ScheduleS executesjob j along run ½in the intervals I [S; ½;j ]. De¯ne

the strategy ¾[S] corresponding to S to be a strategy for the precedence-constrainedproblem

(F ; W; Á), as follows:

¾[S](½;j ) =
X

i 2 I [S;½;j]

ji j

The guarded schedule S is feasible for P if:

² ¾[S] is winning for (F ; W; Á), in the senseof De¯nition 5.15.

² For any pair (j ; j 0) in Á, for any run ½of P, if (`; r ) 2 I [S; ½;j ] and (`0; r 0) 2 I [S; ½;j 0],

then r · `0. ¤

Recall from Proposition 5.16 that a winning strategy for a precedence-constrained

problem (F ; W; Á) may always be obtained from a winning strategy for the underlying

conditional scheduling problem (F ; W). In a very similar way, a feasible guarded sched-

ule for a guarded problem (F ; W; Á; G) may be obtained from a winning strategy for the

underlying precedence-constrainedproblem (F ; W; Á), as we now show. Put another way,

Proposition 5.21 is to guarded conditional scheduling as Proposition 5.16 is to precedence-

constrained conditional scheduling.

Prop osition 5.21. Let P = (F ; W; Á; G) be a guarded conditional scheduling problem.

Then P hasa feasibleguardedscheduleif and only if the precedence-constrainedconditional

scheduling problem (F ; W; Á) has a winning strategy ¾, in the senseof De¯nition 5.15.

Further, a feasible guarded schedule for P may be obtained from a winning strategy for

(F ; W; Á) in time polynomial in the sizeof P.

Proof. () ) If a guardedscheduleS is feasiblefor P, then ¾[S], asde¯ned in De¯nition 5.20,

is winning for the underlying precedence-constrainedproblem (F ; W; Á).

(( ) Suppose that ¾ is a winning strategy for (F ; W; Á). We will show that

a feasible guarded schedule for P may be obtained from ¾. Consider any runs ½ =

(v0; ¢¢¢; vn¡ 1; vn ) and ½0 = (v0
0; ¢¢¢; v0

n¡ 1; v0
n ) such that for i 2 [0 :: n ¡ 1], vi = v0

i . By



CHAPTER 5. CONDITIONAL SCHEDULING 142

Algorithm 5.4 Guarded scheduling.
1: Algorithm Guarded scheduling(P = (F ; W; Á; G): a guarded conditional scheduling

problem)
2: if Algorithm 5.3 reports that (F ; W; Á) has a winning strategy ¾then
3: Obtain a feasibleguarded schedule S for P from ¾, using the algorithm described in

the proof of Proposition 5.21.
4: else
5: Report that P has no feasibleguarded schedule.

property I I I of the proof of Proposition 5.16, for any guard j 2 G(vn¡ 1), ¾(½;j ) = ¾(½0; j ).

Also by property I I I, for any job j 0 such that j 0 Á+ j , ¾(½;j 0) = ¾(½0; j 0). Since¾is feasible,

the guard jobs and jobs that precedethem executefor lessthan

min fD (vn¡ 1 ! v) j (vn¡ 1; v) 2 Eg

It follows that, after entering vn¡ 1 at time ¿(n ¡ 1), the scheduler may ¯rst complete the

guards G(vn¡ 1) and jobs precedingtheseguards, and then switch schedulesconditional on

the next vertex ascertainedby the guards (e.g., vn or v0
n ). We conclude that any feasible

strategy produced by Algorithm 5.3 of Section 5.2.3 can be transformed into a guarded

feasibleschedule. It may be veri¯ed that the transformation described above may be im-

plemented to run in time polynomial in the sizeof P.

Consider a guarded conditional scheduling problem P = (F ; W; Á; G). If the un-

derlying precedence-constrainedproblem (F ; W; Á) has a winning strategy ¾, then Propo-

sition 5.21 guarantees that a feasibleguarded schedule for P may be constructed from ¾.

However, Proposition 5.21alsoshows that if (F ; W; Á) hasno winning strategy, then P has

no feasibleguarded schedule. Theseobservations lead to Algorithm 5.3, which determines

whether a guarded conditional scheduling problem has a feasibleguarded schedule. Since

such a schedule can be derived from a winning strategy ¾ in time polynomial in the size

of P (Proposition 5.21), and since the running time of Algorithm 5.3 is polynomial in the

size of (F ; W; Á) (Theorem 5.17), the running time of Algorithm 5.4 is polynomial in the

sizeof P. We summarize in the following theorem:

Theorem 5.22. Let P = (F ; W; Á; G) be a guardedconditional scheduling problem. Then

Algorithm 5.4 runs in time polynomial in the size of P, determines whether a feasible

guarded schedule for P exists, and if so returns such a schedule.
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5.3 Hard conditional scheduling problems

In Section5.2, wesaw that several conditional scheduling problems| tree schedul-

ing, imprecisetree scheduling, precedence-constrainedtree scheduling, and guardedschedul-

ing | can be solved in polynomial time. In this section, we will investigate conditional

scheduling problemsthat cannot besolved in polynomial time, unlessP = NP. Section5.3.1

examinesdiscrete-time strategies,in which the scheduler is restricted to make decisionsonly

at integral points in time. We will seethat determining whether a tree scheduling prob-

lem has a winning discrete-time strategy is NP-hard. Section 5.3.2 considersconditional

scheduling problemsin which the graph (V; E) is a directed acyclic graph (DAG). Wewill see

that determining whether a DAG scheduling problem hasa winning strategy is coNP-hard.

5.3.1 Discrete-time tree scheduling

There is one respect in which the strategies produced by the algorithm of Sec-

tion 5.2.1 are impractical: they require that preemptions be made at arbitrary rational

points in time. This is not possiblein computer systems,sincethe CPU speedprovides an

upper bound on the frequency of preemptions; moreover, becauseof context-switch over-

head, most real-time systemsdo not function well with timers that run faster than 10 kHz.

Supposethat strategiesare restricted to preempt only at a sparse,evenly-spacedspacedset

of times | at integral times, say.9 We call such restricted strategies discrete-time strate-

gies. For discrete-time strategies,do tree scheduling problemsremain solvable in polynomial

time? Unfortunately, the answer is no, as we will seein this section.

The di®erencein the complexity of dense-and discrete-timeversionsof tree schedul-

ing provides evidencethat conditional scheduling with varying deadlinesis fundamentally

di®erent from standard single-processorscheduling models. In standard single-processor

settings, the samepolynomial-time algorithm is often optimal both for a model that allows

preemption at any time, and for a model that allows preemption only at integer points

in time. In contrast, there can be no polynomial-time tree scheduling algorithm that is

optimal for both dense-timeand discrete-time models, unlessP = NP.

We now precisely de¯ne discrete-time strategies; we also de¯ne the problem Dis-

crete-time tree scheduling that we will prove is NP-complete:

9We consider integral times only for reasonsof simplicit y. The results of this section generalize to any
evenly-spacedset of time points.
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d : j 1; j 2

4
d : j 1; j 3

5
d : j 1; j 4

6
d : j 2; j 3

7
d : j 2; j 4

8
d : j 3; j 4

r : j 1; j 2; j 3; j 4

1 2

Figure 5.4: The conditional scheduling problem of Example 5.24.

Run ½2 R ¾(½;j 1) ¾(½;j 2) ¾(½;j 3) ¾(½;j 4)

(1; 2) 0.5 0.5 0.5 0.5
(1; 2; 3) 1.5 1.5 0 0
(1; 2; 4) 1.5 0 1.5 0
(1; 2; 5) 1.5 0 0 1.5
(1; 2; 6) 0 1.5 1.5 0
(1; 2; 7) 0 1.5 0 1.5
(1; 2; 8) 0 0 1.5 1.5

Figure 5.5: A winning strategy ¾for the conditional scheduling problem of Example 5.24.

De¯nition 5.23 (discrete-time strategy , Discr ete-time tr ee scheduling ). A strat-

egy ¾ for a conditional scheduling problem P is discrete-time if, for each run ½2 R and

each job j 2 J , ¾(½;j ) 2 Z. The set Discrete-time tree scheduling is f P j P is a conditional

scheduling problem such that (1) (V; E) is a tree rooted at v0, and (2) there exists a winning

discrete-time strategy for Pg. ¤

Clearly, since discrete-time strategies are strategies, the existence of a winning

discrete-time strategy implies the existenceof a winning strategy. However, the converseis

not true. As the following example shows, sometree scheduling problems have a winning

strategy, but no winning discrete-time strategy.

Example 5.24. Considerthe tree scheduling problem of Figure 5.4. There are four jobs, j 1,

j 2, j 3, and j 4. The amount t(j i ) of time required by job j i is 2 for all i 2 [1 :: 4]. The initial

vertex is 1. At vertex 1, jobs j 1, j 2, j 3, and j 4 are released. Vertex 2 has six successors,

one for each of the
¡ 4

2

¢
ways of choosing two of the four jobs. At each successorof vertex 2,

two jobs are due, so that every set of two jobs is due at somesuccessorof vertex 2. The

duration D(1 ! 2) of the edge1 ! 2 is 2; all other edgeshave a duration of 3. Figure 5.5

depicts a winning strategy for this problem. This strategy divides the ¯rst 2 time units
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equally between jobs j 1, j 2, j 3, and j 4, so that ¾((1; 2); j i ) = 0:5 for all i 2 [1 :: 4]. The

remaining 3 units of time are divided equally betweenthe two jobs due at whichever of the

successorvertices 3 through 8 is chosen. Note that ¾(½;j i ) =2 Z for each run ½2 R and

i 2 [1 :: 4]. It may be veri¯ed that P has no winning discrete-time strategy. ¤

A tree scheduling problem P that is a member of Discrete-time tree scheduling

possessesa short certi¯cate of membership: a winning strategy ¾. Such a strategy speci¯es,

for each run ½ = (v0; v1; ¢¢¢; vn ) and job j , an integer ¾(½;j ) · D(vn¡ 1 ! vn ). Since

the number of runs is equals the number jEj of edges, the representation of ¾ requires

O(jEj ¢jJ j ¢D) space, where D = maxe2E logD(e). Further, it may easily be seenthat

checking whether ¾ is winning requires time polynomial in the length of the description

of P. Thus:

Prop osition 5.25. Discrete-time tree scheduling is in NP.

In the remainder of this section, we prove the following theorem:

Theorem 5.26. Discrete-time tree scheduling is NP-hard, even if the time t(j ) required by

each job j is 1.

Proposition 5.25 and Theorem 5.26 together establish the following corollary:

Corollary 5.27. Discrete-time tree scheduling is NP-complete.

Recall that a 3-CNF formula

Á =
m̂

i =1

` i; 1 _ ` i; 2 _ ` i; 3

is a conjunction of clauses, of which let us say there are m. Each clauseis the disjunction

` i; 1_ ` i; 2_ ` i; 3 of three literals ` i; 1, ` i; 2, and ` i; 3. Each literal is either a booleanvariable xk or

a negatedbooleanvariable : xk . Wewill let n denotethe number of variablesappearing in Á,

and we will assumethat thesevariables are members of the set f x1; ¢¢¢; xng. Without loss

of generality, we may assumethat each clausecontains three distinct variables[Pap94]. The

set 3-SAT is the set of all 3-CNF formulae that are satis¯able. 3-SAT is NP-hard [GJ79].

We prove Theorem 5.26by presenting a polynomial-time reduction from 3-SAT to Discrete-

time tree scheduling. We now informally describe the reduction from 3-SAT to Discrete-time

tree scheduling, after which we formally describe the reduction and prove Theorem 5.26.
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d : t1; f 1

r : t2; f 2

d : t2; f 2

r : t3; f 3

¢¢¢

r : tn ; f n

d : tn ; f nd : tn¡ 1; f n¡ 1

Figure 5.6: The assignment gadget.

In tro duction to the reduction from 3-SA T to Discr ete-time tr ee scheduling

Given a 3-CNF formula Á, the reduction producesa tree scheduling problem P[Á],

with the following property: P[Á] has a winning discrete-time strategy if and only if Á is

satis¯able. The problem P[Á] consistsof two parts, an assignmentgadget and a formula

gadget. Figure 5.6 shows the assignment gadget. The assignment gadget consists of the

2n + 2 vertices 1; 2; ¢¢¢; 2n + 2. (Vertex 2 plays no signi¯cant role in the construction, but

is included to make the graph regular.) At vertex 2i ¡ 1, for i 2 [1 :: n], jobs t i and f i are

released. Each job requires one unit of time, i.e., t(t i ) = t(f i ) = 1. Jobs t i and f i are due

at vertex 2i + 2. For any feasiblediscrete-time strategy ¾, either:

¾((1; ¢¢¢; 2i + 1); t i ) = 1 and

¾((1; ¢¢¢; 2i + 2); f i ) = 1

or:
¾((1; ¢¢¢; 2i + 1); f i ) = 1 and

¾((1; ¢¢¢; 2i + 2); t i ) = 1

In an intuitiv e sense,the ¯rst choice corresponds to a truth assignment that gives vari-

able x i the value true, and the secondchoice corresponds to an assignment that gives x i

the value false. Intuitiv ely, then, the assignment gadget forcesthe scheduling algorithm to

pick a truth assignment.

The reduction now needsa meansfor determining whether the assignment chosen

by the scheduling algorithm \satis¯es" the 3-CNF formula Á. This mechanism is provided

by the formula gadget,pictured in Figure 5.7. The formula gadgetconsistsof the m vertices

2n + 3; ¢¢¢; 2n + m + 2. For i 2 [1 :: m], three jobs are due at vertex 2n + i + 2. Which jobs
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...

2n+
m+ 2

2n + 3

2n + 1

d : j 1;1; j 1;2; j 1;3

d : j m;1; j m;2; j m;3

Figure 5.7: The formula gadget.

these are depend on the variables occurring in the literals ` i; 1, ` i; 2, and ` i; 3, and whether

these literals are positive or negative. To be precise,d(2n + i + 2) = f j i; 1; j i; 2; j i; 3g, where

for i 0 2 [1 :: 3],

j i;i 0 =

8
<

:
tk if ` i;i 0 = xk

f k if ` i;i 0 = : xk

(5.10)

Jobs j i; 1, j i; 2, and j i; 3 can ¯nish before vertex 2n + i + 2 if and only if one of them has

completedbeforevertex 2n+ 1. Intuitiv ely, this canoccur if and only if the truth assignment

chosenby the scheduling algorithm makesoneof the literals ` i; 1, ` i; 2, or ` i; 3 true, i.e., if the

truth assignment makesÁ true.

Pro of of NP-hardness of Discr ete-time tr ee scheduling

We now preciselyde¯ne the reduction from 3-SAT to Discrete-time tree scheduling.

We ¯rst describe a polynomial-time function that maps each 3-CNF formula Á to a tree

scheduling problem P[Á]. We then prove that Á is satis¯able if and only if P[Á] has a

winning discrete-time strategy. This will establish that Discrete-time tree scheduling is

NP-hard (Theorem 5.26).

Given a 3-CNF formula Á =
V m

i=1 ` i; 1 _ ` i; 2 _ ` i; 3, we de¯ne the conditional schedul-

ing problem P[Á] = ((V; v0; E; D); (J; t; r ; d)) as follows:

² The set V of vertices is [1 :: 2n + m + 2].

² The initial vertex v0 is 1.
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² The set E of edgesis:

f (2i ¡ 1) ! (2i ) j i 2 [1 :: n + 1]g [ (assignment gadget)

f (2i ¡ 1) ! (2i + 1) j i 2 [1 :: n]g [ "

f (2n + 1) ! (2n + i + 2) j i 2 [1 :: m]g (formula gadget)

² For each edgee = v ! v0 2 E, the duration D(e) of e is de¯ned as follows:

D(e) =

8
<

:
2 if v = 2n + 1 and v0 = 2n + i + 2 for somei 2 [1 :: m]

1 otherwise

² The set J of jobs is f t1; f 1; t2; f 2; ¢¢¢; tn ; f ng.

² The time t(j ) required by job j is 1 for each job j 2 J .

² For i 2 [1 :: n], the set r (2i ¡ 1) of jobs releasedat vertex 2i ¡ 1 is f t i ; f i g. For all

other vertices v 2 V, r (v) = ; .

² The set d(v) of jobs due at each vertex v is de¯ned as follows:

d(2i + 2) = f t i ; f i g for i 2 [1 :: n]

d(2n + i + 2) = f j i; 1; j i; 2; j i; 3g for i 2 [1 :: m]

where for i 2 [1 :: m] and i 0 2 [1 :: 3], j i;i 0 is de¯ned by (5.10). For all other vertices

v 2 V, d(v) = ; .

It can easily be seenthat the conditional scheduling problem P[Á] can be derived

from the 3-CNF formula Á in time polynomial in the sizeof Á. We now prove the following

lemma, which establishesTheorem 5.26.

Lemma 5.28. The 3-CNF formula Á is satis¯able if and only if the tree scheduling prob-

lem P[Á] has a winning discrete-time strategy.

Proof. () ) Supposethat Á is satis¯able. Let T be a truth assignment which makesÁ true.

We de¯ne the discrete-time strategy ¾[T] as follows:

² For i 2 [1 :: n], if T(x i ) = true, then:

¾[T]((1; ¢¢¢; 2i + 1); t i ) = 1

¾[T]((1; ¢¢¢; 2i + 1); f i ) = 0

¾[T]((1; ¢¢¢; 2i + 2); t i ) = 0

¾[T]((1; ¢¢¢; 2i + 2); f i ) = 1
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and if T(x i ) = false, then:

¾[T]((1; ¢¢¢; 2i + 1); t i ) = 0

¾[T]((1; ¢¢¢; 2i + 1); f i ) = 1

¾[T]((1; ¢¢¢; 2i + 2); t i ) = 1

¾[T]((1; ¢¢¢; 2i + 2); f i ) = 0

² For i 2 [1 :: m]:

{ If T makeseach literal ` i; 1, ` i; 2, and ` i; 3 true, then ¾[T]((1; ¢¢¢; 2n + i + 2); j ) = 0

for each j 2 J .

{ If T makesexactly one literal ` i;i 0 false, then ¾[T]((1; ¢¢¢; 2n + i + 2); j i;i 0) = 1,

where j i;i 0 is de¯ned by (5.10). For each other job j 2 J , ¾[T]((1; ¢¢¢; 2n + i +

2); j ) = 0.

{ If T makes exactly two literals ` i;i 0 and ` i;i 00 false, then ¾[T]((1; ¢¢¢; 2n + i +

2); j i;i 0) = ¾[T]((1; ¢¢¢; 2n + i + 2); j i;i 00) = 1, where j i;i 0 and j i;i 00 are de¯ned

by (5.10). For each other job j 2 J , ¾[T]((1; ¢¢¢; 2n + i + 2); j ) = 0.

This completesthe de¯nition of ¾[T]. We now show that ¾[T] is winning. By construction,

both jobs t i and f i ¯nish by vertex 2i + 2. It remainsto show that jobs j i; 1, j i; 2, and j i; 3 ¯nish

by vertex 2n + 2i + 2. SinceT makesÁ true, for each i 2 [1 :: m] there is somei 0 2 [1 :: 3]

such that T makes literal ` i;i 0 true. The corresponding job j i;i 0 ¯nishes by vertex 2n + 1.

At most two jobs remain to be scheduled before vertex 2n + 2i + 2. By the construction

of ¾[T], theseother two jobs ¯nish by vertex 2n + 2i + 2. Thus, ¾[T] is winning.

(( ) Suppose that P[Á] has a winning discrete-time strategy ¾. We de¯ne the

truth assignment T[¾] as follows:

T[¾](x i ) =

8
<

:
true if ¾((1; ¢¢¢; 2i + 1); t i ) = 1

false if ¾((1; ¢¢¢; 2i + 1); f i ) = 1

Note that since ¾ is a winning discrete-time strategy, either ¾((1; ¢¢¢; 2i + 1); t i ) = 1 or

¾((1; ¢¢¢; 2i + 1); f i ) = 1, but not both. We now show that T[¾] makes Á true. Let i be

an arbitrary member of [1 :: m]. Consider the i -th clauseof Á, ` i; 1 _ ` i; 1 _ ` i; 3. Since ¾ is

winning, either j i; 1, j i; 2, or j i; 3 is ¯nished by vertex 2n + 1. Let i 0 2 [1 :: 3] be such that j i;i 0

is ¯nished by vertex 2n + 1. Let k be the index of the variable xk of literal ` i;i 0. Without
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lossof generality supposethat ` i;i 0 is positive, so that j i;i 0 = tk . Since job tk is ¯nished by

vertex 2n + 1, ¾((1; ¢¢¢; 2k + 1); tk ) = 1. Thus, T[¾](xk ) = true, and T[¾] makes the i -th

clausetrue. Sincei wasarbitrary , T[¾] makesÁ true. We concludethat Á is satis¯able.

It should be noted why the construction of P[Á] fails to show that \dense-time"

tree scheduling (Section 5.2.1) is NP-hard. Given the conditional scheduling problem P[Á],

considera strategy ¾such that for i 2 [1 :: n]:

¾((1; ¢¢¢; 2i + 1); t i ) = ¾((1; ¢¢¢; 2i + 1); f i ) = 0:5

In this strategy, every job is executed for 0.5 time units before vertex 2n + 1. The i -th

branch of the clausegadget requires that three jobs ¯nish within two time units. A total

of 1.5 time units of execution time for thesethree jobs remains after vertex 2n + 1, so they

can easily ¯nish on time.10

5.3.2 Directed acyclic graph scheduling

The polynomial-time algorithms from Section5.2all operateon conditional schedul-

ing problems in which the graph G = (V; E), is a tree. This raisesan obvious question: if

the graph G is allowed to have a more generalform | for example,a directed acyclic graph

(DAG) | can it still be determined in polynomial time whether a conditional scheduling

problem has a winning strategy? In this section, we will show that the answer to this

question is no. This hardnessresult is unfortunate, as control-°o w graphs are, for most

programming languages,directed acyclic graphs. Thus, it would be useful to be able to

determine whether a DAG scheduling problem has a winning strategy. We now precisely

de¯ne what a DAG scheduling problem is.

De¯nition 5.29 (D A G scheduling problem, DA G scheduling ). A DAG scheduling

problem is a conditional scheduling problem in which the graph (V; E) is acyclic. The set

DAG scheduling is f P j P is a DAG scheduling problem such that there exists a winning

strategy for Pg. ¤

We now show that DAG scheduling is coNP-hard. After we prove that DAG

scheduling is coNP-hard, wewill discussupper boundson the complexity of DAG scheduling.

10 In fact, this fractional strategy is what initially suggestedto the author the polyhedral algorithm for
dense-time tree scheduling.



CHAPTER 5. CONDITIONAL SCHEDULING 151

Theorem 5.30. DAG scheduling is coNP-hard, even if the time t(j ) required by each job j

is 1.

Recall that a 3-DNF formula

Á =
m_

i =1

` i; 1 ^ ` i; 2 ^ ` i; 3

is a disjunction of m clauses. Each clauseis the conjunction ` i; 1 ^ ` i; 2 ^ ` i; 3 of three literals.

As with 3-CNF formulae, each literal is either a boolean variable xk or a negatedboolean

variable : xk . We will again let n denote the number of variablesx1; ¢¢¢; xn appearing in Á.

The set 3-TAUT is the set of all 3-DNF formulae that are tautologies. Note that a 3-DNF

formula Á is a tautology if and only if : Á is unsatis¯able. Note also that

:
m_

i =1

` i; 1 ^ ` i; 2 ^ ` i; 3 is equivalent to
m̂

i =1

: ` i; 1 _ : ` i; 2 _ : ` i; 3

Thus, : Á is equivalent to a 3-CNF formula Ã. BecauseÁ 2 3-TAUT i® : Á is unsatis¯able i®

Ã =2 3-SAT, 3-TAUT is coNP-complete. WeproveTheorem5.30by displaying a polynomial-

time reduction from 3-TAUT to DAG scheduling.

In tro duction to the reduction from 3-T A UT to DA G scheduling

Given 3-DNF formula Á, the reduction producesa DAG scheduling problem P[Á]

with the following property: P[Á] has a winning strategy if and only if Á is a tautology.

The problem P[Á] consistsof three parts: an assignment gadget, a formula gadget, and a

tail gadget. All edgeshave duration 1 unlessotherwise noted. The assignment gadget is

pictured in Figure 5.8. It consists of 3n + 1 vertices. Consider vertex 1, which has two

successors.At the top successor,the jobs t1;1; ¢¢¢; t1;m are released. Each of these jobs

has a computation time of 1. At the bottom successor,the jobs f 1;1; ¢¢¢; f 1;m are released.

Intuitiv ely, the top successorcorrespondsto a truth assignment in which x1 is true, and the

bottom successorcorresponds to an assignment in which x1 is false. Further, a path from

vertex 1 to vertex 3n + 1 corresponds to a truth assignment for the variables x1; ¢¢¢; xn .

Job o hasa computation time of 1. Job o is releasedat vertex 1 and due at vertices2 and 3.

Job o is also releasedat vertices 2 and 3 and due at vertex 4. In any winning strategy, o is

the only job executedfrom time 0 until time 2n.

The formula gadget is madeup of m clausegadgets. Figure 5.9 depicts the clause
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r : o;
t2;1; ¢¢¢; t2;m

2

3 6

5 3n ¡ 1

3n

¢¢¢

¢¢¢

r : o r : o r : o

d : o d : o d : o

r : o

d : o

d : o d : o d : o

d : od : od : o

Figure 5.8: The assignment gadget.

3n+
4i ¡ 3

3n+
4i ¡ 1

3n+
4i + 1

3n+
4i

3n+
4i ¡ 2

r : o

d : j i; 2 d : o

r : s

d : j i; 1

d : j i; 3

r : o

r : o

Figure 5.9: The clausegadget for the i -th clause.
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d : j 2;2 d : o
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d : j 2;3

r : o

d : o

Figure 5.10: The formula gadget.

gadget for the i -th clause,` i; 1 ^ ` i; 2 ^ ` i; 3. The ¯rst vertex 3n + 4i ¡ 3 has three successors,

corresponding to the three literals. For i 0 2 [1 :: 3], job j i;i 0 is due at the i 0-th successor,

where

j i;i 0 =

8
<

:
f k;i if ` i;i 0 = xk

tk;i if ` i;i 0 = : xk

(5.11)

Note that this de¯nition is the opposite of the de¯nition of j i;i 0 for the NP-hardnessproof

(equation (5.10)). Vertices 3n + 4i ¡ 2, 3n + 4i ¡ 1, and 3n + 4i each releasethe job o.

Recall that job o has computation time 1. Job o is due at the common successorvertex

3n + 4i + 1. In any winning strategy, o is the only job executedfrom time 2n + 2i ¡ 1 until

time 2n + 2i . The vertex 3m + 4i ¡ 3 releasesthe job s. Job s has computation time 1, and

will be due in the tail gadget. The role of s will be explained shortly. Figure 5.10shows the

entire formula gadget. It consistsof a sequenceof m clausegadgets,one for each clause.

To understand the role of job s, considera run ½= (1; ¢¢¢; 3n + 1) from vertex 1

to vertex 3n + 1. Let ½1 (respectively, ½2 and ½3) be the sequenceconsisting of ½followed

by vertex 3n + 2 (respectively, 3n + 3, 3n + 4). There are two casesto consider:

1. For somei 2 [1 :: 3], job j 1;i has beenreleasedalong run ½. Supposefor concreteness

that job j 1;2 has been released. In any winning strategy ¾, ¾(½2; j 1;2) = 1. Thus, s

will not have completed after following ½2 and entering vertex 3n + 5.

2. Neither j 1;1, j 1;2, nor j 1;3 hasbeenreleasedalong run ½. Then s can be executedalong
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4m + 2
3n+3n+

4m + 1

d : s

m ¡ 1

Figure 5.11: The tail gadget.

runs ½1, ½2, and ½3, and s will have completed upon entering vertex 3n + 5.

Thus, s will be able complete in all runs following ½and subsequently entering vertex 3n + 5

if and only if neither j 1;1, j 1;2, nor j 1;3 has been releasedalong run ½. But note, from

the properties of the assignment gadget, that ½releasesneither j 1;1, j 1;2, nor j 1;3 if and

only if the clause`1;1 ^ `1;2 ^ `1;3 is made true by the truth assignment corresponding to ½.

Intuitiv ely, then, the ¯rst clausegadget indicates whether the ¯rst clauseis made true by

the truth assignment corresponding to ½: if someamount of s remains to complete upon

entering vertex 3n + 5, then the truth assignment makes the ¯rst clausefalse. Further, if

more than m ¡ 1 units of s remain to complete upon entering vertex 3n + 4m + 1, then

the truth assignment makes Á false. The proof in the next subsectionwill °esh out these

intuitions; here our purposeis merely to intro duce the construction.

The tail gadget is pictured in Figure 5.11. The tail gadget follows the formula

gadget. The tail gadget has two vertices 3n + 4m + 1 and 3n + 4m + 2 connectedby an

edgeof duration m ¡ 1. The duration of the edgeis signi¯cant, in that if more than m ¡ 1

units of job s are pending when vertex 3n + 4m + 1 is entered, then s will not be able to

¯nish beforevertex 3n + 4m + 2 is entered. Intuitiv ely, s will be able to ¯nish beforevertex

3n + 4m + 2 is entered if and only if every truth assignment makessomeclauseof Á true,

i.e., if and only if Á is a tautology.

Pro of of coNP-hardness of DA G scheduling

We now preciselyde¯ne the reduction from DAG scheduling to 3-TAUT. We ¯rst

present a polynomial-time function that maps each 3-DNF formula Á to a DAG scheduling

problem P[Á]. We then show that Á is a tautology if and only if P[Á] hasa winning strategy,

thus establishing that DAG scheduling is coNP-hard (Theorem 5.30).

Given a 3-DNF formula Á =
Wn

i=1 ` i; 1 ^ ` i; 2 ^ ` i; 3 we de¯ne the DAG scheduling
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problem P[Á] = ((V; v0; E; D); (J; t; r ; d)) as follows:

² The set V of vertices is [1 :: 3n + 4m + 2].

² The initial vertex v0 is 1.

² The set E of edgesis:

f (3i ¡ 2) ! (3i ¡ 1) j i 2 [1 :: n]g [ (assignment gadget)

f (3i ¡ 2) ! (3i ) j i 2 [1 :: n]g [ "

f (3i ¡ 1) ! (3i + 1) j i 2 [1 :: n]g [ "

f (3i ) ! (3i + 1) j i 2 [1 :: n]g [ "

f (3n + 4i ¡ 3) ! (3n + 4i ¡ 2) j i 2 [1 :: m]g [ (formula gadget)

f (3n + 4i ¡ 3) ! (3n + 4i ¡ 1) j i 2 [1 :: m]g [ "

f (3n + 4i ¡ 3) ! (3n + 4i ) j i 2 [1 :: m]g [ "

f (3n + 4i ¡ 2) ! (3n + 4i + 1) j i 2 [1 :: m]g [ "

f (3n + 4i ¡ 1) ! (3n + 4i + 1) j i 2 [1 :: m]g [ "

f (3n + 4i ) ! (3n + 4i + 1) j i 2 [1 :: m]g [ "

f (3n + 4m + 1) ! (3n + 4m + 2)g tail gadget

² For each edgee = v ! v0 2 E, the duration D(e) of e is:

D(e) =

8
<

:
m ¡ 1 if v = 3n + 4m + 1 and v0 = 3n + 4m + 2

1 otherwise

² The set J of jobs is:

f t i;k j i 2 [1 :: n] ; k 2 [1 :: m]g [

f f i;k j i 2 [1 :: n] ; k 2 [1 :: m]g [

f o;sg

² For each job j 2 J , the time t(j ) required by j is 1.
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² The set r (v) of jobs releasedat vertex v 2 V is de¯ned as follows:

r (3i ¡ 2) = f og for i 2 [1 :: n]

r (3i ¡ 1) = f o;t i;k j k 2 [1 :: m]g for i 2 [1 :: n]

r (3i ) = f o;f i;k j k 2 [1 :: m]g for i 2 [1 :: n]

r (3n + 4i ¡ 3) = f sg for i 2 [1 :: m]

r (3n + 4i ¡ 2) = f og for i 2 [1 :: m]

r (3n + 4i ¡ 1) = f og for i 2 [1 :: m]

r (3n + 4i ) = f og for i 2 [1 :: m]

For all other vertices v 2 V, r (v) = ; .

² The set d(v) of jobs due at vertex v 2 V is de¯ned as follows:

d(3i ¡ 1) = f og for i 2 [1 :: n]

d(3i ) = f og for i 2 [1 :: n]

d(3i + 1) = f og for i 2 [1 :: n]

d(3n + 4i ¡ 3 + i 0) =
©

j i;i 0
ª

for i 2 [1 :: m] ; i 0 2 [1 :: 3]

d(3n + 4i + 1) = f og for i 2 [1 :: m]

d(3n + 4m + 2) = f sg

where j i;i 0 is de¯ned by (5.11). For all other vertices v 2 V, d(v) = ; .

It can easily be seenthat the DAG scheduling problem P[Á] can be derived from

the 3-DNF formula Á in time polynomial in the size of Á. We now prove the following

lemma, which establishesTheorem 5.30.

Lemma 5.31. The 3-DNF formula Á is a tautology if and only if the DAG scheduling

problem P[Á] has a winning strategy.

Proof. (( ) Suppose that Á is not a tautology. We will show that P[Á] has no winning

strategy. Consider a truth assignment T that makes Á false. For each clause` i; 1 ^ ` i; 2 ^

` i; 3 there exists an integer i 0 2 [1 :: 3] such that T makes ` i;i 0 false. Consider the run ½

corresponding to this truth assignment and choice of literals; more precisely, de¯ne ½as

follows. For i 2 [1 :: n], ½passesthrough vertex 3i ¡ 1 if T(x i ) = true, or through vertex 3i

if T(x i ) = false. For i 2 [1 :: m], ½passesthrough vertex 3n + 4i ¡ 3+ i 0. At each of the m

vertices 3n + 4i ¡ 3 + i 0, the job j i;i 0 (as de¯ned by (5.11)) is due; moreover each such job
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has beenbeenreleasedon run ½. From vertex 1 to 3n + 1 there are 2n time units of job o

due; from vertex 3n + 1 to 3n + 4m + 1 there are m time units of o due and m time units

of the jobs j i;i 0 due, for a total of 2n + 2m time units. If each instance of job o and each

job j i;i 0 completesin the 2n + 2m time units before vertex 3n + 4m + 1, then the m time

units of job s cannot complete in the remaining m ¡ 1 free time units before s is due at

vertex 3n + 4m + 2. Thus P[Á] doesnot have a winning strategy.

() ) Supposethat Á is a tautology. We shall exhibit a strategy ¾, and then show

that it is winning. Let ¾be de¯ned as follows:

² Consider any run ½= (1; ¢¢¢; i ) whose¯nal vertex i is in the set [2 :: 3n + 1]. Then

¾(½;o) = 1.

² Let i be a member of [1 :: m], and let i 0 be a member of [1 :: 3]. Let ½be a run whose

¯nal vertex is 3n + 4i ¡ 3 + i 0. If j i;i 0 has been releasedalong ½, then ¾(½;j i;i 0) = 1,

where j i;i 0 is as de¯ned by (5.11). Otherwise ¾(½;s) = 1.

² For any run ½= (1; ¢¢¢; 3n + 4i + 1), where i 2 [1 :: m], ¾(½;o) = 1.

² Finally, for any run ½whose¯nal vertex is 3n + 4m + 2, ¾(½;s) = m ¡ 1.

Note that, by construction, all instancesof job o, aswell asjobs t i;i 0 and f i;i 0, completebefore

they aredue. It remainsto show that s alsocompletesbeforeit is due. Consideran arbitrary

run ½from vertex 1 to vertex 3n + 4m + 2, and the corresponding truth assignment T. More

precisely, T(x i ) = true if ½passesthrough vertex 3i ¡ 1, and T(x i ) = false if ½passesthrough

vertex 3i . SinceÁ is a tautology, T makes someclauseof Á, say ` i; 1 ^ ` i; 2 ^ ` i; 3, true. For

any i 0 2 [1 :: 3], considerany continuation ½0 of ½whose¯nal vertex is 3n + 4i ¡ 3+ i 0. Since

the job j i;i 0 due at vertex 3n + 4i ¡ 3+ i 0 hasnot beenreleased,¾(½;s) = 1. Sinces executes

for 1 unit of time before vertex 3n + 4m + 1, each instance of s completesbefore it is due

at vertex 3n + 4m + 2. Thus ¾is winning.

An upp er bound on the complexit y of DA G scheduling

Theorem 5.30 gives a lower bound on the complexity of DAG scheduling. For an

upper bound, note that a DAG scheduling problem has no more than (jVj + 1)jVj+1 runs.

Now, (jVj + 1)jVj+1 = 2(jV j+1) log2 (jV j+1) = 2O(jV j2 ) . Using this fact, it may easily be shown

that for DAG scheduling problem P, the set Lin [P] of linear inequalities hasat most 2f ( jP j)
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members, for some polynomial function f , where jP j is the size of the description of P.

Further, each constraint in Lin [P] has size polynomial in jP j. The constraints in Lin [P]

may be solved by a linear programming algorithm in time polynomial in 2f ( jP j) , i.e., in time

2g(jP j) for somepolynomial function g. It is therefore possibleto show:

Theorem 5.32. DAG scheduling is in EXPTIME.

Determining a tighter upper bound on the complexity of DAG scheduling has

proved di±cult. It is tempting to think of a DAG scheduling problem P as a gameplayed

by two players, the scheduler and the environment, on an alternating Turing machine: the

movesof the players alternate, with the environment writing down the next vertex v, and

then the schedulerwriting down the amount of time allocated to each job beforev is entered.

If the running time of this alternating Turing machine were polynomial in the description

of P, then DAG scheduling would be in PSPACE. It is not clear, however, that it su±ces for

the scheduler to write down rational numbers with denominators whosesize is polynomial

in the description of P; thus, it is not clear that the running time of this alternating Turing

machine is polynomial. It is an open questionwhereDAG scheduling lies in the gap between

coNP and EXPTIME.

5.4 Fixed-deadline conditional scheduling

For conditional scheduling problems in which the graph (V; E) contains cycles,

developing a strategy synthesis algorithm | even a superpolynomial-time algorithm |

has proved very di±cult. Though the author cannot locate the source of this di±cult y

with complete con¯dence, he nonethelessbelieves that the problem lies with the lack of

standard forms of winning strategies for conditional scheduling problems. This concept is

best explained by comparison with the EDF scheduling algorithm. The way that EDF is

shown to optimal, say for the problem 1 j r j ; dj ; prec; pmtn j ¡ (for a de¯nition of this

problem, seeChapter 4), is to show that an arbitrary feasiblescheduleS can be rearranged

into the scheduleS0 that EDF would have produced. The scheduleproducedby EDF is thus

a standard form that represents a classof feasibleschedules. For a conditional scheduling

problem P, the processof going from the constraints Lin [P] to a winning strategy ¾involves

global optimization, so that one is hard-pressedto locate a standard form for winning

strategies.
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Supposehowever that P is a conditional scheduling problem in which all deadlines

are ¯xed. That is, after a job j is released,j has a deadline some¯xed number of time

units later. This deadline is the sameregardlessof which vertex releasesj , and regardless

of the sequenceof vertices encountered after j is released.11 It was observed in [CET01]

that, for such a ¯xed-deadline conditional scheduling problem, EDF is an optimal scheduling

algorithm. As in Section4.3.3,the technical challengenow becomesoneof detecting whether

so much computation is releasedthat EDF cannot produce a feasible schedule. In this

section, we will develop an algorithm that makes this determination. The algorithm that

we obtain will run in doubly exponential time, and will determine whether a ¯xed-deadline

conditional scheduling problem has a winning strategy.

This section generalizesthe results of [CET01] by allowing the analysis of condi-

tional scheduling problems with arbitrary graphs (V; E). In [CET01] the graph is required

to be a DAG with a unique sourcevertex and a unique sink vertex. Theserestrictions may

be slightly relaxed by allowing an edgefrom the sink to the source,the only cycles in the

graph being formed by such an edge[Cha03]. In this section, we remove theserestrictions.

Whereas[CET01] presented a fully polynomial-time approximation scheme,our algorithm

is a doubly exponential-time exact algorithm. As we will show in Theorem 5.39, the exact

decision problem | determining whether a ¯xed-deadline conditional scheduling problem

has a winning strategy | is coNP-hard. The proof of this fact adapts a construction

from [CET01]. There is thus no polynomial-time algorithm for the exact decision prob-

lem, unlessP = coNP. Where the complexity of our ¯xed-deadline conditional scheduling

problem lies in the gap betweencoNP and 2EXPTIME is an open question.

We begin with a de¯nition of ¯xed-deadline conditional scheduling. Rather than

placing additional conditions on De¯nition 5.1 to obtain a de¯nition of ¯xed-deadline prob-

lems, we opt for the following, lesscumbersome,de¯nition.

De¯nition 5.33 (¯xed-deadline conditional scheduling problem). A ¯xed-deadline

conditional scheduling problem is a pair (F ; W), where:

² F is de¯ned as in De¯nition 5.1.

² W = (J; t; r ; d), where J , t, and r are de¯ned as in De¯nition 5.1, and d : J ! Q> 0 is

a function assigningto each job j a positive rational deadline d(j ). ¤

11 A ¯xed-deadline scheduling problem is obtained for a multi-mo de Giotto program if the scheduling
algorithm considers the logical deadline of each task to be its actual deadline.
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We now de¯ne the classof ¯xed-deadline conditional scheduling problemsthat our

algorithm is capableof analyzing.

² We require that the duration D(e) of each edgee is an integer, and that the time t(j )

and deadline d(j ) of each job j are integers. This requirement may be removed by

multiplying each of thesequantities by the least commonmultiple of the denominators

of thesequantities; for simplicit y, however, we retain this requirement.

² We require that every vertex have a successor.This requirement is not strict, as any

graph not satisfying it may be transformed into a graph that does:add an edgefrom

every vertex with no successorto a new vertex v that releasesno jobs, with a new

edgefrom v back to itself.

² We require that if a vertex releasesa job j , then at least d(j ) time units passbefore j

is releasedagain. Unlike the previous two requirements, this one is necessaryfor the

algorithm we shall develop.

More precisely, we de¯ne as follows the conditions under which a ¯xed-deadline conditional

scheduling problem is well-formed.

De¯nition 5.34 (w ell-formed ¯xed-deadline conditional scheduling problem). A

¯xed-deadline conditional scheduling problem is well-formed if the following conditions hold:

² For every edgee 2 E, D(e) 2 Z> 0, and for every job j 2 J , t(j ); d(j ) 2 Z> 0.

² For each v 2 V there exists a vertex v0 2 V such that v ! v0.

² Consider any job j 2 J and any run ½ = (v0; ¢¢¢; vn ) 2 R. Let i < k be two

nonnegative integers such that j 2 r (vi ) and j 2 r (vk ). Then d(j ) ·
P k¡ 1

`= i D(vi !

vi +1 ). ¤

Becausenumerical quantities rather than vertices are now used to imposedead-

lines, exactly when a job executes between the time ¿(i ) when vi is entered and the

time ¿(i + 1) when vi +1 is entered is now important, rather than just the proportion of

time allocated to a job between ¿(i ) and ¿(i + 1). For this reason, the de¯nition of a

strategy has to be modi¯ed to ¯t our new setting.
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De¯nition 5.35 (strategy). Let P be a well-formed ¯xed-deadline conditional scheduling

problem. A strategy ¾for P is a function that assignsto each run ½= (v0; ¢¢¢; vn ) 2 R a

pair ¾(½) = (I ; e) such that:

² I is a set of intervals, each of which is a nonempty, left-open and right-open subsetof

(¿(n ¡ 1); ¿(n)). Distinct intervals must not overlap, i.e., if i; i 0 2 I and i 6= i 0, then

i \ i 0 = ; .

² e : I ! J is a function mapping each interval i to a job e(i ). We say that job e(i ) is

executed in interval i .

For a strategy ¾ and a run ½2 R, we let I [¾; ½] (respectively, e[¾; ½]) denote I (respec-

tiv ely, e), where (I ; e) = ¾(½). Intuitiv ely, I [¾; ½] are the intervals in which some job is

executedby ¾ along ½, and e[¾; ½] is a function which gives the jobs executed in these in-

tervals. Finally, for a job j 2 J , we let I [¾; ½;j ] denote the set f i 2 I [¾; ½] j j = e[¾; ½](i )g.

Intuitiv ely, I [¾; ½;j ] is the set of intervals in which job j is executedby ¾along ½. ¤

We now de¯ne the conditions under which a strategy is winning. A strategy ¾is

winning if, for every in¯nite path (v0; v1; ¢¢¢) through the graph (V; E), for every integer

i 2 Z¸ 0, for every job j 2 r (vi ), ¾allocatest(j ) time to job j between¿(i ) and ¿(i ) + d(j ).

More precisely:

De¯nition 5.36 (winning strategy , Fixe d-dead line scheduling ). A strategy ¾for a

well-formed ¯xed-deadline conditional scheduling problem P is winning if for any in¯nite

sequence(v0; v1; ¢¢¢) of vertices, beginning with the initial vertex v0, such that vi ! vi +1

for i 2 Z¸ 0, for any integer k 2 Z¸ 0, for any job j 2 r (vk ):

1X

`= k+1

X

i 2 I [¾;(v0 ;¢¢¢;v` );j ]

ji \ (¡1 ; ¿(k) + d(j )) j ¸ t(j )

The set Fixed-deadline scheduling is f P j P is a well-formed ¯xed-deadline conditional

scheduling problem and P has a winning strategyg. ¤

From the optimalit y of EDF for ¯xed-deadline conditional scheduling [CET01], it may

easily be veri¯ed that if a well-formed ¯xed-deadline conditional scheduling problem P has

a winning strategy, then P hasa winning strategy ¾in which the endpoints of each interval

i 2 I [¾; ½] are integers, for each run ½2 R.
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Algorithm 5.5 EDF algorithm for ¯xed-deadline conditional scheduling problems.

1: Algorithm EDF( Time : Z¸ 0, Remaining: array J of Z¸ 0, Deadline: array J of Z¸ 0)
2: while Time > 0 and Remaining[j ] > 0 for somej 2 J do
3: let j := a job in J such that Deadline[j ] is minimal in
4: ¢ := min f Time ; Remaining[j ]g
5: Time := Time ¡ ¢, Remaining[j ] := Remaining[j ] ¡ ¢
6: for all j 2 J such that Remaining[j ] > 0 do
7: Deadline[j ] := Deadline[j ] ¡ ¢
8: if Remaining[j ] > Deadline[j ] for any j 2 J then
9: Report that P has no winning strategy, and return.

We now develop an algorithm for determining whether a ¯xed-deadline conditional

scheduling problem has a winning strategy. We ¯rst present an EDF scheduling algorithm

(Algorithm 5.5). Wethen wepresent an algorithm that usesAlgorithm 5.5to detect overload

(Algorithm 5.6). For any run (v0; v1; ¢¢¢), and any i 2 [0 :: 1 ], Algorithm 5.5 describeshow

EDF schedulesthe time interval (¿(i ); ¿(i + 1)) from the time vertex vi is entered until the

time vertex vi +1 is entered. EDF has three inputs:

1. Time , a nonnegative integer, initially set to the duration of the edgevi ! vi +1 . Time

indicates the amount of time remaining in the interval (¿(i ); ¿(i + 1)).

2. Remaining, an array of nonnegative integersindexedby the setJ of jobs, that speci¯es

how many units of execution time remain for each job.

3. Deadline, also an array of nonnegative integers indexed by J , that speci¯es for each

job j the amount of time until j 's deadline expires.

In lines 2{3, while sometime from the interval (¿(i ); ¿(i + 1)) is remaining, and somejob has

execution time remaining, a job j with minimal deadline is selected. This job is executed

for Time or Remaining[j ] time units, whichever quantit y is smaller; call this quantit y ¢

(lines 4{5). Line 7 ¯xes up the array Deadline to account for the fact that ¢ units of time

have elapsed. If there is some job j such that Remaining[j ] > Deadline[j ], the deadline

for j cannot be met (line 8). In this case,P has no winning strategy (line 9).

Unfortunately, sincethe number of runs, and the lengths of each run, are in general

in¯nite, Algorithm 5.5 cannot be used to check each run in turn, as the processwould

never terminate. However, there are only ¯nitely many permissiblevectors Remaining and
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Algorithm 5.6 State-spaceexploration algorithm for ¯xed-deadline conditional scheduling.
1: Algorithm Explore(P: well-formed ¯xed-deadline conditional scheduling problem)
2: for all v 2 V do
3: Frontier [v] := Explored[v] := ;
4: let Remaining[j ] := Deadline[j ] := 0 for each j 2 J in
5: Frontier [v0] := (Remaining; Deadline)
6: while Frontier [v] 6= ; for somev 2 V do
7: Selectany vertex v such that Frontier [v] 6= ; .
8: let (Remaining; Deadline) be any member of Frontier [v] in
9: Frontier [v] := Frontier [v] n f (Remaining; Deadline)g

10: Explored[v] := Explored[v] [ f (Remaining; Deadline)g
11: for all j 2 r (v) do
12: Remaining[j ] := t(j ), Deadline[j ] := d(j )
13: for all v0 2 V such that v ! v0 do
14: let (¢ 0; Remaining0; Deadline0) := EDF( D(v ! v0); Remaining; Deadline) in
15: if (Remaining0; Deadline0) =2 Explored(v0) then
16: Frontier (v0) := Frontier (v0) [

©
(Remaining0; Deadline0)

ª

17: if EDF has not declaredthat P has no winning strategy then
18: P has a winning strategy.

Deadline, since

Remaining[j ] 2 [0 :: t(j )] and Deadline[j ] 2 [0 :: d(j )] for each job j 2 J (5.12)

This observation suggestsa state spaceexploration algorithm (Algorithm 5.6), wherea state

is a pair (Remaining; Deadline) of vectorssatisfying (5.12). For each vertex v, Algorithm 5.6

keepstrack of a set of unexploredstatesFrontier [v] and a set of exploredstatesExplored[v].

Initially , Frontier [v0] is just a pair of zero vectors, corresponding to the fact that no jobs

have either remaining execution time or upcoming deadlines,and Frontier [v] = ; for each

vertex v 6= v0 (lines 2{5). Now, as long as some vertex v has a nonempty frontier, a

pair (Remaining; Deadline) is selectedfrom Frontier [v] (lines 6{8). This pair is removed

from the frontier of v, and added to the explored set of v (lines 9{10). Lines 11{12 update

Remaining and Deadline to account for the jobs releasedat vertex v. Now, for each successor

vertex v0of v, we let Remaining0and Deadline0be the result of applying Algorithm EDF for

D(v ! v0) time units (lines 13{14).12 If (Remaining0; Deadline0) is not in the explored set

of v0, then (Remaining0; Deadline0) is added to the frontier set. Finally, after all reachable

states have been visited (line 17), if no call to Algorithm EDF reported failure, then the

12 We assumea call-by-value semantics, so that Remaining and Deadline are not modi¯ed by the call in
line 14 to Algorithm EDF.



CHAPTER 5. CONDITIONAL SCHEDULING 164

¯xed-deadline problem P is reported to have a winning strategy (line 18).

It is easyto show, basedon the optimalit y of EDF for ¯xed-deadline conditional

scheduling [CET01], that Algorithm 5.6 correctly determines whether P has a winning

strategy. Further, the while loop in lines 6{16 executesat most oncefor each vertex v and

state (Deadline, Remaining), i.e., at most jVj
³ Q

j 2 J t(j )
´ ³ Q

j 2 J d(j )
´

times. The running

time of Algorithm 5.6 is thus doubly exponential in the sizeof P. We summarizethis result

in the following theorem.

Theorem 5.37. Algorithm 5.6determineswhether a well-formed ¯xed-deadline conditional

scheduling problem P hasa winning strategy. The running time of Algorithm 5.6 is doubly

exponential in the sizeof P.

The following corollary follows directly from Theorem 5.37:

Corollary 5.38. Fixed-deadline scheduling is in 2EXPTIME.

It shouldbenoted that sincet(j ) and D(e) are in Z (rather than Q) for each job j 2

J and each edgee 2 E, only discrete-time strategiesare produced by Algorithm 5.6. Since

Algorithm 5.6 is optimal, for ¯xed-deadline problems the existenceof a winning strategy

implies the existenceof a winning discrete-time strategy. (This fact, it will be recalled from

Section 5.3.1, is in contrast to varying-deadline conditional scheduling problems.) Thus, a

discrete-time version of Fixed-deadline scheduling would be no more complex than Fixed-

deadline scheduling itself; for brevity we do not formalize this observation. It should alsobe

noted that for a ¯xed-deadline scheduling problem P in which the graph (V; E) is a tree, the

running time of Algorithm 5.6 is polynomial in the sizejP j of the description of P, sinceonly

one pair (Remaining; Deadline) is ever added to Frontier [v] for any vertex v 2 V. Thus, as

one would expect from our previous results on varying-deadline tree scheduling problems,

deciding whether a ¯xed-deadline tree scheduling problem has a winning strategy, and if so

synthesizing such a strategy, may be performed in polynomial time. Fixed-deadline DAG

scheduling is coNP-complete,as we discussbelow.

A lower bound on the complexit y of Fixe d-dead line scheduling

It may be wonderedwhether there existsa polynomial-time algorithm that decides

membership in Fixed-deadline scheduling. We now show that there is no such algorithm,

unlessP = coNP. We adapt a construction from [CET01] to prove the following:
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Figure 5.12: The ¯xed-deadline conditional scheduling problem produced from a knapsack
problem K .

Theorem 5.39. Fixed-deadline scheduling is coNP-hard.

Proof. A knapsackproblem K consistsof n integral weights wi 2 Z> 0 and gains gi 2 Z> 0,

for i 2 [1 :: n], a gain goal G 2 Z> 0, and a weight goal W 2 Z> 0. The problem K is a

member of the set Knapsack if there exists a subsetS of [1 :: n] such that

X

i 2 S

gi > G (5.13)

X

i 2 S

wi · W (5.14)

Knapsack is NP-hard [GJ77].

We present a polynomial-time function that, given a knapsack problem K , pro-

duces a ¯xed-deadline conditional scheduling problem P[K ] with the following property:

K 2 Knapsack if and only if P[K ] =2 Fixed-deadline scheduling. This will establish that

Fixed-deadline scheduling is coNP-hard. Without lossof generality, we scaleK so that the

weight goal W and each weight wi is an integer multiple of maxi 2 [1 :: n] gi . Given a knapsack

problem K , our function createsa conditional scheduling problem (F [K ]; (J [K ]; t[K ]; r [K ];

d[K ])), where J [K ] = f o; j ; j 1; ¢¢¢; j ng, F [K ] and r [K ] are as pictured in Figure 5.12,

and t[K ] and d[K ] are de¯ned as follows:

t[K ](o) = 1

t[K ](j ) = W ¡ G

t[K ](j i ) = gi for i 2 [1 :: n]

d[K ](o) = 1

d[K ](j ) = n + W

d[K ](j i ) = wi for i 2 [1 :: n]
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Note that t[K ](j i ) · D(2i; 2i + 1) sincegi · wi . Wenow show that K 2 Knapsack (i.e., there

exists a set S satisfying (5.13) and (5.14)) if and only if P[K ] =2 Fixed-deadline scheduling.

() ) Let S be a set satisfying (5.13) and (5.14). Let ½= (v0; ¢¢¢; vm ) be a run such

that (1) v0 = 1, (2) vm = 2n+ 2, and (3) ½visits vertex 2i , for i 2 [1 :: n], if and only if i 2 S.

Note that vm¡ 1 = 2n + 1. To obtain a contradiction, supposethat there exists a winning

strategy ¾. From time 0 until time ¿(m ¡ 1), ¾ executesjob o for n time units, and jobs

f j i j i 2 Sg, for a total of > G time units. Thus upon entering vertex vm¡ 1, ¾has executed

job j for < ¿(m ¡ 1) ¡ n ¡ G time units, and so j must executefor > n + W ¡ ¿(m ¡ 1) units

of time before j completes. However, upon entering vertex vm¡ 1, the number of time units

remaining before j 's deadline is n + W ¡ ¿(m ¡ 1). Thus job j cannot meet its deadline,

and ¾cannot be winning.

(( ) Supposethat K =2 Knapsack. We construct a strategy ¾, and then show ¾

to be winning. Let ½= (v0; ¢¢¢; vm ) be a run of P[K ]. We de¯ne ¾by cases,basedon the

structure of ½:

² If vm¡ 1 = 2i ¡ 1 for somei 2 [1 :: n], then ¾(½) = (I ; e), where I contains only the

interval (¿(m ¡ 1); ¿(m)), and e(¿(m ¡ 1); ¿(m)) = o.

² If vm = 2n + 2, then ¾(½) = (I ; e), whereI contains only the interval (¿(m ¡ 1); ¿(m)),

and e(¿(m ¡ 1); ¿(m)) = j .

² Otherwise, for some i 2 [1 :: n], vm¡ 1 = 2i and vm = 2i + 1. Then ¾(½) = (I ; e),

whereI contains the two intervals i 1 = (¿(m¡ 1); ¿(m)¡ gi ) and i 2 = (¿(m)¡ gi ; ¿(m)),

and:
e(i 1) = j

e(i 2) = j i

By construction, all the o and j i jobs meet their deadlines. It remains to show that the j

job meets its deadline at time n + W.

For any edgee = (v; v0) in P[K ], de¯ne the weight W(e) of e to be wi if i 2 [1 :: n],

v = 2i , and v0 = 2i + 1, and 0 otherwise. For a run ½= (v0; ¢¢¢; vm ), de¯ne the weight

W(½) of ½to be
P m¡ 1

`=1 W(vi ; vi +1 ). Let ½= (v0; ¢¢¢; vm ) be any run such that v0 = 1,

vm¡ 1 = 2n + 1, and vm = 2n + 2. To show that j meets its deadline, there are three cases

to consider:
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² CaseI: W(v0; ¢¢¢; vm¡ 1) < W. Note that ¿(m ¡ 1) = n + W(v0; ¢¢¢; vm¡ 1) < n +

W. Prior to vertex vm¡ 1, ¾ allocates · G time to the j i jobs (otherwise, the set

f i 2 [1 :: n] j ½visits vertex 2ig would satisfy conditions (5.13) and (5.14), and K

would be in Knapsack). Thus, at time ¿(m ¡ 1), ¾ has already executed job j for

¸ ¿(m ¡ 1) ¡ n ¡ G time. Between time ¿(m ¡ 1) and time n + W, ¾ allocates

n + W ¡ ¿(m ¡ 1) additional time units to j . The total time that ¾ allocates to j

before time n + W is therefore ¸ W ¡ G.

If caseI does not hold, let ½0 = (v0; ¢¢¢; vm0) be the shortest pre¯x of run (v0; ¢¢¢; vm¡ 1)

such that W(½0) ¸ W . Note that, since½0 is the shortest such pre¯x, (1) vm0 = 2i + 1 for

somei 2 [1 :: n], (2) vm0¡ 1 = 2i , and (3) W(v0; ¢¢¢; vm0¡ 1) < W.

² CaseI I: W(v0; ¢¢¢; vm0) = W. Prior to time ¿(m0), ¾ allocates · G time to the j i

jobs (otherwise, K would be in Knapsack). Thus, by time ¿(m0), ¾allocates¸ W ¡ G

time to j . Since¿(m0) · n + W, ¾allocates¸ W ¡ G time to j before time n + W.

² CaseI I I: W(v0; ¢¢¢; vm0) > W. Note that ¿(m0) ¡ W(v0; ¢¢¢; vm0) · n; thus, ¿(m0) ¡

W(v0; ¢¢¢; vm0) + W · n + W. If we can show that ¾allocatesat least W ¡ G time to

job j prior to time ¿(m0) ¡ W(v0; ¢¢¢; vm0) + W, we will be done. We split the time

that ¾ allocates to job j into two parts, the portion before time ¿(m0 ¡ 1), and the

portion betweentime ¿(m0¡ 1) and time ¿(m0) ¡ W(v0; ¢¢¢; vm0) + W:

{ SinceW(v0; ¢¢¢; vm0¡ 1) < W, prior to time ¿(m0¡ 1), ¾allocates · G time to

the j i jobs (otherwise, K would be in Knapsack). Thus, prior to time ¿(m0¡ 1),

¾allocates¸ W(v0; ¢¢¢; vm0¡ 1) ¡ G time to job j .

{ Sinceboth W and W(v0; ¢¢¢; vm0) aremultiples of maxi 2 [1 :: n] gi , W(v0; ¢¢¢; vm0)¡

W ¸ maxi 02 [1 :: n] gi 0 ¸ gi . Thus, ¿(m0) ¡ W(v0; ¢¢¢; vm0) + W · ¿(m0) ¡ gi . By

the construction of ¾, job j is executedfrom time ¿(m0¡ 1) until time ¿(m0) ¡ gi ,

i.e., at least until time ¿(m0) ¡ W(v0; ¢¢¢; vm0) + W.

Thus, betweentimes ¿(m0¡ 1) and ¿(m0) ¡ W(v0; ¢¢¢; vm0) + W, ¾executesj for

¿(m0) ¡ ¿(m0¡ 1) ¡ W(v0; ¢¢¢; vm0) + W time units. Since¿(m0) ¡ ¿(m0¡ 1) =

W(v0; ¢¢¢; vm0) ¡ W(v0; ¢¢¢; vm0¡ 1), ¾executesj for W ¡ W(v0; ¢¢¢; vm0¡ 1) time

units betweentime ¿(m0¡ 1) and time ¿(m0) ¡ W(v0; ¢¢¢; vm0) + W.

Adding the two portions, we seethat the total time allocated by ¾to job j up to time

¿(m0) ¡ W(v0; ¢¢¢; vm0) + W is ¸ W ¡ G. ¤
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Where exactly the complexity of Fixed-deadline scheduling lies between 2EXP-

TIME and coNP is an open question. For acyclic ¯xed-deadline scheduling problems, the

complexity can be located precisely. Recall from De¯nition 5.34and the remarks preceding

it that a well-formed ¯xed-deadline conditional scheduling problem must have an edgefrom

every vertex v to someother vertex. We therefore de¯ne acyclicity as follows:

De¯nition 5.40 (Fixe d-dead line DA G scheduling ). A well-formed ¯xed-deadline con-

ditional scheduling problem is acyclic if (1) the only cyclesin the graph (V; E) are formed

by edgesof the form v ! v, i.e., from a vertex to itself, (2) any such vertex v has no other

outgoing edges,and (3) for any such vertex v, r (v) = ; . We call such a vertex v terminal .

Fixed-deadline DAG scheduling is the set f P j P is an acyclic well-formed ¯xed-deadline

conditional scheduling problem that has a winning strategyg. ¤

It may be shown that Fixed-deadline DAG scheduling is in coNP: a short certi¯cate of

non-membership in Fixed-deadline DAG scheduling is a run ½from v0 to a terminal vertex

such that EDF cannot meet all job deadlineswhen the environment choosesto follow ½.

Indeed, Fixed-deadline DAG scheduling is coNP-hard, since the construction in the proof

of Theorem 5.39 produced only acyclic problems. We summarize in the following theorem:

Theorem 5.41. Fixed-deadline DAG scheduling is coNP-complete.

5.5 Conclusion

In this chapter, we investigated conditional scheduling problems. Table 5.1 on

page119summarizesour results. We ¯rst intro duceda novel model, conditional scheduling

with varying deadlines. We developed a polynomial-time algorithm for determining whether

a conditional scheduling problem has a feasible schedule (or, in the terminology of this

chapter, a winning strategy). We extended this basic conditional scheduling model in

three ways, and developed a polynomial-time algorithm for each extension. First, to model

imprecisescheduling and anytime algorithms, weshowedin Section5.2.2how a linear reward

function may be added to conditional scheduling problems. Second,in Section 5.2.3, we

showed how the conditional scheduling model may be extendedwith precedenceconstraints

that limit the order in which jobs may execute. Third, in Section5.2.4, we showed how the

precedence-constrainedmodel of Section 5.2.3 may be extendedwith guard jobs that must

be executedto determine the next vertex the environment will enter.
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In Section 5.3, we showed that two variants of the basic conditional scheduling

problem are computationally hard. In Section 5.3.1, we showed that if the scheduler is

restricted to make decisionsonly at integral points in time | modeling a periodic timer

interrupt, for example | then the problem of ¯nding a feasible schedule is NP-hard. In

Section 5.3.2, we showed that if the graph (V; E) of a conditional scheduling problem is

acyclic (rather than a tree), then the problem of ¯nding a feasibleschedule is coNP-hard.

Finally, for conditional scheduling problemswith ¯xed deadlines,wepresented in Section5.4

a doubly exponential-time algorithm that tests for the existenceof a winning strategy, and

we showed that deciding whether a ¯xed-deadline problem has a feasibleschedule is coNP-

hard.

In Chapter 6, we will use Algorithm 5.4 of Section 5.2.4 to synthesize single-

processorschedulesfor multi-mo de Giotto programs.
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Chapter 6

Multi-mo de, single-pro cessor

Giotto scheduling

6.1 In tro duction

This chapter shows how to use a conditional scheduling algorithm to synthesize

single-processorschedulesfor multi-mo de Giotto programs. We develop an algorithm that,

when given a multi-mo de Giotto program G, ¯rst translates the scheduling constraints of G

into a set of guarded conditional scheduling problems, and then attempts to synthesize a

feasibleguarded schedule for each such problem, using the guarded conditional scheduling

algorithm of Section 5.2.4.

The scheduling algorithm of this chapter is the analogue,in a multi-mo de context,

of the single-mode Giotto scheduling algorithm of Section 4.4, which when given a single-

mode Giotto program G, ¯rst translated G into an instanceof 1 j r j ; dj ; prec; pmtn; period j

¡ , and then attempted to generatea feasible schedule using the algorithm Section 4.3.3.

The structure of this chapter closely follows that of Chapter 4, with two main di®erences.

First, the scheduling theory usedin this chapter wasdeveloped in Chapter 5. For Chapter 4,

the scheduling theory was much simpler and was therefore developed within Section 4.3.

Second,the Giotto scheduling algorithm of this chapter requiresa variant on the conceptof

the activities of a Giotto program from Section2.4.1; this variant is presented in Section6.3.

In contrast, the conceptsof Section 2.4.1 were su±cient for Chapter 4.

Section 6.2 beginsthis chapter by motivating the needfor using varying-deadline,
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precedence-constrainedconditional scheduling algorithms for Giotto. It does so by pre-

senting a Giotto program in which the tasks have deadlines that vary depedent on the

mode-switching behavior of the program. Section 6.2 is the analogue in the multi-mo de

setting of Section 4.2, which motivated the needfor precendence-constrainedscheduling of

single-mode Giotto programs.

Section 6.3 contains preliminary de¯nitions necessaryfor the subsequent develop-

ment of this chapter's scheduling algorithm. Section 6.3.1 reformulates the concept of the

activities of a Giotto program so that this concept can be usedfor multi-mo de scheduling.

Thus, Section 6.3.1 is similar to Section 2.4.1, which formulated the concept of the activi-

ties of a Giotto program in a manner appropriate for single-mode scheduling. Section 6.3.2

de¯nes a pending computation function, and a notion of a rest point, for multi-mo de Giotto

programs. The scheduling algorithm of this chapter requires, intuitiv ely, that there exist a

constant n such that at any moment during the execution of a Giotto program, the amount

of time until the next rest point is at most n. This requirement guaranteesthat the guarded

conditional scheduling problems generatedby the scheduling algorithm of this chapter are

¯nite. The useof rest points in this chapter contrasts with the usein Chapter 4. Here, rest

points are usedto guarantee the termination of the Giotto scheduling algorithm, whereasin

Section4.3.3,rest points wereusedto prove a necessarycondition on feasibility for instances

of the underlying (non-Giotto) scheduling model.

Section 6.4 presents the scheduling algorithm for multi-mo de Giotto programs.

Section 6.4 is the analogue, in the multi-mo de context, of Section 4.4, which presented a

scheduling algorithm for single-mode Giotto programs. Section 6.4.1 begins by de¯ning a

classof multi-mo deGiotto programs(similarly , Section4.4.1presented a classof single-mode

Giotto programs). This classcontains those programs for which the scheduling algorithm

of this chapter correctly determines whether feasible schedulesexist. Next, Section 6.4.2

de¯nes three scheduling questions for multi-mo de Giotto programs. These questions are

the analogues,in the multi-mo de context, of the scheduling questionsof Section 4.4.2 for

single-mode Giotto programs. In particular, Section6.4.2de¯nes a notion of " -feasibility for

multi-mo de Giotto programs, and asks: Doesa program possessan "-feasibleschedule, for

somejitter tolerance" > 0? If so, what is the minimum " ¤ such that the program possesses

a "¤-feasibleschedule?

Section6.4.3beginsthe presentation proper of the scheduling algorithm for multi-

mode Giotto programs. The presentation of the scheduling algorithm is top-down. We ¯rst
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describe Algorithm 6.1. When given a Giotto program G asinput, Algorithm 6.1 producesa

setProblemsof guardedconditional scheduling problems. Each problem P[m; ±] in Problems

captures the constraints of scheduling program G starting from mode m and mode time ±

with no pending computation. Together, the members of Problemscapture the constraints

of scheduling the entire program G. After producing the set Problems, Algorithm 6.1

attempts to generatea feasibleguarded schedule for each problem in Problems, using the

guarded conditional scheduling algorithm of Section 5.2.4. If a schedule can be generated

for each member of Problems, then the program G is "-feasible for some" > 0, and the

generatedschedulesconstitute an " ¤-feasibleschedule; if a schedulecannot be generatedfor

somemember of Problems, then G does not possessan "-feasible schedule for any " > 0

(Theorem 6.25, Section 6.4.5).

After describing Algorithm 6.1, Section 6.4.4 describes the construction of the

guarded conditional scheduling problems P[m; ±]. This construction is the analogue,in the

multi-mo de context, of the single-mode problem P[G; wcet] of Section 4.4.3. Here, the

preliminary de¯nitions of Section 6.3 are used in two ways. First, the reformulation of the

concept of the activities of a Giotto program is usedto de¯ne the ¯nite state machine, job

set, precedencerelation, etc., of the conditional scheduling problem P[m; ±]. Second,the

requirement that there be a bound on the amount of time until the program G reaches a

rest point ensuresthat the construction of P[m; ±] terminates. After describing P[m; ±],

as an example we present a particular problem P[m; ±] for the Giotto program from Sec-

tion 6.2, followed by a completeguardedschedulefor this program. Finally, in Section6.4.5,

we discussthe running time of Algorithm 6.1, and we discusshow the algorithm may be

used to answer the questions posed in Section 4.4.2. Unfortunately, the running time of

Algorithm 6.1 may be doubly exponential in the sizeof its input program G. Fortunately,

Algorithm 6.1 ¯nds an "¤-feasiblestrategy (i.e., a strategy with the minimum jitter toler-

ance"¤) as long as G has an "-feasiblestrategy for some" > 0.

6.2 The need for varying-deadline scheduling

This section presents an examplemulti-mo de Giotto program that shows how the

deadline of a task may vary, conditional on the branching behavior of the program. Recall

from Section 5.1 that a conditional scheduling problem with ¯xed deadlines becomesa

problem with varying deadlines when one adds precedenceconstraints to the scheduling
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model. In a similar way, the ¯xed logical deadlinesof a multi-mo de Giotto program become

varying deadlineswhen oneadopts a precedence-constrainedapproach to scheduling Giotto.

This current section is the analogue,in a multi-mo de context, of Section 4.2, which argued

for the need for precedence-constrainedsingle-processorscheduling of single-mode Giotto

programs. The current Giotto compiler cannot schedulethe exampleprogram of this section,

though the program does possessa feasible schedule. Section 6.4.4 applies the schedule

synthesisalgorithm of Section6.4 to synthesizea completeschedulefor the exampleprogram

of this section.

We now present a multi-mo de Giotto program that illustrates how precedence

constraints lead to varying deadlines. The program of Figure 6.1 has three modes,m1, m2,

and m3. Each mode hasa period of 30, and invokestasks t1 and t2 with frequency1. There

are two di®erencesbetweenthe modes:

² The data°ow betweensensors,tasks, and actuators is di®erent in the two modes(see

Figure 6.2). In all three modes, tasks t1 and t2 receive an input from the sensors.

In mode m2, t1 receives an additional input from t2. In mode m3, t2 receives an

additional input from t1.

² In mode m1 actuator a receivesan input from both t1 and t2. In contrast, in mode m2,

actuator a receives its input from t1 only. In mode m3, actuator a receives its input

from t2 only.

The di®ering data°ow and the switches from mode m1 give t1 and t2 varying

deadlines,as we will now see.Consider the following three executions:

E1 = (m1; 0; ¢; ¢; ¢); (m1; 15; ¢; ¢; ¢); (m1; 30; ¢; ¢; ¢); ¢¢¢

E2 = (m1; 0; ¢; ¢; ¢); (m1; 15; ¢; ¢; ¢); (m2; 30; ¢; ¢; ¢); (m2; 60; ¢; ¢; ¢); ¢¢¢

E3 = (m1; 0; ¢; ¢; ¢); (m1; 15; ¢; ¢; ¢); (m3; 30; ¢; ¢; ¢); (m3; 60; ¢; ¢; ¢); ¢¢¢

In all three executions, the program remains in the start mode m1 until time 15. In exe-

cution E1, the program stays in m1 until time 30. In executionsE2 and E3, the program

enters m2 and m3, respectively, at time 15. Taskst1 and t2 are invoked at time 0. Now, at

time 30 in mode m1, the actuator a gets updated using driver da;m 1 . This driver readsthe

output ports of tasks t1 and t2. Thus, both tasks must ¯nish by time 30.1 In contrast, at

1 In fact, they must ¯nish by time 28, since the execution time of driv er da;m 1 is 2.
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sensor
port s type int time 1

actuator
port a type int init 0

input
port i 1 type int
port i 2 type int
port i 3 type int

output
port o1 type int init 0
port o2 type int init 0

task t1 input i 1 output o1 function f1 time 9
task t2 input i 2 output o2 function f2 time 9

driver dt1 ;m 1 source s guard gt1 ;m 1 time 1 destination i 1 function ht1 ;m 1 time 1
driver dt2 ;m 1 source s guard gt2 ;m 1 time 1 destination i 2 function ht2 ;m 1 time 1
driver dt1 ;m 2 source s, o2 guard gt1 ;m 2 time 1 destination i 1 function ht1 ;m 2 time 1
driver dt2 ;m 2 source s guard gt2 ;m 2 time 1 destination i 2 function ht2 ;m 2 time 1
driver dt1 ;m 3 source s guard gt1 ;m 3 time 1 destination i 1 function ht1 ;m 3 time 1
driver dt2 ;m 3 source s, o1 guard gt2 ;m 3 time 1 destination i 2 function ht2 ;m 3 time 1

driver da;m 1 source o1, o2 guard ga;m 1 time 1 destination a function ha;m 1 time 1
driver da;m 2 source o1 guard ga;m 2 time 1 destination a function ha;m 2 time 1
driver da;m 3 source o2 guard ga;m 3 time 1 destination a function ha;m 3 time 1

driver dm2 source s guard gm2 time 1 destination o1, o2 function hm2 time 5
driver dm3 source s guard gm3 time 1 destination o1, o2 function hm3 time 5

modem1 period 30 ports o1, o2

frequency 1 invoke t1 driver dt1 ;m 1

frequency 1 invoke t2 driver dt2 ;m 1

frequency 1 update da;m 1

frequency 2 switch m2 driver dm2

frequency 2 switch m3 driver dm3

modem2 period 30 ports o1, o2

frequency 1 invoke t1 driver dt1 ;m 2

frequency 1 invoke t2 driver dt2 ;m 2

frequency 1 update da;m 2

modem3 period 30 ports o1, o2

frequency 1 invoke t1 driver dt1 ;m 3

frequency 1 invoke t2 driver dt2 ;m 3

frequency 1 update da;m 3

start m1

Figure 6.1: A Giotto program with varying deadlines.
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mode m1 mode m3mode m2

Figure 6.2: Data°ow di®erencesbetween the modes m1, m2, and m3 of the program of
Figure 6.1.

time 30 in mode m2, actuator a getsupdated using driver da;m 2 . This driver readsonly the

output port of task t1. Thus, task t1 needsto ¯nish by time 30 in execution E2, but task t2

does not. Similarly, at time 30 in mode m3, actuator a gets updated using driver da;m 3 ,

which reads the output port of task t2. Thus, task t2 needsto ¯nish by time 30 in exe-

cution E3, but task t1 does not. We conclude that the deadlinesof tasks t1 and t2 vary

depending on the conditional behavior of the program of Figure 6.1.

6.3 Preliminaries

This section contains preliminary de¯nitions necessaryfor the presentation of the

scheduling algorithm for multi-mo de Giotto programs in Section 6.4. In this section, we

develop a multi-mo de picture of the activities of a Giotto program that contrasts with the

picture of Section 2.4.1. The alternativ e picture of this section will make more convenient

the de¯nition of our algorithm in Section 6.4. There are two main concrete di®erences

betweenthe two pictures:

² First, Section 2.4.1 indexed activities a[i; i 0] by a con¯guration number i and a micro

step number i 0, whereasthis section indexesactivities a[º ; i 0] by, essentially , a pre¯x º

of an execution and a micro step number i 0. The indexing scheme of this section

allows a distinction betweenactivities that have the samecon¯guration number i but

are from executionsthat switch through a di®erent sequenceof modes.

² Second, our algorithm for translating Giotto programs into conditional scheduling



CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 176

problems works only on programs that satisfy a certain condition. In order to de¯ne

this condition, we need to de¯ne a multi-mo de version of the pending computation

function from Section 4.3.3.

The structure of this section is as follows. First, in Section 6.3.1, we present the multi-

mode picture of the activities of a Giotto program. Next, in Section 6.3.2, we de¯ne the

multi-mo de version of the pending computation function.

6.3.1 The activities of a multi-mo de Giotto program

This section is a multi-mo de version of Section 2.4.1, which de¯ned the activities

of a Giotto program. To begin our presentation, we intro duce a variant of the notion of

con¯guration from Section 2.3.2. This variant notion, which we call a control point , is

neededfor two reasons. First, con¯gurations make somedistinctions that we need not to

make: for example, two con¯gurations are di®erent if their port valuations are di®erent.

Second,con¯gurations do not make somedistinctions that we need to make: for example,

they do not explicitly record the mode switch drivers usedto transition betweenmodes.

De¯nition 6.1 (con trol poin t). For any mode m 2 Modesand mode time ± 2 Q:

² If there exists a task (! task ; t; d) 2 Invokes[m] such that ± is an integer multiple of

¼[m]=! task , then we say that ± is an m-invoke time, and that ± is an (m; t; d)-invoke

time.

² If there exists an actuator update (! act ; d) 2 Updates[m] such that ± is an integer

multiple of ¼[m]=! act , then we say that ± is an m-update time, and that ± is an

(m; d)-update time.

² If there exists a mode switch s = (! switch ; m0; d) 2 Switches[m] such that ± is an

integer multiple of ¼[m]=! switch , then we say that ± is an m-switch time, and that ±

is an (m; m0; d)-switch time.

An unconditional control point is a pair (m; ±) such that ± is not an m-switch time and ±

is either an m-invoke or an m-update time. A conditional control point is a 5-tuple

(m; ±; d;m0; ±0) such that ± is an m-switch time, and one of the following two conditions

holds:

² m = m0, ± = ±0, and d = ±.
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² ± is an (m; m0; d)-switch time, and ±0 may result from ± according to micro step 6 of

the Giotto semantics.

A control point is either an unconditional control point or a conditional control point. If ±

is not an m-switch time, let the set C[m; ±] of control points of mode m and mode time ±

be the singleton set f (m; ±)g. Otherwise, let C[m; ±] = f c j c = (m; ±; d;m0; ±0) and c is a

conditional control pointg. ¤

Note that C[m; ±] contains either one unconditional control point, or more than one condi-

tional control point.

The operation of a multi-mo de Giotto program may be thought of as an in¯-

nite sequenceof control points. The program starts in any control point of the form

(start; 0; d;m1; ±1). The program may then proceed deterministically through a sequence

of unconditional control points, at any mode time ±0
1 > ±1 of mode m1 at which an actuator

is updated, task driver is evaluated, or task is invoked, but no mode switch is evaluated.

Whenever a mode switch is evaluated, say at mode time ±00
1 , the program choosesa new

mode m2 and a new mode time ±2, and the program is at the conditional control point

(m1; ±00
1 ; d;m2; ±2). The driver d is the mode switch driver whoseguard evaluated to true;

if all guards evaluated to false, then d = ±, m2 = m1, and ±2 = ±00
1 . The operation of the

program continuesin this manner forever. We call a sequenceof control points obtained in

this manner a path, a concept that we now de¯ne precisely.

De¯nition 6.2 (successors of a control poin t, path). Let c be a control point. If c

is unconditional, let (m; ±) = c. If c is conditional, let (¢; ¢; ¢; m; ±) = c. Let ±switch > ±

be the smallest mode time such that ±switch is an m-switch time. Similarly, let ±stay > ±

be the smallest mode time such that ±stay is either an m-invoke or an m-update time. If

±stay < ±switch then the unconditional control point (m; ±stay ) is the unique successor of c.

If ±stay ¸ ±switch then any conditional control point of the form (m; ±switch ; d;m0; ±0) is a

successor of c. A path is a ¯nite sequencec0; c1; ¢¢¢; cn of one or more control points such

that for i 2 [1 :: n], ci is a successorof ci ¡ 1. We will generally use the symbol º to denote

a path. ¤

We now note some facts about the successorrelation. First, a control point either has

a single unconditional successor,or multiple conditional successors.Second,consider two

control points c and c0 such that c0 is a successorof c. If c (respectively, c0) is unconditional,
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let (m; ±) = c (respectively, let (m0; ±0) = c0). Otherwise, let (¢; ¢; ¢; m; ±) = c (respectively,

let (m0; ±0; ¢; ¢; ¢) = c0). Then observe that m = m0 and ± < ±0. In this sense,the successor's

initial mode m0 is determined uniquely from the previous mode m. In fact, it can be seen

from De¯nition 6.2 that the successor'sinitial mode time ±0 is also determined uniquely

from m and ±. However, if the successorcontrol point c0 is a conditional control point

(m0; ±0; ¢; m00; ±00), then the successor'ssecondmode m00and mode time ±00are not uniquely

determined from m0 and ±0: there are multiple choicesof m00and ±00.

The following de¯nition will later be useful:

De¯nition 6.3 (duration dur ( º ) of a path º ). Let c and c0 be control points such

that c0 is a successorof c. If c is unconditional, let (¢; ±) = c; otherwise, let (¢; ¢; ¢; ¢; ±) = c.

Similarly, if c0 is unconditional, let (¢; ±0) = c0; otherwise, let (¢; ±0; ¢; ¢; ¢) = c0. The duration

dur (c;c0) of the pair (c;c0) is ±0 ¡ ±. The duration dur (º ) of a path º = c0; c1; ¢¢¢; cn is
P n

i=1 dur (ci ¡ 1; ci ). ¤

We now intro duce a variant of the notions of actions and activities from Sec-

tion 2.4.1. Each control point on a path requires the execution of a set of activities. For

an unconditional control point, theseactivities may include actuator updates, sensorreads,

task driver evaluations, or task invocations (micro steps2, 3, 7, and 8 of the Giotto seman-

tics). For a conditional control point, theseactivities may additionally include mode switch

guard evaluations and mode port updates (micro steps 4 and 5). As in Section 2.4.1, we

shall assumethat the guardsof all actuator and task driversevaluate to true; this represents

a worst casefor the scheduler. For brevity we will write d for the action of driver d, instead

of true(d); and s for the action of reading sensors, instead of read(s). In order to model

accurately the mode switching behavior of a Giotto program, we assumethat the guard of

each mode switch driver may evaluate to true or false. We therefore separatethe actions

of a mode switch driver d into a guard action g that evaluates the guard and is always

executed, and a function action h that updates modes ports and is executed if the guard

evaluates to true. For the purposesof this chapter, the actions of a Giotto program are

therefore either a task t 2 Tasks, a sensorread s 2 SensePorts, a driver d 2 Drivers, or the

guard g or function h of a driver d 2 Drivers. We assumea function wcet that assignsto each

action a a positive, integral worst-caseexecution time wcet(a). For a driver d with guard g

and function h, we assumethat wcet(d) = wcet(g) + wcet(h). We de¯ne the setsr (a) µ Ports

of ports read by action a and w(a) µ Ports of ports written by action a as follows:
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² If a = t for t 2 Tasks, then r (a) = In[t] [ Priv[t] and w(a) = Out[t] [ Priv[t].

² If a = d for d 2 Drivers, then r (a) = Src[d] and w(a) = Dst[d].

² If a = g, where g is the guard of driver d, then r (a) = Src[d] and w(a) = ; .

² If a = h, where h is the function of driver d, then r (a) = Src[d] and w(a) = Dst[d].

² If a = s, then r (a) = ; and w(a) = f sg.

Wenow turn to the activities of a multi-mo deGiotto program. As discussedabove,

we index activities by path and micro step number, rather than con¯guration number and

micro step number as in Section 2.4.1. We now de¯ne the activities A [º ] of a path º .

De¯nition 6.4 (activities A [º ] of a path º ). Let º be a path, the ¯nal control point of

which is c. If c is conditional, let (m; ±; d;m0; ±0) = c. If c is unconditional, let (m; ±) = c, let

m0 = m, and let ±0 = ±. We ¯rst de¯ne the six setsA [º ; i ] for i 2 f 2; 3; 4; 5; 7; 8g as follows:

² A [º ; 2] = f d[º ; 2] j ± is a (m; d)-update timeg.

² If c is conditional, then g[º ; 4] 2 A [º ; 4] for each guard g of a driver d0 such that

(m; ±; d0; ¢; ¢) is a conditional control point. If c is unconditional, then A[º ; 4] = ; .

² If c is conditional and d 6= ±, then A[º ; 5] = f h[º ; 5]g, where h is the function of

driver d. If c is unconditional or d = ±, then A[º ; 5] = ; .

² A [º ; 7] = f d[º ; 7] j ±0 is an (m0; ¢; d)-invoke timeg.

² A [º ; 8] = f t[º ; 8] j ±0 is an (m0; t; ¢)-invoke timeg.

² A [º ; 3] = f s[º ; 3] j s 2 SensePorts and s 2 r (a) for some activit y a[º ; ¢] 2 A [º ; 4] [

A [º ; 7] [ A [º ; 8]g.2

Finally, the activities A [º ] of path º are
S

i 2f 2;3;4;5;7;8g A[º ; i ]. ¤

2Note that if º ends in a conditional control point, A [º ; 4] includes all mode switch driv er guards that
need to be evaluated, whereasA [º ; 5] includes at most one mode switch driv er function. Since for a driv er d
with guard g and function h, r (g) = r (h), it follows that the set f s 2 Ports j s 2 r (a) for some activit y
a[º ; 4] 2 A [º ; 4]g is a superset of the set f s 2 Ports j s 2 r (a) for some activit y a[º ; 5] 2 A [º ; 5]g. Thus we
need not mention the casewhere s 2 r (a) for somea[º ; ¢] 2 A [º ; 5] in the de¯nition of A [º ; 3].
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Supposethat º and º 0 are two paths which are identical up to but not including

their last control points, which are in C[m; ±] for somemode m and mode time ±. The sets

of actuator update activities of º and º 0, A [º ; 2] and A[º 0; 2], may be regardedas identical,

sincetheseactivities take place before the mode changeoccurs. Note also that

P
A2A [º ;2] wcet(A) =

P
A 02A [º 0;2] wcet(A0)

Similarly, the setsof sensorread activities of º and º 0, A [º ; 3] and A[º 0; 3], may be regarded

as identical, and
P

A2A [º ;3] wcet(A) =
P

A 02A [º 0;3] wcet(A0)

Finally, the setsof mode switch driver guard activities of º and º 0, A [º ; 4] and A[º 0; 4], may

be regardedas identical, and

P
A2A [º ;4] wcet(A) =

P
A 02A [º 0;4] wcet(A0)

Wenow de¯ne a partial order to model the inter-activit y communication of a multi-

mode Giotto program. This de¯nition is similar to the de¯nition of the partial order @p
E in

Section2.4.1. However, herewe usethe path º of an activit y a[º ; i 0] to determine its placein

the order (rather than the con¯guration number i of an activit y a[i; i 0], as in Section2.4.1).

De¯nition 6.5 (activit y A writes port p to activit y A 0). For any path º and any

i 2 f 1; 2; 3; 4; 5; 7g, an activit y A completesat (º ; i ) if either:

² A 2 A[º ; i ] for i 2 f 2; 3; 4; 5; 7g.

² i = 1, A = t[º 0; 8] 2 A [º 0; 8] for somepre¯x º 0of º , and the following further conditions

hold. Let c0 be the ¯nal control point of º 0. If c0 is unconditional, let (m0; ±0) = c0;

elselet (¢; ¢; ¢; m0; ±0) = c0. Then:

{ ±0 is an (m; t; ¢)-invoke time.

{ dur (º ) ¡ dur (º 0) = ¼[m0]=! task .

The special caseis necessaryfor task activities t[º 0; 8] becausethe path index º 0 indicates

the path on which task t started, not the path on which t completed. In Section 2.4.1, this

special casewas not necessary, becausefor task activities t[i; i 0], the index i indicated the

con¯guration number at which task t completed, not the con¯guration number at which t

started.
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dur(º i ¡ 1)

A [º i ¡ 1; 2]

dur(º i )

A [º i ; 2]

Figure 6.3: A conceptual aid for the de¯nition of the pending computation function.

As in Section 2.4.1, we de¯ne an order < the set f (º ; i ) j º is a path and i 2

f 2; 3; 4; 5; 7; 8gg, as follows: (º 1; i 1) < (º 2; i 2) if either º 1 is a proper pre¯x of º 2, or º 1 = º 2

and i 1 < i 2. Consider two activities A1 = a1[¢; ¢] and A2 = a2[º 2; i 2]. We say that A1 writes

port p to A2 (in symbols, A1 @p A2) if the following conditions hold:

² p 2 w(a1) \ r (a2), A1 completesat (º 1; i 1), and (º 1; i 1) < (º 2; i 2).

² There is no activit y A3 = a3[¢; ¢] such that p 2 w(a3), A3 completesat (º 3; i 3), and

(º 1; i 1) < (º 3; i 3) < (º 2; i 2).

We write A1 @A2 if there is someport p 2 Ports such that A1 @p A2. ¤

This concludesour exposition of the multi-mo de view of the activities of a Giotto program.

In Section 6.4, we will put this multi-mo de view to use in developing an algorithm to

synthesizeschedulesfor multi-mo de Giotto programs.

6.3.2 Pending computation function of a Giotto program

In this section, we de¯ne a multi-mo de variant of the pending computation func-

tion p from Section 4.3.3 (De¯nition 4.7). We intro duce this de¯nition in order to de¯ne

the notion of a rest point in the multi-mo de context. Rest points play a di®erent role in

this chapter than they did in Chapter 4. In Chapter 4, the existenceof a rest point was

a necessarycondition on feasibility for instancesof 1 j r j ; dj ; prec; pmtn; period j ¡ . In

this chapter, rest points are used to guarantee that the conditional scheduling problems

that our scheduling algorithm produces(Section 6.4, below) are ¯nite, and to guarantee the

termination of our algorithm.

Recall that in Chapter 4, the pending computation function p was a function

from the integral timeline Z¸ 0 to the non-negative integers. Here, in keeping with our

focus on multi-mo de programs, the pending computation function is a function from paths
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to the non-negative integers. Speci¯cally, for a path º i , we de¯ne the amount p(º i ) of

computation pending on entering the ¯nal control point ci of º i . This de¯nition admits a

simple recursive formulation. If º i consistsonly of the singlecontrol point ci , then p(º i ) = 0.

Otherwise, º i consistsof a path º i ¡ 1 followed by the control point ci , i.e., º i = º i ¡ 1; ci . As

a ¯rst cut, p(º i ) is the minimum of 0 and f the amount p(º i ¡ 1) of computation already

pending, plus the sum of worst-case execution times of activities in A [º i ¡ 1], minus the

available time dur (º i ) ¡ dur (º i ¡ 1) in which to executeactivitiesg. To obtain a more accurate

de¯nition, the reader is advised to examine Figure 6.3, which shows two successive paths

º i ¡ 1 = c0; ¢¢¢; ci ¡ 1 and º i = c0; ¢¢¢; ci . The logical time at which the ¯nal control point ci ¡ 1

of path º i ¡ 1 is entered is dur (º i ¡ 1). As in Chapter 4, we execute actuator updates of

path º i ¡ 1 just before time dur (º i ¡ 1). Thus, the actuator updates in A [º i ¡ 1; 2] do not

consumeany time betweendur (º i ¡ 1) and dur (º i ). However, the actuator updatesin A [º i ; 2]

occur just before time dur (º i ), so they do consumetime between dur (º i ¡ 1) and dur (º i ).

We therefore obtain the following de¯nition:

De¯nition 6.6 (p ending computation function, rest poin t). For any path º i , we

de¯ne the amount p(º i ) of computation pending on entering the ¯nal control point ci of º i .

If º i consistsof the one control point ci then p(º i ) = 0. Otherwise, º i = º i ¡ 1; ci for some

path º i ¡ 1. Let S be the set of activities (A [º i ¡ 1] n A [º i ¡ 1; 2]) [ A [º i ; 2]. Then p(º i ) is the

minimum of 0 and

p(º i ¡ 1) +
X

A2 S

wcet(A) ¡ (dur (º i ) ¡ dur (º i ¡ 1))

Path º i is a rest point if p(º i ) = 0. ¤

We now intro ducea condition similar to the condition, in Theorems4.14and 4.17,

that there be a rest point in the range [¦ ; 2¦]. Intuitiv ely, this condition is that a Giotto

program always reach a rest point within a bounded amount of time. We formalize this

condition as follows. We say that a Giotto program guarantees rest points within n control

points if all paths of length at least n + 1 have a pre¯x that is a rest point and that contains

at least two control points.

De¯nition 6.7 (guaran tees rest poin ts). Let G be a multi-mo de Giotto program, and

let n 2 Z> 0 be a positive integer. Then G guarantees rest points within n control points if,

for every path c0; ¢¢¢; cm with m ¸ n, there exists an i 2 [1 :: n] such that c0; ¢¢¢; ci is a
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rest point. We say that G guarantees rest points if there exists an n 2 Z> 0 such that G

guaranteesrest points within n control points. ¤

It follows from arguments similar to those of Section 4.3.3 that a single-mode Giotto pro-

gram G has a feasible schedule only if G guarantees rest points. This is not the casefor

multi-mo de Giotto programs: there exist multi-mo de programswhich do not guarantee rest

points but have feasibleschedules. However, our algorithm for translating Giotto programs

into conditional scheduling problems(Algorithm 6.1) requiresthat the input Giotto program

guaranteesrest points.

6.4 From Giotto to conditional scheduling

This section describes the main algorithm of this chapter, for scheduling multi-

mode Giotto programs on a single processor.As mentioned in Section 6.1, the structure of

this section parallels that of Section 4.4. First, Section 6.4.1 describes the classof Giotto

programs the scheduling algorithm will accept as inputs. The most signi¯cant require-

ment on this classis that each program in it must guarantee rest points; this requirement

guarantees the termination of our algorithm. Next, Section 6.4.2 de¯nes the concept of " -

feasibility for multi-mo de Giotto programs(Section 4.4.2de¯ned the corresponding concept

for single-mode Giotto programs.) Section 6.4.2 then presents three scheduling questions.

These questions are the analogues, in the multi-mo de context, of Questions 4.26, 4.27,

and 4.28 from Section 4.4.2.

Section 6.4.3 describes Algorithm 6.1, the scheduling algorithm for multi-mo de

Giotto programs. Givena Giotto program G, Algorithm 6.1generatesa guardedconditional

scheduling problem P[m; ±] for each mode m and mode time ± such that an execution of G

may be at mode m and mode time ± with no pending computation. For each generated

problem P[m; ±], Algorithm 6.1 attempts to generatea feasibleguarded schedule S[m; ±].

If such a scheduleexists for each problem P[m; ±], then Algorithm 6.1 returns the schedules

S[m; ±] it generates;otherwise; Algorithm 6.1 reports that the input program G does not

possessa feasibleguarded schedule.

Section6.4.4completesthe presentation of the scheduling algorithm by describing

the construction of the guarded conditional scheduling problems P[m; ±]. This construc-

tion is the analogue, in the multi-mo de context, of the construction in Section 4.4.4 of

the instance P[G; wcet] of 1 j r j ; dj ; prec; pmtn; period j ¡ . As an illustrativ e example,
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Section 6.4.4 then describes the problem P[m1; 0] for the Giotto program of Section 6.2,

and concludeswith a complete guarded schedule for this program. Finally, Section 6.4.5

discussesthe running time and optimalit y of Algorithm 6.1. Though the running time can

be doubly exponential in the sizeof the description of the input program G, Algorithm 6.1

doesallow the three questionsposedin Section 6.4.2 to be answered.

6.4.1 A class of multi-mo de Giotto programs

In Section6.4.3,we will present an algorithm that synthesizesschedulesfor multi-

mode Giotto programs. In order for this algorithm to correctly synthesize schedules, its

input program must satisfy three conditions. We ¯rst present these conditions, and then

explain why they are necessary. The three conditions are:

I. Every task invocation driver or mode driver readsa sensor. More formally, for every

driver d such that (¢; ¢; d) 2 Invokes[m] or (¢; ¢; d) 2 Switches[m] for somemode m 2

Modes, there is somesensors 2 SensePorts such that s 2 Src[d].

I I. G guaranteesrest points.

I I I. Consider two control points c;c0 such that c0 is the successorof c. Let º be the

path consisting of just the control point c, and let º 0 be the path c;c0. Let S =

A[º ; 3] + A [º 0; 2]. Then we require that
P

A2 S wcet(A) · dur (º 0).

Condition I allows the easy de¯nition of a releasetime for each activit y. This condition

may be removed using techniques similar to those of Section 4.4.3. However, we retain

condition I becauseit simpli¯es the presentation of our algorithm without sacri¯cing the

essential featuresof the algorithm. Condition I I guaranteesthat the graphs(V; E) produced

by our algorithm are ¯nite, a property required by the scheduling algorithm of Section5.2.4,

which the algorithm of this section will use as a subroutine. Condition I I I requires that

the total execution time of sensor read activities of one control point c0, plus the total

execution time of actuator update activities of a successorcontrol point c0, doesnot exceed

the duration dur (º 0) = dur (c;c0). This is analagousto the requirement, in Chapter 4, that

the jitter tolerance " be lessthan ¼=! , where ¼is the period of the single mode m, and !

is the least common multiple of the frequenciesof task invocations and actuator updates

of m. If the sum in Condition I I I were larger than dur (º 0), then either the sensoractivities
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of path º would have to be executed after dur (º 0), or the actuator activities of º 0 would

have to be executedbeforedur (º ), which is either unacceptably early or late.

6.4.2 The scheduling problem for multi-mo de Giotto programs

This brief sectionpresents three scheduling questionsthat are the analogues,in the

multi-mo de context, of Questions 4.26, 4.27, and 4.28 from Section 4.4.2. First, we de¯ne

a notion of " -feasibility for multi-mo de Giotto programs. The present de¯nition is a minor

modi¯cation of De¯nition 4.25(" -feasibility in a single-mode context), and is necessaryonly

becausethe notation is di®erent in the present multi-mo de context.

De¯nition 6.8 (" -feasibilit y). We say that a multi-mo de Giotto program is "-feasible if

there exists a guarded schedule S, in the senseof De¯nition 5.19, for which the following

condition holds. For any in¯nite sequencec0; c1; ¢¢¢ of control points, all of whose ¯nite

pre¯xes c0; ¢¢¢; ci (for each i 2 [0 :: 1 ]) are paths:

² If A = a[¢; ¢] is an activit y in A [º i ] for somei 2 [0 :: 1 ], then S executesA for wcet(a)

time units.

² For any i; i 0 2 [0 :: 1 ], for any activities A i 2 A[º i ] and A i 0 2 A[º i 0] such that A i @A i 0,

A i completesin schedule S beforeA i 0 begins.

² For any i 2 [0 :: 1 ], any actuator driver update activit y a[º i ; 2] 2 A [º i ; 2] is executed

by S only in the interval [dur (º i ) ¡ "; dur (º i )], and further betweenthe start time of

a[º i ; 2] and dur (º i ) only actuator driver update activities are executed.

² For any i 2 [0 :: 1 ], any sensorread activit y a[º i ; 3] 2 A [º i ; 3] is executedby S only

in the interval [dur (º i ); dur (º i ) + " ], and further betweendur (º i ) and the completion

time of a[º i ; 3] only sensorread activities are executed. ¤

We now present three scheduling questions,akin to Questions4.26,4.27,and 4.28.

Question 6.9. Does a multi-mo de Giotto program G have an "-feasibleschedule for any

" > 0?

Question 6.10. If so, what is the smallest " ¤ such that G has an "¤-feasibleschedule?

Question 6.11. Given this minimum "¤, synthesizean "¤-feasibleschedule.
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Algorithm 6.1 Conditional scheduling algorithm for Giotto programs.
1: Algorithm Schedule(G: Giotto program satisfying conditions I, I I, and I I I)
2: Frontier := f (start; 0)g
3: Explored := ;
4: while Frontier 6= ; do
5: let (m; ±) be any member of Frontier in
6: Frontier := Frontier n f (m; ±)g
7: Problems:= Problems[ f P[m; ±]g
8: Explored := Explored [ f (m; ±)g
9: for all vertices v of P[m; ±] such that v has no successordo

10: if (m[v]; ±[v] mod ¼[m[v]]) =2 Explored then
11: Frontier := Frontier [ f (m[v]; ±[v] mod ¼[m[v]])g
12: Solutions := ;
13: for all P[m; ±] 2 Problemsdo
14: Attempt to synthesize a feasible guarded schedule S[m; ±] for P[m; ±], using Algo-

rithm 5.4 of Section 5.2.4.
15: if such a feasibleguarded schedule exists then
16: Solutions := Solutions [ f (P[m; ±]; S[m; ±])g.
17: else
18: Report that P[m; ±] has no feasibleguarded schedule, and return.

The readerwill notice that, whereasQuestion 4.26asksif there exists an "-feasibleschedule

with " · ¼=! , Question 6.9 asks if there exists an "-feasible schedule for any " > 0.

The di®erencebetween the two questions is not as large as it may seem:for single-mode

programs, condition I I I above implies that if there is an "-feasibleschedule for some" > 0,

then there is an "-feasibleschedule for " · ¼=! .

6.4.3 The scheduling problems generated by a Giotto program

We now present Algorithm 6.1, that can be used to answer Questions 6.9, 6.10,

and 6.11 from the previous section. Let G be a program which satis¯es conditions I, I I,

and I I I of Section 6.4.1. Algorithm 6.1 generatesa conditional scheduling problem P[m; ±]

for each mode m and mode time ± such that G may be in mode m at mode time ±0 = ±

(mod ¼[m]) with no pending computation. We call theseproblemsthe scheduling problems

generated by G. The construction of P[m; ±] will be presented later, in Section6.4.4. Algo-

rithm 6.1 has two stages;the ¯rst stageis in lines 2 through 11, and the secondstageis in

lines 12 through 18. The ¯rst stagegeneratesa set Problemsof guardedconditional schedul-

ing problems, and the secondstageattempts to synthesizea feasibleguarded schedule for
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each of theseproblems.

In the ¯rst stage of Algorithm 6.1, two sets are maintained: the set Explored of

pairs (m; ±) such that the problem P[m; ±] hasalready beengenerated,and the set Frontier

of pairs (m; ±) such that the P[m; ±] still needsto be generated. Initially , Explored = ;

and Frontier = (start; 0) (lines 2 and 3). As long as Frontier 6= ; , the algorithm selects

and removesan element (m; ±) from Frontier , generatesthe conditional scheduling problem

P[m; ±] and adds it to Problems, and adds (m; ±) to Explored (lines 4 through 8). Corre-

sponding to each vertex v of the problem P[m; ±] is a mode m[v] and a mode time ±[v].

The vertices of P[m; ±] that have no successorshave the following property: for each such

vertex v, m[v] and ±[v] are the ¯rst mode and mode time after m and ± at which no compu-

tation is pending. Thus, the pair ( m[v]; ±[v] mod ¼[m[v]] ) is added to Frontier if this pair

is not already in Explored (lines 9 through 11).

In the secondstage, in lines 12 through 18, for each problem P[m; ±] in Problems,

Algorithm 6.1 attempts to generatea feasibleguarded schedule S[m; ±], using the guarded

conditional scheduling algorithm of Section 5.2.4 (Algorithm 5.4). If no such schedule

exists, the algorithm reports that it cannot ¯nd a feasible guarded schedule for P[m; ±].

Otherwise, upon termination the set Solutions contains a feasible guarded schedule for

each problem in Problems. This concludesour presentation of Algorithm 6.1. In the next

section, we discusshow to construct the guarded conditional scheduling problem P[m; ±].

We postpone a discussionof the running time of Algorithm 6.1 until after the de¯nition

of P[m; ±] (Section 6.4.5).

6.4.4 The guarded conditional scheduling problem P [m; ±]

Suppose that a Giotto program satisfying conditions I{I I I can be in mode m

at mode time ± with no pending computation. We now give a top-down de¯nition of

the guarded conditional scheduling problem P[m; ±] that captures the constraints of this

situation. (The guarded conditional scheduling model was de¯ned in Section 5.2.4.)

De¯nition 6.12 (the guarded conditional scheduling problem P [m; ±]). For any

be a Giotto program G that satis¯es conditions I{I I I, any mode m 2 Modes, and any mode

counter ± 2 Q, the guarded conditional scheduling problem P[m; ±] is:

(F [m; ±]; W [m; ±]; Ám;±; G[m; ±])

where F [m; ±], W [m; ±], Ám;±, and G[m; ±] are de¯ned below. ¤
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We describe the problem P[m; ±] in three parts: ¯rst the ¯nite state machine F [m; ±], then

the workload W[m; ±], and ¯nally the precedencerelation Á m;± and guard function G[m; ±]).

The ¯nite state machine F [m; ±]

We begin by de¯ning the ¯nite state machine F [m; ±] of the problem P[m; ±]. The

verticesand edgesof this ¯nite state machine are ¯nite subsetsof the setsof possiblevertices

and possibleedges:

De¯nition 6.13 (p ossible vertices, possible edges). We de¯ne a partition Vp of the

set of paths. Two paths º = c0; ¢¢¢; cn and º 0 = c0
0; ¢¢¢; c0

n are in the sameelement of the

partition if ci = c0
i for all i 2 [0 :: n ¡ 1] and cn ; c0

n 2 C[m; ±] for somemode m 2 Modesand

mode time ± 2 Q. Each element vp of the partition Vp is called a possiblevertex. Let vp

and v0
p be possiblevertices; we say that (vp; v0

p) is a possibleedge if there exist paths º 2 vp

and º 0 2 v0
p such that º 0 = º ; c for somecontrol point c. In this casewe also say that v0

p is

a º -successor of vp. ¤

We now note several properties of the structure of possiblevertices. First, by the

remarks following De¯nition 6.2, if º and º 0 are members of a possible vertex vp, and º

and º 0 end in unconditional control points, then º = º 0. Conversely, if a possiblevertex

contains a single path º , then the last control point of º is unconditional. Second,also by

the remarks following De¯nition 6.2, if two members º and º 0 of the samepossiblevertex

end in conditional control points (m; ±; ¢; ¢; ¢) and (m0; ±0; ¢; ¢; ¢), then m = m0 and ± = ±0.

Third, it may be veri¯ed that for any membersº ; º 0of the samepossiblevertex, p(º ) = p(º 0)

and dur (º ) = dur (º 0). Thesepoints justify the following de¯nition:

De¯nition 6.14 (mo de, mo de time, and pending computation of a possible ver-

tex). Let vp be a possiblevertex, and let c be the ¯nal control point of any path in vp.

If c is unconditional, let (m; ±) = c. Otherwise, let (m; ±; ¢; ¢; ¢) = c. Then m[vp] = m

and ±[vp] = ±. We extend the functions p and dur to Vp, as follows: p(vp) = p(º ) and

dur (vp) = dur (º ) for any º 2 vp. ¤

We now de¯ne the ¯nite state machine F [m; ±]. The graph (V; E) of F [m; ±] has

an intuitiv e structure: the possiblevertex C[m; ±] is in V; if (C[m; ±]; v) is a possibleedge

then v is in V; and if v is a vertex with p(v) > 0 and (v; v0) is a possibleedge,then v0 is in

V. The set of edgesof F [m; ±] is the restriction of the set of possibleedgesto V; that is,
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dur(º )

A [º ; 3]

dur(º 0)

A [º 0; 2]

Figure 6.4: A conceptual aid for the de¯nition of the duration of the edgesof F [m; ±].

e = (v; v0) is in E if e is a possibleedgeand v; v0 2 V. Note that, under this de¯nition, the

graph (V; E) is a tree rooted at the possiblevertex C[m; ±]. The de¯nition of the duration

of the edgesis slightly more involved. We choosenot to include actuator update activities

or sensorread activities in our job set: sincesuch activities must be executedat ¯xed times,

they may be accounted for by shortening the durations of edgesinstead. Consider an edge

e = (v; v0) 2 E. By the remarks following De¯nition 6.4, the setsof sensorread activities of

any two paths in v may be regardedas identical, and the setsof actuator update activities

of any two paths in v0 may be regarded as identical. Now consider any two paths º 2 v

and º 0 2 v0. As in Section 4.4, we executethe sensorread activities of path º , A [º ; 3], just

after time dur (º ), and we execute the actuator update activities of path º 0, A [º 0; 2], just

before time dur (º 0) (seeFigure 6.4). Thus, the amount of time available between dur (v)

and dur (v0) for jobs that are neither actuator updates nor sensorreads is:

dur (v0) ¡ dur (v) ¡
X

A2 S

wcet(A)

where S = A[º ; 3] [ A [º 0; 2]. We now de¯ne F [m; ±] precisely.

De¯nition 6.15 (F [m; ±]). The ¯nite state machine F [m; ±] is a tuple (V; v0; E; D), where:

² The set V of vertices is a set of possiblevertices, de¯ned recursively as follows:

{ C[m; ±] 2 V.

{ v 2 V for each possiblevertex v such that (C[m; ±]; v) is a possibleedge.

{ If v 2 V, and v is not a rest point, and (v; v0) is a possibleedge,then v0 2 V.

² The initial vertex v0 is C[m; ±].

² The set E of edgesis f (v; v0) j (v; v0) is a possibleedgeand v; v0 2 Vg.
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² The duration function D : E ! Z> 0 is de¯ned as follows. Let (v; v0) 2 E be an edge.

Then:

D(v; v0) = dur (v) ¡ dur (v0) ¡
X

A2 S

wcet(A)

whereS = A[º ; 3][ A [º 0; 2]. Note that condition I I I aboveguaranteesthat D(v; v0) ¸ 0

for any v; v0 2 V, as is required by De¯nition 5.1. ¤

If a Giotto program G guarantees rest points, then the recursive de¯nition of V

only \pulls in" a ¯nite number of possiblevertices, so that the setsof vertices and edgesof

F [m; ±] are ¯nite for any mode m and mode counter ±. We are therefore justi¯ed in calling

F [m; ±] a ¯nite state machine. Note that if G guarantees rest points within n, then each

path in F [m; ±] has length at most n. However, the number jVj of vertices of F [m; ±], and

the number of such paths, may be exponential in n. If G has at most k mode switchesper

mode, then jVj = O((k + 1)n+1 ). (The k + 1 term results from the fact that each vertex

of the tree (V; E) has at most k + 1 successors;since the depth of (V; E) is at most n, V

contains at most (k + 1)n+1 ¡ 1 vertices.)

The workload W [m; ±]

We now de¯ne the workload W[m; ±] = (J [m; ±]; t[m; ±]; r [m; ±]; d[m; ±]). We begin

with the jobs releasedat a vertex v 2 V. If v has no successors,then v is a rest point, and

the schedule for mode m[v] and mode time ±[v] will be synthesized using the ¯nite state

machine F [m[v]; ±[v] mod ¼[m[v]] instead of F [m; ±] (seeSection 6.4). In this case,we let

r (v) = ; . If v contains a single path º , then by the remarks following De¯nition 6.13, the

last control point of º is unconditional. Thus, the jobs releasedat v are the task driver

activities A [º ; 7] and the task activities A [º ; 8]. If v contains more than one path, then the

last control point of each path in v is conditional. Thus, the jobs releasedat vertex are the

mode switch driver guard activities required to determine the new mode, the mode switch

driver function activities that update the ports of the new mode, and the task driver and

task activities of the possiblenew modesand mode times. More precisely:

De¯nition 6.16 (J [m; ±], r [m; ±], and t [m; ±]). Consider the ¯nite state machine

F [m; ±] = (V; v0; E; D). We now de¯ne a function r [m; ±] that assignsto each vertex v 2 V

a set r [m; ±](v) of jobs released at v. If v has no successorsin the graph (V; E) then
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r [m; ±](v) = ; . Otherwise, if v contains a single path º , then r [m; ±](v) = A [º ; 7] [ A [º ; 8].

Otherwise, by the remarks following De¯nition 6.13, v is a set f º 1; ¢¢¢; º ng of paths, with

n ¸ 2, ending respectively in the conditional control points c1; ¢¢¢; cn . One of thesecontrol

points hasthe form (m; ±; ±; m; ±); without lossof generality, supposethis control point is c1.

Then:

r [m; ±](v) = A [º 1; 4] [
n[

i =1

(A [º i ; 5] [ A [º i ; 7] [ A [º i ; 8])

The set J [m; ±] of jobs of F [m; ±] is
S

v2V r [m; ±](v). The time t[m; ±](j ) required by a job

j = a[¢; ¢] 2 J [m; ±] is wcet(a). ¤

We now de¯ne the jobs d[m; ±](v) µ J [m; ±] due at a vertex v of F [m; ±]. If v is the

initial vertex v0, then no jobs have yet been released,so d[m; ±](v) = ; . Otherwise, let v0

be the predecessorof v. If j @+ a[º ; 2] for someactuator update activit y a[º ; 2] 2 A [º ; 2],

with º 2 v, then j 2 d[m; ±](v). If j is a mode switch driver guard releasedat v0, then

j 2 d[m; ±](v). If j is a mode switch driver function releasedat v0, and this driver is the

driver for the mode switch from m[v0] to m[v], then j 2 d[m; ±](v). Finally, if v has no

successors,then all jobs previously releasedalong any path º 2 v are due. In particular, if

c0; ¢¢¢; cn is a path in v, and j is a task driver activit y or a task activit y in A [c0; ¢¢¢; ci ; 7]

or A [c0; ¢¢¢; ci ; 8] for somei 2 [0 :: n ¡ 1], then j 2 d[m; ±](v). More precisely:

De¯nition 6.17 (d[m; ±]). Consider the ¯nite state machine F [m; ±] = (V; v0; E; D). We

de¯ne a function d[m; ±] which assignsto each vertex v 2 V a set d[m; ±](v) µ J [m; ±] of

jobs due at v. If v = v0 then d[m; ±](v) = ; . Otherwise, let v0 be the predecessorof v. Then

job j is a member of the set d[m; ±](v) if j 2 J [m; ±] and one of the following conditions

holds:

² j @+ a[º ; 2] for someactuator update activit y a[º ; 2] 2
S

º 2 v A[º ; 2].

² j 2 r (v0) and j has the form g[¢; 4].

² j 2 r (v0), j = h[º 0; 5], and v is the º 0-successorof v0.

² v has no successors,and for somepath c0; ¢¢¢; cn 2 v:

j 2
n¡ 1[

i =0

A[c0; ¢¢¢; ci ; 7] [ A [c0; ¢¢¢; ci ; 8] ¤
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The precedence relation Á m;± and the guard function G[m; ±]

As in Chapter 4, we use precedencerelations to model the data °ow of a Giotto

program: if A provides data to A0, then A precedesA0. Thus, the precedencerelation Á m;±

of the conditional scheduling problem P[m; ±] is the restriction of the relation @to the set

J [m; ±]. The guard function G[m; ±] simply assignsto each vertex v the set of all mode

switch driver predicatesreleasedat v.

De¯nition 6.18 (Á m;± and G[m; ±]). The precedence relation Á m;± is de¯ned as follows:

j Ám;± j 0 if and only if j ; j 0 2 J [m; ±] and j @ j 0. Consider the ¯nite state machine

F [m; ±] = (V; v0; E; D). For any vertex v 2 V, G[m; ±](v) is the set of all jobs in r [m; ±](v)

of the form g[¢; ¢]. ¤

An example

We now present an extended example, in which we use the construction of this

section to synthesize a complete schedule for the Giotto program of Section 6.2. We will

concentrate on the de¯nition of the guarded conditional scheduling problem P[m1; 0].

Paths, activities, and rest poin ts. We ¯rst give symbolic namesto somepaths of the

program of Section6.2. Thesepaths will soon be of interest in the construction of P[m1; 0].

º 1 = (m1; 0; ±; m1; 0) º 2 = (m1; 0; dm2 ; m2; 0)

º 3 = (m1; 0; dm3 ; m3; 0) º 4 = (m1; 0; ±; m1; 0); (m1; 15; ±; m1; 15)

º 5 = (m1; 0; ±; m1; 0); (m1; 15; dm2 ; m2; 15) º 6 = (m1; 0; ±; m1; 0); (m1; 15; dm3 ; m3; 15)

º 7 = (m1; 0; dm2 ; m2; 0); (m2; 30) º 8 = (m1; 0; dm3 ; m3; 0); (m3; 30)
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path º A [º ; 2] A [º ; 3] A [º ; 4] A [º ; 5] A [º ; 7] A [º ; 8]

º 1 da;m 1 [º 1 ; 2] s[º 1 ; 3] gm 2 [º 1 ; 4]; gm 3 [º 1 ; 4] dt 1 ;m 1 [º 1 ; 7]; dt 2 ;m 1 [º 1 ; 7] t1 [º 1 ; 8]; t2 [º 1 ; 8]

º 2 da;m 1 [º 2 ; 2] s[º 2 ; 3] gm 2 [º 2 ; 4]; gm 3 [º 2 ; 4] hm 2 [º 2 ; 5] dt 1 ;m 2 [º 2 ; 7]; dt 2 ;m 2 [º 2 ; 7] t1 [º 2 ; 8]; t2 [º 2 ; 8]

º 3 da;m 1 [º 3 ; 2] s[º 3 ; 3] gm 2 [º 3 ; 4]; gm 3 [º 3 ; 4] hm 3 [º 2 ; 5] dt 1 ;m 3 [º 3 ; 7]; dt 2 ;m 3 [º 3 ; 7] t1 [º 3 ; 8]; t2 [º 3 ; 8]

º 4 s[º 4 ; 3] gm 2 [º 4 ; 4]; gm 3 [º 4 ; 4]

º 5 s[º 5 ; 3] gm 2 [º 5 ; 4]; gm 3 [º 5 ; 4] hm 2 [º 5 ; 5]

º 6 s[º 6 ; 3] gm 2 [º 6 ; 4]; gm 3 [º 6 ; 4] hm 3 [º 6 ; 5]

º 7 da;m 2 [º 7 ; 2] s[º 7 ; 3] dt 1 ;m 2 [º 7 ; 7]; dt 2 ;m 2 [º 7 ; 7] t1 [º 7 ; 8]; t2 [º 7 ; 8]

º 8 da;m 3 [º 8 ; 2] s[º 8 ; 3] dt 1 ;m 3 [º 8 ; 7]; dt 2 ;m 3 [º 8 ; 7] t1 [º 8 ; 8]; t2 [º 8 ; 8]

º 12 da;m 2 [º 12 ; 2] s[º 12 ; 3] dt 1 ;m 2 [º 12 ; 7]; dt 2 ;m 2 [º 12 ; 7] t1 [º 12 ; 8]; t2 [º 12 ; 8]

º 13 da;m 3 [º 13 ; 2] s[º 13 ; 3] dt 1 ;m 3 [º 13 ; 7]; dt 2 ;m 3 [º 13 ; 7] t1 [º 13 ; 8]; t2 [º 13 ; 8]

Figure 6.5: The activities of paths º 1; ¢¢¢; º 8, º 12, and º 13.

º 9 = (m1; 0; ±; m1; 0); (m1; 15; ±; m1; 15); (m1; 30; ±; m1; 30)

º 10 = (m1; 0; ±; m1; 0); (m1; 15; ±; m1; 15); (m1; 30; dm2 ; m2; 30)

º 11 = (m1; 0; ±; m1; 0); (m1; 15; ±; m1; 15); (m1; 30; dm3 ; m3; 30)

º 12 = (m1; 0; ±; m1; 0); (m1; 15; dm2 ; m2; 15); (m2; 30)

º 13 = (m1; 0; ±; m1; 0); (m1; 15; dm3 ; m3; 15); (m3; 30)

º 14 = (m1; 0; dm2 ; m2; 0); (m2; 30); (m2; 60)

º 15 = (m1; 0; dm3 ; m3; 0); (m3; 30); (m3; 60)

º 16 = (m1; 0; ±; m1; 0); (m1; 15; dm2 ; m2; 15); (m2; 30); (m2; 60)

º 17 = (m1; 0; ±; m1; 0); (m1; 15; dm3 ; m3; 15); (m3; 30); (m3; 60)

The activities of paths º 1; ¢¢¢; º 8, º 12, and º 13 are shown in Figure 6.5. The amounts of

pending computation at each of the paths º 1; ¢¢¢; º 17 are:

p(º 1) = p(º 2) = p(º 3) = 0 p(º 4) = p(º 5) = p(º 6) = 10

p(º 7) = p(º 8) = 5 p(º 9) = p(º 10) = p(º 11) = 0

p(º 12) = p(º 13) = 5 p(º 14) = p(º 15) = p(º 16) = p(º 17) = 0

Paths º 1; º 2; º 3, º 9; º 10; º 11, and º 14; ¢¢¢; º 17 are rest points.

It may be veri¯ed that the Giotto program of Section 6.2 guarantees rest points

within 3. Starting with no pending computation at mode m1 and mode time 0 mod 30,
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f º 4; º 5; º 6g

(m1; 15; ±; m1; 15)

(m1; 15; dm2 ; m2; 15)

(m1; 15; dm3 ; m3; 15)

f º 13g

(m3; 30)

f º 17g

(m3; 60)

f º 12g

(m2; 30)

f º 16g

(m2; 60)

f º 1; º 2; º 3g

(m1; 0; dm2 ; m2; 0)

(m1; 0; dm3 ; m3; 0)

(m1; 0; ±; m1; 0)

f º 7g

(m2; 30)

f º 14g

(m2; 60)

f º 8g

(m3; 30)

f º 15g

(m3; 60)

f º 9; º 10; º 11g

(m1; 30; dm2 ; m2; 30)

(m1; 30; dm3 ; m3; 30)

(m1; 30; ±; m1; 30)14

27 27

12 12

12

27 27

27 27

Figure 6.6: The ¯nite state machine F [m1; 0].

the amount of pending computation decreasesto 0 again after encountering at most three

subsequent control points, since º 9; º 10; º 11 and º 14; ¢¢¢; º 17 are rest points. Similarly, it

may be seenthat starting with no pending computation at modesm2 or m3 and mode time

0 mod 30, the amount of pending computation decreasesto 0 after at most one subsequent

control point.

The problem P [m 1 ; 0]: Recall from De¯nition 6.13 that each possiblevertex is a set

of paths. The possiblevertices which contain paths º 1; ¢¢¢; º 17 are f º 1; º 2; º 3g, f º 4; º 5; º 6g,

f º 7g, f º 8g, f º 9; º 10; º 11g, f º 12g, f º 13g, f º 14g, f º 15g, f º 16g, and f º 17g. The ¯nite state

machine F [m1; 0] is shown in Figure 6.6. In the ¯gure, each vertex v of F [m1; 0] is labeled

with the set of paths contained in v, and with the ¯nal control points of each path in v.

In order to reducethe jobs in our exampleto a comprehensiblenumber, wesimplify

the job setJ [m1; 0] slightly by counting the task driversasbeingpart of the task invocations.

For example, instead of including in J [m1; 0] the two separatejobs dm1 ;t 1 [º 1; 7] and t1[º 1; 8],

we will include only the one job t1[º 1; 8]. The jobs releasedat the vertices of F [m1; 0] are

as follows:

r [m1; 0](f º 1; º 2; º 3g) = f gm2 [º 1; 4]; gm3 [º 1; 4]; t1[º 1; 8]; t2[º 1; 8];

hm2 [º 2; 5]; t1[º 2; 8]; t2[º 2; 8]; hm3 [º 3; 5]; t1[º 3; 8]; t2[º 3; 8]g

r [m1; 0](f º 4; º 5; º 6g) = f gm2 [º 4; 4]; gm3 [º 4; 4]; hm2 [º 5; 5]; hm3 [º 6; 5]g
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r [m1; 0](f º 7g) = f t1[º 7; 8]; t2[º 7; 8]g r [m1; 0](f º 8g) = f t1[º 8; 8]; t2[º 8; 8]g

r [m1; 0](f º 9; º 10; º 11g) = ; r [m1; 0](f º 12g) = f t1[º 12; 8]; t2[º 12; 8]g

r [m1; 0](f º 13g) = f t1[º 13; 8]; t2[º 13; 8]g r [m1; 0](f º 14g) = ;

r [m1; 0](f º 15g) = ; r [m1; 0](f º 16g) = ;

r [m1; 0](f º 17g) = ;

Since in this example we treat task driver jobs as being included in the task invocation

jobs, the worst-caseexecution times of tasks t1 and t2 are each 11, since each task has a

worst-caseexecution time of 9 and each task is invoked with a driver that has a worst-case

execution time of 2. Thus, the times required by jobs in J [m1; 0] are:

t[m1; 0](t1[¢; ¢]) = t[m1; 0](t2[¢; ¢]) = 11 t[m1; 0](gm2 [¢; ¢]) = t[m1; 0](gm3 [¢; ¢]) = 1

t[m1; 0](hm2 [¢; ¢]) = t[m1; 0](hm3 [¢; ¢]) = 5

The due function d[m1; 0] is as follows:

d[m1; 0](f º 1; º 2; º 3g) = ;

d[m1; 0](f º 4; º 5; º 6g) = f gm2 [º 1; 4]; gm3 [º 1; 4]g

d[m1; 0](f º 7g) = f gm2 [º 1; 4]; gm3 [º 1; 4]; hm2 [º 2; 5]; t1[º 2; 8]g

d[m1; 0](f º 8g) = f gm2 [º 1; 4]; gm3 [º 1; 4]; hm3 [º 3; 5]; t2[º 3; 8]g

d[m1; 0](f º 9; º 10; º 11g) = f gm2 [º 4; 4]; gm3 [º 4; 4]; t1[º 1; 8]; t2[º 1; 8]g

d[m1; 0](f º 12g) = f gm2 [º 4; 4]; gm3 [º 4; 4]; hm2 [º 5; 5]; t2[º 1; 8]g

d[m1; 0](f º 13g) = f gm2 [º 4; 4]; gm3 [º 4; 4]; hm3 [º 6; 5]; t1[º 1; 8]g

d[m1; 0](f º 14g) = f t1[º 7; 8]; t2[º 7; 8]; t2[º 2; 8]g

d[m1; 0](f º 15g) = f t1[º 8; 8]; t2[º 8; 8]; t1[º 3; 8]g

d[m1; 0](f º 16g) = f t2[º 1; 8]; t1[º 12; 8]; t2[º 12; 8]g

d[m1; 0](f º 17g) = f t1[º 1; 8]; t1[º 13; 8]; t2[º 13; 8]g

The precedencerelation Á m1 ;0 contains the following precedenceconstraints:

hm2 [º 2; 5] Ám1 ;0 t1[º 2; 8] t2[º 2; 8] Ám1 ;0 t1[v7; 8] hm3 [º 3; 5] Ám1 ;0 t2[º 3; 8]

t1[º 3; 8] Ám1 ;0 t2[º 8; 8] t1[º 1; 8] Ám1 ;0 t2[º 13; 8] t2[º 1; 8] Ám1 ;0 t1[º 12; 8]
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hm3[º 6;5] t2[º 1; 8] t1[º 13; 8]t1[º 1; 8] t2[º 13; 8] jump to 97:

da;m 3 s

t18: jump to 8t2

sda;m 2

t29: jump to 9t1

sda;m 3

0 5 10 15 20 25 30 35 40 45 50 55 60

jump to 2, 4, or 51:

gm3 [º 1; 4]

gm2 [º 1; 4]s

da;m 1

t2[º 1; 8]t1[º 1; 8] jump to 13:

t1[º 1; 8] t2[º 1; 8] jump to 3, 6, or 72:

s

gm2 [º 4; 4]

gm3 [º 4; 4]

hm3[º 3;5] t2[º 3; 8] t1[º 3; 8] t1[º 8; 8]t2[º 8; 8] jump to 95:

sda;m 3 t1[º 3; 8]

hm2[º 2;5] t1[º 2; 8] t2[º 2; 8] t2[º 7; 8]t1[º 7; 8] jump to 84:

sda;m 2 t2[º 2; 8]

t1[º 1; 8] t2[º 1; 8] t1[º 12; 8] t2[º 12; 8]hm2[º 5;5] jump to 86:

da;m 2 s

Figure 6.7: A complete schedule for the Giotto program of Section 6.2.

Finally, the guard function G[m1; 0] is as follows:

G[m1; 0](f º 1; º 2; º 3g) = f gm2 [º 1; 4]; gm3 [º 1; 4]g

G[m1; 0](f º 4; º 5; º 6g) = f gm2 [º 4; 4]; gm3 [º 4; 4]g

For each other vertex v of the ¯nite state machine F [m1; 0], G[m1; 0](v) = ; . This completes

the description of the conditional scheduling problem P[m1; 0].

A schedule for the program of Section 6.2. Algorithm 6.1 generatesa total of three

scheduling problems, P[m1; 0], P[m2; 0], and P[m3; 0]. The ¯nite state machines F [m2; 0]

and F [m3; 0] each have a vertex set V = f v; v0g, and an edgeset containing the single edge
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v ! v0. Becauseof the simple nature of P[m2; 0] and P[m3; 0], we omit the description of

theseproblems.

A complete schedule for the program of Section 6.2 is shown in Figure 6.7. Lo-

cations 1 through 7 show the guarded schedule S[m1; 0]. The program begins at loca-

tion 1. After executing the mode switch driver guard activities gm1 [º 1; 4] and gm2 [º 1; 4],

the program either stays in m1 (location 2) or branches to m2 or m3 (locations 3 and 4,

respectively), all at mode time 0.

At location 2, the schedule executestasks t1 and t2 each for 6 time units. After

executing the mode switch guards activities gm1 [º 4; 4] and gm2 [º 4; 4], the program either

stays in m1 (location 3) or branches to m2 or m3 (locations 6 and 7, respectively), all at

mode time 15.

At location 3, the schedule completes tasks t1 and t2, reaches a rest point, and

jumps back to location 1. At location 6, the schedule updates the mode ports of mode m2

using the mode switch driver function hm2 [º 5; 5]. The schedule then completes task t1

before it is due at time 28. At time 31, the schedule completestask t2, then executesthe

invocations of t1 and t2 of mode m2 at mode time 0. Location 7 is similar to location 6,

with the roles of t1 and t2 reversed.

Location 4 (respectively, location 5) represents a switch from mode m1 to mode m2

(respectively, m3) at mode time 0. Location 8 (respectively, 9) represents the execution

of m2 (respectively, m3), starting at mode time 0, with no computation pending. We omit

the descriptions of thesefour locations.

6.4.5 The running time and optimalit y of Algorithm 6.1

The running time of Algorithm 6.1

We now analyze the running time of Algorithm 6.1. Note that the number of

iterations of the while loop in lines 4 through 11 is equal to the number of iterations of

the for loop in lines 13 through 18. We ¯rst bound this number from above, and then we

consider the time required by a single iteration. For each mode m, the number of possible

valuesfor ± such that (m; ±) may be an element of Frontier is

P
(! ;¢;¢)2 Switches[m] ! +

P
(! ;¢;¢)2 Invokes[m] ! +

P
(! ;¢;¢)2 Updates[m] !

We therefore obtain the following:
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Prop osition 6.19. For any Giotto program G, the number of iterations of the while loop

in lines 6 through 11 of Algorithm 6.1, and of the for loop in lines 13 through 17, is at most

P
m2 Modes

hP
(! ;¢;¢)2 Switches[m] ! +

P
(! ;¢;¢)2 Invokes[m] ! +

P
(! ;¢;¢)2 Updates[m] !

i
(6.1)

The reader will note that (6.1) is exponential, but pseudopolynomial, in the description of

the program G.

We now discussthe time required by a single iteration of lines 4 through 11 and

lines 13 through 17. If a Giotto program G guarantees rest points within n, and has at

most k mode switchesper mode, then by the remarks following De¯nition 6.15, the number

of vertices of the problem P[m; ±] is O((k + 1)n+1 ). It may be veri¯ed that the sizeof the

entire description of P[m; ±] is O(2f (n; jGj) ), where jGj is the sizeof the description of G, and

f (n; jGj) is a polynomial function of n and jGj. Unfortunately, it is possible to construct

a class of Giotto programs such that, for any program G in the class, the minimum n

such that G guarantees rest points within n is ­(2 jGj ).3 For such a program G, since n is

exponential in jGj, and the size of P[m; ±] is exponential in n, the number of vertices of

P[m; ±] is doubly exponential in the sizeof G. In particular, for such a program G, steps7

and 14 require time doubly exponential in the sizeof G. This is, of course,an undesirable

feature of Algorithm 6.1. It would be even worseif the running time of Algorithm 6.1 could

be, say, triply exponential in the size of G. We now prove that the running time is only

doubly exponential, by bounding the size of P[m; ±]. To determine this bound, we need

to calculate, given a Giotto program G, an upper bound on the smallest n such that G

guaranteesrest points within n. We now de¯ne the two quantities of interest in this upper

bound:

De¯nition 6.20 (T , similar control poin ts, C ). For this section, de¯ne T to be the

maximum, over all paths consisting of a single control point c, of
P

a[¢;¢]2A [c] wcet(a). Note

that T is also equal to the maximum, over all paths º , of
P

a[¢;¢]2A [º ] wcet(a).

3Such a class of programs may be obtained by modifying the program of Section 6.2 as follows. First,
multiply the period of mode m1 and execution times of the tasks of mode m1 by a positive integer i . Second,
modify modes m2 and m3 so that they invoke tasks and update actuators that do not need any results
computed in mode m1 , and so that m2 contemplates a mode switch to m3 with frequency 1 (and vice versa).
Modes m2 and m3 retain their original period 30. The result is that, upon switching to mode m2 or m3 at
time i ¢15, the total remaining computation time of tasks t 1 and t2 will be proportional to i , requiring O(i )
additional control points before no computation is pending. The size of the description of such a modi¯ed
program is O(log i ) bits longer than the description of the program of Section 6.2, but whereasthe original
program guaranteed restpoint within O(1), the modi¯ed program guarantees rest points within O(i ).



CHAPTER 6. MULTI-MODE, SINGLE-PROCESSORGIOTTO SCHEDULING 199

Two unconditional control points (m1; ±1) and (m2; ±2) are similar if m1 = m2 and

±1 = ±2 mod ¼[m1]. Two conditional control points (m1; ±1; d1; m0
1; ±0

1) and (m2, ±2, d2, m0
2,

±0
2) are similar if m1 = m2, ±1 = ±2 mod ¼[m1], d1 = d2, m0

1 = m0
2, and ±0

1 = ±0
2 mod ¼[m0

1].

We write c1 » c2 if control points c1 and c2 are similar. For this section, we let C be the

number of equivalenceclassesof » . ¤

We will prove below that if a Giotto program G guaranteesrest points, then G guarantees

rest points within (C ¢T + 1)C (Proposition 6.22and Corollary 6.24). It may be veri¯ed that

the quantities T and C are each O(2g(jGj) ), where g(jGj) is a polynomial function of jGj.

From the discussionfollowing Proposition 6.19, it follows that the sizeof the description of

P[m; ±] is O(22h ( j G j )
), where h(jGj) is a polynomial function of the size of the description

of G. SinceAlgorithm 5.4 runs in time polynomial in the sizeof its input P[m; ±], it therefore

follows that the running time of Algorithm 6.1 is O(22i ( j G j )
), where i (jGj) is a polynomial

function of the sizeof the description of G.

We now set about proving Proposition 6.22 and Corollary 6.24. We will assume

that each mode time ± is a positive integer; more precisely, we assumethat for each mode m,

for each ± 2 Q nZ> 0, C[m; ±] = ; .4 We ¯rst intro duce several de¯nitions that will be useful

in our analysis.

De¯nition 6.21 (simple path, cycle, p¤). Let º = c0; ¢¢¢; cm be a path. We say that º

is simple if, for all i; k 2 [0 :: m ¡ 1] such that i 6= k, ci and ck are not similar. We say

that º is a cycle if c0 and cm are similar. We de¯ne p¤ to be the supremum, over all paths º ,

of p(º ). Note that p¤ may be in¯nite. ¤

We now show that for a certain classof well-formed programs: (1) the maximum

amount p¤ of pending computation is ¯nite; (2) there is some some simple path º such

that after following º the amount p(º ) of pending computation is the maximum p¤; and

(3) p¤ · C ¢T.

4This assumption may be removed by multiplying each worst-caseexecution time and each mode period
of G by the product · of all frequenciesof G. The resulting program G0 is only polynomially longer than G,
so that Algorithm 6.1 runs in doubly exponential time on input G0. Moreover, the output of Algorithm 6.1
can be used for the original program G: if G0 is reported to be unschedulable, then G is unschedulable;
otherwise, the guarded schedules produced for G0 can be used for G by dividing each numerical quantit y in
the schedules by · .
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Prop osition 6.22. Supposethat

for all simple cyclesc0; ¢¢¢; cm ;
P m¡ 1

i=0
P

a[¢;¢]2A [c0 ;¢¢¢;cm ] wcet(a) · dur (c0; ¢¢¢; cm )
(6.2)

Then (1) p¤ < 1 , (2) there exists a simple path º such that p¤ = p(º ), and (3) p¤ · C ¢T.

Proof. (1) We ¯rst show that p¤ < 1 if condition (6.2) holds. Suppose, to obtain a

contradiction, that p¤ = 1 . Then there exists a sequenceof paths º 0; º 1; ¢¢¢ such that, for

i 2 Z¸ 0, (1) p(º i ) > i and (2) there is no path º such that p(º ) > i and º contains fewer

control points than º i . Let ci; 0; ¢¢¢; ci;m i be the sequenceof control points forming º i . Note

that p(ci; 0; ¢¢¢; ci;k ) > 0 for k 2 [1 :: m i ¡ 1] (otherwise, º = ci;k +1 ; ¢¢¢; ci;m i would be a

shorter path with p(º ) > i ).

Note that the path º C¢T must have length at least C + 1, and thus that there must

be two similar control points c » c0 appearing in º C¢T , so that

º C¢T = cC¢T;0; ¢¢¢; cC¢T;k ; c;¢¢¢; c0; cC¢T;` ; ¢¢¢; cC¢T;m C ¢T

Let the path º 0 be º C¢T with the cycle c;¢¢¢; c0 removed, i.e.,

º 0 = cC¢T;0; ¢¢¢; cC¢T;k ; cC¢T;` ; ¢¢¢; cC¢T;m C ¢T

Using condition (6.2), it may be veri¯ed that p(º 0) ¸ p(º C¢T ), contradicting the de¯nition

of º C¢T as the shortest path º such that p(º ) > C ¢T. We have establishedthat p¤ < 1 .

(2) Let º = c0; ¢¢¢; cm be any path such that p(º ) = p¤ and for no shorter path º 0

is p(º 0) = p¤. It may be veri¯ed that p(c0; ¢¢¢; ck ) > 0 for k 2 [1 :: m ¡ 1]. Supposethat º

is not simple. Then there must be two similar control points ci » ck , with i; k 2 [0 :: m ¡ 1],

and i < k; so that

º = c0; ¢¢¢; ci ¡ 1; ci ; ¢¢¢; ck ; ck+1 ; ¢¢¢; cm

Let the path º 0 be º with the cycle ci ; ¢¢¢; ck removed, i.e.,

º 0 = c0; ¢¢¢; ci ¡ 1; ck+1 ; ¢¢¢; cm

Using condition (6.2), and the fact that no pre¯x of º containing at least two vertices is

a rest point, it may be veri¯ed that p(º 0) ¸ p(º ), contradicting our assumption that no

path º 0 shorter than º has p(º 0) = p¤. We have establishedthat there exists a simple path

such that p(º ) = p¤.
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(3) Consider any simple path º = c0; ¢¢¢; cm such that p(º ) = p¤. Note that

m · C. Further,

p(º ) ·
P m¡ 1

i=0
P

a[¢;¢]2A [c0 ;¢¢¢;ci ] wcet(a) · C ¢T

Thus, p¤ · C ¢T.

We now prove a necessaryand su±cient condition for a program G to guarantee

rest points. The proof establishesour desiredresult, Corollary 6.24, below.

Theorem 6.23. A Giotto program G guaranteesrest points if and only if condition (6.2)

holds and further:

for all simple cyclesc0; ¢¢¢; cm such that
P m¡ 1

i=0
P

a[¢;¢]2A [c0 ;¢¢¢;cm ] wcet(a) = dur (c0; ¢¢¢; cm )

for all simple paths c0
0; ¢¢¢; c0

` ; c0

there exists an i 2 [0 :: m] such that p(c0
0; ¢¢¢; c0

` ; c0 ¢¢¢; ci ) = 0

(6.3)

Proof. () ) Supposethat condition (6.2) doesnot hold, i.e., for somecycle c0; ¢¢¢; cm ,

m¡ 1X

i =0

X

a[¢;¢]2A [c0 ;¢¢¢;cm ]

wcet(a) > dur (c0; ¢¢¢; cm )

For i 2 Z> 0, de¯ne the path º i as follows:

º i = (c0; ¢¢¢; cm¡ 1) i cm

It may be veri¯ed that no pre¯x of º i that consistsof at least m + 1 control points is a rest

point. Thus program G doesnot guarantee rest points.

Suppose that condition (6.3) does not hold. For i 2 Z> 0, de¯ne the path º i as

follows:

º i = c0
0; ¢¢¢; c0

` ; (c0; ¢¢¢; cm¡ 1) i cm

It may be veri¯ed that no pre¯x of º i containing at least ` + 2 control points is a rest point.

Thus program G doesnot guarantee rest points. We have establishedthat if G guarantees

rest points, then both (6.2) and (6.3) must hold.

(( ) Supposethat (6.2) and (6.3) hold. Consider any path º = c0; ¢¢¢; cm , where

m = (p¤ + 1)C. Sinceº has length (p¤ + 1)C + 1, º contains at least p¤ + 1 similar control

points c0
1 » ¢¢¢» c0

p¤ +1 , i.e.,

º = c0; ¢¢¢; c0
1; ¢¢¢; c0

2; ¢¢¢; c0
p¤ +1 ; ¢¢¢; cm
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Wewill show that there existsa pre¯x º 0of º such that º 0 is a rest point and contains at least

two control points. (From this fact, it will follow that if a Giotto program G guaranteesrest

points, then G guaranteesrest points within (p¤ + 1)C (Corollary 6.24, below.)) To obtain

a contradiction, supposethat no such path º 0 exists. Remove from path º all cyclesthat lay

betweenadjacent similar control points c0
i and c0

i+1 , for i 2 [1 :: p¤], and all cyclesprior to

control point c0
1, thereby obtaining a path º 00. Note that the cyclesc0

i ; ¢¢¢; c0
i+1 in path º 00

are all simple, as is the pre¯x c0; ¢¢¢; c0
1 of º 00. It may be veri¯ed that, by soremoving cycles

from º , condition (6.2) guarantees that the resulting path º 00has the property that there

is no pre¯x º 000of º 00such that º 000is a rest point and contains at least two control points.

Let c0
i; 1; ¢¢¢; c0

i;m i
denote the vertices of the simple cycle c0

i ; ¢¢¢; c0
i+1 . From condition (6.3)

it follows that for each i 2 [1 :: p¤],

P m i
k=1

P
a[¢;¢]2A [c0

i; 1 ;¢¢¢;c0
i;k ] wcet(a) < dur (c0

i; 1; ¢¢¢; c0
i;m i

) (6.4)

Note that p(c0; ¢¢¢; c0
1) · p¤. From (6.4), and the fact that all executiontimes and durations

are integral, every subsequent traversal of a cycle after following the pre¯x c0
0; ¢¢¢; c0

1 of º 00

decreasesthe amount of pendingcomputation by at leastone. More precisely, for i 2 [1 :: p¤]

there exists a path º i such that (1) c0; ¢¢¢; c0
i is a proper pre¯x of º i , (2) º i is a pre¯x of

c0; ¢¢¢; c0
i+1 , and p(º i ) · max f 0; p(c0; ¢¢¢; c0

1) ¡ ig. Thus, p(º p¤ ) = 0. We have found a

pre¯x º 000of º 00, namely º p¤ , such that º 000is a rest point and contains at least two control

points; this is a contradiction. We conclude that our supposition is false, i.e., that there

exists a pre¯x º 0 of º such that º 0 contains at least two control points and p(º 0) = 0. It

follows that program G guaranteesrest points.

The following corollary follows directly from the precedingproof:

Corollary 6.24. If a Giotto program G guarantees rest points, then G guarantees rest

points within (p¤ + 1)C.

The optimalit y of Algorithm 6.1

Though Algorithm 6.1 has a doubly exponential running time for some Giotto

programs, it is optimal, in a sensethat we now discuss.For any Giotto G program satisfying

conditions I, I I, and I I I of Section 6.4.1, Algorithm 6.1 answers the three questions of

Section 6.4.2. To see this, suppose that, given program G, Algorithm 6.1 generatesa

feasibleguarded schedule S[m; ±] for each guarded conditional scheduling problem P[m; ±]
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in Problems. Each of the problems P[m; ±] captures the constraints in the de¯nition of

" -feasibility in Section6.4.2. Thus, the schedulesS[m; ±] together are an "-feasibleschedule

for some " > 0. Further, as long as a program G satis¯es conditions I, I I, and I I I and

possessesan "-feasibleschedulefor some" > 0, the optimum " ¤ can be determined from the

program itself: "¤ is the maximum, over all paths º consistingof just onecontrol point, of the

sum of the worst-caseexecution times of actuator jobs and sensorjobs of º (whichever sum

is greater). Finally, it may be seenthat the schedulesS[m; ±] are an " ¤-feasibleschedule.

We summarizetheseobservations in the following theorem:

Theorem 6.25. Questions6.9, 6.10, and 6.11 may be solved as follows. Let G be a multi-

mode Giotto program satisfying conditions I, I I, and I I I. Then

1. G has an "-feasibleschedule for some" > 0 if and only if Algorithm 6.1 generatesa

winning schedule S[m; ±] 2 Solutions for each problem P[m; ±] 2 Problems.

2. If G has an "-feasibleschedule, then " ¤ is the maximum, over all paths º consisting

of a single control point, of max
nP

A2A [º ;2] wcet(A);
P

A2A [º ;3] wcet(A)
o

.

3. If Algorithm 6.1 generatesa winning schedule S[m; ±] 2 Solutions for each problem

P[m; ±] 2 Problems, then Solutions is an " ¤-feasibleschedule.

Determining whether a program guaran tees rest poin ts

In this section, we present an algorithm for determining whether a Giotto pro-

gram G guaranteesrest points. It may be shown, in a manner very similar to the proof of

Theorem 6.23, that G guarantees rest points if and only if there exists no path c0; ¢¢¢; cn

such that the following four conditions hold:

(1) ci ; ¢¢¢; cn is a cycle for somei 2 [1 :: n].

(2) Both c0; ¢¢¢; ci +1 and ci ; ¢¢¢; cn are simple.

(3) p(c0; ¢¢¢; c` ) > 0 for all ` 2 [1 :: n].

(4) p(c0; ¢¢¢; ci ) · p(c0; ¢¢¢; cn ).

Conditions (1) through (4) suggestthe following naive algorithm for determining whether a

Giotto program G guarantees rest points. First, enumerate all sequencesof control points
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c0; ¢¢¢; cn , with n · 2C ¡ 1, where C is de¯ned in De¯nition 6.20. Then, for each such

sequence,check whether it is a path, and check whether conditions (1) through (4) hold.

Sincethere aremore than C! sequencesto beconsidered,this naivealgorithm is prohibitiv ely

expensive. Algorithm 6.2 does slightly better: unlike the naive algorithm, Algorithm 6.2

has the advantage that the number of paths it explores is no greater than the number of

paths explored by Algorithm 6.1. Algorithm 6.2 can therefore be usedat no additional cost

over that of Algorithm 6.1.

Algorithm 6.2 maintains two setsof paths: Explored, a set of paths known not to

contain a path satisfying conditions (1) through (4), and Frontier , a set of paths one of

which may satisfy these conditions. Each path º = c0; ¢¢¢; cn in Frontier will satisfy two

invariants: ¯rst, that p(c0; ¢¢¢; ci ) > 0 for all i 2 [1 :: n ¡ 1]; and second,that if º satis¯es

condition (1), it also satis¯es (2). Initially , Explored = ; and Frontier is the set of paths

c;c0 such that c 2 C[start; 0] and c0 is a successorof c (lines 2{3). As long as somepath

remains to be tested, i.e., Frontier 6= ; (line 4), such a path º = c0; ¢¢¢; cn is removed

from Frontier and added to Explored (lines 5{7). If path º is a rest point, then it cannot

satisfy condition (3), nor can an extension of º satisfy (3). However, any unexplored path

cn ; c0, where c0 is a successorof cn , may satisfy conditions (1) through (4). We therefore

add any such path cn ; c0 to Frontier if p(cn ; c0) > 0, maintaining our invariants. If path º

is not a rest point, then by the ¯rst invariant, condition (3) is satis¯ed. In line 11, we

check if conditions (1) and (4) are satis¯ed. If (1) is satis¯ed, then by our secondinvariant,

condition (2) is also satis¯ed. Thus, in line 14, we declare that G does not guarantee rest

points. Otherwise, we add each unexplored path º ; c0 satisfying the secondinvariant to

Frontier . The algorithm terminates either when a path satisfying (1) through (4) is found,

or when all candidate paths are in Explored.

6.5 Conclusion

This chapter developed an algorithm for scheduling a classof multi-mo de Giotto

programs on a singleprocessor.Though this chapter usedthe guardedconditional schedul-

ing model of Section 5.2.4, some of the other models of Chapter 5 could be used under

certain circumstances. If mode switch guards and functions require negligible computation

time, then the precedence-constrainedmodel of Section5.2.3would be appropriate. Rather

than createproblemsP[m; ±] whosesizeis doubly exponential in the sizeof the input Giotto
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Algorithm 6.2 Algorithm for testing whether a Giotto program guaranteesrest points.
1: Algorithm Guarantee(G: Giotto program)
2: Frontier := the set of paths f c;c0 j c 2 C[start; 0] and c0 is a successorof cg
3: Explored := ;
4: while Frontier 6= ; do
5: let º = c0; ¢¢¢; cn be any member of Frontier in
6: Frontier := Frontier n f º g
7: Explored := Explored [ f º g
8: if p(º ) = 0 then
9: let S be the set of paths f cn ; c0 j c0 is a successorof cng in

10: Frontier := Frontier [ (S n Explored)
11: else if cn = ci for somei 2 [0 :: n ¡ 1] and p(c0; ¢¢¢; ci ) · p(c0; ¢¢¢; cn ) then
12: Report that G doesnot guarantee rest points, and return.
13: else
14: for all paths º 0 = º ; c0 do
15: if º 0 =2 Explored and either º 0 doesnot satisfy (1) or satis¯es (2) then
16: Frontier := Frontier [ f º 0g
17: Report that G guaranteesrest points, and return.

program G, onecould createDAG scheduling problemswhosesizeis only singly exponential,

and then usean exponential-time algorithm to ¯nd winning strategies for theseproblems.

Finally, if a Giotto program has ¯xed deadlines, even in the presenceof mode switching

and precedenceconstraints, then a ¯xed-deadline conditional scheduling model could be

used. To usea ¯xed-deadline model (respectively, a DAG model), the model of Section 5.4

(respectively, Section 5.3.2) would have to be elaborated to include precedenceconstraints.

We now summarize this chapter. Section 6.2 presented a multi-mo de Giotto pro-

gram in which the deadlines of the tasks vary, depending on the mode-switching behav-

ior of the program. This program motivated the need for varying-deadline scheduling of

multi-mo de Giotto programs. Section 6.3 presented preliminary concepts necessaryfor

the scheduling algorithm of this chapter. Finally, Section 6.4 developed the scheduling

algorithm. Section 6.4.1 de¯ned a classof Giotto programs for which the algorithm cor-

rectly determines whether feasibleschedulesexist. Next, Section 6.4.2 de¯ned a notion of

" -feasibility for multi-mo de Giotto programs. Sections6.4.3 and 6.4.4 presented the algo-

rithm. Givena Giotto program G, the algorithm generatesa guardedconditional scheduling

problem P[m; ±] for each mode m and mode time ± such that an execution of G may be at

mode m and mode time ± with no pending computation. The algorithm then attempts to

producea schedule for each generatedproblem P[m; ±]. Finally, Section6.4.5discussedthe
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running time and optimalit y of the algorithm. Though the running time of this algorithm

may be doubly exponential in the sizeof its input program, the algorithm correctly deter-

mines whether a multi-mo de Giotto program has an "-feasibleschedule for any " > 0, and

if so synthesizesan "¤-feasibleschedule, i.e., a schedule with minimum jitter " ¤.
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Chapter 7

Multi-pro cessor Giotto scheduling

7.1 In tro duction

This brief chapter studies the problem of scheduling Giotto programs on multiple

processors.We show that two of the abstract Giotto scheduling problems of Section 2.4.1

are strongly NP-hard. Next, we review the literature on distributed scheduling (parallel

and job shop models). We will seethat it is NP-hard to decidewhether instancesof even

quite restricted modelshave feasibleschedules.Thus, the hardnessof multi-pro cessorGiotto

scheduling is not somefact peculiar to Giotto, but is rather a feature commonto distributed

scheduling problems.

7.2 Hardness of multi-pro cessor Giotto scheduling

We now de¯ne two scheduling problems that we will show to be strongly NP-

hard. The problem Abstract Giotto scheduling is, informally, the problem of ¯nding a

mapping annotation host so that a Giotto program G may be feasibly scheduled, given a

platform speci¯cation P and a jitter tolerance" . The problem Host-assigned abstract Giotto

scheduling is, informally, the problem of ¯nding a feasibleschedule for a Giotto program G,

given a mapping annotation host, a platform speci¯cation P, and a jitter tolerance " .

De¯nition 7.1 (A bstr act Giotto scheduling, Host-assigne d abstr act Giotto sched-

uling ). Let G be a Giotto program, let P be a platform speci¯cation, and let " be a jitter

tolerance. The tuple (G; P; " ) is feasible if there existsa scheduleS such that (1) S conforms
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to " , and (2) for every execution E, S realizesE on the platform speci¯ed by P. The set

Abstract Giotto scheduling is f (G; P; " ) j (G; P; " ) is feasibleg.

Let host be a complete mapping annotation for G on P. The triple (G; P; "; host)

is feasible if there exists a schedule S such that (1) S conforms to " , (2) S conforms to

host, and (3) for every execution E, S realizesE on the platform speci¯ed by P. The set

Host-assigned abstract Giotto scheduling is f (G; P; "; host) j (G; P; "; host) is feasibleg. ¤

In Sections7.2.1 and 7.2.2, we will show that theseproblems are strongly NP-hard.

7.2.1 Hardness of A bstr act Giotto scheduling

We show that Abstract Giotto scheduling is strongly NP-hard via a reduction from

the strongly NP-hard problem 3-Partition [GJ75]. After de¯ning 3-Partition , we give the

reduction.

De¯nition 7.2 (3-partition). An instance of 3-partition is a tuple (m; c;s), where m 2

Z> 0 is a positive integer, c 2 Z> 0 is a size constraint , and s : [1 :: 3m] ! Z> 0 is a function

that assignsto each item i 2 [1 :: 3m] a size s(i ) 2 Z> 0. The function s must satisfy the

conditions that for each i 2 [1 :: 3m], c=4 < s(i ) < c=2, and
P 3m

i=1 s(i ) = mc. A partition

is a set of m disjoint sets S1; ¢¢¢; Sm such that
S m

k=1 S` = [1 :: 3m]. A partition is feasible

if, for each k 2 [1 :: m],
P

i 2 S`
· c. The set 3-Partition is the set f (m; c;s) j (m; c;s) has a

feasiblepartition g.1 ¤

Prop osition 7.3. Abstract Giotto scheduling is strongly NP-hard.

Proof. We reduce3-Partition to Abstract Giotto scheduling by de¯ning a polynomial time

function that, given an instance (m; c;s) of 3-partition, producesa tuple (G; P; " ) such that

(m; c;s) has a feasiblepartition if and only if (G; P; " ) is feasible.

² Let n = 3m. The program G is de¯ned as follows. The set Tasksis f t ` j ` 2 [1 :: n]g.

Each task t ` has a single input port i ` , and a single output port o` . The program G

has one sensorport s, and one actuator port a. For each task t ` there is a driver d`

that reads s and writes i ` . There is an additional driver da that reads the ports

o1; ¢¢¢; on and writes a. The program G has a single mode m0, with period c+ 2. For

1 It may be veri¯ed that a partition is feasible if and only if the partition satis¯es the condition that for
each k 2 [1 :: m],

P
i 2 S `

= c. This equivalent condition is used in the standard de¯nition of 3-Partition .
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each i 2 [1 :: n], the task invocation (1; t ` ; d` ) is in Invokes[m0]. Finally, the actuator

update (1; da) is in Updates[m0].

² The platform speci¯cation P is de¯ned as follows:

{ H = f hi j i 2 [1 :: m]g.

{ For each ` 2 [1 :: 3m], wcet(t ` ) = s(`), and wcet(true(d` )) = wcet(false(d` )) = 0.

Further,

wcet(read(s)) = wcet(true(da)) = wcet(false(da)) = 1

{ wcct(p) = 0 for each p 2 Ports.

² Finally, " = 1.

It may easilybeveri¯ed that (m; c;s) hasa feasiblepartition if and only if (G; P; " ) is feasible

(a feasiblepartition may beusedto construct the desiredcompletemapping annotation host,

and vice versa).

7.2.2 Hardness of Host-assigne d abstr act Giotto scheduling

We now show that Host-assigned abstract Giotto scheduling is strongly NP-hard.

We do so by giving a reduction from a °ow shop scheduling problem. A °ow shop is a set

of m hosts h1; ¢¢¢; hm ; for the problem with which we will be concerned,m = 3. A set of n

jobs j 1; ¢¢¢; j n is to be executedon these hosts. Each job j i has m subjobs j i; 1; ¢¢¢; j i;m .

Subjob j i; 1 executeson host h1, subjob j i; 2 on host h2, and so on. With each subjob j i;k is

associated a number t(j i;k ); j i;k must executefor t(j i;k ) time units. The order of execution

of the subjobs must satisfy the precedenceconstraint j i;k Á j i;k +1 , for each i 2 [1 :: n] and

each k 2 [1 :: m ¡ 1]. In the problem with which we will be concerned,preemptions are

allowed at arbitrary times, and the goal is to check whether there is a schedule in which

every job completesbeforea given time c. We now preciselyde¯ne the °ow shopscheduling

problem with which we will be concerned.

De¯nition 7.4 (F 3 j pmtn j Cmax ). An instance of F 3 j pmtn j Cmax is a tuple (J; t; c),

where:

² The set J is a ¯nite set, called the set of jobs. Let n = jJ j, and for simplicit y,

let j 1; ¢¢¢; j n be the members of J . Each job j k is composedof three subjobs, j k;1,
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j k;2, and j k;3. There are three hosts h1; h2; h3 on which subjobs execute. Subjob j k;`

executeson host h` , for ` 2 [1 :: 3]. Further, subjob j k;` cannot start until subjob j k;` ¡ 1

completes,for ` 2 [2 :: 3].

² The function t : J £ [1 :: 3] ! Z¸ 0 assignsto each subjob j k;` an execution time

t(j k ; `).

² The deadline c 2 Z¸ 0 is a time beforewhich all jobs must complete. ¤

We now de¯ne (1) what a schedulefor an instanceof F 3 j pmtn j Cmax is, (2) what

a feasibleschedule is, and (3) the set Flow shopconsisting of those instancesof F 3 j pmtn j

Cmax that have feasibleschedules.

De¯nition 7.5 (schedule, feasible schedule, Flow shop ). A schedule for an instance

(J; t; c) of F 3 j pmtn j Cmax is a pair (I ; e), where:

² The set I is a set of intervals of the real line. Each interval must be nonempty and

of the form (a;b), i.e., left- and right-open. Distinct intervals must not overlap, i.e.,

if i; i 0 2 I and i 6= i 0 then i \ i 0 = ; .

² The function e : I £ [1 :: 3] ! J assignsto each interval i 2 I and host number

` 2 [1 :: 3] a job e(i; `) 2 J . Intuitiv ely, if e(i; `) = j k , then subjob j k;` is executedon

host h` during the interval i . For a job j 2 J and a host number ` 2 [1 :: 3], we let

I [j ; `] be the set f i 2 I j e(i; `) = j g of intervals that executejob j on host h` .

We say that schedule (I ; e) is feasible if the following conditions hold:

² For each job j 2 J and each host number ` 2 [1 :: 3], t(j ; `) =
P

(a;b)2 I [j ;` ] b¡ a.

² For each job j 2 J , each host number ` 2 [1 :: 2], each interval (a` ; b̀ ) 2 I [j ; `], and

each interval (a`+1 ; b̀ +1 ) 2 I [j ; ` + 1], b̀ · a`+1 .

² For each interval (a; b) 2 I , b · c.

For the purposesof this section, the set Flow shop is f (J; t; c) j (J; t; c) has a feasible

scheduleg. ¤

Flow shop was shown to be strongly NP-hard in [GS78] via a reduction from 3-

Partition . We now show that Host-assigned abstract Giotto scheduling is strongly NP-hard

by giving a reduction from Flow shop to Host-assigned abstract Giotto scheduling.
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Prop osition 7.6. Host-assigned abstract Giotto scheduling is strongly NP-hard.

Proof. We reduce Flow shop to Host-assigned abstract Giotto scheduling by de¯ning a

polynomial-time function that, given an instance (J; t; c) of F 3 j pmtn j Cmax , produces

a tuple (G; P; "; host) such that (J; t; c) has a feasibleschedule if and only if (G; P; "; host)

is feasible.

² The program G is de¯ned just as in the proof of Proposition 7.3.

² The platform speci¯cation P is de¯ned as follows:

{ H = f h1; h3g. (The network of the Giotto problem will take the place of the

host h2 of the °ow shop problem.)

{ For each ` 2 [1 :: n], wcet(true(d` )) = wcet(false(d` )) = t(j ` ; 1). Further,

wcet(read(s)) = wcet(true(da)) = wcet(false(da)) = 1

For each ` 2 [1 :: n], wcet(t ` ) = t(j ` ; 3).

{ For ` 2 [1 :: n], wcct(i ` ) = t(j ` ; 2).

² " = 1.

² Finally, the function host is de¯ned as follows:

{ host(read(s)) = h1.

{ For ` 2 [1 :: n], host(true(d` )) = host(false(d` )) = h1.

{ host(true(da)) = host(false(da)) = h3.

{ For ` 2 [1 :: n], host(t ` ) = h3.

It may be veri¯ed that the instance (J; t; c) of F 3 j pmtn j Cmax has a feasibleschedule if

and only if (G; P; "; host) is feasible(the feasibleschedule for the °ow shopproblem may be

usedto construct a feasibleschedule for the Giotto problem, and vice versa).

7.3 Parallel and job shop scheduling mo dels

The NP-hardnessproofs of Section 7.2 are two among many in the parallel and

job shopscheduling literature, which we brie°y review in this section. Most parallel and job
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shopscheduling problemsareNP-hard [LLKS93], and the presenceof precedenceconstraints

and releasetimes often makes a model intractable. The structure of this section is as

follows. Section 7.3.1 discussesthe relevance of the ® j ¯ j ° notation for classifying

the di±cult y of scheduling problems. Section 7.3.2 examinesjob shop scheduling models.

Finally, Section 7.3.3 examinesparallel scheduling models.

7.3.1 The ® j ¯ j ° notation revisited

The ® j ¯ j ° notation intro duced in Chapter 4 is commonly used to classify the

computational complexity of scheduling problems[LLLK82 ]. The 4536scheduling problems

formed by all combinations of ®, ¯ , and ° comprisea directed graph with the property that

P ! P0 implies that the decisionversionof P reducesto the decisionversionof P 0 [LLKS93].

For example,consider° = Cmax and ° = L max , the cost functions maximum job completion

time and maximum job lateness, respectively.2 Supposean algorithm A exists that, when

given an instanceof a scheduling problem and an integer k, decidesif there exists a feasible

schedule for which L max · k. If the deadline of each job is set to 0, the completion time of

a job equals its lateness,so that minimizing L max actually minimizes Cmax . Thus, A may

be used to decide if there is a schedule for which Cmax · k. Conversely, for a given choice

of ® and ¯ , the NP-hardnessof the decisionversionof ® j ¯ j Cmax implies the NP-hardness

of the decisionversion of ® j ¯ j L max .

Of the 4536 scheduling problems, 417 are known to be solvable in polynomial

time, 3821are NP-hard, and 298are still open.3 Each of thesethree classes| polynomial-

time, NP-hard, and open | possessessubclassesof minimal and maximal problems, in the

following sense. A problem P is minimal (respectively, maximal) if there exists no other

problem P0 in its classsuch that P 0 ! P (respectively, P ! P 0). The minimal problems

are the easiestknown problems in their class,and the maximal problems are the hardest.

Research e®ort has frequently focused on trying to show the maximal open problems to

be NP-hard, and to show the minimal open problems to be solvable in polynomial time.

In this section, we will considerminimal NP-hard problems, and maximal polynomial-time

problems. We will seethat for distributed scheduling, the minimal NP-hard problems and

maximal polynomial-time problems are both quite simple.
2Cmax is also called the makespan or maximum °ow time.
3These numbers were accurate in 1993; a revised count will have to wait until the successorsurvey

of [LLKS93]. An up-to-date classi¯cation, using a slightly di®erent notation than [LLKS93], appears in
[BK02].
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7.3.2 Job shop scheduling mo dels

A job shopscheduling problem consistsof a set of n jobs. Each job j i is a sequence

of subjobs: j i = (j i; 1; ¢¢¢; j i;` i ). The number ` i of subjobs may depend on the job j i .

Subjob j i;k must complete before subjob j i;k +1 begins, for each k 2 [1 :: ` i ¡ 1]. Job shop

scheduling therefore models a simple kind of precedencerelation in which Á consists of

chains of subjobs. There are m hosts h1; ¢¢¢; hm on which the subjobs are to be scheduled.

Each subjob j i;k is assignedto a particular host host(j i;k ) 2 f h1; ¢¢¢; hm g.4 Each subjob

requires time t(j i;k ) on the host to which it is assigned. The hosts may be scheduled

preemptively if ¯ includes pmtn, and must be scheduled nonpreemptively otherwise. If ¯

includes r i , then jobs may have nonzero releasetimes; otherwise, all jobs are releasedat

time 0. There are two commoncost functions, Cmax or L max . In the latter case,each job j i

is assumedto have a deadline d(j i ).

Job shop scheduling is oneof the hardest problems in combinatorial optimization.

As practical evidenceof this di±cult y, an instance with 10 jobs and 10 hosts of J jj Cmax

(minimize the maximum completion time of a set of jobs scheduled nonpreemptively) that

wasposedin 1963remainedunsolved until 1988[FT63, CP89]. From a theoretical perspec-

tiv e as well, job shop scheduling is extremely di±cult. In the remainder of this section, we

will review the theoretical evidencefor the di±cult y of job shopscheduling. We concentrate

on polynomially solvable and strongly NP-hard problems, leaving out pseudopolynomially

solvable and weakly NP-hard problems for the sake of simplicit y. For the samereason,we

ignore algorithms that are polynomial-time if the number of hosts is ¯xed, but exponential-

time if the number of hosts varies. For job shop problems with nonzeroreleasetimes, two

maximal polynomially solvable problems are:

² J 2 j pij = 1 j L max , the problem of scheduling two hostsnonpreemptively to minimize

the maximum latenessof unit-time subjobs [Bru81, Bru82].

² J 2 j pij = 1;r i j Cmax , scheduling two hosts nonpreemptively to minimize the maxi-

mum completion time of unit-time subjobs with releasetimes [Tim97].

In the words of [LLKS93], this \is probably as far as we can get," since the following

problems are NP-hard:
4Flow shop models, of which De¯nition 7.4 de¯ned one particular type, are thus a special sort of job shop

model in each job has m subjobs, i.e., ` i = m for all i 2 [1 :: n], and host(j i;k ) = hk for all i 2 [1 :: n] and
k 2 [1 :: m].
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² J 2 j mj · 3 j Cmax (respectively, J 3 j m j · 2 j Cmax ), scheduling two (respec-

tiv ely, three) hosts nonpreemptively to minimize the maximum completion time of

jobs consisting of at most three (respectively, at most two) subjobs [LKB77, GS78].

² J 2 j pij 2 f 1; 2g j Cmax , scheduling two hosts nonpreemptively to minimize the

maximum completion time of subjobs requiring either one or two units of time. This

problem is strongly NP-hard, even if preemption is allowed [LK79].

² J 3 j pij = 1 j Cmax , scheduling three hostsnonpreemptively to minimize the maximum

completion time of unit-time subjobs. Like the previous problem, this problem is

strongly NP-hard, even if preemption is allowed [LK79].

7.3.3 Parallel scheduling mo dels

A related set of scheduling models are the parallel models. In these models, a

job is not assignedto a particular host, but is allowed to execute on any host, provided

that no host executesmore than one job at any time, and that no job is executedon more

than one host at any time. If preemption is allowed, then a preempted job may resume

execution on any host, not just on the host on which it started. This feature of preemptive

parallel scheduling models is unattractiv e for the scheduling of Giotto programs, since the

intended execution environment for Giotto is not a shared memory multi-pro cessor,but

rather networked processorswith disjoint memory spaces.Nor are nonpreemptive models

the best match for scheduling Giotto programs, since preemption is such a common and

useful feature of real-time operating systems. Nonetheless,for the sake of thoroughnesswe

will review the results for both preemptive and nonpreemptive parallel scheduling.

In a parallel scheduling scenario, there are m hosts on which a set J of jobs is

to be executed. The m hosts may be either identical (meaning a given job j 2 J requires

the sameamount of time t(j ) on each host), uniform (meaning that with each host h i is

associated a speedsi such that the time required by job j on hi is si ¢t(j )), or unrelated (the

running times of jobs on one processorgive no information about the running times of jobs

on another processor). Thesecasesare ® = P, ® = Q, and ® = R, respectively. The hosts

may be scheduledpreemptively if ¯ includespmtn, and must be schedulednonpreemptively

otherwise. If ¯ includes r i , then jobs may have nonzero releasetimes; otherwise, all jobs

are releasedat time 0. Finally, if ¯ includes prec, then a precedencerelation Á constrains

the order in which jobs execute. Restricted types of precedenceconstraints may instead
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be present: if ¯ includes chains, then only chains of jobs are allowed; if ¯ includes intr ee

(respectively, outtree) , then the graph (J; Á) must form a tree in which each job has at

most one successor(respectively, predecessor).

To narrow our discussion,we focus on models with either nonzero releasetimes

or precedenceconstraints, sincemodels that lack both featuresare unlikely to be useful for

scheduling Giotto programs. We focuson polynomially solvable problems in which the cost

function is L max , the minimization of maximum lateness.Wealsofocuson strongly NP-hard

problemsin which the cost function is Cmax or L max , sinceother objective functions are less

relevant to Giotto. For nonpreemptive parallel scheduling, two maximal polynomial-time

solvable problems are:

² P j pi = 1;chains; r i j L max , scheduling identical hosts to minimize maximum lateness

of chains of unit-time jobs with releasetimes [BBKT02 ].

² P2 j pi = 1;prec j L max , scheduling identical hosts to minimize the maximum lateness

of precedence-constrained,unit-time jobs [GJ76].

For nonpreemptive parallel scheduling, several minimal NP-hard problems are:

² P jj Cmax , scheduling jobs on identical hosts to minimize maximum completion

time [GJ78].

² P j pi = 1; intr ee; r i j Cmax , scheduling unit-time jobs with releasetimes and an

intree precedencerelation on identical hosts to minimize maximum completion time

[BGJ77].

² P j pi = 1;outtree j L max , scheduling unit-time jobs with an outtree precedence

relation on identical hosts to minimize maximum lateness[BGJ77].

² P j pi = 1;prec j Cmax , scheduling unit-time jobs on identical hosts to minimize

maximum completion time [Ull75].

² P2 j chains j Cmax , scheduling jobs on two identical hosts to minimize maximum

completion time [DLY91].

For Giotto, one would like a model at least as expressive as P j prec; r i j L max , which is

NP-hard sinceeach of the preceding¯v e problems reduceto it.
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For preemptive parallel scheduling, two maximal polynomial-time solvable prob-

lems are:

² Q2 j prec; pmtn j L max , scheduling precedence-constrainedjobs on two uniform hosts

to minimize maximum lateness[Law82].

² R j pmtn; r i j L max , scheduling jobs with releasetimes on unrelated hosts to minimize

maximum lateness[LL78].

Several minimal NP-hard parallel preemptive scheduling problems are:

² P j pi = 1;prec; pmtn j Cmax , scheduling unit-time, precedenceconstrained jobs on

identical hosts to minimize maximum completion time [Ull82].

² P j intr ee; pmtn; r i j Cmax , scheduling jobs with releasetimes and an intree precedence

relation on identical hosts to minimize maximum completion time [Len].

² P j outtree; pmtn j L max , scheduling jobs with an intree precedencerelation on iden-

tical hosts to minimize maximum lateness[Len].

² R2 j chains; pmtn j Cmax , scheduling chains of jobs on two uniform hosts to minimize

maximum completion time [Len].

For Giotto, one would like a model at least as expressive as P j prec; pmtn; r i j L max ,

preemptively scheduling precedence-constrainedjobs with releasetimes on identical hosts

to minimize maximum lateness.This model is NP-hard becausethe ¯rst three of the above

problems reduceto it.

7.4 Conclusion

In this chapter, we argued that the problem of scheduling Giotto on multiple

processorsis computationally infeasible. In Section 7.2, we showed that two distributed

Giotto scheduling problemsare strongly NP-hard. In Section7.3, we reviewed the literature

on job shopand parallel scheduling problems,saw that NP-hardnessis not a feature peculiar

to Giotto scheduling, but rather a commonfact for many distributed scheduling problems.
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