
Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2006.

Convergent Tree-reweighted Message Passing
for Energy Minimization

Vladimir Kolmogorov
University College London, UK

Abstract

Algorithms for discrete energy minimization are of fun-
damental importance in computer vision. In this paper
we focus on the recent technique proposed by Wainwright
et al. [33] - tree-reweighted max-product message passing
(TRW). It was inspired by the problem of maximizing a
lower bound on the energy. However, the algorithm is
not guaranteed to increase this bound - it may actually
go down. In addition, TRW does not always converge.
We develop a modification of this algorithm which we call
sequential tree-reweighted message passing. Its main prop-
erty is that the bound is guaranteed not to decrease. We
also give a weak tree agreement condition which charac-
terizes local maxima of the bound with respect to TRW
algorithms. We prove that our algorithm has a limit point
that achieves weak tree agreement. Finally, we show that
our algorithm requires half as much memory as traditional
message passing approaches. Experimental results demon-
strate that on certain synthetic and real problems our
algorithm outperforms both the ordinary belief propaga-
tion and tree-reweighted algorithm in [33]. In addition, on
stereo problems with Potts interactions we obtain a lower
energy than graph cuts.
Keywords: Energy minimization, graph algo-
rithms, message passing, belief propagation,
early vision, Markov Random Fields, stereo.

1 Introduction

Many early vision problems can be naturally formulated
in terms of energy minimization where the energy function
has the following form:

E(x | θ) = θconst +
∑

s∈V
θs(xs) +

∑

(s,t)∈E
θst(xs, xt) (1)

Set V usually corresponds to pixels; xs denotes the label
of pixel s ∈ V which must belong to some finite set. For
motion or stereo, the labels are disparities, while for image
restoration they represent intensities. θ defines parameters
of the energy: θs(·) is a unary data penalty function, and
θst(·, ·) is a pairwise interaction potential. This energy is
often derived in the context of Markov Random Fields [8]:
a minimum of E corresponds to a maximum a-posteriori
(MAP) labeling x.

In general, minimizing E is an NP-hard problem, so
researchers have focused on approximate minimization al-
gorithms. The two most well-known techniques are graph

cuts and belief propagation. The former one was intro-
duced in the 90’s [3,9,10,15] and showed a major improve-
ment over previously used simulated annealing [8]. To our
knowledge, graph cuts are currently considered to be the
most accurate minimization algorithm for energy functions
arising in many vision applications, e.g. stereo [3,14], im-
age restoration [3], image segmentaion [2], texture syn-
thesis [19]. In fact, for some functions it finds a global
minimum.

However, graph cuts can be applied only to a limited
class of energy functions [3,10,15]. If a function falls out-
side this class then one has to use other techniques such as
max-product belief propagation (BP) [6,22,27,35]. BP can
be applied to any function of the form as in eqn. (1), but
it has some drawbacks. First, it usually finds a solution
with higher energy than graph cuts (in cases when graph
cuts can be applied) [28]. Second, BP does not always
converge - it often goes into a loop.

Tree-reweighted message passing Recently, Wain-
wright et al. [33] introduced a new algorithm for energy
minimization called max-product tree-reweighted message
passing (TRW). We believe that it may become a serious
rival to both graph cuts and BP. As BP, TRW can be
applied to any function of the form as in eqn. (1). In addi-
tion, in this paper we show that for stereo problems with
Potts interactions TRW obtains a lower energy than both
graph cuts and BP. The improvement over graph cuts is
marginal and probably would not be a factor for the stereo
problem - both algorithms find solutions whose energy is
very close to the global minimum. However, it shows the
potential of TRW; the difference may become significant
for more difficult functions.

Wainwright et al. [33] gave two versions of the TRW al-
gorithm which differ in the schedule of passing messages.
These algorithms were inspired by the idea of maximiz-
ing a concave lower bound on the energy, and have the
following property: if their fixed point satisfies a certain
condition (“tree agreement”) then it is guaranteed to give
a MAP solution (i.e. a global minimum of the energy).

However, TRW algorithms in [33] cannot be viewed as
algorithms for direct maximization of the bound. Indeed,
in our experiments we observed that sometimes they de-
crease it. Also, the algorithms do not always converge;
when it happens, the value of the bound often goes into a
loop.

Our main contribution is as follows: we show how to
modify TRW algorithms so that the value of the bound is
guaranteed not to decrease. Thus, we are guaranteed to

1

find at least a “local” maximum of the bound. The word
“local” is in quotes since for concave functions all local
maxima are global, if the standard metric space topology
is used. Here we use a weaker topology: our maxima are
local with respect to the TRW algorithms. We formulate
the weak tree agreement condition (WTA) which gives a
precise characterization of such maxima. We prove that
our algorithm has a subsequence converging to a vector
satisfying WTA.

An interesting question is whether WTA always gives
a global maximum of the bound. We show that this is
not the case by providing a counterexample. Note that
this is different from sum-product tree-reweighted message
passing [31]: in the latter case a fixed point of TRW is
guaranteed to be the global maximum of the lower bound
on the negative log partition function.

TRW algorithms require some choice of trees covering
the graph. If the trees have a special structure (namely,
chains which are monotonic with respect to some ordering
on the graph - see section 3.4) then our algorithm reduces
to the message-passing algorithm of Wainwright et al. [33],
but with a significant distinction: we update messages in a
specific sequential order rather than in parallel. In the con-
text of ordinary BP it was observed experimentally that
sequential updates are superior to parallel updates [28]
although convergence is still not guaranteed. We give a
theoretical justification of sequential updates in the case
of tree-reweighted algorithms.

Our sequential schedule has an additional advantage:
we show that it can be implemented using half as much
space as traditional message passing approaches. Similar
observation was made in [6] for bipartite graphs and par-
allel schedule of updating messages. Our technique can be
applied to any graph and is a strict generalization of that
in [6].

Other related work Tree-reweighted message passing
is closely related to a certain linear programming (LP) re-
laxation of the energy function (described in more detail
in section 2.3). This relaxation has been widely studied
in the literature in different contexts. Schlesinger [24] ap-
plied it to energy functions of the form (1) whose pair-
wise terms encode hard constraints: θst(·, ·) ∈ {0,+∞}.
Koster et al. [17] formulated this LP relaxation for arbi-
trary functions E(x | θ) (in their terminology the problem
is called partial constraint satisfaction). Chekuri et al. [4]
used the formulation for functions with metric pairwise
terms; they proved certain performance guarantees, e.g.
2-approximation bound for the Potts energy. (Their work
extended the approach of Kleinberg et al. [11]). Wain-
wright et al. [33] studied this LP formulation in the con-
text of TRW algorithm for general energy functions of the
form (1). Recently, Komodakis et al. [16] showed that
graph cuts (or, more precisely, the expansion move method
in [3]) has close links with this LP. Thus, the LP relaxation
in [4, 17, 24, 33] plays a very important role in the theory
of MRF optimization algorithms.

Several authors developed specialized techniques that
try to solve this linear program. Koval and Schlesinger [18,
25] showed how to find a subgradient direction assuming

that a certain arc consistency condition is violated. (A
description of their augmenting DAG algorithm can be
found in [34]). Another algorithm with the same stopping
criterion (namely, arc consistency) is max-sum diffusion1.
Note that after some transformations arc consistency can
be shown to be equivalent to the WTA condition formu-
lated in this paper. Thus, the augmenting DAG, max-sum
diffusion and TRW algorithms have similar stopping crite-
ria. In particular, neither technique is guaranteed to solve
the LP relaxation exactly, as our counterexample shows.
(Another counterexample due to M. I. Schlesinger is given
in [34]).
Outline The paper is organized as follows. In sec-
tion 2 we introduce our notation and review some results
from [33], in particular the lower bound on the energy
function via convex combination of trees and the duality
result. In section 3 we present our new tree-reweighted al-
gorithm (TRW-S), as well as its analysis. We recommend
using a special case of the algorithm, namely TRW-S with
monotonic chains . A reader who wants to implement this
technique can skip sections 2 and 3 (except for the first
three paragraphs of section 2) and go directly to section 4.
This section gives a summary of the algorithm. Experi-
mental results are described in section 5. Finally, we give
conclusions in section 6.

2 Notation and background

In this paper we closely follow the notation used in [33].
However, instead of maximizing posterior probability we
minimize an energy function. Therefore, we replace “min”
with “max”, “inf” with “sup” and vice versa.

Let G = (V, E) be an undirected graph with the set of
vertices V and the set of edges E . For each s ∈ V, let
xs be a variable taking values in some discrete space Xs.
By concatenating the variables at each node, we obtain a
vector x with n = |V| elements. This vector takes values in
the space X = X1×X2× . . .×Xn. Unless noted otherwise,
symbols s and t will denote nodes in V, (s, t) is an edge in
E , and j and k are values in Xs and Xt, respectively.

As stated in the previous section, our goal is minimizing
the function E(x | θ) (eqn. (1)) defined by parameter θ.
This parameter is specified by constant term θconst, unary
terms θs(j) and pairwise terms θst(j, k). It is convenient
to denote the last two terms as θs;j and θst;jk, respectively.
Then θ can be viewed as a vector θ = {θα | α ∈ I} ∈ Rd

where the index set I is

I = {const} ∪ {(s; j)} ∪ {(st; jk)}

Note that (st; jk) ≡ (ts; kj), so θst;jk and θts;kj are the
same element. We will use notation θs to denote a vector
of size |Xs| and θst to denote a vector of size |Xs ×Xt|.

It is convenient to express E(x | θ) as the Euclidean
product of two vectors depending on θ and x. Of course,

1Max-sum diffusion algorithm was developed indepedently by V.
A. Kovalevsky and V. K. Koval in 1975 and by B. Flach in 1998.
Neither of the works was published. We learned about this method
from report [34].

2

we cannot write it as 〈θ,x〉 since θ and x belong to different
spaces. However, we can introduce mapping φ : X → Rd

so that

E(x | θ) = 〈θ, φ(x)〉 =
∑

α∈I
θαφα(x)

Mapping φ called the canonical overcomplete representa-
tion [30, 32] consists of the following functions φα : X →
R:

φconst(x) = 1
φs;j(x) = [xs = j]

φst;jk(x) = [xs = j, xt = k]

where [·] is one if its argument is true, and zero otherwise.
Let us introduce another notation which we will use ex-

tensively throughout the paper. Functions Φ, Φs;j , Φst;jk :
Rd → R give information about the minimum values of
the energy under different constraints:

Φ(θ) = minx∈X E(x | θ)
Φs;j(θ) = minx∈X ,xs=j E(x | θ)
Φst;jk(θ) = minx∈X ,xs=j,xt=k E(x | θ)

Values Φs;j(θ) and Φst;jk(θ) are called min-marginals for
node s and edge (s, t), respectively.

2.1 Max-product belief propagation

The key subroutine of tree-reweighted message pass-
ing algorithms is max-product belief propagation (BP) of
Pearl [22]. BP is an algorithm for approximate minimiza-
tion of energy E(x| θ̄) as in eqn. (1); it is exact if the graph
is a tree2. Let us review how BP works. It maintains a
message Mst = {Mst;k | k ∈ Xt} for each directed edge
(s → t) ∈ E , which is a vector with |Xt| components. We
denote M = {Mst} to be the vector of all messages.

The basic operation of BP is passing a message from
node s to node t for directed edge (s → t) ∈ E . It consists
of updating vector Mst as follows:

Mst;k := min
j∈Xs

{(θ̄s;j +
∑

(u→s)∈E,u 6=t

Mus;j) + θ̄st;jk}+constt

where constt is a constant independent of k3. We will say
that a message for directed edge (s → t) is valid if this
update does not change Mst (or change it by a constant
independent of k). BP algorithm keeps passing messages
for edges in some order until convergence, i.e. until all
messages are valid.

If the graph contains loops then in general convergence
is not guaranteed. In this paper, however, BP is applied
only to tree-structured subgraphs. In this case only two
passes are needed to achieve convergence: inward (send-
ing messages from leaves to a root) and outward (sending
messages from the root to leaves). Note that any node can
serve as a root.

2From now on, we will use notation θ̄ for the original energy
function rather than θ. The reason for this will be clear in the next
section.

3Throughout the paper we use notation constt or constst to de-
note constants independent of k or j. These constants may be dif-
ferent in different equations.

2.2 Reparameterization

If two parameter vectors θ and θ̄ define the same energy
function (i.e. E(x | θ) = E(x | θ̄) for all x ∈ X) then θ
is called a reparameterization of θ̄ [5,25,26,30,32] (in [25]
this notion was called equivalent transformations). We
will write this as θ ≡ θ̄. Note that this condition does
not necessarily imply that θ = θ̄ since there are various
linear relations among potential functions φα. Indeed, any
message vector M = {Mst} defines reparameterization θ =
θ̄[M] of the original parameter vector θ̄ as follows:

θt = θ̄t +
∑

(s→t)∈E Mst

θst;jk = θ̄st;jk −Mst;k −Mts;j

θconst = θ̄const

We prove in Appendix B that the opposite is also true:
any reparameterization θ of vector θ̄ can be expressed via
messages, up to a constant parameter vector4.

Reparameterization provides an alternative way of im-
plementing BP algorithm. As discussed in section 2.1,
standard BP stores the original parameter vector θ̄ and
messages M . Alternatively, we can store the reparame-
terization θ = θ̄[M], in which case the vectors θ̄ and M
are not needed. It turns out that sending a message from
node s to node t is equivalent to reparameterizing vectors
θt and θst for node t and edge (s, t), respectively [32]. It
can also be shown [32] that a message for directed edge
(s → t) is valid iff

min
j∈Xs

{θs;j + θst;jk} = constst ∀ k ∈ Xt (2)

If this condition holds, then sending a message from s to t
does not change θst and θt (or change them by a constant
independent of j or k). We say that θ is in a normal form
if all messages are valid.

For a tree-structured graph values θs;j and θst;jk for
vector θ in a normal form have a particularly simple inter-
pretation [32] - they correspond to min-marginals (up to
a constant):

Φs;j(θ) = θs;j + consts (3a)

Φst;jk(θ) = {θs;j + θst;jk + θt;k} + constst (3b)

Canonical normal form We will say that vector θ is
in a canonical normal form if in addition to eqn. (2) it
satisfies the following conditions for all nodes and edges:

minj θs;j = 0
minj,k {θs;j + θst;jk + θt;k} = 0

Any vector θ in a normal form can be reparameterized into
a canonical normal form by subtracting a constant from
vectors θs and θst and adding the same constant to θconst.
Canonical normal form is quite useful because constants
in eqn. (2) and (3) can be written down explicitly (see
Appendix A).

4We have recently learned that a proof of this fact was given
by M. I. Schlesinger in his lectures (NTUU “KPI”, Kiev). To our
knowledge, this proof was not published.

3

2.3 Linear programming relaxation

In general the problem of minimizing energy of the
form (1) is NP-hard. Therefore, researchers have fo-
cused on approximation algorithms. One of the ap-
proaches [4,17,24,33] uses a linear programming (LP) re-
laxation technique. Let us define the following constraint
set:

LOCAL(G) =

{
τ ∈ Rd

+

τconst = 1∑
j∈Xs

τs;j = 1∑
j∈Xs

τst;jk = τt;k

}

It is easy to check that for any configuration x ∈ X solu-
tion vector φ(x) belongs to this set. Therefore, the follow-
ing minimization problem yields a lower bound on Φ(θ̄):

min
τ∈LOCAL(G)

〈
θ̄, τ

〉
(4)

As shown in [4], this relaxation has several interesting
properties. Here we mention just one. Suppose that en-
ergy function E(x | θ) has Potts interaction terms and pa-
rameter vector θ is non-negative. Then by solving this
minimization problem and by using randomized technique
proposed in [11] we obtain configuration x such that the
expected value of E(x | θ) is at most twice the optimal
value of the energy.

Unfortunately, general linear programming algorithms
such as interior point methods are rather slow, and cur-
rently solving problem (4) is not computationally feasible
for large vision problems such as stereo. Specialized tech-
niques exploiting the structure of the problem were devel-
oped in [18] and in [33]. Both approaches try to solve a
dual to problem (4). First, a lower bound on the energy
E(x | θ) is formulated (i.e. a function of dual variables
which is always smaller or equal than the minimum of E).
The goal then becomes to maximize this bound. In this
paper we will follow the approach in [33] in which the lower
bound is formulated via convex combination of trees. This
approach is described in the next section.

2.4 Convex combination of trees

First, we need to introduce some notation. Let T be a
collection of trees in graph G and ρT , T ∈ T be some
distribution on T . Throughout the paper we assume that
each tree has a non-zero probability and each edge in E is
covered by at least one tree. For a given tree T = (VT , ET)
we define a set

IT = {const} ∪ {(s; j) | s ∈ VT } ∪ {(st; jk) | (s, t) ∈ ET }

corresponding to those indexes associated with vertices
and edges in the tree.

To each tree T ∈ T , we associate an energy parameter
θT that must respect the structure of T . More precisely,
the parameter θT must belong to the following linear con-
straint set:

AT = {θT ∈ Rd | θT
α = 0 ∀ α ∈ I\IT }

By concatenating all of the tree vectors, we form a larger
vector θ = {θT | T ∈ T }, which is an element of Rd×|T |.
Vector θ must belong to the constraint set

A = {θ ∈ Rd×|T | | θT ∈ AT for all T ∈ T }

Consider function Φρ : A → R defined as follows:

Φρ(θ) =
∑

T

ρT Φ(θT) =
∑

T

ρT min
x∈X

〈
θT , φ(x)

〉

[33] shows that if
∑

T ρT θT = θ̄ then Φρ(θ) is a lower
bound on the optimal value of the energy for vector θ̄
(this follows from Jensen’s inequality). To get the tightest
bound we can consider the following maximization prob-
lem:

max
θ∈A,

P
T ρT θT =θ̄

Φρ(θ) (5)

Φρ is a concave function of θ; moreover, the constraints of
problem (5) are linear in θ. The following theorem proved
in [33] characterizes the dual to problem (5)5.

Theorem 2.1. Minimization problem (4) is the La-
grangian dual to maximization problem (5). Strong duality
holds, so their optimal values coincide.

A surprising consequence of this theorem is that the
optimal value of problem (5) does not depend on the choice
of trees and their probabilities (as long as each edge is
covered with non-zero probability).

3 New tree-reweighted message
passing algorithm

In the previous section we introduced our notation and
described previous work. Now we can concentrate on our
contributions.

We start by modifying maximization problem (5). This
problem inspired two algorithms in [33] - tree-reweighted
message passing with edge based updates (TRW-E) and
with tree based updates (TRW-T). However, neither algo-
rithm maintains constraint

∑
T ρT θT = θ̄ of problem (5).

Indeed, they perform reparameterizations of the original
parameter vector, so this equality may become violated6.
Let us replace it with the constraint

∑
T ρT θT ≡ θ̄. Thus,

we are now interested in the following maximization prob-
lem:

max
θ∈A,

P
T ρT θT≡θ̄

Φρ(θ) (6)

The following lemma justifies this formulation.

Lemma 3.1. The optimal value of problem (6) equals to
the optimal value of problem (5).

5 [33] formulated this theorem for the case when trees in T are
spanning. However, their proof never uses this assumption. In this
paper we do not assume that trees are spanning.

6Note that lemmas 5 and 11 in [33] seem to contain a mistake.
Lemma 11, for example, says that TRW-T algorithm maintains the
property

P
T ρT θT = θ̄. However, the proof does not take into

account reparameterization step.

4

Proof. See Appendix C. The proof involves showing that
any reparameterization can be expressed via messages.

As shown in [33], TRW-E and TRW-T algorithms main-
tain the constraint of problem (6). Unfortunately, they do
not guarantee that the objective function Φρ monotoni-
cally increases - in our experiments we have observed that
sometimes it goes down. In fact, when the algorithms
failed to converge the value of Φρ(θ) often had gone into a
loop. Next we design a new algorithm with the property
that Φρ never decreases.

Our algorithm is shown in Fig. 1. It iterates between two
steps: (a) reparameterizing vectors θT , and (b) averaging
element ω ∈ V ∪ E . The goal of the reparameterization
step is to make sure that the algorithm satisfies the min-
marginal property:

• In the beginning of the averaging operation for ele-
ment ω, components of vectors θT corresponding to
ω should give correct min-marginals for trees T ∈ Tω

(eqn. (3)).

This property will turn out to be crucial in the analysis of
the algorithm.

Note that TRW-E and TRW-T algorithms can also be
formulated as combinations of reparameterization and av-
eraging operations7. However, they update vectors θT in
parallel, while we do it sequentially. Therefore, we call
our algorithm “sequential tree-reweighted message pass-
ing” (TRW-S).

Reparameterization step 1(a) can be implemented in
many different ways. One possibility is to convert vectors
θT to normal forms by running the ordinary max-product
BP. However, this would be very expensive if the trees are
large. A more efficient technique is discussed in section 3.4.

3.1 Weak tree agreement

The algorithm in Fig. 1 does not specify what the stopping
criterion is. In this section we address this issue by giving
weak tree agreement condition (WTA). Later we will show
that it characterizes local maxima of the algorithm with
respect to function Φρ. More precisely, we will prove that
the algorithm has a subsequence converging to a vector
satisfying WTA condition. Moreover, if a vector satis-
fies this condition, then the algorithm will not make any
progress, i.e. it will not increase function Φρ.

In order to define WTA condition, it is convenient to
introduce some notation. Let OPTT (θT) be the set of op-
timal configurations for parameter θT . Let OPT(θ) be
the collection {OPTT (θT) | T ∈ T } of the sets of opti-
mal configurations for vectors θT . It belongs to the set
(2X)|T | = 2X × . . . × 2X (|T | times). For two collections
S, S̃ ∈ (2X)|T | we will write S ⊆ S̃ if ST ⊆ S̃T for every
tree T .

7TRW-T algorithm iterates between two phases: (a) running
max-product BP for all trees, and (b) performing averaging oper-
ation for all nodes and edges. TRW-E is similar, except that in
phase (a) it performs one parallel message update operation for all
trees. In general, TRW-E and TRW-T algorithms do not satisfy the
min-marginal property.

0. Initialize θ so that θ ∈ A and
P

T ρT θT ≡ θ̄.

1. Select some order for nodes and edges in V ∪ E . For each
element ω ∈ V ∪ E find all trees Tω ⊆ T containing ω. If
there is more than one tree, then do the following:

(a) For all trees T ∈ Tω reparameterize θT such that values
θT

s;j (if ω = s is a node) or θT
s;j +θT

st;jk +θT
t;k (if ω = (s, t)

is an edge) give correct min-marginals for tree T as in
formulae (3).

(b) “Averaging” operation:
If ω = s is a node in V then

- Compute eθs = 1
ρs

P
T∈Ts

ρT θT
s

- Set θT
s := eθs for trees T ∈ Ts

If ω = (s, t) is an edge in E then

- Compute eνst;jk = 1
ρst

P
T∈Tst

ρT (θT
s;j + θT

st;jk + θT
t;k)

- Set θT
s , θT

st, θT
t for trees T ∈ Tst so that

θT
s;j + θT

st;jk + θT
t;k = eνst;jk

2. Check whether a stopping criterion is satisfied; if yes, ter-
minate, otherwise go to step 1.

Figure 1: Sequential tree-reweighted algorithm
(TRW-S). ρs is the node appearance probability, i.e. the
probability that a tree chosen randomly under ρ contains
node s. Similarly, ρst is the edge appearance probability.

Consider some collection of sets of configurations S =
{ST } ∈ (2X)|T |. We say that S is consistent if it satisfies
the following three conditions:

(a) For every tree T set ST is non-empty.

(b) If node s is contained in trees T and T ′, then for
every configuration x ∈ ST there exists configuration
x′ ∈ ST ′ which agrees with x on node s, i.e. xs = x′s.

(c) If edge (s, t) is contained in trees T and T ′, then for
every configuration x ∈ ST there exists configuration
x′ ∈ ST ′ which agrees with x on nodes s and t, i.e.
xs = x′s, xt = x′t.

Now we can define WTA condition.

Definition 3.2. Vector θ = {θT } ∈ A is said to satisfy
the weak tree agreement condition if there exists collection
S ⊆ OPT(θ) which is consistent.

Note that it can be viewed as a generalization of the tree
agreement condition introduced in [33]: vectors satisfying
tree agreement also satisfy WTA condition.

Also note that WTA condition is different from the fixed
point condition of TRW algorithms. The latter means that
any step of the algorithm does not change vector θ. This
in turn implies that all vectors θT are in a normal form
and θT

ω = θT ′
ω for every element ω ∈ V ∪ E and for every

pair of trees T, T ′ ∈ Tω. It is easy to see that every fixed
point of TRW satisfies WTA condition, but not the other
way around.

5

3.2 Analysis of the algorithm: Main the-
orems

First we show that similarly to TRW-T algorithm, TRW-S
maintains the constraint of problem (6).

Lemma 3.3. TRW-S algorithm performs reparameteriza-
tion of the original parameter vector θ̄, i.e. it maintains
the property

∑
T ρT θT ≡ θ̄.

Proof. By definition step 1(a) performs reparameteriza-
tions of tree vectors θT and, thus, reparameterizations of
the sum

∑
T ρT θT . Checking that step 1(b) is a reparam-

eterization is simple algebra.

Next we analyze the behaviour of objective function
Φρ during the algorithm. To be specific, we assume for
the rest of this section that after reparameterization step
1(a) we have minj {θT

s;j} = 0 (if ω = s is a node) or
minj,k {θT

s;j + θT
st;jk + θT

t;k} = 0 (if ω = (s, t) is an edge).
This assumption is not essential, however; the behaviour
of the algorithm will be the same for any other normaliza-
tion.

Theorem 3.4. (a) After any number of steps functions
Φ and Φρ do not decrease.

(b) If vector θ does not satisfy WTA condition then after
a finite number of iterations function Φρ will increase.

(c) If vector θ satisfies WTA condition with collection
S then after any number of steps it will still satisfy
WTA with the same collection S. Function Φρ will
not change.

A proof of this theorem is given in the next section.
As an immediate consequence of theorem 3.4(b) we get

the following result:

Corollary 3.5. If vector θ maximizes problem (6) then θ
satisfies WTA condition.

Unfortunately, the converse is not necessarily true as ex-
ample in Appendix D demonstrates.

Finally, we give the convergence theorem. A proof is
given in the next section.

Theorem 3.6. Let {θ(i)}i be an infinite sequence of vec-
tors obtained by applying step 1 of TRW-S algorithm. Let

{θ̃(i)}i be the reparameterization of this sequence obtained
by reparameterizing vectors θ(i) into the canonical normal

form. Then there is a subsequence {θ̃(i(m))}m such that

(a) It converges to some vector θ∗ ∈ A.

(b) Sequence {Φρ(θ̃
(i)

)}i converges to Φρ(θ∗).

(c) Vector θ∗ satisfies WTA condition.

Note that since the algorithm does not specify ex-
actly how we reparameterize vectors θ(i), we cannot claim
that sequence {θ(i)}i always contains a converging subse-
quence. As a counterexample, we could choose {θ(i)}i so

that it is not bounded. Reparameterization {θ̃(i)}i in the
theorem was chosen only to make sure that it is bounded.

3.3 Analysis of the algorithm: Proofs

In this section we prove theorems 3.4 and 3.6. The
most important property of the algorithm, namely the-
orem 3.4(a) (non-decreasing lower bound) is proven in the
beginning of the next section. This proof is instrumental
for understanding the structure of the algorithm. Other
parts of the proof are more technical; the reader may want
to skip them and go to section 3.4.

3.3.1 Proof of theorem 3.4

All quantities used in the theorem are defined using func-
tions E(· |θT). By definition, reparameterization step 1(a)
does not change these functions. Therefore, we do not
need to consider these steps, so we only need to analyze
the averaging step 1(b). The following lemma shows the
effect of the averaging operation on functions Φ.

Lemma 3.7. Suppose that the averaging operation for el-
ement ω transforms vectors θT to vectors θ̃T .

• If ω = s is a node, then Φs;j(θ̃T) = Φ(θT) + θ̃s;j for
every tree T ∈ Ts.

• If ω = (s, t) is an edge, then Φst;jk(θ̃T) = Φ(θT) +
θ̃s;j + θ̃st;jk + θ̃t;k for every tree T ∈ Tst.

Proof. We consider only the case when ω = s is a node.
The second case is very similar.

Because of our normalization assumption we have

Φ(θT) = min
j∈Xs

Φs;j(θT) = min
j∈Xs

{θT
s;j}+ consts = consts

where consts is the constant in formula (3a). Plugging
this into formula (3a) we get Φs;j(θT) = Φ(θT) + θT

s;j .
Vectors θT and θ̃T agree on all nodes and edges other

than node s. Thus, they have the same optimal configu-
ration xj under the constraint xj

s = j. We can write

Φs;j(θ̃T) = E(xj | θ̃T) = E(xj | θT)− θT
s;j + θ̃T

s;j =
= Φs;j(θT)− θT

s;j + θ̃T
s;j = Φ(θT) + θ̃T

s;j

Parts (a) and (c) of theorem 3.4 are immediate conse-
quences of this lemma. Indeed, for the node averaging
operation, for example, we can write

Φ(θ̃T) = min
j∈Xs

Φs;j(θ̃T) = Φ(θT) + min
j∈Xs

{θ̃T
s;j} (7)

We have θT
s ≥ 0; inspecting the update rule of step 1(b)

we conclude that θ̃T
s ≥ 0 as well. Therefore, the mini-

mum on the RHS is non-negative, so Φ(θ̃T) ≥ Φ(θT) and∑
T ρT Φ(θ̃T) ≥ ∑

T ρT Φ(θT). This proves part (a).
Let us prove part (c). Suppose that θ satisfies WTA

with collection S = {ST }. We need to prove that S ⊆
OPT(θ̃). We can ignore trees T ′ that do not contain node
s since vector θT ′ and set OPT(θT ′) do not change. Let
us pick a tree T ∈ Ts. Consider a configuration x ∈ S, and
let j = xs. Since S is consistent, for every tree T ′ ∈ Ts

6

there exists a configuration x′ with x′s = j that is optimal
for θT ′ . This implies that θT ′

s;j = 0 for every T ′ ∈ Ts.
Therefore, we have θ̃T

s;j = 0.
One consequence of this fact is that the minimum in

eqn. (7) is zero, so Φ(θ̃T) = Φ(θT). Also, it means that
E(x | θ̃) = Φ(θ̃T), i.e. x is an optimal configuration for
vector θ̃T : x ∈ OPTT (θ̃T). Part (c) is proved.

To prove part (b), we need the following lemma.

Lemma 3.8. Suppose that a complete pass of step 1
transforms vector θ to vector θ̃ and Φρ(θ) = Φρ(θ̃).
Then OPT(θ̃) does not acquire new configurations, i.e.
OPT(θ̃) ⊆ OPT(θ). If in addition OPT(θ) is not con-
sistent then it will shrink, i.e. the inclusion OPT(θ̃) ⊂
OPT(θ) is strict.

Proof. First we show that if Φρ stays the same during a
single step then OPT(θ) cannot acquire any new configu-
rations, i.e. OPT(θ̃) ⊆ OPT(θ). Again, consider the aver-
aging operation for node s, and consider a tree T contain-
ing this node. Suppose that x ∈ OPT(θ̃T), and let j = xs.
Condition Φρ(θ̃) = Φρ(θ) implies that Φ(θ̃T) = Φ(θT)
since all values in the sum Φρ(θ) =

∑
T ρT Φ(θT) do

not decrease. Therefore, the minimum in formula (7)
is zero, so θ̃T

s;j = 0. This could only have happened if
θT ′

s;j = 0 for all trees T ′ ∈ Ts, which means that x was
an optimal configuration for vector θT . We proved that
OPT(θ̃) ⊆ OPT(θ).

Now suppose that OPT (θ) is not consistent and a com-
plete pass of step 1 does not change the value of function
Φρ. It means that in the beginning of step 1 the consis-
tency condition for collection OPT(θ) is violated for some
element (either a node or an edge). Consider the mo-
ment when the algorithm reaches this element. If collec-
tion OPT(θ) has already shrunk by that time, then we do
not have to prove anything - the lemma holds. Let us as-
sume that OPT(θ) stays the same. Thus, the consistency
condition is still violated for this element.

Below we consider only the case when this element is a
node s; the situation for an edge can be analyzed similarly.
Thus, we assume that there exist trees T and T ′ containing
the node and configuration x with xs = j such that x is an
optimal configuration for vector θT (so θT

s;j = 0) but there
exists no configuration x′ with x′s = j which is optimal for
θT ′ (so θT ′

s;j > 0). This implies that θ̃T
s > 0, therefore con-

figuration x is no longer optimal for θ̃T . Thus, collection
OPT(θ̃) has shrunk. The lemma is proved.

We now proceed with the proof of theorem 3.4(b). Let
θ0,θ1,θ2, . . . be the sequence of vectors obtained from one
another by applying a complete pass of step 1 (where θ0 =
θ). Suppose that function Φρ stays the same after any
number of steps: Φρ(θ0) = Φρ(θ1) = Φρ(θ2) = Let
us show that θ satisfies WTA condition.

By lemma 3.8 we have OPT(θ) ⊃ OPT(θ1) ⊃
OPT(θ2) ⊃ Since OPT(θ) is finite it cannot shrink
indefinitely, therefore after a finite number of iterations
(let us say, n) OPT(θn) will become consistent. We have

OPT(θn) ⊆ OPT(θ) so by definition vector θ satisfies
WTA condition. Theorem 3.4 is proved.

3.3.2 Proof of theorem 3.6

To simplify notation, we assume that sequence {θ(i)}i is

already in the canonical normal form, so θ̃
(i)

= θ(i). Ap-
pendix E proves that the sequence {θ(i)}i is bounded,
therefore the existence of converging subsequence follows
from Bolzano-Weierstrass theorem. Part (b) follows from
the facts that sequence {Φρ(θ(i))}i is non-decreasing and
Φρ is continuous. We now prove that for every converging
subsequence {θ(i(m))}m the limit θ∗ satisfies WTA condi-
tion.

Suppose that this is not true. Let us apply TRW-S algo-
rithm to vector θ∗. Theorem 3.4(b) says that after a finite
number of steps (let us say, n) we obtain a configuration
θ̃
∗

such that Φρ(θ̃
∗
) > Φρ(θ∗).

Let π : A → A be a mapping defined as follows: we take
vector θ and apply n steps of TRW-S algorithm. Each step
is a continuous mapping A → A, therefore π is continuous
as well. Thus,

{π(θ(i(m)))} m→∞−→ π(θ∗) = θ̃
∗

Function Φρ is also continuous, so

{Φρ(π(θ(i(m))))} m→∞−→ Φρ(θ̃
∗
)

Thus, there exists index m such that Φρ(π(θ(i(m)))) ≥
Φρ(θ∗) + ε where ε = 1

2 (Φρ(θ̃
∗
)− Φρ(θ∗)) > 0. Note that

π(θ(i(m))) = θ(n+i(m)). Using theorem 3.4(a), we get that
Φρ(θ(i)) ≥ Φρ(θ∗) + ε for every index i ≥ n + i(m), which
contradicts to part (b) of the convergence theorem.

3.4 TRW-S algorithm for a graph with
monotonic chains

In this section we focus on step 1(a) - reparameterizing
vector θT . Recall that its goal is to make sure that the
algorithm satisfies the min-marginal property.

For simplicity, consider the case when ω = s is a node.
In general, a complete inward pass of the ordinary max-
product BP is needed for trees T ∈ Ts - sending messages
from leaves to node s which we treat as a root8. How-
ever, this would make the algorithm very inefficient if the
trees are large. Fortunately, a complete inward pass is not
always necessary.

The key idea is that the averaging operation does not
invalidate certain messages in trees T , as proposition 3.9
below shows. In other words, if a message was valid before
the operation, then it remains valid after the operation9.

8Note that the outward pass (sending messages from the root to
leaves) is not needed. It would convert vectors θT to normal forms
but would not change vectors θT

s .
9Recall that our algorithm is message-free. As discussed in sec-

tion 2.2, the phrase “message is valid for directed edge (s → t) in tree
T” means that eqn. (2) holds (or that sending a message from node
s to node t would not modify θT

st;jk and θT
t;k except for a constant

independent of j or k).

7

0. Initialize θ so that θ ∈ A and
P

T ρT θT ≡ θ̄.

1. For nodes s ∈ V do the following operations in the order
of increasing i(s):

(a) Perform the averaging operation for node s.

(b) For every edge (s, t) ∈ E with i(t) > i(s) do the follow-
ing:

- If Tst contains more than one chain then perform the
averaging operation for edge (s, t) so that vectors θT

s

do not change.

- For chains in Tst pass a message from s to t.

2. Reverse the ordering: set i(u) := |V|+ 1− i(u).

3. Check whether a stopping criterion is satisfied; if yes, ter-
minate, otherwise go to step 1.

Figure 2: TRW-S algorithm for a graph with mono-
tonic chains.

Therefore, we can “reuse” some of the messages passed in
previous steps, i.e. not pass them again10.

Proposition 3.9. The averaging operation for element
ω ∈ V ∪ E does not invalidate messages in trees T ∈ Tω

oriented towards ω.

Proof. Consider edge (s → t) oriented towards ω in tree T .
The averaging operation can affect only the endpoint vec-
tor θT

t . However, condition (2) of a valid message involves
vectors θT

s and θT
st but not θT

t .

To exploit this property fully, we need to choose trees
and the order of averaging operations in a particular way.
Specifically, we require trees to be chains which are mono-
tonic with respect to some ordering on the graph:

Definition 3.10. Graph G and chains T ∈ T are said to
be monotonic if there exists an ordering of nodes i(u), u ∈
V such that each chain T satisfies the following property: if
uT

1 , . . . , uT
n(T) are the consecutive nodes in the chain, then

the sequence i(uT
1), . . . , i(uT

n(T)) is monotonic.

As an example, we could choose T to be the set of edges;
it is easy to see that they are monotonic for any ordering
of nodes. However, it might be advantageous to choose
longer trees since the information might propagate faster
through the graph.

The algorithm for a graph with monotonic chains is
shown in Fig. 2. Its properties are summarized by the
following lemma.

Lemma 3.11. Starting with the second pass, the following
properties hold during step 1 for node s:

(a) For each edge (u, v) ∈ E with i(u) < i(v) and i(u) <
i(s) messages (u → v) in trees T ∈ Tuv are valid.
This property also holds for node u = s in the end of
step 1(b).

10The idea of reusing messages in junction trees was used in the
context of iterative proportional fitting [29] and Rao-Blackwellized
sampling [21].

(b) For each edge (u, v) ∈ E with i(s) < i(u) < i(v) mes-
sages (v → u) in trees T ∈ Tuv are valid. This prop-
erty also holds for node u = s in the beginning and in
the end of step 1(a).

In addition, property (a) holds during the first pass of the
algorithm.

Proof. We will use induction. The base of induction is
straightforward - right after initialization the set of mes-
sages considered in the lemma is empty.

We need to consider the following cases:

• Assuming that the lemma holds in the beginning of
step 1(a), prove that it holds in the end of step 1(a).

• Assuming that the lemma holds in the beginning of
step 1(b), prove that it holds in the end of step 1(b).

• Assuming that the lemma holds in the end of step
1(b) for node s, prove that it holds in the beginning
of step 1(a) for the next node s′ with i(s′) = i(s) + 1.

• Assuming that the lemma holds in the end of step 1(b)
for the last node, prove that it holds in the beginning
of step 1(a) if the order of nodes is reversed.

The last two cases are straightforward - they do not
involve any reparameterization, and the set of messages
considered in the postcondition is the same or smaller than
the set of messages in the precondition. The first two cases
follow from proposition 3.9 and the fact that after passing
a message from node s to node t in tree T ∈ Tst message
(s → t) in this tree becomes valid.

The lemma implies that starting with the second pass,
all messages in trees T ∈ Tω oriented towards element ω ∈
V ∪E are valid in the beginning of the averaging operation
for element ω. Therefore, passing messages from leaves to
ω would not change parameters θT (except for constants),
so the algorithm satisfies the min-marginal property. Note
that this property may not hold during the first pass of
the algorithm; however, we can treat this pass as a part
of initialization. Then the algorithm in Fig. 2 becomes a
special case of the algorithm in Fig. 1.

Efficient implementation The algorithm in Fig. 2 re-
quires O(|Ts|·|Xs|) storage for node s and O(|Tst|·|Xs|·|Xt|)
storage for edge (s, t). However, we can reduce it to
O(|Xs|) and O(|Xs|+ |Xt|), respectively, using two ideas11.
First, it can be seen that the algorithm maintains the fol-
lowing equalities: θT

s = θT ′
s for T, T ′ ∈ Ts and θT

st = θT ′
st

for T, T ′ ∈ Tst (assuming that they hold after initializa-
tion). Second, vectors θT can be stored using messages
Mst = {Mst;k | k ∈ Xt} for directed edges (s → t) ∈ E

11We assume that storage required for vectors θ̄st is negligible.
This holds for many energy functions used in practice, e.g. for func-
tions with Potts terms.

8

0. Set all messages to zero.

1. Set Ebound = θ̄const.
For nodes s ∈ V do the following operations in the order
of increasing i(s):

- Compute bθs = θ̄s +
P

(u,s)∈E Mus. Normalize vector bθs

as follows:

δ := min
j

bθs;j
bθs;j := bθs;j−δ Ebound := Ebound+δ

- For every edge (s, t) ∈ E with i(s) < i(t) update and
normalize message Mst as follows:

Mst;k := min
j
{(γst

bθs;j −Mts;j) + θ̄st;jk}

δ := min
k

Mst;k Mst;k := Mst;k−δ Ebound := Ebound+δ

2. Reverse the ordering: set i(u) := |V|+ 1− i(u).

3. Check whether a stopping criterion is satisfied; if yes, ter-
minate, otherwise go to step 1.

Figure 3: Efficient implementation of the algorithm
in Fig. 2 using messages. For a description of ordering
i(·) and coefficients γst, see section 4. In the end of step
1 value Ebound gives a lower bound on the energy E(x | θ̄).
This value cannot decrease with time.

according to the following formulae:12

θT
t = 1

ρt
(θ̄t +

∑
(s,t)∈E Mst)

θT
st;jk = 1

ρst
(θ̄st;jk −Mst;k −Mts;j)

The resulting algorithm is shown in Fig. 3. (We introduced
notation γst = ρst/ρs for directed edge (s → t) ∈ E .)

4 Summary of TRW-S algorithm

In the previous section we described several versions of
TRW-S algorithm. For a practical implementation we rec-
ommend using the technique in Fig. 3. We now summarize
various algorithmic details.

The input to the algorithm is an energy function speci-
fied by parameter vector θ̄. The method works by passing
messages; for each directed edge (s → t) ∈ E there is
message Mst which is a vector with |Xt| components. Be-
fore running the algorithm we need to make the following
choices:

• Select ordering of nodes i(·) (i.e. mapping of nodes in
V onto the set {1, 2, . . . , |V|}).

• Select chains T ∈ T which are monotonic with re-
spect to i(·) (see definition 3.10). Each edge must be
covered by at least one chain.

12Note that messages Mst that we use here are slightly different

from messages M
[13]

st used in [13, 33]. The relationship between

the two is as follows: Mst = ρstM
[13]

st . We decided to scale the
messages because it simplified some of the equations.

• Choose probability distribution ρ over chains T ∈ T
such that ρT > 0,

∑
T ρT = 1.

These choices define coefficients γst in Fig. 3 in the follow-
ing way: γst = ρst/ρs where ρst and ρs are edge and node
appearance probabilities, respectively. In other words, γst

is the probability that a tree chosen randomly under ρ
contains edge (s, t) given that it contains s.

An important property of our algorithm is that it re-
quires half as much memory compared to traditional BP.
Indeed, the latter needs to store messages in both direc-
tions for each edge, while we can store only messages ori-
ented towards current node s (or, more precisely, messages
that are valid according to lemma 3.11). The reverse mes-
sages are not needed since we update them before they
are used. The same space in memory can be used for stor-
ing either message Mst or Mts. The exact moment when
Mts gets replaced with Mst is when edge (s, t) is processed
during step 1 for node s.

This observation can also be applied to traditional BP
with the same schedule of passing messages - we just need
to set γst = 1. The fact that memory requirements of BP
can be reduced by half was first observed in [6]. However,
they considered only bipartite graphs, and their goal was
to simulate the parallel schedule of updating messages. We
show that the amount of memory needed can be reduced
for any graph. In fact, we give a strict generalization of
the technique in [6]. Indeed, the schedule used in [6] is
a special case of our sequential schedule if we choose the
ordering of nodes such that any node in the first set of a
bipartite graph is before any node in the second set.

Note that for many important choices of terms θ̄st mes-
sage update in step 1 can be done very efficiently in
time |Xt| using distance transforms [6]. Then the com-
plexity of one pass of our algorithm is O(|E| · K) where
K = maxs |Xs|.

We conclude this section with the discussion of various
implementational details.
Choice of node ordering and monotonic chains Au-
tomatic selection of node ordering for an arbitrary graph is
an interesting open question, which is not addressed in this
paper. Intuitively, good ordering should allow long mono-
tonic chains. We tested two types of graphs: 2D grids
with 4 or 8 neighborhood system and complete graphs.
We used a natural row-major order for the former. Note
that for complete graphs all orderings are equivalent.

Given an ordering, we constructed monotonic chains in
a greedy manner as follows. We select a monotonic chain
such that it is not possible to extend it, i.e. for the first
node s there are no edges (u, s) with i(u) < i(s) and for
the last node t there are no edges (t, v) with i(v) > i(t).
After that we remove corresponding edges from the graph
and repeat the procedure until no edges are left. Thus, we
ensure that each edge is covered by exactly one tree. All
trees are assigned the uniform probability.

Although this method can produce different sets of trees
depending on what chains we choose, the behaviour of
TRW-S algorithm is specified uniquely (assuming that the
order of nodes is fixed). Indeed, the algorithm depends
only on coefficients γst = ρst/ρs for edges (s → t). It can

9

be seen that the number of trees containing node s is

ns =max{|(u, s) ∈ E : i(u) < i(s)| , |(s, v) ∈ E : i(v) > i(s)|}

Therefore, we have γst = 1/ns.
Stopping criterion A conservative way for checking
whether the WTA condition has been achieved follows
from the definition in section 3.1: keep adding minimum
configurations to the set S until either S becomes consis-
tent or no more configurations can be added. This, how-
ever, may be expensive. As a practical alternative, we
suggest the following heuristic criterion inspired by theo-
rem 3.4(b): we stop if the value of the lower bound Ebound

has not increased (within some precision) during, say, the
last 10 iterations. It is worth noting that even if WTA
has been achieved and the lower bound does not change
anymore, the messages may still keep changing as well as
configuration x computed from the messages.

One could also imagine other stopping criteria, e.g. fix-
ing the number of iterations. Different criteria will lead to
different tradeoffs between speed and accuracy.
Choosing solution An important question is how
to construct solution x given reparameterization θ̂ =∑

T ρT θT . A possible approach is to choose label xs for
node s that minimizes θ̂s(xs). However, it is often the
case that the minimum is not unique within the precision
of floating point numbers. This is not suprising. Indeed,
if all nodes have unique minimum then it means that we
found the optimal solution, as shown in [33]. In general we
cannot expect this since minimizing energy (1) is NP-hard.

Thus, it is essential how we treat nodes with multiple
minima. We used the following technique. We assign la-
bels to nodes in some order i(s) (which in fact was the
same as in TRW-S algorithm). For node s we choose label
xs that minimizes θ̂s(xs)+

∑
i(u)<i(s) θ̂us(xu, xs) where the

sum is over edges (u, s) ∈ E . In terms of messages, this is
equivalent to minimizing θ̄s(xs) +

∑
i(u)<i(s) θ̄us(xu, xs) +∑

i(v)>i(s) Mvs(xs). This scheme alleviates the problem
of multiple minima, but does not solve it completely.
Many nodes may still be assigned essentially at random
(more precisely, the solution is determined by numerical
errors)13.

5 Experimental results

We have compared four algorithms: ordinary max-product
BP and three tree-reweighted algorithms (TRW-E, TRW-
T, TRW-S). Trees and their probabilities have been chosen
as described in the previous section.

For TRW-E and TRW-T algorithms we also used damp-
ing parameter γ ∈ (0, 1]; as reported in [33], the algo-
rithms converge if sufficiently damped. For each problem
described below we chose γ as follows. We tried values

13This technique can be motivated by the following observation:
if a reparameterization satisfies WTA condition and the set of nodes
with multiple minima consists of disjoint chains which are monotonic
with respect to the ordering used, then the procedure will find a
global minimum (see [20]).

0.1, 0.2, ..., 0.9, 1 and determined the average energy af-
ter 30 iterations. (The averaging was performed over the
different instances of the same problem). Then we picked
the value with the smallest energy. If the optimal value
was γ = 0.1, we kept halving it until the energy started
increasing. Note that damping was necessary for TRW-T
algorithm, otherwise it always diverged. As for TRW-E
algorithm, this was necessary only in some of the cases.

For ordinary max-product BP algorithm we imple-
mented the same sequential schedule of updating messages
as for TRW-S algorithm. We experimented with the par-
allel update scheme and found that it was much slower.

5.1 Synthetic problems

We tested the algorithms on two types of graphs: grids
30x30 with 4-neighborhood system and complete graphs
with 50 nodes. Moreover, in each case we tested the Ising
model with attractive potentials and with mixed poten-
tials. Single-node potentials were generated as indepen-
dent gaussians: θ̄s;0, θ̄s;1 ∼ N (0, 1). Pairwise potentials
were set as follows: θ̄st;00 = θ̄st;11 = 0, θ̄st;01 = θ̄st;10 = λst

where λst was generated as |N (0, σ2)| for attractive po-
tentials and as N (0, σ2) for mixed potentials. Parameter
σ determines the strength of potentials; we used values
σ ∈ { 1√

d
, 2√

d
, 3√

d
} where d is the degree of nodes (d = 4

for the grid and d = 49 for the complete graph). We tested
the algorithms on 100 sample problems.

As a measure of performance we used two quantities:
the value of the lower bound and the energy of current
solution (except for the BP algorithm where we can deter-
mine only one of these quantities). Note that the former
is a lower bound on the optimal value of the energy, and
the latter is an upper bound. We plot these quantities as
functions of the number of iterations (i.e. the number of
passed messages divided by the number of directed edges
in the graph). We report only the average values over 100
samples.

Note that for functions of binary variables TRW com-
putes that same solution as maxflow algorithm [12]. In
particular, for attractive potentials TRW is guaranteed to
find a global minimum, while for mixed potentials it finds
part of an optimal solution. It should also be noted that
in both cases maxflow would be significantly faster. The
goal of this section is to compare different message passing
techniques.
Attractive potentials The results for attractive poten-
tials are shown in Fig. 4(a,b). Note that in this case the
global minimum can be found in polynomial time using
the maxflow algorithm. In all cases TRW-S outperforms
TRW-E and TRW-T. It also outperforms BP since it con-
verges to the global minimum of the energy, while BP does
not. However, in the case of grid graph TRW-S algorithm
is slower in the beginning than BP.
Mixed potentials The results for this case are shown
in Fig. 4(c,d). The situation is very different from the
case of attractive potentials. In all cases BP outperforms
TRW algorithms. We believe that this indicates that LP
relaxation (4) is not tight in this case.

10

0 5 10 15 20
2.3

2.4

2.5

2.6
x 10

4

TRW−S
TRW−E
TRW−T
BP

0 20 40 60
3.4

3.6

3.8

4
x 10

4

BP
TRW−S

TRW−E

TRW−T

energy

TRW−T
TRW−E

TRW−S

lower
bound

0 20 40 60 80
3.8

4.2

4.6

x 10
4

(a) Grid graph 30×30, attractive potentials

0 5 10
1.5

2.5

3.5

4.5

x 10
3

0 5 10 15 20 25
1.5

2.5

3.5

4.5

x 10
3

0 10 20 30
1.5

2.0

3.5

4.5

x 10
3

(b) Complete graph with 50 nodes, attractive potentials

0 10 20 30
2.4

2.5

2.6
x 10

4

0 20 40 60
3.7

3.9

4.1

4.3
x 10

4

0 20 40 60 80

4.4

4.8

5.2

5.6

x 10
4

(c) Grid graph 30×30, mixed potentials

0 5 10 15 20
0

4

8 x 10
3

0 20 40 60
0

5

10

15 x 10
3

0 20 40 60 80
0

1

2

x 10
4

(d) Complete graph with 50 nodes, mixed potentials

Figure 4: Synthetic problems. Horizontal axis: number of iterations. Vertical axis, upper curves:
average value of the energy E(x | θ̄). Vertical axis, lower curves for TRW algorithms: average value of
Φρ(θ). Columns 1-3: different strengths of the interaction potential (σ = 1√

d
, 2√

d
, 3√

d
).

5.2 Real problems

Binary segmentation First we tested the algorithms
on the energy function arising in the method of Boykov et
al. [2]. This is a function with binary labels where unary

data terms come from user-provided hard constraints and
learned background and foreground color models, and
pairwise terms come from image gradients. A regular grid
graph with 8-neighborhood system is used. Hard (back-

11

0 100 200 300 400
1

2

3

4

5

6
x 10

5

20 40 60 80 100
3

3.4

3.8

x 10
5

TRW−S
TRW−E
TRW−T
BP
BVZ

50 100 150

1.3

1.4

x 10
6

Binary image segmentation [2]

Stereo, Tuskuba Stereo, Map

(average over 50 instances)

50 100 150

1.92

1.93

1.94

x 10
7

50 100 150
1.1

1.14

1.18

x 10
6

Stereo, Sawtooth Stereo, Venus

Figure 5: Results on real problems. For description of BVZ, see text.

Figure 6: Left: result of BP after convergence. Right: result of TRW-S after 100 iterations. The result
of BVZ is visually indistinguishable from the latter.

ground) constraints may exist only at the grid boundary;
they correspond to a rectangle dragged around the object.

We used 49 different instances with the average size
1.07 × 105 nodes. Energy plots are shown in Fig. 5. The
average running time for TRW-S algorithm was 0.067 secs
per iteration on Pentium IV 2.8 GHz processor. For com-
parison, maxflow algorithm in [1] took 0.114 secs (on av-
erage). This shows that for this problem maxflow signifi-
cantly outperforms message passing algorithms.

Stereo matching We have tested the algorithms on
the energy function arising in the stereo matching prob-
lem with Potts interactions [3]. The input is two images
taken from different viewpoints, and the goal is to find a
disparity for every pixel in the left image. We used the
four datasets from [23] - Tsukuba, Map, Sawtooth and
Venus. Fig. 5 shows the energy plots, and Fig. 6 shows
disparity maps for one of the datasets (Tsukuba).

In addition to message passing techniques, we included

the results of the expansion move method of Boykov,
Veskler and Zabih [3], which is referred to as BVZ. (Recall
that it is based on the maxflow algorithm). Note that the
horizontal axis for BVZ denotes time; to match it to the
number of messages used for other techniques, we used
the timing of TRW-S algorithm. Thus, the correspon-
dence between BVZ and other message passing algorithms
(TRW-E, TRW-T, BP) is only approximate14. Each point
in Fig. 5 corresponds to one iteration of BVZ algorithm,
and the last point indicates that BVZ has converged.

14In our implementation one iteration of TRW-E and TRW-T is
much slower than TRW-S. One reason is that we have not optimized
TRW-E and TRW-T, but there are also objective reasons; for exam-
ple, TRW-E and TRW-T require at least twice as much memory as
TRW-S. On the other hand, in our implementation one iteration of
BP is slightly faster and needs less memory than TRW-S since we
use integers for BP and double precision numbers for TRW-S. We
also tested informally single precision numbers for TRW-S; then the
value of the lower bound becomes very inaccurate, but the value of
energy gets worse only slightly.

12

TRW-S clearly outperforms other message passing tech-
niques. Compared to BVZ, it is slower in the beginning,
but eventually finds lower energy as shown below:

dataset size TRW-S TRW-S BVZ

(W x H x D) time accuracy accuracy

Tsukuba 384 x 288 x 16 0.348 0.0037% 1.0%

Map 284 x 216 x 30 0.374 0.055% 0.42%

Sawtooth 434 x 380 x 20 0.707 0.096% 0.12%

Venus 434 x 383 x 22 0.822 0.014% 0.061%

Column “TRW-S time” shows the time per one iteration
on Pentium IV 3.2 GHz processor. The column “accu-
racy” reflects the value of the minimum energy found. For
TRW-S it is defined as Emin−Ebound

Ebound
·100% where Emin and

Ebound are the best values of energy and lower bound, re-
spectively, found during 512 iterations. For BVZ the ac-
curacy is defined similarly, only Emin is now the value of
the energy at convergence.

6 Discussion and conclusions

We have developed a new algorithm which can be viewed
as a method for direct maximization of objective function
Φρ subject to the constraint of problem (6). We gave a
precise characterization of local maxima of this function
with respect to TRW-S algorithm. We showed that the
algorithm is guaranteed to have a subsequence converging
to such a maximum.

As all tree-reweighted algorithms, our method is not
guaranteed to find a global maximum. Nevertheless, ex-
perimental results suggest that this is not an issue for cer-
tain synthetic and real problems. For the stereo matching
problem we were able to obtain slightly lower energy than
the expansion move algorithm [3] which is considered to be
the most accurate energy minimization technique for such
problems. On real vision problems that we have tested
TRW-S outperforms both TRW algorithms in [33] and or-
dinary max-product BP.

It should be noted that TRW-S (and TRW algorithms
in general) have some limitations. First, they do not work
well when LP relaxation (4) is not tight. Second, TRW
algorithms are slower than maxflow-based techniques (in
cases when such techniques can be applied). However, one
advantage of message-passing techniques over maxflow-
based techniques is that the former are easily paralleliz-
able; one could imagine GPU or hardware implementa-
tions. We also believe that TRW-S could be a winner for
problems which, on one hand, are sufficiently “easy” in
the sense that LP relaxation (4) is tight, but on the other,
do not have a “structured” set of labels so that maxflow-
based techniques cannot be applied. It is interesting, for
example, to test the problem of super resolution [7].

In our experiments we noticed that TRW-S algorithm
would always converge to a fixed point of TRW, although
such convergence would usually take much longer than
achieving a weak tree agreement. However, we have not
been able to prove this general convergence. On the other
hand, achieving convergence may not be necessary since
running the algorithm after obtaining WTA will not im-
prove the lower bound on the energy.

Acknowledgments I would like to thank Thomas
Minka for helpful discussions, anonymous reviewers for
suggestions that helped to improve the presentation of
the paper, and Philip Torr for careful proofreading of the
manuscript. This work was mainly done while the author
was with Microsoft Research, Cambridge.

Appendix A: Properties of a canon-
ical normal form

Lemma 6.1. Suppose that vector θ is in a canonical nor-
mal form. Then

• Constant constst in eqn. (2) is zero:

min
j∈Xs

{θs;j + θst;jk} = 0 ∀ k ∈ Xt (8)

• For a tree-structured graph, formulae (3) for min-
marginals can be rewritten as

Φ(θ) = θconst (9a)

Φs;j(θ) = θconst + θs;j (9b)

Φst;jk(θ) = θconst + {θs;j + θst;jk + θt;k} (9c)

Proof. The fact that constant constst in eqn. (2) is zero
can be derived as follows. Let us add θt;k to this equation:

min
j∈Xs

{θs;j + θst;jk + θt;k} = θt;k + constst ∀ k ∈ Xt

Now take the minimum over k ∈ Xt. By the definition
of a canonical normal form we get zero on the LHS and
constst on the RHS, i.e. 0 = constst. The first property is
proved.

Now assume that the graph is a tree. Let x∗ be an opti-
mal configuration for vector θ (then E(x∗ |θ) = Φ(θ)). For
a fixed node s ∈ V the minimum of θs(j) among j ∈ Xs is
achieved at j = x∗s (due to formula (3a)). By the definition
of a canonical normal form the value of this minimum is
zero. Thus, θs(x∗s) = 0. Using the same reasoning for edge
(s, t) ∈ E , we get that θs(x∗s) + θst(x∗s, x

∗
t) + θt(x∗t) = 0,

which implies that θst(x∗s, x
∗
t) = 0. Therefore,

Φ(θ) = θconst +
∑

s∈V
θs(x∗s) +

∑

(s,t)∈E
θst(x∗s, x

∗
t) = θconst

Now for node s ∈ V let us plug j = x∗s into eqn. (3a).
The LHS is Φ(θ) and the RHS is consts. Therefore,
consts = Φ(θ) = θconst. Similarly we can derive that
constst = Φ(θ) = θconst in eqn. (3b). The second property
is proved.

Appendix B: Reparameterization
and messages

As discussed in section 2.2, any message vector defines
a reparameterization. We now show that the converse is
also true: any reparameterization can be described via
messages, up to a constant parameter vector.

13

Definition 6.2. Vector θ̃ ∈ Rd is called a constant pa-
rameter vector if for each node s ∈ V, j ∈ Xs and for each
edge (s, t) ∈ E, (j, k) ∈ Xs × Xt values θ̃s;j and θ̃st;jk are
constants independent of j,k.

Lemma 6.3. Suppose that θ2 ≡ θ1 (i.e. θ2 is a reparame-
terization of θ1). Then there exists message vector M and
constant parameter vector θ̃ such that θ2 = θ1[M] + θ̃ and
θ̃ ≡ 0.

Proof. The following properties will be quite useful in the
proof:

(P1) For any vectors θ, θ′ and M there holds (θ+θ′)[M] =
θ[M] + θ′ = θ + θ′[M].

(P2) For any vectors θ, M and M ′ there holds θ[M+M ′] =
θ[M][M ′].

In addition, we will need the following proposition.

Proposition 6.4. For any edge (s, t) ∈ E and variables
j, j′ ∈ Xs, k, k′ ∈ Xt

θ1
st;jk+θ1

st;j′k′−θ1
st;jk′−θ1

st;j′k=θ2
st;jk+θ2

st;j′k′−θ2
st;jk′−θ2

st;j′k

Proof. Let xjk,xjk′ ,xj′k,xj′k′ ∈ X be four configurations
such that they agree on all nodes other than s and t, and

xjk
s = j , xjk

t = k xjk′
s = j , xjk′

t = k′

xj′k
s = j′ , xj′k

t = k xj′k′
s = j′ , xj′k′

t = k′

We can write

E(xjk | θ1) + E(xj′k′ | θ1)−E(xjk′ | θ1)−E(xj′k | θ1) =

= θ1
st;jk + θ1

st;j′k′ − θ1
st;jk′ − θ1

st;j′k

- it is easy to see that all other terms cancel each other.
We can write similar expression for vector θ2. Since θ1 ≡
θ2, the expressions on the LHS are equal. Therefore, the
expressions on the RHS are equal as well, which gives us
the desired result.

We now proceed with the proof of the lemma. Let θ =
θ1 − θ2. As showed in [32], there exists message vector M

such that θ̃ = θ[M] is a fixed point of max-product BP.
We have

θ1[M] = θ2 + (θ1 − θ2)[M] = θ2 + θ[M] = θ2 − (−θ̃)

Also, θ1 ≡ θ2 implies that θ̃ ≡ θ ≡ 0. Thus, we can
prove lemma 6.3 by proving that θ̃ is a constant parameter
vector.

We can convert θ̃ to a canonical normal form θ̂ by adding
a constant parameter vector. We will prove that θ̂ = 0.

Consider an edge (s, t) ∈ E . Since θ̂ is a reparameteri-
zation of a constant function, by proposition 6.4 we have

θ̂st;jk + θ̂st;j′k′ − θ̂st;jk′ − θ̂st;j′k = 0 (10)

for all variables j, j′ ∈ Xs, k, k′ ∈ Xt. Condition (8) for a
canonical normal form yields the following formulae:

min
j∈Xs

{θ̂s;j + θ̂st;jk} = 0 ∀ k ∈ Xt (11a)

min
k∈Xt

{θ̂t;k + θ̂st;jk} = 0 ∀ j ∈ Xt (11b)

Let us prove that θ̂st;jk ≤ 0 for every (j, k) ∈ Xs × Xt.
Let j′ and k′ be the variables that minimize (11a) and
(11b), respectively; then θ̂s;j′ + θ̂st;j′k = θ̂t;k′ + θ̂st;jk′ = 0.
Using eqn. (10) we get

θ̂st;jk = θ̂st;j′k + θ̂st;jk′ − θ̂st;j′k′ = −θ̂s;j′ − θ̂t;k′ − θ̂st;j′k′

The expression on the RHS is non-positive by the defini-
tion of a canonical normal form.

Now let us prove that θ̂st;jk = 0 for every (j, k) ∈ Xs ×
Xt. Let j∗ and k∗ be the variables that minimize θ̂s;j′ over
j′ and θ̂t;k′ over k′, respectively; then θ̂s;j∗ = θ̂t;k∗ = 0.
Using eqn. (11a) for k and k∗ and eqn. (11b) for j we
conclude that θ̂st;j∗k ≥ 0, θ̂st;j∗k∗ ≥ 0 and θ̂st;jk∗ ≥ 0.
Therefore, θ̂st;j∗k = θ̂st;j∗k∗ = θ̂st;jk∗ = 0. Finally,

θ̂st;jk = θ̂st;j∗k + θ̂st;jk∗ − θ̂st;j∗k∗ = 0

The fact that θ̂st = 0 for all edges tells us that nodes
are independent. We also know that E(x | θ̂) is zero for
any configuration x. By considering configurations which
agree on all nodes except node s we conclude that θ̂s;j =
consts for any j ∈ Xs. This constant must be zero since θ̂
is in a canonical form.

We have showed that θ̂s = 0 for all nodes s and that
θ̂st = 0 for all edges (s, t), i.e. that θ̂s is a constant pa-
rameter vector. Lemma 6.3 is proved.

Appendix C: Proof of lemma 3.1

Let us prove the following lemma first.

Lemma 6.5. If θ1 ≡ θ2 then for any vector τ ∈
LOCAL(G) there holds

〈
θ1, τ

〉
=

〈
θ2, τ

〉
.

Proof. By lemma 6.3 in Appendix B there exists message
vector M and constant parameter vector θ̃ such that θ2 =
θ1[M] + θ̃. We will show that

〈
θ1[M], τ

〉
=

〈
θ1, τ

〉
and〈

θ̃, τ
〉

= 0 for any τ ∈ LOCAL(G).

(1) Since θ1[M] = θ1 + 0[M] it suffices to show that
〈0[M], τ〉 = 0. Moreover, due to property P2 in Appendix
B it is enough to prove this for vectors M with a single
non-zero element. Let Mst;k be this element. Then the
only non-zero elements of θ = 0[M] are θt;k = Mst;k and
θst;jk = −Mst;k for all j ∈ Xs. We can write

〈0[M], τ〉 = θt;k · τt;k +
∑

j θst;jk · τst;jk =

= (τt;k −
∑

j τst;jk) ·Mst;k = 0

since τ ∈ LOCAL(G).

14

(2) θ̃ is a constant parameter vector, so θ̃s;j = cs and
θ̃st;jk = cst where cs and cst are constants independent of
j, k. We can write
〈
θ̃, τ

〉
= θ̃const +

∑

s∈V

∑

j

θ̃s;j · τs;j +
∑

(s,t)∈E

∑

j,k

θ̃st;jk · τst;jk

= θ̃const +
∑

s∈V
cs

(∑

j

τs;j

)
+

∑

(s,t)∈E
cst

(∑

j,k

τst;jk

)

= θ̃const +
∑

s∈V
cs +

∑

(s,t)∈E
cst

so it is a constant independent of τ . Plugging τ = φ(x) for
some configuration x ∈ X we conclude that this constant
is zero.

Now we can prove lemma 3.1. Let θ∗ be a vector max-
imizing problem (5). Clearly, it satisfies constraints of
problem (6). Now consider another vector θ ∈ A such
that θ̂ =

∑
T ρT θT is a reparameterization of θ̄. We can

write

Φρ(θ) ≤ max
θ∈A,

P
T ρT θT =bθ

Φρ(θ) =

= min
τ∈LOCAL(G)

〈
θ̂, τ

〉
= min

τ∈LOCAL(G)

〈
θ̄, τ

〉
= Φρ(θ∗)

where the first and the third equaility follow from theo-
rem 2.1 and the second equality follows from lemma 3.1.
Therefore, θ∗ maximizes problem (6).

Appendix D: Local maxima of
TRW-S algorithm

As we proved, any vector θ that maximizes problem (6)
must satisfy WTA condition. Here we show the converse
is not necessarily true. We give an example of vectors
θ and θ̃ such that they both satisfy WTA condtion and∑

T ρT θ̃T ≡ ∑
T ρT θT , but Φρ(θ̃) 6= Φρ(θ).

The graph with two trees is shown in Figure 7. Vectors
θ = {θ1, θ2} and θ̃ = {θ̃1, θ̃2} are given as follows. All
single-node potentials are zero: θT

s;j = θ̃T
s;j = 0. The con-

stant terms are θT
const = 0, θ̃T

const = 0.5. Other elements
of vectors θ1 and θ2 are given by

θ1
ab =

[
2 0
0 2

]
θ1

bd =
[

0 2 2
2 0 0

]
θ1

de =




2 0
0 2
2 0


 θ1

eg =
[

0 2
2 0

]

θ2
ac =

[
2 0
0 2

]
θ2

cd =
[

2 0 0
0 2 2

]
θ2

df =




2 0
2 0
0 2


 θ2

fg =
[

2 0
0 2

]

and elements of vectors θ̃1 and θ̃2 - by

θ̃1
ab =

[
3 0
0 1

]
θ̃1

bd =
[

0 1 1
3 0 0

]
θ̃1

de =




0 0
0 4
0 0


 θ̃1

eg =
[

0 4
0 0

]

θ̃2
ac =

[
1 0
0 3

]
θ̃2

cd =
[

3 0 0
0 1 1

]
θ̃2

df =




0 0
0 0
0 4


 θ̃2

fg =
[

4 0
0 0

]

Condition
∑

T ρT θ̃T ≡ ∑
T ρT θT can be checked using

the definition of reparameterization. It is easy to see that
all tree vectors are in a canonical normal form, and WTA
condition is satisfied for both θ and θ̃. However, we have
Φρ(θ) = 0 and Φρ(θ̃) = 0.5.

This example applies not only to TRW-S, but also to
TRW-E and TRW-T algorithms. Indeed, it is not difficult
to see that vector θ is a fixed point of TRW algorithms.

a

b

c

d
g

e

f

Xa = Xb = Xc = Xe =
= Xf = Xg = {1, 2}
Xd = {1, 2, 3}

Figure 7: Graph for the example in Appendix D. Nodes
a, b, c, e, f , g have two states and node d has three
states. There are two trees with equal probabilities:
T1 = (a, b, d, e, g) and T2 = (a, c, d, f, g).

Note that in the example above one of the nodes has
three possible states. This is not accidental: if all nodes
have binary states, then WTA condition always yields a
global maximum of the lower bound, as our paper (with
M. Wainwright) shows [12].

Appendix E: Proof of theorem 3.6

We now show that vectors θ ∈ {θ(i)}i are bounded (as-
suming that they are in the canonical normal form). We
will do it in three steps: first we show that elements θT

const

are bounded, then we show that for each node s ∈ VT

vectors θT
s are bounded, and finally we show that for each

edge (s, t) ∈ ET vectors θT
st are bounded.

(1) According to theorem 3.4(a) terms Φ(θT) are non-
decreasing. By lemma 6.1 we have θT

const = Φ(θT). This
shows that θT

const are bounded from below. The following
inequality then implies that they are also bounded from
above:

∑
T ρT θT

const =
∑

T ρT Φ(θT) ≤ Φ(θ̄)

(2) Consider node s ∈ V and variable j ∈ Xs. By def-
inition of the canonical normal form, elements θT

s;j are
bounded from below. To prove that they are bounded
from above, we derive an inequality similar to the previ-
ous one.

We use function Φs;j for this purpose. It is a minimum
of a finite number of linear functions and, thus, is concave.
Applying Jensen’s inequality yields

∑
T ρT (θT

const + θT
s;j) =

∑
T ρT Φs;j(θT)

≤ Φs;j(
∑

T ρT θT) = Φs;j(θ̄)

We already showed that θT
const are bounded, so this im-

plies that θT
s;j are bounded from above.

(3) Consider an edge (s, t) ∈ V and variables (j, k) ∈
Xs×Xt. By definition of the canonical normal form, θT

s;j +

15

θT
st;jk + θT

t;k ≥ 0. It implies that θT
st;jk is bounded from

below since θT
s;j and θT

t;k are bounded. The proof that
it is bounded from above is completely analogous to the
previous case; we just need to use function Φst;jk.

References

[1] Y. Boykov and V. Kolmogorov. An experimental compar-
ison of min-cut/max-flow algorithms for energy minimiza-
tion in vision. PAMI, 26(9), September 2004.

[2] Y. Boykov and M.-P. Jolly. Interactive graph cuts for op-
timal boundary and region segmentation of objects in N-D
images. In ICCV, 2001.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. PAMI, 23(11), November
2001.

[4] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approxima-
tion algorithms for the metric labeling problem via a new
linear programming formulation. In SODA, 2000.

[5] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J.
Spiegelhalter. Probabilistic Networks and Expert Systems.
Springer-Verlag, 1999.

[6] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient
belief propagation for early vision. In CVPR, 2004.

[7] W. Freeman, E. Pasztor, and O. Carmichael. Learning low-
level vision. IJCV, 40(1):25–47, 2000.

[8] S. Geman and D. Geman. Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. PAMI,
6:721–741, 1984.

[9] D. Greig, B. Porteous, and A. Seheult. Exact maximum
a posteriori estimation for binary images. Journal of the
Royal Statistical Society, Series B, 51(2):271–279, 1989.

[10] Hiroshi Ishikawa. Exact optimization for Markov Random
Fields with convex priors. PAMI, 25(10):1333–1336, Octo-
ber 2003.

[11] J. Kleinberg and E. Tardos. Approximation algorithms for
classification problems with pairwise relationships: Metric
labeling and Markov Random Fields. In FOCS, 1999.

[12] V. Kolmogorov and M. Wainwright. On the optimality
of tree-reweighted max-product message passing. In UAI,
July 2005.

[13] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. In AISTATS, January 2005.

[14] V. Kolmogorov and R. Zabih. Multi-camera scene recon-
struction via graph cuts. In ECCV, volume 3, pages 82–96,
2002.

[15] V. Kolmogorov and R. Zabih. What energy functions can
be minimized via graph cuts? PAMI, 26(2):147–159, Febru-
ary 2004.

[16] N. Komodakis and G. Tziritas. A New Framework for
Approximate Labeling via Graph Cuts. In ICCV, 2005.

[17] A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The
partial constraint satisfaction problem: Facets and lifting
theorems. Operation Research Letters, 23(3-5):89–97, 1998.

[18] V. K. Koval and M. I. Schlesinger. Two-dimensional pro-
gramming in image analysis problems. Automatics and
Telemechanics, 2:149–168, 1976. In Russian.

[19] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and
Aaron Bobick. Graphcut textures: Image and video syn-
thesis using graph cuts. SIGGRAPH, July 2003.

[20] T. Meltzer, C. Yanover, and Y. Weiss. Globally opti-
mal solutions for energy minimization in stereo vision using
reweighted belief propagation. In ICCV, 2005.

[21] Mark A. Paskin. Sample propagation. In NIPS, 2003.

[22] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Pub-
lishers, 1988.

[23] D. Scharstein and R. Szeliski. A taxonomy and evalua-
tion of dense two-frame stereo correspondence algorithms.
IJCV, 47:7–42, April 2002.

[24] M. I. Schlesinger. Syntactic analysis of two-dimensional
visual signals in noisy conditions. Kibernetika, 4:113–130,
1976. In Russian.

[25] M. I. Schlesinger. Mathematical tools for image processing.
Kiev: Nauk. dumka, 1989. In Russian.

[26] M. I. Schlesinger and B. Flach. Some solvable subclass of
structural recognition problems. In Czech Pattern Recogni-
tion Workshop, 2000.

[27] J. Sun, N. Zheng, and H. Shum. Stereo matching using
belief propagation. PAMI, 25(7):787–800, 2003.

[28] M. F. Tappen and W. T. Freeman. Comparison of graph
cuts with belief propagation for stereo, using identical MRF
parameters. In ICCV, October 2003.

[29] Y. W. Teh and M. Welling. On improving the efficiency of
the iterative proportional fitting procedure. In AISTATS,
2003.

[30] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. Tree-
based reparameterization framework for analysis of sum-
product and related algorithms. IEEE Transactions on In-
formation Theory, 45(9):1120–1146, May 2003.

[31] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. Tree-
reweighted belief propagation and approximate ML estima-
tion by pseudo-moment matching. In AISTATS, January
2003.

[32] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. Tree
consistency and bounds on the performance of the max-
product algorithm and its generalizations. Statistics and
Computing, 14(2):143–166, April 2004.

[33] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. MAP
estimation via agreement on (hyper)trees: Message-passing
and linear-programming approaches. IEEE Transactions
on Information Theory, 51(11):3697–3717, November 2005.

[34] Tomáš Werner. A linear programming approach to max-
sum problem: A review. Technical Report CTU–CMP–
2005–25, Center for Machine Perception, Czech Technical
University, December 2005.

[35] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss.
Generalized belief propagation. In NIPS, pages 689–695,
2000.

16

