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Continuing with the notation from the paper, p, p̃,Φ̂ and U denote pressure, coarse pressure,
modified distance function, and up-sampling matrix, respectively. To include surface tension
forces, we extend our definition of the up-sampled pressure as follows:

p = Φ̂U p̃ + (I − Φ̂)σH (1)

where σ denotes the global surface tension coefficient and H the mean curvature given by
the (spatially varying) Laplacian of a signed distance function. Note that at the free surface
(when Φ̂ vanishes), Φ̂U p̃ is equal to zero and p =σH , as required. Intuitively, Eq. (1) exactly
meets the high-resolution Dirichlet boundary conditions at the free surface, and it transitions
to the original dimension-reduced pressure within the liquid.
Before we start to incorporate this new term into the reduced system, it is important to keep

in mind that this term will only modify the right-hand-side of the linear system. This will later
on allow us to leave the pressure system unmodified, and separate the surface tension terms
into a force applied to the velocities. We will first briefly review the ghost fluid method for the
regular surface tension system.
Let us consider two pressure cells crossing a levelset surface. In this case, the pressure cell

outside is treated as ghost cell pG , and the other one (inside) as fluid cell pF . Since the pres-
sure at the surface due to surface tension is σH , the linear interpolation of these two cells
right at the surface, with distance θ from pF , should be σH :

(1−θ)pF +θpG =σH (2)

Rearranging this equation yields:

pG = 1

θ
(σH −pF )+pF (3)
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Thus, the gradient of these two cells is given by:

∆t

ρ
∇p = ∆t

ρ

pG −pF

∆x
= ∆t

θρ

(σH −pF

∆x

)
(4)

where ∆x denotes the cell size at high resolution. Substituting Eq.(1) for pF gives:

∆t

ρ
∇p = Φ̂∆t

θρ

(σH −U p̃

∆x

)
. (5)

The right hand side of this equation is separable into terms depending on p̃ (which need to
be part of the pressure solve) and some that don’t. Hence, those independent of p̃ will directly
modify the velocity later on when it is made divergence free with the pressure gradient, and
thus we can think of them as an external force that is directly applied to the fluid velocity. So,
the external force for all cells at the surface is given by:

fG = Φ̂∆t

θρ∆x
σH . (6)

However, in the context of re-sampling the velocity and pressure fields we cannot restrict our
view to cells at the interface. Cells completely filled with fluid also introduce new right hand
side terms. For two cells in the bulk of the liquid, the gradient of the pressure is computed
with:

∆t

ρ
∇p = ∆t

ρ

pi+1 −pi

∆x
(7)

Substituting Eq.(1) for pi and pi+1 yields:

∆t

ρ
∇p = ∆t

ρ

Φ̂i+1(U p̃)i+1 − Φ̂i (U p̃)i

∆x
+ ∆t

ρ

(1− Φ̂i+1)σHi+1 − (1− Φ̂i )σHi

∆x
(8)

Separating the terms independent of the pressure, just like before, gives the force term for
fluid cells:

fF = ∆t

ρ

(1− Φ̂i+1)σHi+1 − (1− Φ̂i )σHi

∆x
(9)

To summarize, we compute these forces for each cell face, forming a force vector f . We
apply f to the intermediate velocity û, to compute a new intermediate velocity field. The rest
of the pressure solve can continue in an unmodified fashion. Note that including the surface
tension terms into the right-hand-side would have also required us to include surface tension
into the velocity update with the pressure gradient. As such, this force-based view is simpler
to implement.

2


