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Abstract

Control of physical simulation has become a popular topic in the field of computer graphics. Keyframe control has
been applied to simulations of rigid bodies, smoke, liquid, flocks, and finite element-based elastic bodies. In this
paper, we create a framework for controlling systems of interacting particles — paying special attention to simu-
lations of cloth and flocking behavior. We introduce a novel integrator-swapping approximation in order to apply
the adjoint method to linearized implicit schemes appropriate for cloth simulation. This allows the control of cloth
while avoiding computationally infeasible derivative calculations. Meanwhile, flocking control using the adjoint
method is significantly more efficient than currently-used methods for constraining group behaviors, allowing the
controlled simulation of greater numbers of agents in fewer optimization iterations.

Categories and Subject Descript@iscording to ACM CCS) 1.3.5 [Computer Graphics]: Physically based model-
ing; 1.3.7 [Computer Graphics]: Animation; 1.6.8 [Simulation and Modeling]: Animation;

1. Introduction andStar Wars: Episode ¢imulated huge groups of creatures
acting in concert using flocking modeBB{in02 TO99. The
control of these flocking systems is very important for spe-

cial effects directors, and the issue has been examined by

Recent advances in numerical methods and physical mod-
els have led to an explosion in contributions to the physics-
based animation literature. Each year we see more detailed

fluid simulations, increasingly robust collision detection and
response algorithms, and progressively more powerful de-

several researchers alreadyMC03, LCF05.

Control of particle system models would also be valuable

formable models. Given the pervasiveness of physics-basedfor a computer-generated transition between two live-action

animation, the community has sought to control these in-
herently self-governing systems, leading to reliable methods
for forcing fluids, rigid bodies, flocks, and elastic objects to
conform to predetermined configurations. Our work extends
previous optimization methods for animation control to ac-
commodate cloth simulation, flocking models, and other par-
ticle systems.

There are several instances in which controlled particle
systems are desirable. Motion pictures lil@d of the Rings
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video clips with clothed actors. In the “Burly Brawl” se-
guence inThe Matrix Reloaded\Neo battles several agents at
once while wearing a long, flowing codtd¢r03. Imagine if

the director called for a seamless transition from a computer-
generated martial arts move into live footage. The computer-
generated portion of this special-effects shot would be nearly
impossible for a passively-animated cloth model, because
the task has now changed from an initial value problem to
a boundary value problem. Instead of blindly evolving the
cloth, it must pass through a keyframed configuration at the
end, defined by the starting state in the live clip. Our system
for cloth control can make effects like this less taxing.

Control of a physics-based animation can be generally
thought of as an optimization problem. The animator seeks
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Figure 1: Our method allows flocking and cloth simulations to form key-framed shapes. Here, a flock forms into a square and

a cross shape, while a sheet of cloth bends into a perfect arch.

to find the optimal balance between visual plausibility and
controlled behavior. In order to impose constraints on these
passive animations, the system allows some input control
parameters to alter the original physical behavior. Because
arbitrary changes can cause disturbingly unphysical results,
we seek to minimize the effect of these controls while simul-
taneously attempting to satisfy any constraints on the ani-
mation. To find this balance, we create an objective function
that evaluates a set of controls by penalizing it whenever it
alters the animation, and by rewarding it if the resulting ani-
mation meets the animator’s constraints. The set of controls
that yields the optimal objective function will produce the
physical behavior that the animator desires.

We control physical simulations through gradient-based
optimization via the adjoint methodTPS04, though its
application here is far from straightforward. Naively ap-
plying the adjoint method to certain numerical integration
schemes proves to be computationally infeasible — in or-
der to use such an optimization-based framework on the
cloth models described by, for example, Baraff and Witkin
[BW98] or Choi and Ko [CK02], we must supply an alterna-
tive method for efficiently calculating the adjoint states.

The main contributions of our paper include:

Efficient and Robust Flocking Control. We show how
to use standard adjoint calculations with gradient-based op-
timization to control a flocking simulation. Our method con-
verges in fewer iterations than previous sampling approaches
while offering more controllability than motion graphs and
hand-tweaking. We demonstrate results of keyframed flock-
ing with several hundred agents.

Novel Extension of the Adjoint Method. As it stands,

the exact adjoint method is ill-suited for efficiently control-
ling particle simulations with some numerical integrators,
specifically with linearized implicit schemes, because of a
dimensional explosion. We derive and present a valuable ap-
proximation that allows for the control of more complicated
physical simulations like the implicit integration of cloth.
Specifically, we use a linearized implicit integrator for the

physics calculations, and we usduly implicit integrator
for the adjoint calculations.

Control of Cloth Animations. We present methods for
adding keyframe control to cloth animations by way of ap-
proximate adjoint calculations, demonstrating with a diverse
set of examples. We apply center-of-mass constraints as well
as simpler per-particle constraints. To our knowledge, con-
trolling the dynamic movements of cloth in such a manner
has not been done in the past.

2. Previous Work
2.1. Modeling Flocking and Cloth

Particle systems permeate research in computer graphics.
The work by ReynoldsRey87 is of particular relevance to

our research. He used a system of particles with pair-wise
interactions to create models of flocking “boids.”

Particle systems with pair-wise interactions have also
played a central role in the animation of deformable mod-
els like cloth. ProvotiPro99 increased the stability of cloth
models by enforcing deformation constraints. Baraff and
Witkin [BW9§g], Volino and Magnenat-ThalmaniMTO00],
and Desbruret al. [DSB99 each simulated cloth with large
time steps using implicit integrators. Choi and KoK02]
additionally allowed livelier animations with a more stable
buckling model involving nonlinear springs that resist com-
pression and bending.

Bridsonet al. [BFAOZ] created a robust system for han-
dling collisions in cloth animations, utilizing both exact in-
tersection tests and repulsion forces. Bridebal.[BMF03]
introduced several techniques for improving clothing simu-
lations with wrinkles and folds, while Baradt al.[BWKO3]
showed a method for a cloth system to repair itself af-
ter it was otherwise hopelessly tangled. Govindaetj@l.
[GKJ*05] greatly increased the efficiency of collision detec-
tion in a cloth system by using chromatic decomposition to
compare the minimal number of independent sets, and used
2.5-dimensional tests on a graphics processor for an even
more dramatic speedup.
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. 3. Flocking
o2l T 2 | N
~ ‘®~ N - o 9 We use a particle system similar to that of Reynokley[87
— » G 9% L - ~ . . . .
" TR ™" 1 - = G for animating group behaviors. We treat each agent in the
-~ - PN N flock as a particle, and each agent’s behavior is determined

L L

by a series of forces. These forces are:
Figure 2: The circled agent is constrained in the back of the
pack at the start, and at the front of the pack at the end of
this animation.

Collision Avoidance Force.If one agent comes too close
to another, we apply a repulsive force to push them apart.

Velocity Matching Force. We apply a force to make
an agent’s velocity match that of his neighbors, essentially
damping relative velocities between flock members.

2.2. Control of Simulated Animation Flock Centering Force.Each flock member feels a force

Ever since simulation-based animation was introduced to the pushing him toward his neighbors, implemented as an attrac-
computer graphics community, animators have been inter- tive force toward the center of mass of his nearby neighbors.
ested in controlling its behavior. Witkin and Kas&/K88]
solved for physically valid motions given some constraints.
Barzel et al. [BHW9€] discussed control in terms of aim-
ing for visually plausible results, and presented controlled

Wander Force.We avoid artificial-looking animations by
applying a random force at each time step in order to mimic
agents having “a mind of their own.”

animations of billiard balls. Chenney and Forsy@Fpd, Each particle in the system has a maggositionX, and
Popovt et al.[PSE00], and Popow et al.[PSE03focused velocityV defined at each time stép We collect these quan-
on controlling animations of rigid bodies. tities into a single position vectarand velocity vectov that

each vary in time, and a constant mass malttixTo inte-

Recently, a few papers have focused on controlling fluid . . o S
Y pap 9 grate the particle motions in time, we use an explicit method:

simulations. Treuilleet al.[TMPS03 optimized over an ob-
jective function to balance between keyframe fidelity and Vne1 =Vn+AtM " Hn, Xpp1 = Xn+Atvp g, (1)
plausible fluid motion. McNamarat al. [MTPS04 greatly

increased the speed of the optimization using the adjoint Wherefn = f(xn,vn) is the force on each particle evaluated
method, while also addressing the control of simulations using current positions and velocities, summing all collision
with liquid interfaces. These two papers were an inspiration avoidance, velocity matching, flock centering, and wander
and a point of departure for our work. Fattal and Lischin- forces. We notel) is second-order accurate for position-
ski [FLO4] proposed a different style of smoke control that dependent forces (equivalent to leapfrog after a notational
is much faster but less precise than an optimization frame- change), but reduces to first-order when velocity-dependent

work. Shiet al.[SY053SYO05H controlled fluids with guid-  forces are included as here. For the examples in this paper,
ing shapes and moving targets, and combined motion syn- We used linear collision avoidance, velocity matching, and
thesis with smoothed-particle hydrodynamics&YWCO0H. flock centering forces, though nothing in our method stops

us from using more complicated flocking dynamics.
A few works have previously addressed control of flock-

ing simulations. Andersort al. [AMCO3] used iterative
sampling to create flock animations performing under user- 4. Controlled Flocking
defined constraints. Their method is computationally inten- ] ] o ]
sive, but produces excellent results. Yu-@ial. [LCFO5 Our goal is tp find gset .of C(')r'nrols that Sat'ISerS the anima-
produced controlled group behaviors much more quickly by tor's constraints w_hHe minimizing non-physical behav_lor. In
building group motion graphs. Their technique relies on a 9eneral, we can find this set of controls, for a physical
comprehensive collection of scripted sample animations that SyStem with a state vector a matrixC that convertss into
are subsequently linked to produce controlled flocks. a meaningful operation on the state, and a set of functions
that advanceg through time. For a particle system, the state
Control of deformable bodies has also been addressed.vectorqn =< xn,vn > at framen consists of the current po-
Kondo et al. [KKIAO5] enforces trajectory constraints on  sjtions and the current velocities of each particle at that time
a finite element-based elastic body and adapts the stiffnessstep. In our implementation, the control vectocontains
matrix in order to match key poses. Cutégral. [CGW" 0] time-dependent external forces that act on each particle (one
concentrate on controlling wrinkles in computer-generated force per particle per time step in all of our flocking anima-
cloth. Their system focuses on controlling configurations of tions) andC, maps these control forces to the particles each
wrinkles in cloth, while we focus on dynamic movements. frame. We thus seek to minimize the objective function
Bhatet al. [BTH*03] used simulated annealing to estimate N
cloth simulation parameters. They optimized the properties _1 #1112 2
of simulated cloth in order to make it behave like real fabric. ®u.Q) = 2 n; <HVVn(CIn An) ||+ af[Cau| ) )
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whereW, is a weight matrix that the animator can use to
emphasize the importance of matching the velocity or posi-
tion at certain keyframesy;, is a keyframe at frama, and

a is a scalasmoothnesterm that indicates the relative im-
portance of minimizing the effect of external controls. The
notationQ indicates the full set of states across all times
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The simulation specifics encodeddR /0Q therefore de-
fine the relations for calculating the adjoint state varialles
If F represents a multistep integration scheme for simulating
the physical states, then the constraint®im (5) typically
reduces to a similar multistep scheme for the adjoints go-
ing backwards in time. The adjoint method thus proceeds

that are included in the summation. That is, we seek the set by first computing an entire simulation with a given control

of control forceau that yields the minimag, simultaneously
minimizing the keyframe deviation and the use of external
controls in a least-squares sense. In a typical application,
most keyframes will have a weightingh of zero, and only

a few frames will have non-zero weights.

We also consider generalizations @j.(For example, in
figure 1, 200 agents form a box. To obtain this result, we

vectoru, saving the statq at each time and calculating the
objective functiong. The gradiendg/du is then found by
running backwards through a series of operations based on
(5) to calculate th€) adjoint states andg/du gradient.

The adjoint operations correspond to the functions that
advance our system through time. They consist of: (i) the
adjoint of the function that maps the control veatoto the

replaced the squared distance to a specific keyframe statestateq, (i) the adjoint of our objective function (equati@
with _the sum of squared distances from the box over agents gnd (iii) the adjoint of the functions that advance our phys-
outside the target box. The agents created an evenly-spacedcal simulation. In our system, the adjoint functions (i) and

formation within the goal shape because the flocking simula-

(i) are the same as those of McNamataal. [MTPS04.

tion prefers that agents do not come too close to one another. However, our adjoint functions (iii) are very different, as we

Thesmoothnesgerm in the objective function penalizes any
excessive control force that may violate this preference.

4.1. Review of the Adjoint Method

Theadjoint methodexcellently summarized by McNamara
et al. [MTPSO04, efficiently calculates the gradient @f

do_ d9dQ 29 @
du” dQ du ' du

for use as part of a minimization routine. The gradient as
written in (3) is excessively expensive to calculate, because
it requires computation of the fulQ/du matrix of deriv-
atives of all state variables with respect to all possible con-
trols, subject to the condition that the state varialidezbey

the imposed simulation conditions. In the notation used by
McNamaraet al. [MTPS04, the simulation require® =
F(Q,u), whereF encapsulates all of the time-step formulae
between theQ values at different times. Alternatively, dif-
ferentiation of this constraint with respectuaives

dQ oF dQ . oF (| aF)inaF

G a0du au ~%0)d au @

The crux of the adjoint method for rapid evaluation of the
gradient comes from replacing the vector-matrix product
containingdQ/du in (3) with an equivalent product in terms
of the more-easily calculated adjoint §f. That is, while
we seek a specific vector-matrix prodtgftB, subject to a
matrix-matrix product constrailB = C, we can replace
this vector-matrix product wite” C such thaATs= g. This

can be easily verified by direct substitutighC = s" AB =
(ATs)TB = g"B. This replacement is advantageous in many
control settings, including the present case, where the matrix
B = dQ/du is costly to compute while the alternative calcu-
lation includes sparsé = (I — 0F/dQ) andC = dF/du:

oo oo ()e-(3)

du au 2Q Q+

% o

ou’

%

n) ©

simulate particle systems with pair-wise interactions (solv-
ing ordinary differential equations) where they simulated
fluid (solving partial differential equations). Additionally,
we will see in the section below that implicit schemes for
simulating cloth introduce additional issues. Having estab-
lished our forward and backward calculations, the objective
function and its gradient are used in a gradient-based mini-
mization routine (e.g.,4BLN95]) for the controlsu.

4.2. Adjoint Particle System Dynamics

Now that we have explained the need for a set of adjoint
operations corresponding to the functions that advance our
physical simulation, let us discuss the specifics of our par-
ticle system dynamics. Temporarily focusing our attention
on forward Euler integration of the differential equation
g’ =V(q),gns1 = gn+AtV(qgn), the right equation ing) re-
duces to a simple rule for the evolution of the adjoint states:

T T
) Gt (%") ®)

wheredV /dq|n signifies the derivativeV /0q evaluated at
time stepn. Therefore, once the full set of physical states
g have been calculated for a given set of control forces, the
adjoint statesj can be calculated by iterating backward in
time according to the above formula.

ov

aq

Gn=Qn1 +At (

Because the scheme presented Ih ¢an be similarly
rewritten as a one-step explicit forqy1 = gn + AtV (gn),
albeit for a different which includes additionaht factors,
the derivation of the rule for evolving the adjoint states sim-
ilarly reduces to proper use @V /dq|n quantities. These
quantities can be identified from the differentials df. (

dvn+1:dvn+AtM’l<% ndxn>

anJrl - dxn + AthrH,l

of
nan + 5

(@)
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where, e.g.9f/dv|n indicates the Jacobian evaluated with
andvp values at timén. Substitutions of the above represen-
tations of the partial derivatives then lead to
T T
Un=(1+atm %’n) (Ins1+ A1) + (52

T T
Kn :>“<n+1+AtM*1(§—L n) (Vn+1+AtRny1) + (37(9)
8

We emphasize that the above equations explicitly givéjthe
adjoint states in terms of those at tipg 1, gn.1, because
the partial derivatives at timg are in terms of physical states
already calculated by the corresponding forward simulation.

Using these functions to update the adjoiftsnd calcu-
late thed@/du gradient, we can control our particle system.

Figure 3: We use center-of-mass key frames to constrain this

4.3. Adjoint Flocking flock along a path

We use the flocking forces described in sectbas ourf

forces in equatio®. The collision avoidance and flock cen-

tering forces are purely position-dependent, so tBgiov

contribution is zero, while thei#f/0x has symmetric non-

zero entries whenever two particles exert one of these forces stangard. In contrast, naive implementation of the adjoint

on each other. Similarly, the velocity matching force is  nethod for control of implicitly-integrated cloth introduces

purely velocity-dependent, so i@f/dx Jacobian is zero,
while of /ov will be symmetric. The wander force is neither
dependent or norv; indeed, in order to make the objective
function consistent from one iteration to the next, we pre-
compute and store all of the random wander contributions
for the full simulation. That is, while each patrticle feels these

random forces throughout the simulation, each wander force

is consistent across different simulation iterations.

significant complications. To illustrate this, we consider the
backward Euler scheme:

Vny1 = Vn+AtM 71fn+1
Xnt1 = Xn+AtVpig

9)

wherefy,, 1 is the spring force evaluated at thexttime step.
This scheme is implicit becau$g, 1 is unknown at the mo-
ment of calculating the positions and velocities at time .

In figure 3, we show a flock of 100 agents of equal mass While we thus face generically nonlinear sets of equations,
following a pre-determined path, obtained by placing special Baraff and Witkin BW98] showed that these can be sim-
center-of-mass key frames along the curve and generalizing plified in cloth simulations by use of the first-order Taylor
the distance term irf to |[Wh(gf™ — a§™)||2, whereg§™ series approximation:
andgi™ are the desired and computed centers of mass at time
stepn, andWh is the weight of this key frame. The adjoint
of this generalized objective involves incrementing every el-

of

ox

o &

EY (20)

fara ~fn+

Av
n

n

ement of the adjoint state by the derivative with respect to
— in this caseWnh (g™ —gi™)/ p for p particles in the flock

(fromq®™ =3P qi/p).
5. Cloth

For our cloth simulations, we use the physical model de-
scribed in CKO02Z], selected in part because of its good
handling of physical buckling, though our work is not re-
stricted to this model. Because simple explicit integrators
are unstable for stiff springs, cloth animators typically use
either a more complicated explicit scheme or an implicit
scheme. Explicit schemes, including explicit Runge-Kutta
or Newmark integrators, require small time steps, necessi-

whereAx = (Xpy1 — Xn), andAv = (vp1 — Vn) (the same
approximation is used by Choi and KEGIK0Z] to linearize
the BDF2 scheme). Replacifig, 1 with its first-order Taylor
polynomial, equatio® then gives

A =AM (o + 9 o+ 3 [ndv)

Ax = At(vn+Av) )

which can be rearranged as a linear systemv = b, with

of
A=M—At —
t6v

_AtZQ

of
| b = At(fn + At

ax|, "

(12)

n n

tating a huge amount of memory for all the saved states in (noting thisA is different from the general notation in Sec-
a control setting. The derivation of the adjoint operations tion 4.1). We solve this system by a modified conjugate gra-
for these higher-order integrators are more complicated than dient technique BW98], update the particle positions and
for forward Euler, but are nevertheless straightforward and velocities, and repeat this process for every time increment.
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Figure 4: We control these animations to create shapes with
the cloth trimming.

6. Cloth Control

Our flocking simulations use explicit integration with a
straightforward explicit evolution of the associated adjoint
state from timet,;1 to tn. In contrast, the cloth simula-
tions described above use an implicit, linearized backward
Euler scheme1(1). We would like to create adjoint states
corresponding to this system, but, as we demonstrate below,
this becomes excessively complicated computationally. We
thus choose to develop an approximate system for evolving
the adjoint states in order to efficiently calculate the adjoint
states and resulting gradients.

One can naively derive the adjoint operations for our lin-
earized implicit mass-spring system by following the same
steps used to reach equatiBnHowever, such calculation
leads immediately to derivatives of the terms in equatibn
including derivatives of théf/dx anddf/dv Jacobians, re-
ducing to second derivatives of tlidorces with respect to
both positions and velocities. THdorces have  compo-
nents at each time step for a three-dimensional system of
p particles, and each Jacobian (with respect tmdv, re-
spectively) is a  x 3p matrix. Taking additional derivatives
yields a trio of 3 x 3p x 3ptensors — a dimensional explo-
sion. Meanwhile, where our explicit time stepping for flock-
ing yielded an explicit evolution for the adjoint states, the
implicit integration of cloth similarly leads to implicit ad-
joint calculations. Even given the relative sparseness of the
second-derivative tensors, the required linear solves for this
adjoint evolution are significantly more expensive than those
in the forward simulation, so even ignoring the resultingly
cumbersome bookkeeping, this does not appear to yield a
computationally feasible control strategy.

Our solution to this problem explores the distinction be-
tween full backward Euler integratio)(and the linearized
scheme 11) used for efficient cloth simulation, taking ad-
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vantage of a specific feature of the adjoints of implicit sys-
tems. That is, since the adjoint method involves computing
an entire simulation first, we already know every physical
state of the forward simulation when calculating the adjoint
states. The adjoint evolution corresponding to the generi-
cally nonlinear backward Euler integration of the physical
states then reduces to a linearly implicit calculation for the
adjoints, as we show below. We will therefore avoid the di-
mensional explosion of calculating adjoints corresponding
to (11) by instead approximating these adjoint states by those
corresponding to9).

The adjoint evolution corresponding to the backward
Euler schemeq+1 = gn+ AtV(gny1), is found by substi-
tution into equatiorb:

T
) @

Where the backward Euler evolution of the physical states
generally involves solving nonlinear implicit systems (moti-
vating the linearization), the corresponding adjoint evolution
is linearly implicit because théV /dq|n Jacobian is already
known from the forward simulation of the physical state.
Applying the backward Euler particle-system evoluti® (
equationl3 becomes

. v\, )
=Gn1+Ot( o (sl
On = 0n+1 (aq n) 0n (6qn

\7n = \7n+]_+AtM -1 <

T T
%n) \7n+At>"<n+(§—\,";) ,
T 20 T
of 5
&) o (32)
(14)

Notationally absorbingdg/dgn terms into the@ny1 in
the above equation, substitution and rearrangement gives
AT¥n = ¢, where

of

A:M—Ata

f(n = §(n+1+AtM -1 (

0X

2 o

— At ax

n

, €=M (Vnp1 +AtKny1)

" (15)
Solution of this linear system givés, then yieldingXn ex-
plicitly from (14). Because the matricdd, 9|n, and & |
are all symmetric, thig\ is, conveniently, exactly the same
matrix as in the linear system for the forward simulation
(12). Therefore, very little additional implementation work
needs to be done, and this adjoint computation is just as fast
as the forward simulation. We note that we approximate the
implicit forward integrator with another implicit integrator
(as opposed to an explicit integrator), because the adjoint
equations are stiff.

We emphasize that our cloth control simulations are not
as would be obtained by use of automatic adjoint-code gen-
eration based on automatic differentiation (e.6KP8]).
Automatic adjoint generation from the linearized backward
Euler time-stepping would generate the dimensional explo-
sion described above. Rather, we have avoided such expen-
sive derivative calculations by evaluating approximations to
the adjoint states, in this case in terms of a different time step
scheme. While the general notion of using adjoint states that
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is the same method that Choi and K&K{02] use to prevent
self-collisions. We use the Jacobian of this spring force in
the adjoint calculation in order to add some predictive abil-
ity to our optimizer. Collision response adds discontinuities
into our objective function, so our gradient-based optimiza-
tion may have trouble with collision-heavy animations. Even
so, we have successfully controlled cloth in the presence of
multiple collisions. In figures, for example, the cape collides
with the character and with itself hundreds of times during
the optimization iterations.

7. Results

We have produced a series of examples illustrating control
in both flocking and cloth simulations. As mentioned earlier,
we have created flocks that are constrained to a path or a se-
ries of shapes. In figurg, we show a small flock racing to-
wards a goal. The highlighted character progresses from the
back of the pack to the front, while the group still adheres to
the flocking rules. This outcome was achieved by constrain-
ing the entire flock to a straight path with center-of-mass key
frames, while the highlighted agent was constrained to be in

only approximately correspond to the physical state vari- _the_ f_ront of th_e flock at the end of the_ animation with an
ables has been used successfully in the meteorological com-individual particle key frame. The adjoint control of flocks
munity for data assimilationgw95 and sensitivity stud- seems to be very effective, an{i we have tested it W'th as
ies [ST97, we know of no previous application of such ~Many as one thousand agents in a flock. Each flocking ex-
integrator-swapping to turn what would be a seemingly com- ample took less than 250 iterations of our flocking simulator.
putationally intractable problem into an approximate calcu- !N OUr most expensive example, our method took 3.5 hours

lation that runs at the same cost as the forward simulation. ~for 200 agents to match two shapes on the ground (figiure
We believe our timings could be much better had we imple-

We note that our methodology does not require any spe- mented spatial data structures for such large flocks, in order
cific restrictions on the types of forces in the system, only to avoid the quadratic scaling of particle interactions.
that it is possible to computéf/ox and df /dv. This idea
of using the adjoints corresponding to a slightly different
integration scheme can then be extended to other systems.
Meanwhile, it is important to recognize that this is an ap-
proximation, because better optimization convergence can
sometimes be obtained by improving the accuracy of the
adjoints and the resulting gradient. Our substitution of the
linearized backward Euler scheme with the adjoints corre- el ! Ot ;
sponding to the full backward Euler integrator introduces Ulation in order to make the cloth flip and spin in desired
O(At3) errors; each integrator is only first-order accurate in Ways: In all other cloth examples, our control vector con-
time, but they are the same as each other through secondSiSted of one force per particle per time step in each cloth an-
order. We note that the linearized BDF2 schemeG#0?] |mat|on._We_ show pieces of cloth swinging into user-defl_ned
could be similarly approximated by adjoints derived for full Shapes in figuré, and we show a piece of cloth matching
BDF2 steps, with the sam®(At?) accuracy. Taking ad-  the shape of an arch in figule
vantage of the improved accuracy afforded by smaller time  |n figure 6, we show three cloth animations of a charac-
steps, we have in some instances had good success by firster wearing a cape. In the left animation, a “stunt double”
optimizing over simulations with large time steps and using falls from a height, and the resulting cloth motion is rather
these results to generate the initial guess of a rapid but more chaotic. The right animation shows the cape of an actor
detailed optimization over smaller time step simulations.  walking normally. We stitch these two animations together
with our cloth-control technique, and the resulting animation
is shown in the center column with the synthesized blend
highlighted in orange. The left animation is treated as the ini-
In order to model collision response in our cloth, we apply tial condition, and the right animation is treated as the goal
stiff repulsive springs between the two colliding bodies. This state (our system matches both the desired positions and ve-

Figure 5: We force a sheet of cloth to land in a small ring
using key-framed control. Our system only optimized over
the initial conditions in this example; no additional control
forces were applied.

We have also created several examples of key-framed
cloth control. In figureb, we optimized over only the initial
conditions of a cloth animation (one velocity per particle at
the start of the animation) in order to stylistically toss a piece
of cloth through a small ring. We use a center-of-mass con-
straint to force the cloth to travel through the ring, while we
enforce additional position constraints throughout the sim-

6.1. Cloth Collisions
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In section6, we introduced an approximation of the ad-
joint state by swapping a backward Euler scheme with a lin-
earized backward Euler scheme. The error induced, locally
O(At3), was only problematic in very complicated control
problems, such as the boundary value problem in figre
where every particle in the simulation must exactly match
a given position and velocity. The optimizer found a very
reasonable answer, but did not hit the desired key frame per-
fectly. In order to find a more accurate solution, we used the
result from this imperfect optimization as a starting point in
a new simulation with smaller time steps.

There is still future work to be done with the cloth con-
trol problem. For example, collision detection and response
are inherently discontinuous operations. Because we use a
gradient-based optimization technique to find the optimal set
of control forces in our animations, collisions present a prob-
lem. Nevertheless, we have noticed that the optimization
software ZBLN95] is surprisingly resilient, and has man-
aged to converge to the correct solution even in the presence
of several collisions. In addition, almost all of our flocking
forces have sharp discontinuities in them beyond a certain
distance, but they did not pose much of a problem for our
optimizer. Perhaps this is to be expected, as McNaraaira
al. [MTPS04 were able to control level sets even though
their heapsort operation was highly discontinuous. In order
to handle collisions more robustly, we would like to investi-
Figure 6: The left and right columns of this image show two ~ gate the use of a random searB1S[E"00], or smoothing out
existing animations of a character wearing a cape. The mid- the collision operations in early optimization stages in order
dle column shows an animation that begins with the same to avoid local minima. Robust cloth control in the presence
conditions as the left animation and ends with the same con- of a large number of collisions is considered future work.
ditions as the right animation. The cloth in the center is a
§ynthesized gnimation that b]ends betwgen the two states us-g Acknowledgements
ing our technique for controlling cloth animations.
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