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Figure 1: Our algorithm efficiently produces detailed thin sheets and liquid droplets, even with low-resolution fluid simulations — The main
corridor in this example is only 30 fluid cells wide.

Abstract

We propose a mesh-based surface tracking method for fluid anima-
tion that both preserves fine surface details and robustly adjusts the
topology of the surface in the presence of arbitrarily thin features
like sheets and strands. We replace traditional re-sampling methods
with a convex hull method for connecting surface features during
topological changes. This technique permits arbitrarily thin fluid
features with minimal re-sampling errors by reusing points from
the original surface. We further reduce re-sampling artifacts with
a subdivision-based mesh-stitching algorithm, and we use a higher
order interpolating subdivision scheme to determine the location
of any newly-created vertices. The resulting algorithm efficiently
produces detailed fluid surfaces with arbitrarily thin features while
maintaining a consistent topology with the underlying fluid simula-
tion.

Keywords: surface tracking, topology changes, fluid dynamics,
deforming meshes

1 Introduction

In the recent past, researchers have developed several impressive
techniques for tracking the surface of a flowing liquid [Osher and
Fedkiw 2002; Bargteil et al. 2006; Enright et al. 2002]. Tradition-
ally, these surface tracking methods impose topological changes
upon the fluid surface whenever surface features are smaller than
the computational resolution. These topological changes cause
droplets to pinch off, thin sheets to rupture, and small features to
vanish when they become smaller than a predefined length.

In contrast, the topological behavior of liquid surfaces in the real
world does not depend upon a single spatial threshold. Instead,

these splits and merges are closely linked to the geometry and mo-
tion of the fluid. For example, thin cylinders of liquid tend to break
up into droplets in the presence of large surface tension; this phe-
nomenon is known as a Rayleigh-Plateau instability, and it is caused
by a positive feedback loop between the decreasing cylinder radius
and increasing tension forces. As a result, liquid jets and spindles
along the boundary of a liquid sheet will reliably break apart as
soon as they become thin enough for the surface tension forces to
dominate the inertia forces [De Gennes et al. 2004; De Luca and
Costa 2009]. However, the main body of a liquid sheet is actually
stabilized by surface tension forces, so it will resist rupturing until
it becomes microscopically thin and torn apart by van der Waals
forces [Ivanov 1988]. Thin sheets of air, on the other hand, tend
to immediately break up due to a Rayleigh-Taylor instability when
surrounded by bodies of denser liquid [Rayleigh 1883].

Based on these observations, we believe it is physically incorrect
to induce topological splits and merges based on a single grid reso-
lution. In order to faithfully recreate the phenomena mentioned in
the previous paragraph, we have devised the following physically-
inspired rules for the topological persistence of fluid features in an
animation:

1. Thin sheets of air should be quickly deleted.
2. Thin sheets of liquid should never rupture.

3. Thin spindles of liquid should break up at a scale defined by
the animator.

In this paper, we will use these guidelines to develop a physically-
inspired model for handling topological changes in liquid simula-
tions.

Our work begins with a method for explicitly tracking a fluid sur-
face, similar to the methods of Du et al. [2006] and Wojtan et
al. [2009]. These techniques deform a high-resolution surface mesh
and locally detect and correct topological inconsistencies by re-
sampling from a grid-based signed distance function. This tac-
tic successfully preserves high resolution surface details in topo-
logically simple regions of the surface, but it relies on march-
ing cubes [Lorensen and Cline 1987] to re-sample from a signed-
distance function at sites where topology changes occur. Unfortu-
nately, because marching cubes cannot represent features smaller
than a grid cell, this approach cannot perform topological changes
on thin features without deleting large sections of the surface at a
time.

The technique presented by Miiller [2009], on the other hand, is ca-



pable of performing topological changes on some types of thin fea-
tures, because it uses an extended set of marching cubes tables that
is specifically designed to permit sheets thinner than the grid res-
olution. However, this strategy still cannot represent certain small
features like thin columns or small droplets of liquid that do not
intersect the edges of the marching cubes cells. Furthermore, this
method re-samples the surface for all cells in every time step so it
will not preserve small-scale surface details through time.

We propose a mesh-based surface tracking method for fluid ani-
mation that both preserves fine surface details and robustly adjusts
the topology of the surface in the presence of arbitrarily thin fea-
tures like sheets and strands. Instead of using lookup-table-based
re-sampling methods to generate a surface from a topologically
valid signed distance function, we introduce a local convex hull
method for connecting surface features during topological changes.
We sew this new surface together with the original surface mesh us-
ing a subdivision-based mesh-stitching algorithm, and then we cre-
ate new vertices by subdividing these newly-created triangles until
the surface is adequately sampled. Our contributions are as follows:

e Local convex-hull algorithm for topological operations
We combine information from both the input mesh and a
volumetric signed distance function in order to reconstruct a
physically-valid topology that is easily controllable.

e Detail preservation We avoid re-sampling the surface every-
where except where topological changes occur. In those loca-
tions, both our local convex hull operation and a subdivision-
based method for stitching together surfaces preserve as many
Lagrangian surface details as possible. In places where we
cannot avoid re-sampling the mesh, we apply an interpolating
subdivision scheme to ensure a highly accurate surface.

e Thin Features Our method naturally produces arbitrarily thin
fluid features like sheets and strands while preserving high-
resolution surface details.

e Constrained Topology Our algorithm outputs a high resolu-
tion surface mesh whose topology is constrained to match that
of a lower resolution fluid grid. This construction allows for
the efficient simulation of highly detailed surface animations
while preventing many potential artifacts caused by inconsis-
tent mesh and grid topologies.

Figure 2: When combined with a mesh-based surface tension tech-
nique, our method produces realistic breakup behavior of thin lig-
uid films. In this example, a ball of water smashes downward into
a rectangular podium, rapidly spreads out into a chaotic sheet, and
breaks up into droplets.

2 Related Work

In order to construct a surface from volumetric data, Lorensen and
Cline [1987] proposed an isosurface extraction technique known as
marching cubes, which uses a lookup table to generate piecwise
linear surface geometry. Because the original marching cubes al-
gorithm produced holes in the surface mesh, several researchers
proposed strategies for making it topologically consistent [Niel-
son and Hamann 1991; Montani et al. 1994]. Another way to en-
sure that marching cubes templates have a consistent topology is
to generate the lookup tables using a convex hull. Bhaniramka et
al. [2000; 2004] showed that convex hulls can be used to recon-
struct surfaces for volume data in any dimension, which is one of
the reasons we found convex hulls so appealing for our algorithm.
Kobbelt et al. [2001] improved the marching cubes method by al-
lowing it to reconstruct sharp features, Ju et al. [2002] used dual
contouring to construct a surface from hermite data, and Schae-
fer and Warren [2005] proposed a method for contouring the dual
of the marching cubes data in order to reconstruct thin structures.
Varadhan et al. [Varadhan et al. 2004] proposed a method for locally
increasing the resolution of an implicit surface until it has the cor-
rect topology. Like our strategy for matching topologies between
different surfaces, Varadhan et al. use the notion of a topologically
complex grid cell.

Volumetric implicit surfaces are convenient when computing topo-
logical changes, though many researchers prefer to use a discrete
surface representation. Mclnerney and Terzopolous [2000] devel-
oped a grid-based method for imposing topological changes upon a
mesh that is constrained to surface-offsetting motions. Lachaud et
al. [2003] merge and split triangle meshes by explicitly sewing and
cutting the mesh when nodes come close together, while Zaharescu
et al. [2007] sew together the exact intersections of overlapping
meshes. Pons and Boissonnat [2007] use a restricted Delaunay tri-
angulation to sew meshes together, and Brochu and Bridson [2009]
explicitly detect collisions and perform topological mesh surgery
where possible. Wojtan et al. [2009] locally re-sample a trian-
gle mesh from a volumetric grid in order to perform topological
changes, and Miiller [2009] globally re-samples the mesh from a
grid using specially-constructed marching cubes tables.

Fluid simulation in computer graphics was pioneered by Kass and
Miller [1990]. Stam [1999] later made the advection term uncon-
ditionally stable, while Foster and Fedkiw [2001] simulated water
with a dynamic free surface. For the animation of liquid surfaces
in graphics, an Eulerian technique for moving an implicit surface
known as the level set method [Osher and Fedkiw 2002] has be-
come standard. Enright et al. [2002] added Lagrangian particles
to the level set in order to maintain additional surface details, and
Bargteil et al. [2006] presented a semi-Lagrangian contouring strat-
egy. Losasso et al. developed a method for increasing the fluid sim-
ulation resolution near the level set surface using an octree [2004]
and coupled a level set with a particle-based fluid simulation [2008]
in in the effort to ameliorate volume loss where the fluid surface
is under-resolved. To further decrease the memory footprint of
high resolution level sets, hierarchical run-length encoding [Hous-
ton et al. 2006] can also be used. Several authors have simulated a
dynamic implicit surface at a higher resolution than the simulated
fluid [Goktekin et al. 2004; Bargteil et al. 2006; Kim et al. 2009],
although we will explain in Section 4 that this strategy can lead to
visual artifacts when the topology of the fluid differs from that of
the surface.

3 Fluid Simulation with an Explicit Mesh

We use an Eulerian fluid simulation (see [Bridson 2008]) to advect
a Lagrangian triangle mesh, and we perform local mesh operations



Figure 3: Examples of simple (green check mark) and complex (red X) topology for edges, faces, and cells.

like subdivision and edge collapses in order to ensure reasonably
high quality triangle shapes. To inform the fluid simulation which
cells should be simulated as liquid, we use the surface mesh to
create a signed distance function with samples collocated with the
pressure values in the fluid grid.

We employ a voxelization-style method [Miiller 2009] to compute
the signed distance function. We first voxelize the triangle mesh
onto a grid by computing intersections with a rays in the x, y, and
z directions. For each ray, we keep track of its inside/outside status
with a counter. At the start of the ray (which is guaranteed to be
outside of the mesh), the counter has a value of zero. For each
intersection with the triangle mesh, we increment the counter if it
intersects a triangle whose normal is facing the opposite direction of
the ray, and we decrement it if it intersects a triangle with a normal
facing the same direction of the ray. This way, all regions outside of
the mesh will have a counter value of zero, regions inside the mesh
will have a value of one, and inside-out regions will have values less
than zero or greater than one. We store this counter value at each
grid point to assign an inside/outside status, and then we compute
the exact distance from the point to the surface in order to complete
the signed distance calculation.

Every pressure value in the fluid grid that is collocated with an “in-
side” value is to be treated as an active fluid cell. Very thin features
may not have any “inside” values nearby, so we additionally mark
any cells that overlap the surface as active fluid cells. We then com-
pute new velocities with the fluid simulation and use them to advect
the surface mesh using an explicit Runge-Kutta technique. Finally,
at the end of each time step, we detect and correct the topology
of the surface. The remainder of this paper will explain our novel
method for handling topological changes.

4 Topological Connectivity

The main goal of changing the topology of the mesh is to ensure
that the liquid surface is connected to other regions of fluid in the
same way as the pressure values. If these topologies differ, then
distracting visual artifacts will occur. For example, if two discon-
nected surface components lie within the same cell in the fluid grid,
then the fluid pressure values will be unable to distinguish between
these independent components. The low resolution fluid velocities

will then move both surface pieces together in the same direction,
creating an invisible link between them that tends to persist for the
entirety of the simulation.

4.1 Detecting Topological Incompatibility

We detect disagreements between the explicit surface mesh and the
fluid grid by locally contrasting the topology of the explicit surface
with a surface that possesses the same topology as the fluid simula-
tion. We define any region where these topologies disagree as topo-
logically complex. As mentioned in Section 3, the fluid volume is
defined by the inside/outside values of a signed distance function in
addition to all cells that overlap the surface geometry. If the surface
geometry contained no thin features, then we could simply compare
the topology of the explicit surface to the topology of the isosurface
of its signed distance function, as in Wojtan et al. [2009]. However,
we wish to preserve thin features that cannot be resolved by the
signed distance function, so we must use a more versatile definition
of topological complexity.

Before specifying what it means to be topologically complex, we
first define a topological cell as a cube with its eight corners lo-
cated at sample points in the signed distance function. The cube is
bounded by six faces, twelve edges, and eight corners. We analyze
the topology of the explicit surface mesh by examining the intersec-
tion between the the solid geometries of the triangle mesh and each
topological cell. The intersection is empty if the cell is completely
outside of the surface, the intersection is identical to the original
cube if the cell is completely inside the surface, and the intersection
is more complicated if the cell overlaps the surface. In order for
the cell to be topologically simple, the surface of this intersection
should not have any more topological features than a single fluid
cell. That is, it must contain at most one surface component, with
no holes or voids — the surface of this intersection should be home-
omorphic to a sphere (more formally, a 2-sphere). Similarly, the
transitions from this topological cell to its neighbors must be topo-
logically simple, so the surface intersections with faces and edges
of this cell should be homeomorphic to 1-spheres and O-spheres,
respectively. Lastly, a corner of the cell is topologically simple if it
is not located in an inside-out region of the surface. Figure 3 shows
some examples of simple and complex geometry.

We can efficiently detect the topological complexity of a cell corner



Figure 4: Two bunnies splatter into each other, producing a thin liquid sheet that merges with the pool of water below.

by checking its counter from the signed distance function calcula-
tion in Section 3 (the counter of a simple corner must be either
zero or one, otherwise it means the surface is inside out or self-
intersecting). Next, we determine the complexity of a cell edge by
counting the number and orientation of its intersections with trian-
gles in the surface mesh and comparing the result with a single line
segment (0-sphere). If there are too many components, or if the
surface is oriented the wrong way at any of the intersection points,
then the edge is complex. This step is performed at the same time as
the complex corner test (during the creation of the signed distance
field). We can check the validity of a face by computing its inter-
section with the mesh and counting the number of components, and
we can test the topological status of a cell by similarly counting
connected components and ensuring that the Euler characteristic
detects no holes.

The complex corner test samples the signed distance function at
several regularly-spaced sample points, and it is guaranteed to iden-
tify any self-intersections larger than the grid spacing. This test will
catch any topological flaws that are well-resolved in the z, y, and
z dimensions, just like marching cubes will faithfully reproduce a
surface as long as there are no features smaller than the grid size.
The complex edge test checks all of the edges in the grid, so it is
guaranteed to identify any topological flaws that are well-resolved
in at least two dimensions. This means that self-intersections and
pockets of air that look like thin sheets will be identified by the
complex edge test. This test can also catch thin spindles and voids
if they happen to intersect one of the grid edges. The complex face
test checks for intersections with all faces in the grid, so it is guar-
anteed to catch topological flaws that look like thin spindles (which
span more than one cell in a single dimension, but are very thin in
the other two). However, the complex face test cannot catch topo-
logical flaws smaller than a single grid cell unless they happen to
intersect the face. Finally, the complex cell test is guaranteed to
identify all topological flaws, because it checks within every cell.

In practice, such topological problems smaller than a grid cell do
not exist, because we start with a well-resolved surface and then
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Figure 5: Given a surface with complex topology (a), methods
based on marching cubes-style lookup tables will ignore interior
vertices (b), while our method preserves many of the original de-
tails (c).

smoothly deform it according to a low resolution fluid velocity
field. This means that large features morph into small features
through a gradual process, by first becoming thin sheets and then
thin spindles. Because topological inconsistencies are caught by
lower-dimensional complexity tests before they have time to shrink
smaller than a grid cell, we have not found it necessary to perform
the full complex cell test. Complex face tests are mostly redun-
dant for our purposes as well, because perturbations from the fluid
velocity tend to force thin structures to intersect cell edges — the
complex edge and complex corner tests tend to quickly catch all
problems. As a result, we have found it practical to bypass the test-
ing of any cells and faces unless we specifically have to guarantee
valid topology in a particular region.

After a complex cell is detected, we will soon replace its intersect-
ing surface with a similar surface that is topologically simple. Be-
cause this cell shares its boundaries with other cells that may not
have been classified as topologically complex, we have to specifi-
cally guarantee that its faces are topologically simple. In this case,
we count the face components and pass complexity information to
neighboring cells, similar to the complex cell propagation strategy
of Wojtan et al. [2009]. To summarize the frequency of topologi-
cal tests in our implementation: we exhaustively test every corner
and edge in the signed distance grid, we never check cells, and we
only check faces when it is absolutely necessary to ensure simple
connectivity between a complex cell and its topologically simple
neighbors.

4.2 Local Topological Repair

After deciding that a cell has complex topology, we must replace
the surface/cube intersection in that cell with a new one. We require
that this new intersection surface meets two constraints: it should
be topologically simple, and it should preserve the connectivity of
the original surface. In addition, because each vertex of the original
surface represents a valuable piece of Lagrangian simulation data,
we also desire that the new surface preserves as many of the original
surface vertices as possible.

According to our definition, a sphere is topologically simple. Con-
sequently, a straightforward strategy for reducing the topological
complexity of a surface/cube intersection is to wrap a single sur-
face around all of the original surface components until it is home-
omorphic to a sphere. Fortunately, this operation can be performed
efficiently by replacing the original surface/cube intersection with
its convex hull. If the input surface intersected the cell boundary,
then the convex hull preserves this connectivity. Furthermore, the
convex hull’s intersections with faces and edges are lower dimen-
sional convex hulls, so they are also topologically simple. In addi-
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Figure 6: Given a triangle mesh and topological cell (a), we ex-
amine the intersection between the the solid geometries of the mesh
and the cell (b). If the intersection has complex topology, we re-
place it with its convex hull (c). Finally, we remove facets belonging
to the boundary of the cell and reconnect the surface (d). Note that
the cell below this one will also be re-sampled, because the bottom
edge in (a) is topologically complex.

tion, all of the vertices on this convex hull are preserved from the
input surface, so we reduce re-sampling errors during this process,
as illustrated in Figure 5.

In practice, we use the ghull library [Barber and Huhdanpaa 1995]
to compute the convex hull of the following points: all original
surface vertices that lie within that cell, the vertices created by in-
tersecting the original mesh with the edges and faces of the cell
(described in Section 5), and all “inside” corners of the cell. Fi-
nally, because the convex hull represents the intersection between
a cube and the new surface, we extract the final surface by deleting
any facets that are co-planar with the cell boundary. See Figure 6
for an example.

This strategy of reducing complex surface regions to topological
spheres has physical implications when used in a fluid simulation:
(1) thin sheets of air will be detected as topologically complex
and destroyed, and (2) thin sheets and strands of liquid will persist
throughout the simulation. Thus, we have already satisfied two out
of the three physically-based topological rules laid out in Section
1, and we will explain how to allow the breakup of thin spindles in
Section 4.3.

4.3 Topological Control

The method presented in Section 4.2 will preserve all thin sheets
and spindles unless there are significant self-intersections. In case
we desire different behaviors, we can modify the presented algo-
rithm by altering our definition of topological complexity. For ex-
ample, we could force the breakup of thin liquid spindles by declar-
ing that a cell face is complex when the surface intersects the face
but not its bounding edges. To create a re-sampled surface that
respects this altered definition of topological complexity, we can
simply remove any vertices on that face from the input to the con-
vex hull algorithm. We can similarly remove many vertices from
the convex hull input if we want to speed up computation time, al-
though we did not find this optimization necessary.

An alternative to modifying the definition of topological complexity
is to manually perform topological changes to the surface through
explicit mesh surgery. We have found that this approach for cut-
ting thin spindles of liquid produces better results than the method
outlined in the preceding paragraph, because explicit cutting allows
us to have tighter control over the thickness of the surface before
the separation. We can detect thin spindles of liquid while perform-
ing the local surface maintenance operations (Section 3), when we
flag edges that will produce non-manifold geometry if collapsed.
Of these non-manifold cases, we can easily identify any thin spin-
dles by their triangular cross-section. To perform the mesh surgery,
we cut the mesh at the triangular cross-section, seal each end with
a new triangle, and perturb the two new strands away from each
other by a small offset. A similar operation is explained in detail by
Lachaud et al. [2003].

As explained in Section 1, thin spindles of liquid consistently
lead to topological changes in real-world liquids. Due to a
surface-tension-based Rayleigh-Plateau instability, the liquid spin-
dle rapidly collapses until it is infinitely thin and then breaks in
two. Our explicit cutting operation precisely mimics this behavior
in the discrete setting by separating the thinnest possible unit of a
discrete surface. This cutting method is also quite efficient — it is
detected for free during standard surface maintenance operations,
and it requires about as much work as a single edge collapse.

Both of these proposed methods give us control over the breakup of
thin liquid spindles, satisfying our final physically-based topology
requirement from Section 1. Using these proposed topology modi-
fications, the animator can specify either the topological grid length
or the maximum allowed edge length in order to force the breakup
of thin liquid spindles.

5 Sewing Meshes Together

Before re-sampling the surfaces in Section 4.2, we subdivide the
original surface mesh so that it perfectly lines up with the bound-
aries of each complex cell. We first subdivide triangles where they
intersect the boundary edge of a complex cell, and then we subdi-
vide edges where they intersect the boundary faces of a complex
cell, following the algorithm of Du et al. [2006]. Next, we discard
the original surface within the complex cells and replace them with
topologically simple convex hull surfaces from Section 4.2. Finally,
we must stitch the surfaces together along the cell boundaries.

5.1 Subdivision Stitching

One possible mesh-stitching strategy is to progressively collapse
triangles on both sides of the cell boundary until the detailed in-
tersection between the surface and cell face is reduced to a line
segment. However, such a strategy deletes important Lagrangian
surface samples and can lead to robustness problems [Wojtan et al.
2009]. Instead of altering the original surface and destroying its La-
grangian data, we choose to only alter the new re-sampled surface.

Initially, if the new triangles output from the convex hull already
perfectly match up with the triangles on the other side of the face
(the piecewise linear curve formed by the triangle edges coinci-
dent with each boundary face is identical for both the original and
new surfaces), then we are finished sewing the surfaces together
at this face. Otherwise, we have to subdivide the new surface un-
til its boundary curve matches that of the original surface. First,
we limit the number of cases that we need to address by ensuring
that each new triangle shares an edge with at most one triangle out-
side of the complex cell region — for each new triangle that shares
edges with two or more triangles outside of the complex region,
we place a vertex at its barycenter and split it into three new trian-
gles. Next, for each new triangle that does not perfectly match up
with a segment of the boundary curve, we subdivide it in two by
adding a point on its boundary edge and snapping it to one of the
vertices on the boundary curve. We then recursively subdivide each
of these newly-created triangles in the same way until the curves
perfectly match (each curve eventually reduces to a single line seg-
ment in the base case), similar to the algorithm used by Bischoftf and

Figure 7: Before and after sewing the meshes together.



Figure 8: Tiwo streams of water collide, filling a domain with liquid.

Kobbelt [2005] to stitch together NURBS surfaces. Our algorithm
is guaranteed to terminate, and it is linear in the number of ver-
tices coincident with the face. After this step, the newly-resampled
mesh surface from Section 4.2 will be properly sewn together with
the original surface along its boundary, creating a closed, oriented,
manifold surface mesh. Please see Figure 7 for a visual aid.

5.2 Accurate Surface Interpolation

Both marching cubes-style lookup tables as well as our convex hull
algorithm in Section 4.2 use piecewise linear surfaces to connect
vertices together. These low-order connecting surfaces are indistin-
guishable from the original surface mesh when the triangles in the
surface mesh are about the same size as a fluid grid cell. However,
our method allows the surface mesh to have a much higher resolu-
tion than the simulation grid, so the triangles output by our convex
hull will often seem disproportionately large. To maintain a detailed
surface with many small triangles, we repeatedly subdivide these
large triangles until their edges are as short as the maximum edge
length allowed in our surface mesh. These subdivisions create new
vertices, and we are free to place them wherever we like. Similar to
Brochu and Bridson [2009] we decided to use butterfly subdivision
when placing our new vertices. We found that the modified scheme
of Zorin et al. [Zorin et al. 1996] worked best, because a significant
portion of the vertices in our simulations did not have a valence of
six. After applying this interpolating subdivision to the triangles
output by our topological correction algorithm, the surfaces exhibit
both correct topology and high degrees of smoothness.

6 Results and Discussion

Our simulations all show different combinations of thin sheets,
strands, and droplets due to a high resolution surface mesh be-
ing advected through a lower resolution fluid simulation. Figure 8
shows two streams of water colliding to fill up a domain. Most other
simulation techniques would be unable to resolve such a continuous
stream of thin sheets, but ours easily avoids the deletion of the large
thin structures. The simulation took between 0.5 and 10 seconds per
frame, and it finished with 800k triangles in a 100x50x 100 fluid
domain. Figure 9 shows a comparison between our method and a
level set surface tracker on a 60° domain. Our method clearly re-
solves more surface details and thinner sheets, although our method
is considerably more expensive due to the mesh maintenance. This
example took about 8 seconds per frame and finished with 200k
surface triangles. Figure 4 shows two bunny meshes creating a thin
liquid sheet after violently colliding into each other. The thin sheet
then merges with a larger body of water below. This example av-

eraged 28 seconds per frame for a 60x120x 120 fluid simulation
with at most 520k triangles. Figure 2 shows how our method for
persistent liquid sheets combines with a mesh-based surface ten-
sion technique [Thiirey et al. 2010] in order to simulate the realistic
breakup of a thin liquid film. The domain is 160x80x 160 (al-
though most of it is empty), and it took 1 to 12 seconds per frame
to simulate 320k triangles. Finally, Figure 1 shows an example of a
hallway flooding. This simulation was able to simulate thin sheets
and droplets despite its coarse fluid simulation resolution. It simu-
lated at 2 to 13 seconds per frame and finished with 600k triangles
in a 120x60x60 fluid domain. Our simulations typically output
one frame of animation for each time step in the simulation.

Because we use fairly low resolution fluid simulations, and because
the thin sheets in our videos do not occupy the full volume of the
fluid simulation, we found that the performance of our method is
more closely tied to the resolution of the surface mesh than to
the fluid grid. The majority of the computation time in our ex-
amples was spent on mesh-based operations (subdivision and edge
collapses, advection of the surface vertices, topology changes, and
mesh-based surface tension calculations), although the expense of
the surface tracker becomes negligible with higher resolution vol-
umetric fluid simulations and coarser surface meshes. The fraction
of total simulation time spent in the topological change algorithm
varied from 17% to 57% for the examples in this paper (Figure
2 and Figure 8, respectively). The signed distance calculation is
by far the most expensive part of the topology change algorithm,
followed by a global recomputation of the triangle mesh connectiv-
ity data structure after any mesh surgery. We believe that we can
significantly speed up our implementation in the future by using a
hardware voxelization routine and only locally updating mesh con-
nectivity.

While grid-based approaches have one dominant parameter (grid
resolution), our method has two: topological resolution (grid cell
size) and surface detail resolution (triangle edge length). These in-
dependent resolution parameters allow our method to track hun-
dreds of surface vertices within a single grid cell while maintaining
the same topology as the underlying fluid simulation. The cost of
maintaining extra vertices in a single grid cell is similar to that of
a particle level set [Enright et al. 2002], though a particle level set
with 64 particles per cell will resolve significantly fewer surface
details than our method with 64 surface vertices per cell.

The cost of computing topological changes in our method is mod-
est, though its expense grows linearly with surface detail resolution.
For example, if our surface detail resolution matches the topologi-
cal change resolution, then our method will behave similar to that
of Miiller [2009] (near real-time performance), with significantly
reduced diffusion of surface details. As the surface resolution in-
creases, so does the cost of advecting the mesh and computing topo-
logical changes. The memory consumption of our method scales
linearly with the surface resolution, in order to store the surface
mesh and the grid cells that intersect it.

Figure 10 illustrates a failure mode of common surface trackers
with a low fluid resolution. In this scenario, grid-based implicit

Figure 9: Comparison between a level set surface tracker with 2nd
order advection (left) and our method (right) on a 60° grid.



Figure 10: In this example, the level set method (left) deletes thin sheets before they even touch the ground. The method of Wojtan et al. 2009
(middle) re-samples the surface from a grid during topological changes, so it cannot merge together multiple thin sheets without deleting
large portions of the surface. Our method (right) merges together thin sheets without rampant thin feature deletion.

surface trackers (level sets, particle level sets, and semi-Lagrangian
contouring, for example) limit the surface detail to that of the
grid resolution, which causes catastrophic deletion of thin features.
Naively increasing the surface resolution can cause the topology of
the fluid simulation to differ from that of the surface tracker. Such
mismatched topologies can lead to artifacts such as several surface
components floating within a single fluid cell, as well as an unphys-
ical breakup of thin sheets. Artificially diffusing the level set [Kim
et al. 2009] can force these floating components to merge together,
at the expense of limiting surface detail, losing volume, and punch-
ing holes in thin sheets. Our method is the only surface tracker to
date that can showcase arbitrarily high levels of surface detail with-
out sacrificing topological agreement between the surface and the
fluid.

Although we did not use exact arithmetic to compute the topolog-
ical details of our algorithm, we did take precautions to make it
robust in the face of numerical precision errors. In the event that
a numerical error causes impossible topology or leads to difficulty
sewing together the mesh, we mark all cells near the error as topo-
logically complex and re-sample the geometry within them.

We tried to preserve as much Lagrangian surface information as
possible throughout the surface tracking process, and our topolog-
ical constraints allow us to advect surface meshes that are much
higher resolution than the fluid velocity field. Consequently, we
can animate highly detailed surfaces through time without losing
surface features to a re-sampling process. However, this retention
of high frequency details may not always be desirable. Some pos-
sible ways to smooth out extra details are with geometric smooth-
ing or simulated surface tension. In addition, our topological cor-
rections will often replace high-frequency surface details with a
less detailed surface whenever they detect complex geometry. This
replacement can lead to noticeable temporal discontinuities when
simulating with an extremely low resolution fluid simulation grid.

Because our topological algorithm primarily merges fluid regions
together and rarely splits things apart, the liquid in our simulations
tends to exhibit an overall gain in volume, especially after long,
violently splashing simulations with many topological merges. This
is the opposite of the common volume-loss problem with level set-
style surface trackers, and the amount of volume gain is closely tied
to the coarseness of the fluid grid.

Nevertheless, we intentionally used low-resolution fluid simula-
tions in many of our examples to show the advantage of separat-
ing the visible surface resolution from the resolution of the velocity
field. The hallway in Figure 1, for example, is only 30 grid cells
wide. Despite the coarse physics, our method is able to develop
many high resolution surface details while still matching the topol-
ogy of the low resolution fluid simulation. The additional detail
gained from separating the fluid simulation from its surface allows

us to avoid simulating expensive high resolution physics when only
a highly detailed surface is necessary.

7 Conclusion and Future Work

We have presented a mesh-based surface tracking method for fluid
animation that both preserves fine surface details and robustly ad-
justs the topology of the surface in the presence of thin features like
sheets and strands. Our local convex-hull-based method for correct-
ing the topology of surfaces enforces the overall topological behav-
ior of real-world liquids, and we can achieve arbitrarily thin sheets
and strands without re-sampling important Lagrangian surface de-
tails. We further reduce re-sampling artifacts with a subdivision-
based mesh-stitching algorithm, and we use a higher order interpo-
lating subdivision scheme to determine the location of any newly-
created vertices. We have shown how our method can be applied
to efficiently produce high-quality fluid surface animations, even
when coupled to under-resolved fluid simulations.

In the future, we would like to look into mesh-based methods for
creating sub-grid scale physical behaviors. In addition to using a
mesh-based surface tension method [Thiirey et al. 2010], we believe
that other surface-focused approximations to forces in the Navier-
Stokes equations like the vortex sheet method of Kim et al. [2009]
could yield highly detailed simulations without the expense of run-
ning a full fluid simulation. Lastly, one potentially fruitful area of
future work is to investigate the possibility of topologically sepa-
rating fluid surfaces instead of merging them together, as done for
elastic models by Teran et al. [2005] and Nesme et al. [2009].
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