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Abstract

Life depends as much on the flow of information as on the flow of energy.
Here we review the many efforts to make this intuition precise. Starting
with the building blocks of information theory, we explore examples where
it has been possible to measure, directly, the flow of information in biological
networks, or more generally where information-theoretic ideas have been
used to guide the analysis of experiments. Systems of interest range from
single molecules (the sequence diversity in families of proteins) to groups of
organisms (the distribution of velocities in flocks of birds), and all scales in
between. Many of these analyses are motivated by the idea that biological
systems may have evolved to optimize the gathering and representation of
information, and we review the experimental evidence for this optimization,
again across a wide range of scales.
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1. INTRODUCTION

Cells and organisms sense, compute, and make decisions: to proliferate, to find food, to protect
themselves against predators and unfavorable environmental changes, to act in unison with their
neighbors within a collective, and—broadly speaking—to invest their limited resources to their
maximal benefit. These processes span a wide range of temporal and spatial scales and reflect
dynamics in phase spaces of widely varying intrinsic dimensionality. In bacteria, for example, the
chemotactic signaling network comprises just a handful of chemical species, responds to changes
in the local nutrient concentration on the one-second timescale, and modulates bacterium’s swim-
ming by controlling the direction of flagellar rotation. At the other extreme of complexity, millions
of neurons in the brain of a pianist are engaged in processing roughly one megabit per second
of visual, auditory, and tactile information, combining these data with the score retrieved from
memory, and computing the fine motor program controlling the pianist’s fingers. Other pro-
cesses take place over much longer timescales: DNA sequences in a population of organisms are
subject to the evolutionary forces of mutation, selection, and random drift, and changes in the
environment slowly shape the distribution of genomic sequences. In all these cases, intuition tells
us that information is “flowing” from the outside environment to a representation internal to the
organism or a population and that this information flow is essential for life. Can this intuition be
formalized? If so, can it be connected, quantitatively, to experimental data? Most ambitiously, can
a focus on information flow help us unify our description of the complex and diverse phenomena
that we see in the living world?

The purpose of this review is to explain how the intuition about “biological information flows”
can be formalized in the language of information theory and what the resulting research program
teaches us about the physics of living systems. We introduce the basic concepts of information
theory (Section 2), show how this mathematical structure leads to new views of experimental
data (Section 3), and explore the possibility that some of life’s mechanisms can be understood as
solutions to the problem of optimizing information flow subject to physical constraints (Section 4).
Throughout, we follow the physics tradition of emphasizing the unity of theoretical ideas at the
expense of some of the biological complexity.

Before we begin, it is worth discussing how ideas about information flow relate to the more
familiar theoretical structures in physics. Intuitions about information flow are not confined to
biological systems. When we look at a ferromagnet, for example, we know that all the details
of the electronic configurations on one side of the sample are not relevant if we try to predict
those on the other side of the sample; what does carry information across long distances is the
order parameter, in this case the magnetization. But precisely because we can identify the order
parameter, we don’t need to speak abstractly about information. Rather than trying to turn “carry
information” into a precise mathematical statement, we just compute correlation functions of the
order parameter evaluated at distant points.

For most of the biological systems that we discuss here, finding something like an order pa-
rameter remains a distant hope. Symmetries are absent, and even locality is not much of a guide
to understanding, for example, a network of neurons in which each cell may be connected to
many thousands of neighbors. Under these conditions, some more general approaches to for-
malizing our intuitions about information flow would be useful. Interestingly, as we write this,
information-theoretic ideas are becoming more important in the study of topological phases in
correlated electron systems, where no local order parameter is possible.

2. BUILDING BLOCKS OF INFORMATION THEORY

Here we give a brief exposition of information theory, focusing on topics that are most relevant
for our subsequent discussion (see also Reference 1). The foundational papers by Shannon are
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wonderfully readable (2), there is an excellent textbook account aimed at the core of the subject
(3), and a more recent text that emphasized connections between ideas of information theory and
statistical physics (4). Ideas that have been most widely used in thinking about biological systems
are not necessarily those that have been most useful in the (enormously successful) application of
information theory to communication technology, so our perspective here is somewhat different
from that in Reference 3.

When we ask a question, and hear the answer, we gain information. In 1948, Shannon asked
whether we could attach a number to the amount of information we gain (2). He imagined that,
upon asking the question, we could envision a set of possible answers (n=1, 2, . . . , N ) and that we
could assign probabilities p ≡ {p1, p2, . . . , pN } to each of these answers. Any acceptable measure
of information must obey some constraints: If all N possible answers are equally likely, then the
information must grow with N; if the question can be decomposed into independent parts, then
the information gained on hearing the answer to each part should add to the total; if we can
decompose the full question into a tree of choices (as we do when playing twenty questions), then
the total information should be the weighted sum along the paths through the tree. Remarkably,
these postulates allow only one possible measure of information, the entropy of the distribution
of answers,1 S[p] = −k

∑
n pn log pn.

A seemingly very different question concerns the amount of space required to write down or
represent the answer to our question. Although each possible answer might require a different
amount of space, if this is a question we can ask many times (what will the temperature be at noon
tomorrow?) then it makes sense to ask about the minimum amount of space required, per answer,
in the limit of a long sequence of question/answer pairs. The answer is again the entropy. There
is some ambiguity about units—the number of characters we need to write the answer depends
on our choice of alphabet, and the entropy itself has an arbitrary constant k—but if we choose, for
example, a binary alphabet, we can set k = 1 and log ≡ log2, then all of the ambiguity is resolved.
When entropy or information is measured in these units, they are called bits.

Getting the precise answer to a question is a rare thing. More common is that we are interested in
x but can only measure y . Before a measurement we know only that x is drawn from the distribution
PX (x); after the measurement, we know that it is drawn from the conditional distribution P (x|y).
The same arguments that establish the uniqueness of the entropy now show that the only acceptable
measure of the information about x gained by observing y is the reduction in entropy,

I (y → x) = −
∑

x

PX (x) log2 PX (x)

−
[
−

∑
x

P (x|y) log2 P (x|y)

]
. 1.

If we ask not about the information gained from observing a particular y but the average over all
the y ’s we can observe, this average information is actually symmetric in x and y and is usually
called the mutual information. It can be written in a manifestly symmetric form, and unlike the
entropy itself it is well defined even when x and y are continuous variables:

I (x; y) =
∫∫

d x d y P (x, y) log2

[
P (x, y)

PX (x)PY (y)

]
, 2.

1Shannon’s theorem formalizes the vague statement, made in many statistical mechanics classes, that entropy is related to our
lack of information about the microscopic state of a system. The more positive version is that the entropy is the information
we would gain upon learning the full microscopic state.
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where P (x, y) is the joint distribution of x and y . This can be extended to the case where x and
y are multidimensional, or even functions, in which case the sums over states become functional
integrals as in quantum mechanics or field theory.

One way to think about the mutual information is as a measure of dependency or correlation.
Clearly, we have I (x; y) = 0 if the variables x and y are independent, so that P (x, y) = PX (x)PY (y),
and Shannon’s arguments tell us that I (x; y) is the only measure of correlation that satisfies a set
of sensible requirements. If x and y are jointly Gaussian, then

I (x; y) = −1
2

log2(1 − c 2), 3.

where c is the usual linear correlation coefficient (5). But it is easy to imagine relations between
x and y that are highly informative but not linear (N. Slonim, G.S. Atwal, G. Tkačik, W. Bialek,
unpublished data, arXiv:cs/0502017). Even if the underlying variables are linearly correlated, the
things we measure might be nonlinearly transformed version of these variables, and in this case
computing the mutual information becomes an especially powerful way of analyzing the data (see
Section 3.4 below).

The more conventional way of thinking about the mutual information is in terms of a com-
munication channel. There is an input message x, and it is sent along a channel that produces the
output y . The fact that y is chosen from a probability distribution [P (y |x) = P (x|y)PY (y)/PX (x)]
means that the communication is noisy, and this must limit the amount of information that can be
transmitted. If we think of the mutual information as being a functional of the distributions PX (x)
and P (y |x), then the convexity of the logarithm means that there is a maximum as functional of the
distribution of inputs; this maximum is called the channel capacity2 and is the limit to information
transmission set by noise in the channel (3).3

We note that actually finding the capacity of a channel, given a detailed model of the input/
output relation and noise as represented by P (y |x), can be challenging. Simple models, such as
y being a linearly filtered version of x with added Gaussian noise, are tractable and generalize in
a straightforward fashion to cases where the signals are varying in time. For this reason, Gaus-
sian channels have dominated the discussion of both biological and engineered systems, and the
capacity-achieving strategies that depend on the system’s input and output noise levels are well
understood (1, 3, 6). Beyond the Gaussian channel, progress has been made using various ap-
proximative schemes, such as by assuming that noise is small compared with the dynamic range
of the signal (the small-noise approximation), but there is certainly room for further theoretical
developments using biophysically informed noise models.

Examples of information transmission through a noisy channel are everywhere in biological
systems. Most obviously, our eyes and ears take inputs from the outside world and the neurons
emerging from our sense organs generate streams of identical electrical pulses, termed action
potentials or spikes. Even single-celled organisms have sensors, as with the bacterial chemotaxis
system, which responds to changing concentrations of molecules in the environment and generates
at the output changes in the direction of swimming. There are also purely internal examples, as

2It is a remarkable fact that one can transmit information without error along a channel that has a nonzero noise level
provided that the rate of transmission does not exceed this capacity. Strictly speaking, “capacity” usually is used to describe
this maximum rate of errorless transmission rather than the maximum of the mutual information between input and output
(3).
3In engineered systems, much emphasis is placed on devising coding schemes, i.e., algorithms that transform inputs x into
messages to be sent through the channel (and likewise recover x from the channel output), so that information can be
transmitted over noisy channels as close to capacity as possible using bounded processing resources. Although interesting,
coding questions in the above sense have remained largely unexplored in biological systems.
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when a cell synthesizes transcription factor proteins (TFs) that bind to DNA and influence the
rate at which encoded information is read out to make other proteins; here the transcription factor
concentration is the input, and the resulting protein concentration is the output. In some of those
cases variables are naturally continuous (sound pressure), in other cases they are naturally discrete
(counting individual molecules), and in many cases it is useful to pass between the two types of
description (e.g., concentration instead of counting molecules); it is attractive that we can discuss
information transmission in all these cases, in the same language and the same units.

Information is a difference in entropies, as in Equation 1, and because information is mutual
we can write this in two ways,

I (x; y) = S[PY (y)] − 〈S[P (y |x)]〉PX (x) 4.

= S[PX (x)] − 〈S[P (x|y)]〉PY (y), 5.

where 〈·〉P (x) denotes an average over P (x). If either the input or the output is discrete, then both
the entropy and the conditional entropy are positive semidefinite and, hence, the entropy sets an
upper bound on the information. Furthermore, if we can assign a cost to every output state y (e.g.,
because generating more action potentials costs more energy), then there is a maximum entropy
consistent with a given average cost (for more on maximum entropy, see Section 3.3). Thus, there
is a rigorous path from limits on physical resources to limits on information transmission.

Another way of bounding information is through the data processing inequality. If the output
y receives information about the input x only through some intermediate z, we can write

P (y |x) =
∑

z

PII(y |z)PI(z|x). 6.

Now there are two communication channels, first x → z (channel I) and then z → y (channel
II). Each channel is associated with a mutual information, II(x; z) and III(z; y), and each of these is
an upper bound on the information transmission through the combined channel, I (x; y). Another
way of saying this is that any processing from z to y can only result in a loss of information, so
that I (x; y) ≤ II(x; z). In this sense, information can be destroyed but not created. This result is
conceptually important, and it is of practical use in analyzing experiments (Section 3.4). As for
the mutual information, so too for the channel capacities: To support mutual information I (x; y)
between x and y , the capacities of both channels I and II must be larger than I (x; y).

The universality of information-theoretic quantities is their strength, but it also leaves one with
an uncomfortable feeling that there is more to the story of biological signal processing than bits.
In particular, not all bits may be of equal value or utility to the organism. Information processing
usually has a goal beyond communication, and this seems especially true in biological systems.
Perhaps because Shannon called his work a mathematical theory of communication, it is not as
widely appreciated that information theory has anything to say about such goal-defined tasks. The
key idea is rate–distortion theory, which again traces back to Shannon (6, 7).

As an example, consider a single-celled organism in an environment where various nutrients
are present at concentrations c = {c 1, c 2, . . . , c N }, and over time this environmental state varies.
To metabolize these molecules, the cell synthesizes e1 molecules of enzyme 1, e2 copies of enzyme
2, and so on up to enzyme K ; to fully convert the inputs into useful molecules, there may need
to be more enzymes than nutrients. The growth rate of the cell, λ(c, e), depends on both the
environment and the state of the cell. Under any particular environmental condition c, there is
an optimal setting of the internal state e that maximizes the growth rate. If the cell finds this
optimum exactly, then by looking at e we would know exactly the environmental variable c, and
this exact knowledge of real variables corresponds to an infinite amount of information. At the
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Figure 1
In order to maximize its performance U in a fluctuating environment, the organism needs to collect
information I about the state of that environment and respond appropriately. For a desired level of
performance, there is a minimum number of bits of information that need to be collected, given by the
rate–distortion curve (thick line) in the performance versus information plane. Strategies that are suboptimal
lie below this curve; strategies above this curve are not possible.

opposite extreme, the cell could choose the copy numbers of various enzymes at random and hope
that, averaged over the distribution of environments, the average growth rate is not so bad; in
this case the internal state of the cell carries zero information about the environment. But neither
infinite nor zero information seems plausible; what happens in between? Rate–distortion theory
tells us that if the cell needs to achieve a given average growth rate, then there is a minimum
required mutual information between the state of the environment and the internal state of the
cell, I (c, e) = Imin(〈λ〉).

More generally, if we have inputs x and outputs y , then given some measure of performance
U (x, y), we can plot the average performance versus the mutual information I (x; y). The rate–
distortion curve Imin(〈U〉) divides this plane into accessible and inaccessible regions, as shown
in Figure 1. Given a certain number of bits, there is a maximal achievable performance and,
conversely, achieving any given level of performance requires a minimum number of bits. Thus,
although collecting and transmitting bits cannot be the goal of an organism, any real goal requires
a minimum number of bits. If bits are cheap, then this is a true but not very useful observation.
However, if the limited resources available to cells and organisms mean that more bits are hard to
get, then selection for better performance will translate into selection for mechanisms that gather
and process more bits with the same resources.

Rate distortion is a framework that formalizes lossy data compression: Signals x can be sent
through the channel to yield outputs y that are then used to find the best achievable reconstruction
x̂(y) of the input signal. The metric for the reconstruction quality is the distortion function, for
example, the RMS error between the true signal x and its reconstruction x̂. In this sense, rate
distortion tells us the minimum number of bits to recover the input signal to within a desired level
of quality. When thinking about biological systems, it is often convenient to turn this reasoning
around and explicitly construct various decoding or readout schemes that reconstruct the input
signals from the activity of the biological network. Classic examples involve decoding of motion
trajectories from the spiking activity of neurons in the visual system (8, 9) or the decoding of hand
trajectories from the activity of neurons in motor cortex during drawing (10; for more on decoding
of neural activity see Reference 11). Decoding schemes can be used to put a lower bound on
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information transmission (Section 3) and might further suggest how much of the total information
is encoded explicitly, in a way that can be extracted using biologically plausible mechanisms. Indeed,
the relationship between the total information and the component that is accessible in simple form
is an issue in neural coding that needs to be explored more fully.

3. INFORMATION AND DATA ANALYSIS

In complex systems, we may be unsure which features of the system dynamics are the most relevant.
Even if we can identify the correct features, we may not know the biologically meaningful metric
that measures the similarity or difference along these relevant dimensions. Information theory
gives us a way to avoid these difficulties by singling out measures that are completely general:
Although some particular correlation function of X and Y might vanish, if these variables are
related in any way, then there must be a nonzero mutual information I (X ; Y ); furthermore, there is
an obvious sense in which the stronger the relationship, the greater the mutual information. Against
this generality is the difficulty of actually estimating the entropy of a probability distribution from
a limited set of samples.

3.1. Quantifying Real Information Flows

In thermodynamics, entropy changes are related to heat flows, and this can be used to measure
the entropy in equilibrium systems. Away from equilibrium statistical mechanics, we have no such
general method for measuring entropy. Indeed, the entropy depends on the entire probability
distribution, and so “measuring” the entropy is quite unlike measuring the usual observables.

We can estimate the entropy of a probability distribution by counting how often each state
occurs, using this frequency as an estimate of the probability and plugging it into the definition
S = − ∑

n pn log2 pn. Although the errors in estimating the individual probabilities pn are random,
the convexity of the logarithm means that these random errors contribute to a systematic error
that declines as 1/N s, where N s is the number of samples. The difficulty is that the coefficient
of this systematic error is proportional to the number of possible states of the system and, hence,
accurate estimates require many more samples than states. The problem becomes worse when
we try to estimate the mutual information between two variables, because the number of possible
states is the product of the number of states for each variable taken separately.

The problem of systematic errors in estimating entropy and information was appreciated very
early, in the 1950s, as information-theoretic ideas began to be applied to biological problems (12).
Motivated in large part by efforts to measure the information that neural responses carry about
sensory inputs, there has been a substantial effort to calculate and correct for these systematic errors
(13–15). A different direction is to note that the single number, entropy, might be well determined
even if the full distribution is not. This idea can be made concrete in a Bayesian approach, placing
a prior on the space of probability distributions; priors that are uniform in entropy, as opposed to
uniform in probability, seem especially effective (16–19). In many cases, the variables of interest
are not naturally discrete, and so the problem of entropy estimation is tangled with that of density
estimation (20). Although much progress has been made, the difficulty of estimating entropy and
information from finite samples leads to periodic inventions of other measures that might serve
similar purposes (e.g., quantifying dependency beyond linear correlation); for a recent reminder
of why mutual information is not just one measure among many, see Reference 21.

An important ingredient in estimating entropy and information from real data has been the use
of bounds. It may be difficult to estimate the entire probability distribution, but it often is feasible
to measure, with small error bars, several average quantities (e.g., moments) and construct the
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probability distribution that matches these averages exactly but has the maximum possible entropy
(Section 3.3). The data processing inequality means, for example, that if we want to measure the
mutual information between x and y , and y is of high dimensionality, any projection into a lower
dimensional space, y → z, can only result in a loss of information, I (z; x) ≤ I (y ; x). Reducing
dimensionality makes the problem of estimating distributions much easier and thereby eases the
sampling problems of entropy estimation; because the lower dimensional variable provides a lower
bound to the true information, it makes sense to search for optimal projections (Section 3.4).
Finally, as emphasized long ago by Ma (22), the probability that two randomly chosen states are
the same, Pc =∑

n p2
n, provides a lower bound to the entropy, S ≥ − log2 Pc , that can be estimated

reliably from relatively few samples. For more details, see appendix A.8 of Reference 1.
A modest though widespread use of information theory in the analysis of biological data con-

cerns the description of regulatory sites along DNA. The readout of information encoded in the
genome—the synthesis of proteins—is regulated in part by the binding of TFs to these sites, and
the strength with which one TF binds depends on the DNA sequence at the binding site. In this
sense, the local sequences can be thought of as “addresses” that distinguish certain genes from the
rest, but it is known that TFs do not do exact string matching; instead, they bind to an ensemble
of sites that permit some variation. Early work used simple arguments to compute how much
“information” is contained in these binding site ensembles, i.e., as the difference between the
entropy of random sequences and the entropy of the ensemble that the TF will bind (23), and this
has given rise to a popular graphical way of depicting TF binding site specificity in the form of
“sequence logos” (24). Subsequent work has refined these arguments and asked whether the infor-
mation in the binding sites is sufficient to address specific genes in genomes of pro- and eukaryotes
(25).

Meaningful quantitative statements about information flow obviously depend on having high-
quality data. In the nervous system, the fact that the relevant output signals are electrical means
that quantitative measurements have been the norm since the invention of the vacuum tube (26).
Steady improvements in technology now make it possible to collect sufficient data for information-
theoretic analyses in almost any neural system, even in freely behaving animals; in practice, much
of the motivation for these analyses has come from ideas about the optimization of the neural code,
and so these measurements are reviewed below (see Section IV.B). In biochemical and genetic
networks, the fact that outputs are the concentrations of molecules means that there is no universal
measurement tool.

Classical methods for measuring the concentrations of signaling and control molecules inside
cells include raising antibodies against particular molecules of interest and then tagging antibodies
against these antibodies with fluorescent labels. Recent work in the fly embryo shows that, with
care, this classic technique can be pushed to give measurements of concentration that are accurate
to ∼3% of the relevant dynamic range (27). More modern methods involve genetically engineer-
ing the organism to produce fusion of the protein of interest with a fluorescent protein (28), and
here too there has been progress in demonstrating that the fusion proteins can replace the function
of the native protein, quantitatively (29, 30). Finally, rather than monitoring protein concentra-
tions, one can count the messenger RNA (mRNA) molecules that are an intermediate step in pro-
tein synthesis; recent work has pushed to the point of single-molecule sensitivity, so that counting
is literal (31, 32). Similarly, progress has been made in quantifying the activity of intracellular
signaling networks and, subsequently, using information-theoretic approaches to compare how
signals propagate in different network architectures (33) or how they are encoded in the dynamical
properties of the response (34).
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3.2. Quantifying Correlations

In the past decade it has become possible to perform simultaneous recordings from tens or hun-
dreds of nodes in interacting biological networks. Gene expression arrays and sequencing tech-
nology have enabled such readouts for gene expression patterns; cheap sequencing can map the
distributions of gene variants in populations; multielectrode arrays and lately optical imaging have
pushed the boundaries in neuroscience to the point where full temporal activity traces for every
neuron in small brains—a zebrafish larva, the worm Caenorhabditis elegans, or the fruit fly—don’t
seem out of reach; and in the field of collective behavior, simultaneous tracing of positions of
hundreds or thousands of individuals can be performed. Because the barriers between subfields
of biology are large, each of these experimental developments has led to an independent discovery
of the need for new and more powerful analysis tools. Even the simple question of when the activity
at two nodes in the network is correlated is complicated, because it is surely not true that linear
correlations capture the full relationships among pairs of variables in these complex systems.

As microarray methods provided the first global pictures of gene expression in cells, several
groups tried to analyze the covariation in expression levels simply by computing correlations. With
enough data, it became possible to estimate the mutual information between expression levels
(N. Slonim, G.S. Atwal, G. Tkačik, W. Bialek, unpublished data, arXiv:cs/0502017). These initial
analyses revealed that, as expected, linear correlations did not exhaust the relationships between
genes; though the most correlated pairs had the highest mutual information, at intermediate or
even minimal levels of correlation one could find pairs of genes whose expression levels shared
nearly half the mutual information of the most correlated pairs. In addition, it became clear that
pairs of expression levels could share more than one bit of mutual information, which contributed
to the realization that the control of gene expression involved more than just on/off switches.

Measurements of mutual information also provide a new basis for clustering, in which we try
to maximize the average mutual information between the expression levels of pairs of genes in the
same cluster (35). This approach is interesting mathematically because it is invariant to invertible
transformations of the expression levels (and hence to systematic distortions in the measurement)
and because the clusters have no “centers” or prototypical members. These information-theoretic
methods were able to reveal biologically significant structures even inside tightly correlated “mod-
ules” where other methods failed. Further developments place the estimates of mutual informa-
tion among many pairs of gene expression levels at the core of algorithms for reconstructing
the underlying network of interactions, where the data processing inequality provides a guide to
disentangling direct interactions from more widespread correlations (36).

One can look at interactions between the genes in a very different way, analyzing joint presence
or absence of particular genes in the sequences of many organisms. Here, each “sample,” i.e., one
organism’s genome, is represented as a long binary vector, where 1 represents a presence of a par-
ticular gene and 0 its absence.4 Estimating the mutual information between the presence/absence
of pairs of genes is technically straightforward and reveals the organization of genes into clus-
ters (37); this approach can be extended beyond pairs to probe higher–order interactions among
genes. Information-theoretic measures can also be used to quantify the correlations between the
presence/absence of particular genes and various phenotypes, and these analyses point toward
functional modularity in the organization of genomes (38).

4Some care is needed here. Two different organisms almost never have genes with exactly the same sequences, but if we are
comparing organisms that are not too far separated in evolutionary distance, then finding the corresponding or homologous
genes is relatively straightforward. It is more difficult to be certain of the historical path that generated these homologues:
descent from a common ancestor (orthologs), convergent evolution, gene duplication (paralogs), etc. For more about sequence
similarity, see Section 3.3.
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3.3. Systems with Many Degrees of Freedom

One of the great triumphs of the twentieth century is the identification and characterization of the
molecular building blocks of life. But life is more than the sum of its parts. From the spectacular
aerial displays by flocks of birds down to the coordinated movements of cells in a gastrulating
embryo, many of the most striking phenomena in the living world are the result of interactions
among hundreds, thousands, or even millions of individual elements. The enormous success of
statistical physics in describing emergent phenomena in equilibrium systems has led many people
to hope that it could provide a useful language for describing emergence in biological systems as
well. Perhaps the best developed set of ideas in this direction concerns the dynamics of neural
networks (39–41), but there have also been important developments in the description of collective
animal behavior (42–44) and in models for genetic networks. Although each case has its own special
features, it seems fair to say that, in all these cases, the search for simple, analyzable models often
takes us away from contact with the details of measurements on the real biological systems. In
extreme cases, it is not clear whether these models are just metaphors (the alignment of birds in
a flock is like the alignment of spins in a magnet) or if they are to be taken seriously as theories
that make quantitative predictions. Over the past decade, progress in experimental techniques, as
noted in the previous section, have held out the promise of much more detailed confrontations
between theory and experiment.

Although there are many interesting questions about emergent behavior in biological networks,
we focus here on one question where information-theoretic ideas have been crucial: If there is a
variable yi that lives at each node of the network, can we make a model for the joint distribution of
these variables, Py (y) ≡ Py (y1, y2, . . . , yN )? Progress on this problem has been made using the
idea of maximum entropy (45).

Let us assume that experiments provide T observations on the state of the system, y. Often,
the dimension of the system is so large that T samples are completely insufficient to empirically
sample Py (y). However, we may be able to estimate certain statistics on the data, which we denote
by 〈Ôμ〉expt, where μ = 1, . . . , M . These could be, for example, expectation values of individual
network nodes, 〈yi 〉, the covariances, 〈yi y j 〉, or any other function for which the samples provide a
reliable estimate. We look for a model distribution P̂y (y) that will exactly reproduce the measured
expectation values but will otherwise be as unstructured, or random, as possible—hence, maximum
entropy. This amounts to solving a variational problem for P̂ , for which the solution is

P̂ (Ô1,...,ÔM )(y) = 1
Z({gμ}) exp

⎡
⎣ M∑

μ=1

gμ Ôμ(y)

⎤
⎦ . 7.

Thus, the maximum entropy distribution has an exponential form, where the coupling constants
gμ have to be chosen so that the constraints 〈Ôμ〉expt = 〈Ôμ〉P̂ are exactly satisfied. Equation 7 has
the form of a Boltzman distribution in which every state of the system is assigned an “energy”
E(y) = ∑M

μ=1 gμ Ôμ(y), and this equivalence to equilibrium statistical mechanics is an important
source of intuition and calculational tools. But Equation 7 is not a description of a system in
thermal equilibrium. If the only thing we measure about a system is its energy, then asking for
the maximum entropy distribution consistent with the average energy does indeed correspond to
a description of thermal equilibrium; however, in most biological systems the quantities that we
measure have no relation to the energy, and we are measuring many of them.

The maximum entropy method does not correspond to a single model for the system but rather
provides a systematic strategy for building a hierarchy of models that provide increasingly good
approximations to the true distribution. At each step in the hierarchy, the models are parsimonious,
having the minimal structure required to reproduce the expectation values that we are trying to
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match. For every new expectation value that we can measure, the new maximum entropy model
provides a tighter upper bound on the entropy of the true distribution and can uniquely decompose
the total amount of correlation among the N nodes in the network into contributions from
pairwise, triplet-, . . . , K -fold interactions (46); the hope is that we arrive at a good approximation
while K 	 N .

Equation 7 tells us the form of the maximum entropy distribution, but to complete the con-
struction of the model we need to find the coupling constants {gμ}. Usually in statistical mechanics,
we are given the coupling and must try to compute the expectation values or correlation functions
({gμ} → {〈Ôμ(y)〉}). Here, we need to do inverse statistical mechanics, mapping the experimen-
tally measured expectation values back to the coupling constants ({〈Ôμ(y)〉} → {gμ}). Such inverse
problems have a history dating back (at least) to the demonstration by Keller & Zumino (47)
that the temperature dependence of the second virial coefficient in a classical gas determines
the interaction potential between molecules uniquely, provided that this potential is monotonic;
the search for rigorous statements about inverse statistical mechanics has attracted the attention
of mathematical physicists (48, 49), although many questions remain open. At a practical level,
estimating the coupling constants from measured expectation values can be seen as part of the
broader problem of learning probabilistic models from data and, hence, part of machine learning
in computer science. For a small sampling of the interplay between ideas in statistical physics and
machine learning, see References 4, 50–52, and P. Mehta and D.J. Schwab (unpublished data,
arXiv:1410.3831).

Interest in maximum entropy approaches to biological networks was stimulated by results from
an analysis of activity patterns in small groups of neurons from the vertebrate retina (53). As the
retina responds to natural movies, pairwise correlations are weak, of mixed signs, and widespread.
Models that ignore these weak correlations make predictions about the frequency of patterns
in groups of ten neurons that can be wrong by many orders of magnitude, but these errors are
largely cured in maximum entropy models that match the pairwise correlations. Even in these
small networks, there are hints that what one sees in the network are genuinely collective states.
By now, these ideas have been extended and applied to several different neural systems (54–62; G.
Tkačik, E. Schneidman, M.J. Berry II, and W. Bialek, unpublished data, arXiv:0912.5409; and G.
Tkačik, E. Schneidman, M.J. Berry II, and W. Bialek, unpublished data, arXiv:q-bio/0611072).
Most recently it has been possible to build models for the joint of activity of more than 100
neurons in the retina, and these models are so accurate that they can predict distribution of the
effective energy deep into the tail of patterns that occur only once in a two hour long experiment
(61). The states that dominate the distribution are indeed collective, so one can reconstruct the
time-dependent response of single cells from the behavior of the population without reference to
the visual stimulus. Most provocatively, that distribution that we reconstruct from the measured
expectation values exhibits many of the signatures of an equilibrium statistical mechanics problem
near its critical point (63).

An independent stream of work has used maximum entropy ideas to think about the ensemble
of amino acid sequences that form a family of proteins, folding into essentially the same three-
dimensional structures. This work was inspired by experiments that actively explored sequence
space, trying to respect pairwise correlations among amino acids at different sites (64, 65) and using
an algorithm that is equivalent in some limits to maximum entropy (W. Bialek & R. Ranganathan,
unpublished data, arXiv:0712.4397). Although these correlations extend over long distances, the
effective interactions among amino acids in these models were found to be spatially local; this
raises the possibility that we can infer the spatial neighbor relations among amino acids from
data on sequence variation, in effect folding the protein via sequence comparisons (66–69). This
new approach to the protein-folding problem has generated considerable excitement, but there
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are many open questions about the sufficiency of the available data and the approximations that
have been used to solve the inverse problem. Note that this effort to describe the distribution
of sequences consistent with a given protein structure is the inverse of the usual protein-folding
problem, in which we are given the sequence and asked to predict the structure, and there is a big
conceptual question about the relationship between these two problems.

In the immune system, we can look at special cases of sequences ensembles, the distribution of
antibody molecules that organisms use to combat infection, and the distribution of viral sequences
in patients that have long term infections such as HIV. In the problem of antibody diversity, max-
imum entropy models built from pairwise correlations provide a surprisingly accurate description
of the distribution as a whole (70), whereas for HIV the effective energy in maximum entropy
models predicts viral fitness and vulnerability to immune attack (71). This is a small window into
a much larger literature on statistical physics approaches to the immune system.5

Birds in a flock are thought to follow only their near neighbors, yet the entire flock can decide
to move in a single direction and at nearly uniform speed. Order spreads through the flock much
like through spins in a magnet, and this is more than a metaphor: Maximum entropy models
consistent with measured local correlations in a flock provide successful quantitative, parameter-
free predictions of correlations in flight direction and speed throughout the flock (72–74). It is
also possible to do this analysis in more detail, building maximum entropy models that match the
correlations between a bird and its nearest neighbor, its second neighbor, and so on; one finds
that the resulting couplings that link each bird to its kth neighbor decline exponentially with k,
providing some of the most direct support yet for the hypothesis that interactions are local (75).
Real starling flocks exhibit long-ranged correlations of the fluctuations in flight direction and
speed (76); analysis of the maximum entropy models shows that the directional correlations arise
from Goldstone modes associated with the spontaneous polarization of the flock (72), whereas the
speed correlations are long-ranged only because the parameters of the model are tuned close to a
critical point (73); signatures of criticality have also been found in the behavior of insect swarms
(77). The conditions under which such collective behavior evolves are still unclear, but early work
points to the evolutionary advantage of collective migration for efficiently acquiring information
from the environment (78).

3.4. Information-Theoretic Parameter Inference

A standard tool for fitting parametric models to data is maximum likelihood inference. This
procedure, however, depends on our ability to write down the likelihood function: the probability
of making specific experimental observations given the parameters of the model. In studying
biological systems, we often are faced with situations where this is impossible for two very distinct
reasons. First, though we might have a good idea for how a part of the system works (e.g., that TFs
recognize and bind DNA sequences in a way that is governed by equilibrium statistical mechanics),
what we can measure is far “downstream” of these events (the activation level of a gene), and we
may not have a quantitative model for the intervening steps. Second, and less fundamentally, many
experiments still are not as calibrated as one might hope, so we don’t have a model for the noise
in the measurement itself.

Without the ability to write down the likelihood function, is there any way to do unbiased
parametric inference of the process of interest? There isn’t much we can do about the general
version of this problem, but in many biological systems one crucial step in the process that we are

5See, for example, the program at the Kavli Institute for Theoretical Physics, http://immuno-m12.wikispaces.com.
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trying to describe involves a substantial reduction of dimensionality. Thus, in the visual system,
we expect that neurons respond not to every possible detail of the image or movie falling onto
the retina but only to some limited set of features; in the simplest case these features might be
described simply as linear projections onto a template or receptive field. If this picture is right,
then the transformation from input movie x to output spikes z can be written as x → y → z,
where x is a vector in a space of very high dimensionality (the space of movies), whereas both y
and z are of low dimensionality—in the simplest case just scalars. The mapping y → z then is
easy to characterize; the problem is how to choose the projection that describes x → y . The data
processing inequality tells us that the best possible predictions of z will be generated by a model
in which the mapping x → y captures as much information as possible about z. Importantly,
the difficulty of searching for such “maximally informative projections” does not vary much with
the structure of the distribution of the inputs x, which means that we can use this approach to
characterize the encoding of complex, naturalistic input signals (79). Applications and extensions
of this idea have been explored in several different systems (80–84).

The idea of searching for maximally informative projections has also been used to analyze
experiments on the interactions of TFs with their target sites along DNA; here the projection
is from the local DNA sequence to the binding energy of the TF (85). An important success of
this initial effort showed that two independent experiments that characterized the same TF in fact
led to consistent models of TF–DNA binding despite earlier claims to the contrary. This work
also demonstrated the formal equivalence between information-theoretic parameter inference and
“error-model-averaged” maximum likelihood inference. Subsequent experiments exploited these
ideas to give a much more detailed view of how a TF and the RNA polymerase bind and interact
at the lac operon (86), and related methods were developed to allow analysis of a wider range of
input data (87).

Because the issues of model inference for processes embedded into unknown larger systems or
subject to unknown noise processes are prevalent in biology, we expect to see further applications
for information-theoretic inference in biology. We also note that these applications can be seen
as specific examples of a more general framework that relates learning (including parameter infer-
ence) to information flow between the data and its compressed representations. There are many
interesting links between the learning problem, statistical mechanics, and field theory, which are
beyond the scope of this review.

4. OPTIMIZING INFORMATION FLOW

Information is essential for life, but bits are not free. Is it then possible that organisms are driven
to extract and represent the maximum possible information given the physical constraints? This
is an idea that arose almost immediately after Shannon’s original work and has been a productive
source for thinking about many specific biological systems across many scales.

4.1. The Genetic Code

Five years after Shannon’s papers, Watson and Crick proposed the double helical structure for
DNA, and after another five years Crick articulated the sequence hypothesis: The sequence of
amino acids in proteins is determined by the sequence of bases along the DNA (88). Once one has
this idea, the mapping between two major classes of biopolymers becomes a problem of coding,
and it seemed natural to bring the new ideas of information theory to bear on this central problem
of life (89). In particular, the hope was that the code might be efficient in the sense defined by
Shannon to use as few bases as possible to encode the amino acid sequence of a protein. As we
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now know, the genetic code maps triplets of bases (codons) into one of twenty amino acids (plus
“stop”), so that there is substantial redundancy.

The failure of the real genetic code to instantiate any of the early ideas about efficiency or
optimality must have been a disappointment, and it is hard to find much serious interaction
between information theory and molecular biology for some time after the code was worked out.
This split may have been premature. In a triplet code, there are three possible “reading frames,”
and the first organism to have its entire genome sequenced—the bacteriophage �X174—makes
use of the same DNA in multiple reading frames (90), an unexpected multiplexing that enhances
efficiency in the original Shannon sense. Another observation is that the redundancy of the code
is structured, so that random changes of a single base along the DNA are likely to map one amino
acid either into itself (“silent” mutations) or into amino acids with very similar chemical properties.
This would not be true in a random assignment of codons to amino acids, and it has been suggested
that the real code may even be nearly optimal in this respect (91, 92); if correct, this means that
the genetic code is not an optimal noiseless compression, as in the earliest (incorrect) proposals,
but may be near the bounds set by rate–distortion theory (93). A full development of this idea
requires understanding the cost of amino acid substitutions, which relates back to the analysis of
sequence ensembles in Section 3.3.

The genetic code really is a strategy for communicating from DNA bases to amino acids,
and here too there are errors. Although one often pictures the specificity of life’s mechanisms
as deriving from the specific binding between complementary molecular components (as in the
pairing of A with T and C with G in DNA), a beautiful chapter in the physics of life is the ap-
preciation that these equilibrium interactions are not sufficiently selective and, hence, that cells
must build Maxwell demons to sort molecules with higher precision; the broad class of mecha-
nisms that implement these demons is called kinetic proofreading (94, 95) (see also section 4.5
of Reference 1). This creates an interesting trade-off for the cell, which can operate at high fi-
delity but high energetic cost (paying for the demon), or trade the cost of errors against the
reduced energetic cost of correcting them (96). Although the costs and benefits of information
flow in reading the genetic code have been much discussed, this still has not been given a fully
information-theoretic formulation.

4.2. Efficient Representations in Sensory Processing

One of the earliest uses of information theory as applied to biological systems was an attempt to
estimate the amount of information carried by neuronal action potentials (11, 97). The answer
depends crucially on the time resolution with which such spikes can be generated and detected
by neurons. If the average rate of action potentials is r̄ , and the system can work with a time
resolution �τ 	 1/r̄ , then the stream of spikes becomes a binary sequence of 1/�τ symbols
per second, and the probability of a 1 (spike) is r̄�τ . The maximum entropy of this sequence,
which sets the capacity for the neuron to carry information, is then S ∼ log2(e/r̄�τ ) bits/spike.
In contrast, if the system is limited to counting spikes in windows much larger than the typical
interspike interval, then the entropy becomes S ∼ log2(er̄�τ )/(r̄�τ ) bits/spike. Evidently, higher
time resolution allows for higher information rates, and dramatically so: If spike rates are a few
per second (as often true, on average), then time resolutions of a few milliseconds could allow for
up to ten bits per spike. In 1952, when MacKay & McCulloch first made such estimates, locating
real neural codes on the continuum from timing to counting was a matter of speculation. But
their work established an agenda: Could we measure the information that spike trains carry, for
example, about sensory inputs, and does this information approach the limits set by the entropy
of the spike sequences themselves?
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MacKay & McCulloch were thinking about a single neuron. But signals often are conveyed
by larger populations of neurons, for example, in the retina where many neurons respond to
overlapping regions of the visual world. As early as 1959, Barlow suggested that processing in
the retina would have the function of removing redundancy among the outputs of neighboring
ganglion cells and argued that several major features of these cells’ responses could be understood
in this way: A reduction in the response to sustained stimuli (termed adaptation) serves to reduce
redundancy in time, whereas the tendency of cells to respond to differences between light intensity
in a small patch and the surrounding region (center–surround organization) serves to reduce
redundancy in space (98, 99).

It took many years for these ideas about efficient coding in sensory processing to be made
quantitative. An important qualitative idea, however, is that the efficiency of a code depends on the
distribution of inputs. Thus, we might expect that real organisms use codes that are matched to the
distribution of signals that they encounter in their natural environment; put simply, the function
of the code would make sense only in context, and the relevant context is quite complex. This
realization stands in contrast to the long tradition of using highly simplified stimuli in laboratory
studies of sensory function and has led to the emergence of a subfield of neuroscience concerned
specifically with the structure of natural sensory signals and the neural response to these signals
(100, 101).

The first stages of retinal coding occur with neurons that produce analog voltages rather than
discrete spikes. Laughlin focused on cells in the first stage of processing after the photoreceptors
in the fly retina and asked if the nonlinear input/output relation that transforms light intensity
into voltage is matched to the environmental distribution of light intensities (102). If the voltage
noise is small and constant throughout the dynamic range, then optimal information transmission
implies that a (normalized) input/output relation should be equal to the cumulative probability
distribution of the light intensity. By sampling natural scenes with a custom-built photodetector
to predict the optimal input/output relation and comparing it with the measured one, as shown
in Figure 2, Laughlin found a remarkable agreement with the theory, especially considering that
there are no free parameters. Although there are obvious open questions, this was a really beautiful
result that inspired the community to take these ideas more seriously.

For spiking neurons, measurements of information transmission in response to complex, dy-
namic stimuli began to appear in the 1990s. Initial measurements were based on decoding the
spike trains to recover estimates of the input sensory signals (8, 103, 104), and then analysis tools
for more direct estimates were developed (14, 105). In the primary sensory neurons of the frog
inner ear, the mechanical sensors of the cockroach, ganglion cells in the vertebrate retina (106)
and subsequent layers of visual processing in mammals (107, 108), and motion-sensitive neurons
deeper in fly visual system, as well as other systems, spike trains were found to transmit more than
one bit per spike and typically reached 30–50% of the limit set by the spike train entropy, even
with time resolutions in the millisecond range. In accord with the idea of matching to natural sig-
nals, information rates and coding efficiencies are larger with distributions of stimuli that capture
features of the natural ensemble (109), and in some cases truly natural stimuli reveal codes that
maintain their efficiency down to submillisecond resolution (110).6 Despite much prejudice to the
contrary, there are demonstrations of efficient coding, with time resolutions of a few milliseconds,
by single neurons in the cerebral cortex of our primate cousins (111, 112), suggesting strongly
that these principles extend to brains much like our own.

6These results depend on getting control over the problems of estimating entropy and information from limited samples, as
discussed in Section 3.1.
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Figure 2
Measured contrast–response function ( points with error bars) of the fly large monopolar cell matches the
predicted function (solid line) obtained by sampling the cumulative distribution of contrasts in fly’s natural
environment. Adapted from Reference 102 with permission.

If neurons implement coding strategies that are matched to the distribution of sensory inputs,
what happens when this distribution changes? When we walk from a dark room out into the bright
sunlight, the mean light intensity changes, and it takes a moment for our visual system to adapt to
this new level. This adaptation is visible in the response of individual neurons in the retina, and this
is one of the classical observations about neural coding, having roots in Adrian’s first experiments in
the 1920s (26). But the efficient coding hypothesis predicts that the code should adapt not just to the
mean but to the whole distribution. In particular, natural images have an intermittent structure, so
that the variance in light intensity varies significantly from point to point in a scene, and hence the
variance seen by neurons responding to a small patch of the world varies in time, so adaptation to
the variance would enhance efficiency (113); similar arguments could be made about other sensory
modalities. Early experiments in the vertebrate retina demonstrated this adaptation to variance
explicitly (114). Subsequent experiments have shown that retinal adaptation is an even richer
phenomenon, so that properly chosen distributions of inputs can drastically change even very
basic features of the code exhibited by single neurons, and this is part of a growing realization that
the retina is capable of much more complex computations than originally believed (115).

Adaptation to the variance of input signals has now been seen in many systems (116): motion-
sensitive neurons of the fly visual system (117, 118), auditory neurons at several stages of processing
in mammals and birds (119–124), whisker motion–sensing neurons in rodents (125), and in the
farthest reaches of primate visual cortex (where cells responsive to the shapes of objects adapt to
the variance along different parameters describing these shapes) (126). In many of these systems,
changing the variance of the input distribution simply produces a rescaling of the input/output rela-
tion, as first observed in the fly motion-sensitive cells (117) and reproduced in Figure 3. If the typ-
ical signals are large compared with internal noise levels but not so large as to saturate the system,
then the dynamic range of the inputs themselves provides the only scale in the problem, and hence
optimization must lead to the observed scaling behavior; in the fly it was even possible to check
that the scaling factor chosen by the adaptation mechanism served to optimize the transmitted
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Figure 3
Adaptive rescaling of responses in blowfly’s visual motion sensitive neuron, H1. The neuron was probed by
delivering a rigidly jittering bar pattern that moved horizontally with a velocity drawn randomly from a
Gaussian ensemble. Response functions in panel a show the spiking rate as a function of recent stimulus
trajectory projected onto the neuron’s linear filter, derived using stimuli with four different standard
deviations (legend ). These response functions collapse onto a single response function, as in panel b, when
normalized by the stimulus amplitude. The neuron thus rescales a universal input/output relation
dynamically and adaptively to match the variance of the input distribution. Adapted from Reference 117 with
permission.

information (117). When the input distribution shifts suddenly, the input/output relation adjusts
with remarkable speed, perhaps so rapidly that there is no sharp distinction between adapta-
tion and the nonlinear transient response. The timescales involved are essentially the shortest
ones allowed by the need to gather statistics and verify that the distribution has, in fact, changed
(118, 127).

Barlow’s original idea about redundancy reduction in the retina was implemented mathemat-
ically by Atick & Redlich (128), who approximated retinal ganglion cells as analog devices that
respond to a linearly filtered version of their visual inputs. They searched for optimal filters and
showed that, in low background light, ganglion cells should integrate over small regions of space
and time, whereas at high light levels the response should be differentiating; this corresponds
to a crossover between noise reduction and redundancy reduction being the dominant factors in
enhancing information transmission, which agrees with the data.

If we imagine that neurons filter their inputs to remove redundancy, then the outputs should
become close to uncorrelated or “white.” But many natural input signals have power spectra in
time that are approximately 1/ω, and whitening this spectrum requires a transfer function between
input and output ∼√

ω, which is not so easy to realize. Nonetheless, the linear transfer function
from the photoreceptor cells to the second-order neurons studied by Laughlin has precisely this
form (129). The transfer of the signal from one cell to the next is mediated here, as elsewhere
in the brain, by the neurotransmitter molecules that are packaged into discrete vesicles. Careful
measurements of the signal and noise characteristics in both cells leads to very high estimates of
the information capacity of this connection (synapse), more than one thousand bits per second
(130), and this is close to the physical limit set by the entropy of counting the vesicles (1, 11).

In the actual retina, of course, not all cells are identical, and it is interesting to ask if we can
predict the distribution over cell types from optimization principles. There is an old discussion
about the choice of three color sensitivities for the photoreceptors in the bee’s eye, arguing that
the particular combination that is found in a whole family of related species serves to provide
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maximal information about the identity of the flowers from which bees collect nectar (131). In
the primate retina, more rigorous arguments have been used to predict the distribution of the
three cone types, which is both highly nonuniform and varies with position on the retina (132).
Retinal processing involves a plethora of cell types, but all visual systems divide signals into “on”
and “off ” pathways, which respond with more action potentials when the light level rises above or
below its local average value; Ratliff et al. (133) have argued that the preponderance of off cells is
matched to an asymmetry in the distribution of light intensities found in natural scenes and that
other differences between on and off pathways also serve to optimize information transmission.

If we focus on a single class of retinal ganglion cells, we find that they form a lattice across the
surface of the retina (see, for example, Reference 54). The geometrical properties of this lattice,
specifically, the size over which each cell integrates the signal relative to the lattice spacing, can be
predicted from information optimization (134). These lattices are, however, not perfectly regular
due to discreteness and imperfections in the spatial arrangement of the photoreceptors, and in
principle these irregularities should lead to a loss of information. Remarkably, these variations
turn out to be correlated with the local variations in the connectivity from the photoreceptor
array to the ganglion cell layer in such a way as to almost perfectly compensate for the information
loss (135). A similar approach has been taken for the problem of optimal spatial organization of
receptors on the cell surface, and it is generally applicable to cases that involve distributed sensing
using noisy detectors (136).

Attempts to analyze the optimization problem for spiking neurons were quite scattered until the
work by Smith & Lewicki on the coding of complex sounds (137, 138). Rather than trying to build
models of the process by which continuous inputs are converted into spikes and then optimizing
the parameters of these models, they chose the spike times themselves as the variables describing
the encoding process and optimized the code, assuming that the goal was to reconstruct the inputs
using a simple linear algorithm, following Reference 8. The result of the calculation is then a set of
spike trains for a population of neurons responding to acoustic inputs, and these spike trains could
be analyzed in the same way that experimentalists routinely analyze data from real neurons. The
results were impressive: Optimal spike encoders for speech-like sounds, but not for other sound
ensembles, almost perfectly match the characteristics of real auditory neurons. Furthermore, the
rate-distortion functions for these neural codes reach or even surpass the performance of the best
artificial systems.

The problem of optimal coding has also been studied from a theoretical angle. In a population
of rate neurons that suffer from negligible intrinsic noise, the optimal code decorrelates the inputs:
This should happen not only at pairwise order (by whitening), as suggested by the early works
of Barlow, van Hateren, and others (98, 139), but at all orders of correlation; in other words, the
optimal code minimizes the mutual information between different neurons at the output. This led
to the idea of independent component analysis (ICA) and sparse codes. Imagining that neurons
in the visual pathway perform linear filtering on the incoming stimuli and optimizing the filters
using ICA over natural scenes, two groups recovered the well-known Gabor-like filters found in
the primary visual cortex (140, 141).

In the presence of nonlinearities and noise, optimizing information is much more difficult;
early work in this direction was done by Linsker (142). If neurons are noisy, perfect decorrelation
is no longer optimal. In this case, some amount of redundancy (in engineered codes in the form
of error-correcting bits) can be beneficial (143). It is interesting to note that real neuronal spike
trains are usually weakly correlated at the pairwise level and redundant (144), and at the level of a
large population this redundancy can suffice to predict well the behavior of one neuron from the
state of the rest of the network (145). If noise is small, information optimization can be carried
out in a continuous nonlinear system, and the trade-offs between decorrelation and redundancy
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reduction can be explored in detail; in this framework, Karklin & Simoncelli managed to derive
many properties of the retina simultaneously from the statistical structure of natural scenes (146).
This optimization, as well as previous work (147), also incorporated an important constraint on
metabolic efficiency (cost of spiking). By departing from analytically tractable cases, numerical
exploration has been used to study optimal coding at arbitrary noise levels with high-dimensional
stimuli (148). Using a model for an interacting neural population that can be linked to maximum
entropy models with an Ising form (Section 3.3), small networks experienced a transition between
redundant coding and decorrelation based on the statistical structure of the inputs and the level
of noise in single units. Surprisingly, when noise in single units is high enough, the redundant
strategy with information-maximizing connectivity yields a network with strong attractor states
to which different stimuli map uniquely, recovering Hopfield-like associative memory (39) from
an optimization principle. Mapping out a complete phase diagram of optimal coding strategies
for high-dimensional noisy nonlinear input/output maps remains a challenge.

Finally, we note that many popular models for coding by large populations of neurons are inef-
ficient in the extreme. It is widely assumed that neurons in a single region of the visual cortex, for
example, are selective for a very limited number of features (e.g., the velocity of motion or the ori-
entation of an edge). If all the neurons in the population respond independently to these features,
with each of the N cells preferring a slightly different value, and we assume that what matters is the
number of spikes each neuron generates in a relatively large window of time (rate coding), then the
response of the population as a whole will allow us to determine the value of the feature with a pre-
cision ∼1/

√
N . How does this translate into information gain? Information scales as a logarithm

of the signal-to-noise ratio (SNR) for Gaussian signals (3); in this case, N cells generate an N times
stronger signal and

√
N times larger noise fluctuations, for a total increase of

√
N in SNR and,

correspondingly, a ∼log N increase in information. But this means that the information per neu-
ron vanishes as N becomes large. Are we missing something? One possibility is that the diversity
of dynamical responses among neurons with redundant static feature selectivity can be sufficient
to create a combinatorial code for stimulus timing, allowing the information to grow linearly with
the number of neurons over a much larger dynamic range (149). A more radical alternative is
suggested by the discovery of “grid cells,” neurons that encode an animal’s position relative to a
lattice (150). In this system, it is possible for a population of neurons with different lattice spacing
to generate a truly efficient code, with more neurons allowing exponentially more accuracy in the
representation of position (151, 152). These ideas point to the need for direct measurement of the
information carried by large populations of cells, under reasonably natural conditions.

4.3. Biochemical and Genetic Networks

Even the simplest of bacteria have genes that code for many hundreds of proteins, and our own
genome codes for more than ten thousand proteins. No single cell needs to make all these proteins
at once, and there are many layers of regulation to control the readout or expression of individual
genes. One important class of these mechanisms is the binding of protein molecules, called TFs, to
specific sequences along the DNA, close to the start of the coding region of a gene. Transcription
factor binding can both repress or activate protein synthesis; in bacteria there are simple geomet-
rical pictures for how this can happen that are probably good approximations to reality, but the
situation in higher organisms is less clear. In all cases, TFs act at concentrations in the nanoMolar
range, and 1 nM ∼ 1 molecule/μm3. But a bacterium has a volume of only a few cubic microns,
which means that the regulation of transcription is controlled by just handfuls of molecules.

The small numbers of molecules involved means that the regulation of gene expression is,
inevitably, noisy, and this noise was measured directly in the early 2000s (153–155). How does
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this noise limit the transmission of information through the system, from the input concentration
of TFs to the output level of the protein encoded by the target gene? Here information provides
a measure of regulatory power, counting the number of reliably distinguishable output states that
can be accessed by adjusting the inputs (156, 157). We recall that if the input/output relation
and noise in the system are fixed, then we can optimize information transmission by adjusting the
distribution of input signals. This matching condition, which is essentially the same as in Laughlin’s
discussion of the fly retina, allows the system to get as much regulatory power as possible out of a
limited number of molecules. An important difference from Laughlin’s discussion is that noise in
the case of transcriptional regulation must be (and is measured to be) strongly dependent on the
levels of input and output.

Early events in development of the fruit fly embryo provide a productive testing ground for
ideas about the regulation of gene expression. During the construction of the egg, the mother
places the mRNA for a TF at the end that will become the head; the combination of synthesis,
diffusion, and degradation of the protein (Bicoid) translated from this mRNA results in a spatially
varying concentration along the length of the embryo—a gradient in the concentration of a primary
morphogen, to use the conventional language. Bicoid is the input to an interacting network of
genes (called gap genes and pair-rule genes) that end up being expressed in distinct spatial patterns,
which will define the final body plan of the larval fly. Importantly, these patterns are visible within
a few hours after the egg is laid, before cells start to move and even before there are membranes
marking the boundaries between the cells.

A first generation of quantitative experiments on this system mapped the relationship between
the input TF concentration and the output level of one of the gap genes, making measurements
nucleus by nucleus in single embryos and demonstrating that the results are consistent across
embryos (29, 158). If we think of x as the input concentration and y as the output concentration,
then these experiments allow us to estimate the behavior of the communication channel, P (y |x).
We can solve numerically for the distribution of inputs that optimizes information transmission
and compare with experiment. Because the mean input/output relation has broad, flat segments,
many different input distributions give essentially the same mutual information between x and y ,
but all these near-optimal input distributions have the same output distribution, so we make the
comparison of the predicted Pout(y) with experiment (159), shown in Figure 4. The agreement,
which involves no adjustable parameters, is excellent. Importantly, we can also estimate directly
the mutual information I (x; y) from the data and find that it is 0.88±0.09 of the optimum, so that
the system really is transmitting nearly the maximal information given the measured noise levels.
This information is about a bit and a half, showing that the regulation of gene expression in this
case is more than just an on/off switch.

Thinking of transcriptional regulation in the early embryo as having one input and one output
is a drastic oversimplification, but dealing with multiple inputs and multiple outputs is very
difficult. It is thus useful to note that the information of relevance for development is information
about the position of the cell. If we can measure the expression levels of multiple genes
simultaneously, we can ask how much information these levels provide about position even if we
can’t also measure all the input signals. Indeed, the qualitative concept of positional information
is very old (160), and it is attractive to try and make this quantitative (161, 162). Refinement of
classical staining methods make it possible to measure, simultaneously and with high accuracy, the
normalized concentrations of four gap genes that provide dominant signals along the central 80%
of the embryo’s length (27). Analysis of these experiments shows that it is possible to “decode”
the expression levels and estimate the position of a nucleus to an accuracy of better than 1% of
the length of egg, corresponding to a total of 4.14 ± 0.05 bits of information about position (161).
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Figure 4
Optimization of information flow from transcription factor bicoid to its target gene hunchback during the
early embryonic development of the fruit fly Drosophila melanogaster. Blue shows the empirically estimated
distribution of hunchback expression levels, g, in thousands of individual nuclei across several embryos. Red
shows the parameter-free predicted distribution that can be computed by optimally adjusting the bicoid
levels given the measured properties of the information channel, P (y |x). Inset shows the same on log scale.
Adapted from Reference 159 with permission.

This precision is comparable with the spacing between neighboring cells, and with the precision
of subsequent developmental events, suggesting that the embryo really does use this information.

Each of the four gap genes has a complicated profile of concentration versus position along
the embryo, and the noise levels have an even more complicated structure. But because cells are
almost uniformly distributed, matching of the distribution of inputs to the noise characteristics
of the system would require that the error in estimating position be almost uniform as well. This
is, in fact, what we see in the data (161); indeed, if we imagine trying to redistribute the cells so
as to transmit more information, we could gain less than 2%. This seems a striking signature of
optimization.

Optimization of information flow should involve more than matching: We should be able
to find the architecture and parameters of genetic networks that allow for maximal information
transmission. One ambitious idea is to define dynamics in the space of networks that is a schematic
of the evolutionary process and then use information as a surrogate for fitness (163). The net-
works that emerge from such simulations have many qualitative features in common with the
networks functioning in real embryos, including the fruit fly. One can find examples of multiple
genes driven by a common maternal morphogen, each one activating itself and repressing other
genes in the network, much as for the gap genes. A conceptually striking feature of this work is
that it explicitly constructs paths through the space of possible networks that lead from simpler to
more complex body plans, through gene duplication followed by mutation. Importantly, almost
all the steps along the path are either neutral or increase the fitness. As the authors emphasize,
this “. . . provides a quantitative demonstration that continuous positive selection can generate
complex phenotypes from simple components by incremental evolution, as Darwin proposed.”
(163, p. 2385)
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Rather than reconstructing entire evolutionary trajectories for networks, we can try to find
locally optimal networks within some broad class of models (164–167). Here again we can see
features that remind us of real networks, but there are surprises. When the available concentration
of TFs is severely limited, the optimal strategy for transmitting information is for a single TF to
broadcast to multiple, completely redundant targets, essentially using the redundancy to make
multiple measurements of a weak signal. Observations of redundancy in genetic networks usually
are taken as prima facie evidence against optimization and in favor of an interpretation in which
network architecture is just an artifact of evolutionary history, but here we have a quantitative
demonstration that such qualitative arguments can be wrong. More subtly, these calculations show
that even qualitative features of the networks that maximize information transmission depend on
some molecular details of the regulatory mechanisms. This is slightly worrisome but also suggests a
path for some of the intricacy of complex molecular interactions to influence macroscopic behavior.
A related approach to these same problems is inspired not by embryos but by artificial genetic
circuits that have more limited topologies and inputs, allowing for an exhaustive exploration (168).
In these cases, the optimization of information transmission leads to very broad maxima in the
space of network parameters, so that network topology is the dominant consideration. These efforts
at full optimization have been limited to static inputs and outputs; information transmission in
dynamic contexts raises new questions, which are just starting to be explored (169, 170). Finally,
interesting questions that have been highlighted recently include the link between information
transmission and cellular decision making (171) and using information theory to put strict bounds
on the reliability of biochemical processes even when many of these processes are unknown or
unobserved (172).

4.4. More Ambitious Goals

Success at gambling, and perhaps at life, plausibly depends on how much information we have.
If we know more about the outcome of a coin flip (or a horse race, or the stock market, or, etc.),
then we should be able to win our bets more often and, hence, make more money. But it is
not obvious that the knowledge measured by Shannon’s bits quantifies the useful knowledge in
this context. Kelly analyzed a simple gambling game and showed that the maximum rate at which
winnings can grow is precisely the information that bettors have about the outcome, and his proof is
constructive, so we actually know how to achieve this maximum (173). We can think of the choices
that organisms make—e.g., to express different levels of proteins—as being bets on the state of the
environment, and there have been several efforts to construct scenarios that match the structure
of Kelly’s argument, so that the growth rate of the organisms becomes equal to the information
that they have about environmental conditions (174–176). More generally, from rate distortion
theory we know that achieving a given average growth rate across a wide range of conditions
requires some minimum amount of information about the environment (S.F. Taylor, N. Tishby,
and W. Bialek, unpublished data, arXiv:0712.4382). These connections between growth rates and
information provide a path for evolution to select for organisms that gather and represent more
information about their environment.

Another interesting connection of information-theoretic optimization to biological function
is in the problem of search (177). Organisms search for food, for shelter, for mates, and more; it
may even be possible to think more generally about computations or decisions as the search for
solutions. If we imagine that we are looking for something in one of N possible places, we can
order these by our current estimate of the probability Pn that we will find what we are looking for
in the nth place, so that P1 > P2 > · · · > Pn. Then if we look first in the most likely place and
down the list from there, then the mean number of tries before we find what we are looking for is
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n̄ = ∑N
n=1 nPn. Given n̄, there is a probability distribution (Pn ∝ e−λn) that has maximal entropy.

Conversely, if our uncertainty corresponds to a probability distribution with entropy S, then the
mean search time n̄ has a minimum independent of all other details. The only way we can speed
up our search is to reduce the entropy of the distribution or to gain information in the Shannon
sense; though there is no guarantee that our search will go as fast as allowed by this information,
it cannot go faster.

The idea of “infotaxis” is to replace the task of finding something with the task of gaining
information about its location (177). In the context of a flying insect searching for the source of an
odor, where new information arrives only intermittently when the flight path crosses odor plumes,
optimizing the gathering of information by properly alternating upwind flight with cross-wind
“casting” in fact leads to the source, and the flight paths that are generated by this algorithm are
reminiscent of the paths taken by insects in natural environments.7 For the purposes of this review,
perhaps the most important result from the infotaxis idea is the demonstration that a biologically
grounded, goal-directed behavior can be replaced with an abstract, information-theoretic opti-
mization principle. This certainly encourages us to think that some of the nitty-gritty of biology
should be derivable from more general principles.

In their earliest work, Attneave and Barlow expressed the hope that the search for efficient rep-
resentations of sensory data would drive discovery of features and objects that form our perceptual
vocabulary, and Attneave even tried simple experiments to show that human subjects use efficient
strategies in abstracting simple figures into sketches (98, 99, 179). As an example, if our world
consists of a finite set of rigid objects, each seen from many different perspectives, then the most
efficient representation of the image data reaching our eyes would consist of a discrete label for
object identity and a few parameters to describe the viewing geometry. In this case, optimization in
an information-theoretic sense would require our brains to recognize objects, and the labeling of
these objects would constitute a “naming” of the meaningful features of the visual world, without
any additional instructions. At its most ambitious, the claim would be that these features acquire
meaning because they are maximally informative, as opposed to having meaning imposed upon
them.

Shannon frequently used English as an example of information-theoretic ideas and even played
a “guessing game” with human subjects to estimate the entropy of written texts (180). However,
there is a persistent suspicion that there must be more than just statistics involved in the structure
and meaning of language, and one of the foundational papers of modern linguistics is essentially
an attack on Shannon’s probabilistic models for language (181). Some of these early arguments are
related to the crude Markovian models that Shannon used as illustrations, and some are related to
the confusion between learning a probabilistic model and simply counting events,8 but questions
remain, and Shannon himself eschewed any connection to the problem of meaning. In what proved

7As an aside, we note that insects seem to “know” about the intermittent structure of turbulent flows (178). In particular,
moths exposed to smooth ribbon plumes, which provide a continuous signal and should in principle be easy to follow, fly along
strongly zig-zag trajectories, spending most of their time casting crosswind, whereas the same moths exposed to intermittent
or turbulent plumes fly efficiently toward the source of the odor. This is one of the strongest qualitative results demonstrating
that neural processing is tuned to the statistical structure of physical signals that arise in the natural environment.
8Thus, Chomsky famously argued that statistical approaches could not distinguish between sentences that have never oc-
curred but are instantly recognizable as grammatical (Colorless green ideas sleep furiously) and sentences that never occurred
because they are forbidden by grammatical rules (Furiously sleep ideas green colorless) (181). As a concrete rejoin-
der, Pereira constructed a simple Markov model in which successive words belong to clusters, so that P (Wn+1, Wn) =∑

C Q(Wn+1|C)Q(Wn|C)P (C), and trained the model on a modest body of newspaper texts using just sixteen clusters. He
found that Chomsky’s two example sentences have probabilities that differ by a factor of more than 105 (182). But between
the dates of these references, a much more sophisticated view of the learning problem emerged.
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to be a more direct attack on this question, Pereira et al. (183) developed an algorithm to cluster
nouns based on the distribution of verbs that occur in the same sentence; their approach can
be thought of as compressing the description of the noun while preserving information about
the identity of the verb and, hence, is yet another example of efficient representation (184). The
resulting clusters exhibit a striking degree of semantic (rather than just syntactic) coherence, and it
is hard to resist saying that this purely information-theoretic approach is extracting meaning. These
references are just a small sampling from the roots of a huge literature. By now, we all interact with
probabilistic models of language every day (through internet search engines, automatic translation,
etc.), so perhaps the larger conceptual question of whether the search for efficient representation
captures meaning has become less urgent. Nonetheless, we suspect that there are many open
questions here, including whether we really understand how to write down models that capture
the very long-ranged correlations that are present in texts.

The entropy of a probability distribution is defined without reference to anything else, at least
in the case of discrete variables, but information is always about something. Thus it makes no
sense to ask about the information content of a signal; one has to ask how much information the
signal provides about some quantity of interest.9 Arguably the most successful uses of information
theory in thinking about biological systems are in those cases where the question “information
about what?” has a clear answer. But this makes us worry that more of the predictive power of
our theories resides in this qualitative knowledge of the biologically relevant information than in
the more mathematical principle of optimizing information transmission. Can we do something
more general than just making a list of which information is relevant for each particular system?

Information cannot be useful to an organism unless it carries predictive power: If we use
information to guide our actions, it takes time to act, and hence any measure of the success of
our actions will be in relation to a future state of the world (185). Although not all predictive
information is equally useful, nonpredictive information is useless, and so separating predictive
from nonpredictive information is an important task. If we observe a system for time T , then the
distribution from which trajectories are drawn has an entropy S(T ) that we expect to be extensive at
large T . But the mutual information between, for example, observations on the past (−T < t ≤ 0)
and an equally long future (0 < t ≤ T ) is given by Ipred(T ) = 2S(T ) − S(2T ). Importantly, any
extensive component of the entropy cancels, and the information that the past provides about
the future must be subextensive, even if we allow for an unlimited future, so most of the bits we
observe must be discarded if we want to isolate the predictive bits. This subextensive entropy
is related to our intuitive notions of the complexity of the underlying processes (186, 187), and
providing an efficient representation of predictive information is connected to problems ranging
from signal processing to learning (185, 188). Recent work provides preliminary evidence that
populations of neurons in the retina indeed provide such an efficient representation, separating
predictive information from the nonpredictive background at least in simplified visual worlds
(189), but much more remains to be done in this direction.

5. OUTLOOK

We can trace the use of information-theoretic ideas to describe biological systems back roughly
sixty years, almost to the origins of information theory itself. We have emphasized that these

9We could be interested in the value of the signal itself, in which case the information is equal to the entropy. But this is
seldom the case. If the signal is the text of a newspaper, for example, we probably are not interested in the text itself but what
it tells us about events in the world. In particular, the entropy of the text is increased if we introduce random spelling errors,
but the information about events is decreased.
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connections between information and the phenomena of life have two very different flavors, one
grounded in data and the other aiming for a theory in which the behaviors of real biological systems
are derivable from some sort of optimization principle. Both directions have been productive, and
as the volume of quantitative experimental data on biological systems grows, it seems clear that the
utility of the approaches to data analysis described in Section 3 will grow in parallel. The search
for real theories is more ambitious.

It is important that we have concrete examples of biological systems that are operating near
an optimum of information transmission or efficiency of representation, as reviewed in Section 4.
What we don’t know is whether these are isolated instances or examples of a general principle.
It is relatively easy to work out what optimization means in simplified settings, but it is much
harder to address the theoretical issues that arise in more realistic contexts, e.g., with many inter-
acting degrees of freedom and the complexities of fully natural signals. At the same time, it took
decades to get to the point where even the most basic quantities—the actual information carried
by biological signals—could be measured reliably. Now that many of these foundational steps have
been solidified, we believe that the coming years will see much more meaningful confrontations
between theory and experiment in a wide range of systems.
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