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Institute of Science and Technology Austria (IST Austria), Klosterneuburg A-3400, Austria

ABSTRACT Selection, mutation, and random drift affect the dynamics of allele frequencies and consequently of quantitative traits. While
the macroscopic dynamics of quantitative traits can be measured, the underlying allele frequencies are typically unobserved. Can we
understand how the macroscopic observables evolve without following these microscopic processes? This problem has been studied
previously by analogy with statistical mechanics: the allele frequency distribution at each time point is approximated by the stationary
form, which maximizes entropy. We explore the limitations of this method when mutation is small (4Nm , 1) so that populations are
typically close to fixation, and we extend the theory in this regime to account for changes in mutation strength. We consider a single
diallelic locus either under directional selection or with overdominance and then generalize to multiple unlinked biallelic loci with unequal
effects. We find that the maximum-entropy approximation is remarkably accurate, even when mutation and selection change rapidly.
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MOST traits of interest have a complex genetic basis
depending on very many loci. Quantitative genetics

gives a sophisticated statistical description of the components
of trait variance that can predict the immediate change due to
selection. The present abundance of genetic markers allows
us to find some of the loci that affect traits, but such QTL
typicallyaccount foronlyasmall fractionof thegeneticvariance
(Hill and Kirkpatrick 2010; Yang et al. 2010).Whilewemay be
able to predict breeding values and estimate the distribution of
effects, it does not seem possible—even in principle—to iden-
tify the individual alleles responsible for the bulk of heritable
variance. Thus, we cannot hope to predict the evolution of
quantitative traits by using a direct population genetics ap-
proach based on the frequencies of each individual allele.

Herewedevelop a generalmethod that allows us to closely
approximate the evolution of quantitative traits knowing only
the distribution of allelic effects and mutation rates but
without requiring knowledge of individual allele frequencies.
This can be seen as an extension of the classical infinitesimal

model to include arbitrary gene interactions and the effects of
selection, mutation, and drift on the genetic variance. It also
can be viewed as a generalized version of the quasi-steady-
state assumption (QSSA) that is often made in dynamical
reaction systems (Segel and Slemrod 1989; Goeke and
Walcher 2013) to noisy systems described by partial differ-
ential equations (PDEs), where the dynamics are approxi-
mated using a quasi-stationary distribution assumption
(QSDA); here we use the maximum-entropy (MaxEnt) prin-
ciple to define that distribution.

In physics, theMaxEnt principle has a long history, starting
with the seminal work of Jaynes (1957), who interpreted the
Boltzmann distribution of statistical physics as the most ran-
dom distribution subject to a constraint on fixed average en-
ergy. In the recent decade, there has been a resurgence of
interest in MaxEnt, especially when applied to biophysics
problems ranging from the statistics of neural spiking
(Schneidman et al. 2006; Tkačik et al. 2014), bird flocking
(Bialek et al. 2012), protein structure (Weigt et al. 2009), and
immunology (Mora et al. 2010). These approaches have been
generalized to describe temporal dynamics of high-dimensional
systems, known collectively asmaximum-caliber or dynamical/
kinetic maximum-entropy models (Pressé et al. 2013), where
the entropy of distribution over temporal paths is maxi-
mized given constraints on dynamical variables. Surprisingly,

Copyright © 2016 by the Genetics Society of America
doi: 10.1534/genetics.115.184127
Manuscript received October 28, 2015; accepted for publication February 9, 2016;
published Early Online February 16, 2016.
Supplemental material is available online at www.genetics.org/lookup/suppl/
doi:10.1534/genetics.115.184127/-/DC1.
1Corresponding author: Institute of Science and Technology Austria (IST Austria), Am
Campus 1, Klosterneuburg A-3400, Austria. E-mail: kbodova@ist.ac.at

Genetics, Vol. 202, 1523–1548 April 2016 1523

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.184127/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.184127/-/DC1
mailto:kbodova@ist.ac.at


however, MaxEnt distributions have not been used widely as a
variational ansatz for cases discussed in this work, where the
evolution equation for the distributionmight be known a priori,
e.g., as is the case with the diffusion approximation in popula-
tion genetics. In such a case, the approach differs from the
maximum-caliber methods because it involves a combination
of a static MaxEnt ansatz for the stationary microscopic distri-
bution with a quasi-stationary assumption in the diffusion/
Fokker-Planck equation, which together extend the static
MaxEnt inference to a dynamical approximation.

Prügel-Bennett and Shapiro (1997) and Rattray and Shapiro
(2001) introduced the MaxEnt approximation to the dynamics
of polygenic systems, predicting the cumulants of the trait dis-
tribution under mutation, selection, and drift; their main moti-
vation was to understand evolutionary algorithms rather than
natural populations. The same method was described indepen-
dently in physics (Plastino et al. 1997) and used to approximate
cosmic-ray fluxes (Hick and Stevens 1987).

However, neither of the two applications of MaxEnt was
taken up in their respective fields. Barton and de Vladar (2009)
modified Prügel-Bennet, Rattray, and Shapiro’s method so that
it could be justified from population genetics principles. With
thismodification, it gives the stationary distribution exactly and
is accurate in the limit of slowly changing conditions. Numer-
ical calculations showed that it is remarkably accurate, even
when selection or mutation changes abruptly. However, the
method is fully valid only when mutation is stronger than drift
(4Nm . 1), so populations are almost never fixed for one or
other allele. Yet, in nature, mutation is typically weaker than
drift, somost sites are fixed; in this case, Barton and de Vladar’s
approximation applies only in cases where mutation or popu-
lation size does not change with time.

We begin by summarizing the stationary MaxEnt approxi-
mation and its extension to nonstationary problems. We then
extend theMaxEnt approximation so that it applies over the full
range of mutation rates and test the accuracy of this approxi-
mation for directional selection and for balancing selection that
favors heterozygotes. This extension is a combination of the
continuous approach of Barton and de Vladar (2009) and a
special treatment of the dynamics at the boundaries. A similar
approach, where the boundaries have to be treated differently,
has been used in the semidiscrete, semicontinuous methods
studied in reaction-diffusion systems (Flegg et al. 2011;
Robinson et al. 2014) and also in traveling fitness waves, where
the fluctuations can be introduced to the model using a cutoff
function (Tsimring et al. 1996; Hallatschek 2011). We initially
consider the distribution of allele frequencies at a single locus
and then extend consideration to multiple loci with a distribu-
tion of effects. Throughout, we assume that recombination is
fast relative to other processes so that the population is in link-
age equilibrium and can be described by its allele frequencies.

Dynamics of Allele Frequencies

The dynamics of allele frequencies p ¼ ðp1; . . . ; pLÞ (for bial-
lelic loci) can be described by a diffusion process using a

deterministic forward Kolmogorov equation (i.e., the Fokker-
Planck or diffusion equation). The evolution of the joint prob-
ability density cðp; tÞ of allele frequencies satisfies

@c

@t
¼ 2

XL
i¼1

@

@pi
½Mið piÞc� þ 1

2

XL
i¼1

@2

@p2i
½V ið piÞc� (1)

where the number of loci that contribute to the trait is L.
The second term of (1) equals V iðpiÞ ¼ piqi=2N and cap-

tures stochasticity of the allele frequencies arising from ran-
dom sampling, i.e., the random drift. While in the case of
linkage disequilibrium this termwould contain a double sum-
mation, reflecting correlations between loci, the off-diagonal
terms vanish at linkage equilibrium. (The factors of 2 in the
brackets of (1) arise because we assume a diploid population
of N individuals; the corresponding haploid model would be
the same, apart from these factors.)

The first term of (1) captures deterministic changes of
allele frequencies. We consider

Mið piÞ ¼ ðbgi þ hhiÞpiqi
�
12

2hhi

bgi þ hhi
pi

�
þ mqi 2 npi

(2)

where b is the strength of directional selection, h denotes a
higher-order correction that captures dominance, m and n are
the forward and backward mutation rates, and gi and hi are
the additive effects of the ith locus on the traits under selec-
tion. MiðpiÞ can be written in a potential form

Mið piÞ ¼ piqi
2

@ða � AÞ
@pi

where the potential a � A, obtained by inverting this relation-
ship, reflects effects of selection and mutation:

a � A ¼
X
j

aj Aj ¼ logW þ mU þ nV

¼ bzþ hH þ 2m
XL
i¼1

log pi þ 2n
XL
i¼1

log qi
(3)

with quantities z, U, V, and H defined as

z ¼
XL
i¼1

giðpi2 qiÞ  ; H ¼
XL
i¼1

2hipiqi (4)

U ¼
XL
i¼1

2 log pi; V ¼
XL
i¼1

2 log qi (5)

where qi ¼ 12 pi, and gi and hi are the effects of loci on the
traits z and H, respectively.

Selection, captured by the mean fitness W, may be an
arbitrary function of the distribution of quantitative traits,
which, in turn, may be an arbitrary function of the n
allele frequencies. The log mean fitness may be further
decomposed into a sum in which the aw represent various
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selection coefficients and Aw various selected traits. In
the case of dominance, the terms associated with selection
are logW ¼ bzþ hH ¼ aw � Aw, where aw ¼ ðb; hÞ and
Aw ¼ ðz;HÞ. Here we assume a weak selection b � 1 such
that logW � logW.

The deterministic effects on allele frequency can be sum-
marized into a vector of coefficients a and a vector of com-
plementary quantities A. We study directional selection and
dominance with nonsymmetrical mutation and define a and
A as

a ¼ ðb; h;m; nÞ; A ¼ ðz;H;U;VÞ (6)

In the sections that follow, we show that A and a can be
understood as constraints and corresponding Lagrange mul-
tipliers, respectively, of a particular variational problem.

For h ¼ 0 andm ¼ n, this represents the simplest scenario of
directional selection with symmetrical mutation. Directional
selection of strength b acts on a trait z, assumed to be additive,
while selection of strength h acts on heterozygosity H. In this
work, we consider unequal effects gi on the trait but equal
effects hi ¼ 1 on H. This can be easily extended to distribution
of effects hi. A wide variety of other models can be treated in
the same way. For example, de Vladar and Barton (2011) stud-
ied stabilizing selection on an additive trait.

This diffusion process is known to be an accurate contin-
uous-time approximation to a wide range of specific popula-
tion genetics models (Kimura 1955a; Ewens 2012);
moreover, it corresponds directly to the coalescent process
that describes the ancestry of samples taken from the popu-
lation (Wakeley 2008). In order to represent the population
in terms of allele frequencies, we must assume that linkage
disequilibria are negligible, which will be accurate if recom-
bination is sufficiently fast. For simplicity, we also assume two
alleles per locus.

The stationary distribution of (1) has the form (Wright
1931; Kimura 1955a)

cðpÞ ¼ 1
ℤ
expð2Na � AÞ

YL
i¼1

ðpiqiÞ21

¼ 1
ℤ
W2NYL

i¼1

p4Nm21
i q4Nn21

i

(7)

where ℤ is a normalization constant, also called a partition
function. This distribution falls to zero at the boundaries (p =
0, 1) provided that 4Nm . 1 and 4Nn . 1. However, when
mutation rates fall below this threshold, the distribution de-
velops singularities at boundaries (if 4Nm or 4Nn is small, the
singularity occurs at p = 0 or p = 1, respectively), even
though the density function is still integrable.

MaxEnt in Equilibrium Quantitative Genetics

The stationary distribution (7) can be derived from a varia-
tional MaxEnt principle. The key assumption is that selection
and mutation act only through a set of observable quantities,

which can be arbitrary functions of allele frequencies
A ¼ fAiðpÞg; the strength of selection and mutation is given
by the corresponding set of a ¼ faig. Together these define
the potential function a � A.

We can define an entropy, relative to a reference measure
fðpÞ, as

SH½c� ¼ 2

Z
½0;1�L

cðp; tÞlog
�
cðp; tÞ
fðpÞ

�
dp (8)

which has a unique maximum cðp; tÞ ¼ fðpÞ at the reference
distribution; the entropy is (minus) the Kullback-Leibler di-
vergence from fðpÞ. The key choice is to set the reference
distribution as the neutral distribution of allele frequencies in
the absence of mutation or selection:

fðpÞ ¼
YL
i¼1

ðpiqiÞ21 (9)

Note that fðpÞ is not integrable, but it does provide the neu-
tral probability distribution given that the allele is not fixed
and yields the stationary distribution under mutation,
selection, and drift when we maximize SH subject to a
normalization constraint and constraints hAi ¼ hAiobs. The
latter condition enforces a constraint on the ensemble aver-
ages hAðpÞi ¼ R

AðpÞcðpÞdp. These macroscopic quantities
represent information that, in principle, could be observed.
We refer to hAðpÞi as observables, even though this does not
necessarily mean that their values over time are known. The
constrainedmaximization of entropy is solved by amethod of
Lagrange multipliers; for details, see Appendix A. For the
example in (6), the constraints include

1.
R
½0;1�LcðpÞdp ¼ 1 – normalization constraint,

2. hzi ¼ hziobs with Lagrange multiplier 2Nb,
3. hHi ¼ hHiobs with Lagrange multiplier 2Nh,
4. hUi ¼ Uobs with Lagrange multiplier 2Nm, and
5. hVi ¼ Vobs with Lagrange multiplier 2Nn.

The normalization condition sets the total probability of the
allele frequency distribution to 1 and introduces the partition
function ℤ as a constant multiplier in (7).

This variational principle recovers the stationary distribution
of the diffusion equation (1); the 2N times the mutation rates
and selection coefficients can be thought of as the Lagrange
multipliers. Iwasa (1988) introduced the same entropymeasure
but used it in a slightly differentway: he showed that the sumof
the potential function and SH/2N define a free fitness that in-
creases over time, just as in thermodynamics the free energy
increases over time. Further connections to thermodynamics
have been studied by Sella and Hirsh (2005) for a special case
of very small mutations, wheremost of the alleles are fixed, and
in Barton and Coe (2009), including the novel entropy term
(analogous to ourU andV) that involves the effects ofmutation.

Note that A and a have a specific meaning both in quan-
titative genetics and in statistical physics. In quantitative
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genetics, A characterizes properties of a quantitative trait
whose means can be observed (hAi) and that evolves in re-
sponse to the evolutionary forces a. In statistical physics, A
and a represent conjugate pairs of thermodynamic variables,
which can be interpreted as the constraints and Lagrange
multipliers in the variational MaxEnt problem, commonly
encountered when microscopic states of the system are un-
observed but its macroscopic features are known.

Note that there is some flexibility in the choice of the
reference distribution fðpÞ, where different choices may lead
to the same stationary distribution. For instance, one may
take the neutral distribution that involves mutation terms
fðpÞ ¼ Q

kp
4Nm21
i q4Nn21

i while omitting the constraints on
U and V and assuming that m and n are functions of time.
In this way, the reference distribution would be normalizable.
Because these approaches are equivalent, one can view the
constraints on U and V as conditions that regularize the allele
frequency distribution.

Dynamic MaxEnt Approximation

Our aim is to approximate thedynamics of a high-dimensional
system by a small number of variables, which include the
quantities that determine fitness. We approximate the real
distribution of allele frequencies by the stationary distribution
obtained by the MaxEnt method with a small number of
constraints and use it as an ansatz in the diffusion equation.
This leads to effective dynamical forces a* that yield the
correct dynamics for the observed quantities. The assumption

that the population is perturbed only through the forces a is
crucial to the success of our approximation. If we could ma-
nipulate individual allele frequencies in an arbitrary way,
then the long-term evolution would become essentially un-
predictable: alleles that are initially rare could increase to
cause arbitrary changes as they eventually rose to apprecia-
ble frequency (Barton and de Vladar 2009) (Figure 1). The
overall strategy of the dynamical MaxEnt (DynMaxEnt) ap-
proximation is summarized in Table 1, while the terminology
from statistical physics and quantitative genetics is provided
in Table 2. Various approximate methods, discussed in our
work, are summarized in Table 3.

We first describe the continuous DynMaxEnt method, pro-
posed in Barton and de Vladar (2009), which requires a suf-
ficient number of mutations in every generation. However, a
discrete approximation, also used in Barton and de Vladar
(2009) and described in Appendix C, is applicable when the
mutation rate is small and selection is limited. The dynamics
are then formulated in terms of fixed classes of alleles. How-
ever, the discrete approximation is not accurate unless the
mutation rate is very small, and even then it has a limitation
when Nb � 1 (Appendix C). Similarly, the continuous
method fails for 4Nm , 1 (Appendix D). We compare the
performance of these methods in Appendix G and find that
while the discrete method applies to a very small mutation
rate and the continuous method to a large mutation rate, the
intermediate regime is not captured by either of them. This is
similar to the result of Mustonen and Lässig (2007, 2008),
who studied fitness waves in the problem of fluctuating

Figure 1 Example 1: details of the general DynMaxEnt method. The response of the observed quantities: (A–C) Observables hpi, hUei, and hVei
obtained by numerically solving the diffusion equation using a discretization of space and time where the explicit transition matrix is known (provided in
a Mathematica notebook in File S1) in blue dots and the general DynMaxEnt approximations in green color. We used 2N ¼ 1000 and e ¼ 1=2N. The
dashed green line shows approximation with the three shown observables and the solid green line uses an additional observable hpqi. (D) Changes in
evolutionary forces that draw the system out of equilibrium include a rapid decrease in mutation complemented by a change in selection strength. (E)
Dynamics of Lagrange multipliers in the general DynMaxEnt method when three constraints are employed: hpi, hUei, and hVei. (F) Dynamics of Lagrange
multipliers in the general DynMaxEnt method when four constraints are employed, including hpqi.
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selection and introduced a novel approximation that is accu-
rate for small selection timescales. Figure 2 in Mustonen and
Lässig (2008) also shows an intermediate regime in which
neither the diffusion theory nor the novel approximation is
accurate. In this work, we present a general DynMaxEnt ap-
proximation that is applicable in all regimes. This approxima-
tion is compared to the numerical solution of the diffusion
equation. Instead of using individual-based simulations,
which are computationally demanding, we consider allele
frequencies to hold biologically relevant values pk ¼ k=2N,
for k ¼ 0; . . . ;N, and forward iterate an explicit transition
matrix, consistent with the diffusion equation. This approach,
provided in a Mathematica notebook (Supplemental
Material, File S1), is also feasible when a moderate number
of loci have different effects on the trait of interest.

Continuous DynMaxEnt approximation

Any set of forces a will cause the population to evolve to a
stationary distribution ðf=ℤÞexpð2Na � AÞ; this is the distri-
bution that maximizes entropy subject to constraints on hAi,
the 2Na being the Lagrange multipliers. Now suppose that
the forces change abruptly, from a0 to a1, and no further
information about the system is provided. The expected ob-
servables hAi will evolve toward the new stationary distribu-
tion. At any time, there will be a set of forces a* that would
produce the current hAi if the population were stationary; we
expect that the a* will evolve from a0 toa1 as the population
evolves from one stationary state to the other. Thus, we can
describe the dynamics either by the change in hAi or, equiv-
alently, by the change in a*.

Under the diffusion approximation, the expectations
change as

@hAii
@t

¼
X
j

Bi; jaj þ 1
2N

Vi (10)

where

Bi; j ¼
*X

k

@Ai

@pk

pkqk
2

@Aj

@pk

+
  ; Vi ¼

*X
k

@2Ai

@p2k

pkqk
2

+

(11)

[Equations 13 and 14 of Barton and de Vladar (2009); note
that in their Equation 13 the expectation should be taken
over the whole equation, not inside the derivatives as typed].

The expectations that appear on the left-hand side of (10) are
not the same as the ones on the right; therefore, the system is
not closed. We now introduce the continuous DynMaxEnt
approximation, namely, that Bi; j and Vi in the dynamically
changing system are approximated by the values that they
would have at the corresponding stationary state that gener-
ates the actual hAi; the stationary distribution coincides with
the MaxEnt distribution. If the population were at a station-
ary state under the forces a*, chosen to produce the current
expectations hAi, then there would be no change:

@hAii
@t

¼ 0 ¼
X
j

B*i; ja
*
j þ

1
2N

V*
i (12)

where the asterisks denote values at the stationary distribu-
tion. The approximation has form ð1=2NÞV*

i � 2
P

jB
*
i; ja

*
j ,

which gives Equation 15 of Barton and de Vladar (2009) as

@hAii
@t

¼
X
j

B*i; j
�
aj2a*

j

�
  (13)

It may bemore convenient to follow the rates of change ina*,
which can be written in terms of the covariance of fluctua-
tions in the A. Using matrix notation,

@a*
@t

¼ 1
2N

C*21B* � ða2a*Þ (14)

where

C* ¼ CovðAi;AjÞ ¼
�
@2logℤ
@ai@aj

	
  (15)

with an initial condition a*(0) = a0 and a = a1. The differ-
ence ja1 2a0j represents the change in evolutionary forces.
Because the matrices B* and C* depend only on the effective
forces a*, as shown in Appendix B, the dynamical system for
a* is closed. A detailed derivation of the DynMaxEnt method
under more general conditions can be found in Appendix E.

Intuitively, one may assume quasi-stationarity in (10),
provided that the evolutionary forces a change on a slower
timescale than the timescales of selection (1/b), mutation
(1/m), and random drift (2N). Then the adiabatic approxi-
mation in (14) should be accurate not only for the predicted
observables but also for the microscopic distribution. However,
we will show that even when the evolutionary forces change

Table 1 Summary of the DynMaxEnt approach in four steps

Step 1 Formulate dynamics, as in (1), for the probability distribution of the state variables cðpÞ.
Step 2 Obtain the stationary distribution c and write it in an exponential (log-linear) form cðpÞ}fðpÞexpð2Na � AÞ in

terms of observables hAi and constant forces a.
Step 3 Represent cðpÞ as a solution of a variational MaxEnt problem with reference distribution fðpÞ, constraints on hAi,

and Lagrange multipliers a (nonunique).
Step 4 Use a quasi-stationarity assumption to approximate the dynamics of observables using the stationary distribution where

the coefficients a are allowed to change over time to match the correct dynamics of observables. This criterion leads
to a reduced dynamical system for the effective coefficients a*.

See File S1.
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abruptly, i.e., when ja1 2a0j is not small, the approximation
remains accurate—even though there is no guarantee that the
inferred microscopic distribution agrees with the correct one.

The matrix B can be seen as a generalization of the addi-
tive genetic covariance matrix, where the @Ai=@pk corre-
sponds to (twice) the marginal effects of the kth allele on
Ai. The MaxEnt approximation consists of assuming that this
matrix is approximately what one would obtain at equilib-
rium with the current hAi. Thus, (13) is an extension to the
”breeder’s equation” (Lynch and Walsh 1997), which allows
for quantities hAi that can be any function of allele frequencies—
not just trait means—and that allows for random fluctuations,
mutational bias, and nonadditive selection.

The DynMaxEnt method can be contrasted with the
maximum-caliber method, reviewed in Pressé et al. (2013).
DynMaxEnt uses static observables to infer the correct sta-
tionary allele frequency distribution but allows the Lagrange
multipliers to change over time in accordance with the
known diffusion equation, ensuring that the observables
are correct at all times. However, the maximum-caliber
method uses constraints on temporal characteristics to arrive
at a distribution over the allele frequency paths with constant
values of Lagrange multipliers. DynMaxEnt is suitable for our
problem because it only assumes knowledge of initial and
changed evolutionary parameters and no further information
on the properties of the allele frequency paths.

General DynMaxEnt approximation

When numbers of mutations are small (i.e., 4Nm , 1 and
4Nn , 1), we face a problem of diverging components in
the continuous DynMaxEnt approximation as a result of a
U-shaped allele frequency distribution (for simplicity, we will
consider a single locus). If A ¼ ðz;H;U;VÞ, this divergence is
caused by diagonal elements of matrix B that correspond to U
and V, in particular, B3;3 ¼ hpq=2 � ½@pUðpÞ�2i ¼ h2q=pi for
4Nm , 1 and B4;4 ¼ hpq=2 � ½@pVðpÞ�2i ¼ h2p=qi for 4Nn ,
1 (see Appendices B and D for more detail). Therefore, the
continuous DynMaxEnt approximation fails completely in a
regime of dynamic selection and mutation when 4Nm , 1 or
4Nn, 1 simply because the right-hand side of the dynamical
system (14) is ill defined. The breakdown of the continuous

DynMaxEnt method, when the number of mutations are
small (i.e., for small populations), is not a numerical problem
but a fundamental limitation of the method itself. However, it
can be avoided by considering a modified diffusion problem
that does not aim to resolve all details of the allele frequency
distribution close to the fixation and loss but instead agrees
with the original problem in terms of the probability that the
allele frequency is extreme.

We define the boundary layers as ½0; eÞ and ð12 e; 1� for
e � 1 but finite. The value of the truncation parameter e is
discussed later, but typically, e � 1=N. We then replace the
original diffusion equation with solution cðp; tÞ by a new
system of PDEs with solution ceðp; tÞ that agrees with the
true dynamics in the following properties:

1. The stationary distribution in the bulk is the same for both
problems: ceðp; t ¼ NÞ ¼ cðp; t ¼ NÞ, for p 2 ½e; 12 e�.

2. The stationary probabilities of extreme allele frequencies
are the same for both problems:

P½ p, e� ¼
Ze
0

cðp; t ¼ NÞdp ¼
Ze
0

ceð p; t ¼ NÞdp

and

P½ p. 12 e� ¼
Z1

12e

cðp; t ¼ NÞdp ¼
Z1

12e

ceð p; t ¼ NÞdp

to the lowest order in e.

3. As the truncation parameter goes to 0, the problem con-
verges to the original diffusion equation; i.e., it develops
singularities at the boundaries:

lime/0ceðp; tÞ ¼ cðp; tÞ:

Replacing the original diffusion equation with a set of
coupled diffusion equations in different regions of the state
space captures an important characteristic of the problem: the
presence of multiple timescales in the allele frequency dy-
namics. When the system is perturbed from stationarity by a
change in the Lagrange multipliers (selection, mutation, het-
erozygosity), e.g., by a dramatic drop in number ofmutations,
the correct distribution very quickly adjusts to the form
p4Nm21q4Nn21 at the boundaries. Only then does the mass in
the interior slowly transfer to the vicinity of the fixed states to
converge to the new stationary distribution. This results in a
very fast dynamics of hUi and hVi and a considerably slower
dynamics of the trait mean and the mean heterozygosity.

DynMaxEnt can capture these multiscale features only if it
can incorporate a low and changing rate ofmutation. The quick
initial adjustment of the mutation rates is then naturally fol-
lowed by a slow dynamics of the trait mean and heterozygosity
because the speed of the transfer of themass between the fixed
states is limited by the infrequent rate of mutation. Similarly to

Table 2 Table of key terms and constants

Symbol Quantitative genetics/statistical physics

A Macroscopic observables
hAi Constraints
a Evolutionary forces/Lagrange multipliers
cðp; tÞ Distribution of allele frequencies/Boltzmann distribution
fðpÞ Neutral distribution (no mutation)/reference distribution
SH Relative entropy, negative Kullback-Leibler divergence
W Mean fitness
2N Population size in a diploid population
L Number of loci contributing to the trait
B Additive genetic covariance matrix
C Covariance in fluctuations/susceptibility matrix
J½c; p� Flux of the probability mass at frequency p
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otherobservables, theboundarymassesalsocanbeexpressedas
means of functions of allele frequency and thus treated as
additional observables. The appropriate function is a character-
istic function x½a;b� where

x½a;b� ¼


1 p 2 ½a; b� 
0 else 

(16)

Splitting the problem domain augments the degrees of free-
dom by hx½0;e�i and hx½12e;1�i, which control the boundary
dynamics independently of the bulk dynamics and the corre-
sponding Lagrange multipliers 2Nk and 2Nr. The values of
k and r will be determined later. The general DynMaxEnt
method, derived in Appendix E and summarized next, pro-
vides a way to couple the boundary dynamics with the bulk
dynamics to account for the multiscale features and resolve
the technical problems of the continuous method while keep-
ing the same number of degrees of freedom as the continuous
DynMaxEnt.

We first split the allele frequency domain into the bulk
part and the boundary part anddefine thediffusion equation
separately in the three regions in Appendix E. We couple
the equations by a boundary flux that is consistent with
the original diffusion equation, thus leading to the same
probability mass at the boundaries as in the continuous
DynMaxEnt method. The stationary distribution of the
problem (E4) has the form

ceðpÞ ¼
1
ℤ
W2N

8<
:

e2Nke4Nm21q4Nn21 if   p, e
p4Nm21q4Nn21     otherwise
e2Nrp4Nm21e4Nn21 if   p. 12 e

(17)

with ℤ ¼ R
ceðpÞdp, where ℤ is the normalization constant,

and the relative masses in the three regions are determined
by constants k and r. The stationary distribution (17) is not
generally continuous at p ¼ e; 12 e. However, it can still be
obtained by maximizing a relative entropy with a bounded
base distribution

feð pÞ ¼
1
ℤ0

8>><
>>:

ðeqÞ21 if   p, e
ðpqÞ21 otherwise
ðpeÞ21 if   p. 12 e

  ℤ0 ¼
Z 1

0
feðpÞdp

(18)

complemented by the following constraints on hAi and
Lagrange multipliers 2Na:

A ¼ ðlogW;Ue;VeÞ  (19)

a ¼ ðaW;m; nÞ  (20)

where instead of U and V that diverge at the boundaries, we
take their truncation to p 2 ½e; 12 e�:

Ue ¼


2 log e p, e
2 log p else

; Ve ¼


2 log q p, 12 e
2 log e else

  (21)

The two remaining parameters, k and r, are matched to sat-
isfy conditions 2 from the preceding list, leading to

k ¼ 2
1
2N

logð4NmÞ and r ¼ 2
1
2N

logð4NnÞ (22)

This relationship ensures that the approximate stationary
distribution has the same proportion of the mass at the
boundaries to the stationary solution of the original diffusion.
Generalized to multiple loci, the MaxEnt distribution has the
form

ceðpÞ ¼
1
ℤ
W2N YL

i¼1

8>>>>>><
>>>>>>:

1
4Nm

e4Nm21q4Nn21
i if   pi , e

p4Nm21
i q4Nn21

i otherwise

1
4Nn

p4Nm21
i e4Nn21 if   pi .12 e

(23)

with ℤ such that 1 ¼ R
ceðpÞdp. We remark that the reference

distribution feðpÞ is the stationary distribution in the absence
of selection and mutation. Therefore, feðpÞ ¼ seðpÞ21,
where se is the state-dependent diffusion coefficient:

seðpÞ ¼
8<
:

eq p, e
pq else
pe p. 12 e

(24)

The diffusion equation in the split domain can be used to
derive a new DynMaxEnt approximation for arbitrary muta-
tion strengths. This is done in a manner similar to the

Table 3 Overview of the approximations

Abbreviation General approach

MaxEnt Stationary microscopic distribution derived from macroscopic observables.
DynMaxEnt Any approximation for the dynamics of observables based on a combination of MaxEnt variational

ansatz, quasi-stationarity assumption, and a dynamical (e.g., diffusion) equation for the probability distribution.

Abbreviation Method in quantitative genetics

Continuous DynMaxEnt Refers to the method of Barton and de Vladar (2009), where the dynamics are captured by diffusion equation (1).
General DynMaxEnt The approximation introduced here, which generalizes the continuous DynMaxEnt method. This new

approximation distinguishes between the bulk mass that behaves as in the continuous problem and the
coupled boundary masses that behave as discrete quantities.
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continuous DynMaxEnt method using the ansatz (17) and
a quasi-stationarity assumption. The derivation, detailed in
Appendix E, leads to the same dynamics as the original
method:

@hAi
@t

¼ Beða2a*Þ  (25)

@a*
@t

¼ 1
2N

C21
e Beða2a*Þ (26)

where (26) is a closed dynamical system for a*. However,
since constant prefactors in the stationary distribution (23)
depend on mutation rates, the matrix Ce contains additional
terms:

Be ¼
�
seð pÞ
2

@Aj

@p
@Ak

@p

	
; Ce ¼ CovðAj;AkÞ

2

�
0W

1
2Nm

Cov
�
A; x½0;eÞ

� 1
2Nn

Cov
�
A; x½12e;1Þ

� �
(27)

where the subtracted terms form a square matrix of the same
dimension as CovðAj;AkÞ. Its leftmost columns, denoted by
0W, represent a contribution to the terms Covð�;AWÞ. Because
the stationary distribution (23) depends on the selection-
related Lagrange multipliers only through W2N ¼ eaW�AW, in
a similar manner to the continuous DynMaxEnt method, all
added terms are zero. In contrast, the presence of the muta-
tion-related Lagrange multipliers in (23) as the scaling fac-
tors results in additional terms added to Covð�;UeÞ and
Covð�;VeÞ, forming the remaining two columns in (27). The
components of the matrices Be and Ce are functions of effec-
tive forces only, similar to the continuous DynMaxEnt approx-
imation. The difference is that the expectations involve
integrals through parts of the domain ½0; 1� (bulk part or
boundary parts), and thus the terms have to be evaluated
numerically.

Applications of the General DynMaxEnt Method

In the following, we show the performance of the general
DynMaxEnt method in the parameter regimes when the
continuous DynMaxEnt method is not applicable because
the dynamics (14) become singular. These examples involve
dynamic selection and mutation in the regime 4Nm; 4Nn, 1.
To illustrate the method step by step, we provide a pedagog-
ical Mathematica notebook with the code for the general
DynMaxEnt method (File S1).

Performance of the DynMaxEnt approximation for differ-
ent scenarios is compared to the discrete and continuous
approximations in Appendix G.

Example 1: Low and changing mutation

Herewe consider a single locus under directional selection. As
we show in Appendix E, this also corresponds to the case of
multiple lociwithequal effects.Despite its apparent simplicity,

the system still contains 2N degrees of freedom that capture
the allele frequency distribution in a population of N diploid
individuals. The general DynMaxEnt approximation, based
on a stationaryMaxEnt approximation, reduces the dynamics
to a few degrees of freedom that correspond to the Lagrange
multipliers a*ðtÞ. For instance, when A ¼ ðz;Ue;VeÞ, the full
dynamics in the 2N-dimensional space reduces to a three-
dimensional (3D) space ðb*;m*; n*Þ.

The general DynMaxEnt method is tested in the most
challenging situation when the initially strong mutation
suddenly changes to 4Nm � 1. The continuous DynMaxEnt
method does not apply to this example for two reasons. First,
when effective mutation drops below 4Nm* ¼ 1 or 4Nn* ¼ 1,
the components of matrix B diverge because of singularities
of the stationary allele frequency distribution. Second, even
when the mutation rates are kept fixed at their terminal val-
ues (m* ¼ m, n* ¼ n), resulting in a reduced dynamics, the
continuous DynMaxEnt method does not give correct dynam-
ical predictions for small mutation rates. A closer look at the
failures of the continuous DynMaxEnt method is provided in
Appendix D.

The general method (with e ¼ 1=2N) gives a satisfactory
estimate of the trait mean at the beginning of the adaptation
process, as shown in Figure 1, while a quick drop in effective
mutation, compensated by a change in the effective selection,
results in a quick loss of polymorphism. When the equilibra-
tion of the effective mutation is too fast, the speed of the
dynamics that are limited by effective mutation becomes
slower than necessary and leads to underestimation of trait
mean and hUei. This can be observed over the medium time-
scale t/2N � 1–10.

Over long timescales, the approximate dynamics accu-
rately match the exact dynamics. When we employ an addi-
tional constraint on the mean heterozygosity, although no a
priori selection is acting on it, we increase the number of
degrees of freedom from three to four. While a general fea-
ture of variational approximations is that an increase in the
number of constraints leads to an improvement in the perfor-
mance of the approximation, this particular choice yields a
match that is almost indistinguishable in all four observables
(including the added hpqi), as shown in Figure 1.

The dynamics of Lagrangemultipliers in Figure 1 (E and F)
demonstrates separation of timescales. An initial quick drop
in mutation n* and subsequently m* to the vicinity of their
steady states is compensated by the changes in b* (and h*)
and followed by a slow relaxation of b* (and h*) to equilib-
rium once the mutation rates are barely changing. It is in-
teresting that the dynamics of the effective forces differs
significantly between cases E and F.

Example 2: Overdominance

Here we consider that the population dynamics is driven not
only by directional selection but also by selection on hetero-
zygosity, i.e., overdominance. This yields stationary distribu-
tions that may have up to three modes: two modes represent
peaks at the boundaries in the low-mutation regime, and an
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intermediate peak represents an increased probability of het-
erozygous individuals. We consider an analogous example to
Example 1 but add initially strong selection on heterozygosity
(trimodal distribution of allele frequency) that switches to a
purely directional selection.

Figure 2 shows an almost perfect agreement between the
exact solution and the approximation despite the fact that
the approximation is not built to capture rapid switches in
the forces but, to the contrary, assumes that the forces change
slowly. The effective forces do not capture the rapid change in
the real forces on the system but show a slow–fast relaxation
to their new steady states. Appendix H shows a complemen-
tary simulation when the initial (a0) and terminal conditions
(a1) are switched. The system follows a different trajectory in
the direction a0/a1 and a1/a0.

In all the simulations presentedhere,weuse2Ne ¼ 1; such
a threshold e corresponds to an allele frequency of a single
individual out of a population of size 2N. In Appendix F, we
provide additional simulations to show that there exists an
optimal thresholdNe that minimizes the approximation error.
Moreover, we show that in the worst-case scenario, where a
strong change in selection is coincident with a low and chang-
ing mutation, the relative error of the approximation is on the
order of 1%.

Example 3: Multiple loci with different effects

In this example, we show the applicability of the DynMaxEnt
approximation for the evolution of quantitative traits that
depend onmultiple loci with different effects. The state space
of the system of L independent loci contains essentially ð2NÞL
degrees of freedom because each locus is characterized by an

allele frequency distributionwith 2N degrees of freedom. The
reduction of the dimensionality to three (directional selec-
tion) or four (overdominance) degrees of freedom thus offers
an immense simplification of the problem in which instead of
tracking the full allele frequency distribution we are tracking
just the dynamics of the Lagrange multipliers a* correspond-
ing to the underlying constraints.

How does the method perform for different distributions of
effects?A simple case, inwhich all effects are the same (gi ¼ 1),
coincides with Example 2 because the dynamics become the
same as for a single locus (Appendix I). We consider three
distinct distributions of effects to demonstrate both the effect
size distributions typically assumed and also extreme examples.
We chose a uniform distribution in ½0; 2�, exponential distribu-
tion with mean 1, and a bimodal distribution with many loci of
small effect and a few loci of large effect. We chose all distri-
butions to have hgi ¼ 1 for an easier comparison.

Figure 3 shows a comparison between the exact dynamics
and the general DynMaxEnt approximation. All forces, includ-
ing forward and backward mutations, were initially perturbed
to a state where 4Nm ¼ 4Nn, 1, the regime where the con-
tinuous approximation does not apply. When the distribution
of effects was uniform or exponential, the approximation
showed almost a perfect match with the true dynamics in all
observed moments. Intuitively, one expects that when the dis-
tribution of effects is strongly bimodal, withmany small effects
and a few large effects, the approximation will perform badly.
This is so because the large-effect loci dominate the quick re-
sponse of the system, while the small-effect loci form a second
wave of adaptation at a later time that is difficult to capture by
the simple approximation schemes. Figure 3 shows these two

Figure 2 Example 2: details of the general DynMaxEnt method. (A) Changes in evolutionary forces, including a rapid decrease in mutation, comple-
mented by a change in selection strength and a change in the selection strength on heterozygosity. (B) The effective forces a *. (C–F) The response of
the observed quantities hpi, hpqi, hUei, and hVei. Exact dynamics, obtained by numerically solving the diffusion equation using a discretization of space
and time where the explicit transition matrix is known, are shown in blue dots, the general DynMaxEnt approximation is shown in green. We used
2N ¼ 1000 and e ¼ 1=2N.
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timescales in the dynamics of Lagrange multipliers. The ap-
proximation of the observables still gives a solidmatch, but the
second wave of adaptation due to small-scale effects is not
perfectly accurate anymore.

Discussion

A central result in population genetics is that the stationary
distribution of allele frequencies is the product of the neutral
distribution and the mean fitness raised to the power of
population size: c � fW2N (Wright 1937; Kimura 1955b,
1964). This result can be interpreted via an optimization
principle: selection constrains the expected values of the
traits that determine fitness, but the allele frequency distri-
bution is distorted as little as possible by this constraint—the
distortion being measured by (minus) the relative entropy.
Our approximation is to assume that this MaxEnt principle
holds even away from equilibrium, with the approximate
distribution of allele frequencies having the stationary func-
tional form at all times. This provides a variational ansatz for

the diffusion equation and results in a set of dynamical equa-
tions for the parameters of the MaxEnt distribution.

This MaxEnt approximation can be justified in the limit of
slowlychangingconditions.Yet,providedthatmutationratesare
above a critical threshold (4Nm. 1), it is remarkably accurate
even in the worst case, when parameters change abruptly. Even
for a single locus, this approximation gives a substantial reduc-
tion in complexity: thewhole distribution is described by a small
number of dynamical variables that correspond directly to the
forces ofmutation and selection. Themethod extends directly to
multiple loci such that the joint distribution of allele frequencies
can be approximated by a small number of variables.

This paper extends the approximation to lowmutation rates
(4Nm, 1), where the original approximation breaks down
completely. The problem is that when 4Nm, 1, populations
are likely to be near fixation—i.e., the distribution is concen-
trated near the borders.Whenmutation rate or population size
changes, the distribution near the boundaries changes imme-
diately, whereas the distribution in the interior changes much
more slowly. To see why this is so, think of the probability that

Figure 3 Example 3: dynamics of quantitative traits for 100 loci of different effects. The effects are randomly drawn from (A) uniform distribution in
½0;2�, (B) exponential distribution with mean 1, and (C) deterministic effects where 95 of the loci have effects 0.01, while the remaining 5 loci have
effects 19.81. The distributions were chosen to have a mean equal to 1 to be comparable with single-locus simulations. The rapid decrease in mutations
is complemented by a change in selection strength and by a change in the selection strength on heterozygosity, as in Example 2. The true forces a
change at time t ¼ 0 and draw the system out of equilibrium. The response of the trait mean hzi is shown in blue dots, while the approximation is
shown in green. The quality of the approximation for the remaining observables hpqi, h2logpi, and h2logqi can be found in Appendix J. Exact dynamics,
obtained by numerically solving the diffusion equation using a discretization of space and time where the explicit transition matrix is known, are shown
in blue dots. The general DynMaxEnt approximation is shown in green. We used 2N ¼ 1000 and e ¼ 1=2N.
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a population carries one or a few copies of an allele. Because
the lifetime of such rare alleles is short and is determined
primarily by mutation and random reproduction, this proba-
bility changes rapidly with those processes and in the short
term is independent of selection or of the total population size.
In contrast, the distribution of polymorphic alleles in the in-
terior changes slowly with changes in mutation rate because it
takes a long time for newmutations to reach high frequency or
for polymorphic alleles to be lost by drift.

The MaxEnt approximation for the expectations of a set of
traits hAi extends the “breeder’s equation” to include random
fluctuations, mutation, and an arbitrary relation between se-
lected traits and the underlying genotype. It takes the form
@thAi ¼ B*ða2a*Þ (13), where B* is a generalization of the
additive genetic covariance, a are the actual forces of selec-
tion and mutation, and a* are the effective forces that would
yield the same expectations hAi. Our extension is simply to
modify B* by truncating the distribution of allele frequencies
within a distance e � 1=2N of the boundaries, thus suppress-
ing its divergence for low mutation rates. The approximation
is insensitive to the location of the truncation threshold e. We
give examples of directional selection and dominance; here
we assume additivity across loci, but de Vladar and Barton
(2011) show how the method applies to stabilizing selection,
which induces pairwise epistasis between loci. We emphasize
that the approximation can be applied without detailed
knowledge of individual loci: only the distribution of allelic
effects is needed. The approximation also can be generalized
in principle to traits with linkage disequilibrium. The con-
straints for such a case also would involve pairwise measures,
e.g., the correlations between loci.

Like the MaxEnt approximation, the infinitesimal model
(Fisher 1919, p. 403) reduces the dimensionality of the dynam-
ics by following trait values rather than individual alleles.
However, these approaches are quite distinct. The infinitesimal
model assumes that there are so many genes that the distribu-
tion of allele frequencies at each locus is hardly perturbed by
selection; thus, the genetic variance that segregates within fam-
ilies remains approximately constant. This is equivalent to as-
suming that Nb on each allele is small (Robertson 1960). In
contrast, the MaxEnt approximation can be applied to a single
locus, with large Nb, and predicts the change in genetic vari-
ance owing to selection. The infinitesimal model is broader, in
that it describes the effects of linkage disequilibrium—though,
because it assumes free recombination, these effects are only
significantwhen selection on traits is strong; see Bulmer (1974)
for an extension to allow linkage. However, if selection is weak
enough that the population is at linkage equilibrium, the
MaxEnt approximation will be more accurate than the infini-
tesimal model because it accounts for the effects of selection on
the genetic variances. Of course, this does require knowledge of
the distribution of effects of alleles and their interactions.

What are the possible applications of our results? First, our
results allow us to tractably predict the temporal evolution
of interestingmacroscopic observables, such as the trait mean
or heterozygosity, even when these are determined by an

arbitrary function of a single locus or multiple loci under
dynamically changing evolutionary forces. This is made pos-
sible by the drastic dimensionality reduction of the MaxEnt
ansatz. The exampleswe presented here focused on exploring
this “forward prediction” scenario in regimes where previ-
ously proposed approximation methods break down.

The MaxEnt approximation predicts the evolution of the
allele frequency distribution—yet almost always we have only
a single realization of the evolution of any one locus. However,
whole-genome sequencing gives us information about the fre-
quencies of alleles at very large numbers of loci. If these can be
treated as independent realizations of a process common to all
loci (or at least all loci in a functional class), thenwe can apply
our method. Indeed, our assumptions are the same as those
typically made in analyzing the distribution of frequencies of
synonymous vs. nonsynonymous variants: each allele is taken
to have an additive effect on fitness, drawn from some specific
distribution. Usually, the distribution is assumed to be station-
ary. However, related species that have different effective
population sizes (e.g., Loewe et al. 2006) or newly formed
sex chromosomes (e.g., Zhou et al. 2013) require a time-
dependent analysis of the kind proposed here.

Second, our results have consequences for inference of
evolutionary forces from genomic and phenotypic data. The
success of the MaxEnt approximation suggests that the allele
frequencydistributionremainsclose to thestationary form,even
when selection, mutation, and population size are changing
rapidly. This, in turn, suggests that it may be difficult to detect
such changes from sequence data taken at a particular time
point; note that themoments of theallele frequencydistribution
correspond directly to the distribution of genealogies. This is
consistent with the finding that unless selection is very strong
(Nb � 1), it has only weak effects on genealogical structure
(Williamson and Orive 2002; Barton and Etheridge 2004).

However, there are several reasons why this conclusion
may be too pessimistic. First, even when the MaxEnt approx-
imation accurately predicts the expectations of the observ-
ables, the underlying distributionmaynot necessarily be close
to the stationary form [e.g., fromBarton and de Vladar (2009,
Figure 10)]. Second, when 4Nm, 1, sudden changes in pop-
ulation size and mutation rate cause immediate changes at
the boundaries so that the distribution deviates from the sta-
tionary form—which is the problem that we address here.
Indeed, it is relatively straightforward to detect strong popula-
tion bottlenecks. Third, specific events, such as the sweep to
fixation of a single mutation, can be detected. However, such
events occur evenwhen the ensemble is at a stationary state, so
it still may be hard to find evidence for changing conditions.
Tests that use an out-group or examine rates on a phylogeny
(e.g., Kimura 1977; McDonald et al. 1991; Goldman and Yang
1994) can detect changes in selection but require multiple spe-
cies and so are not covered by the arguments here. Moreover,
our argument from MaxEnt only applies to freely recombining
loci: additional information may come from patterns along the
genome, which depend on linkage disequilibria and on rates of
recombination. Lastly, if instead of data taken at a particular
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time point we were provided with the temporal profile of
changing observables hAðtÞi, we could use our results to solve
an inference problem and learn about the time courses of evo-
lutionary forces a.

Third, our results, togetherwith previous relevant theoretical
work, allow us to interpret the evolutionary process in informa-
tion-theoretic terms. What is the meaning of entropy, beyond
beingsimplya tool forapproximation?Minus therelativeentropy
is theKullback-Leiblerdistance,ameasureofdivergence fromthe
neutral distribution. If we include mutation in the base distribu-
tion f (18), then minus the relative entropy measures the de-
gree to which selection concentrates populations around states
of high fitness. Following Kimura (1961), entropy changes can
be seen as the information about its selective history that the
population can transmit (Watkins 2008). Arguably, concentra-
tion around fit states is a better measure of adaptation than the
increase in mean fitness: though fitness differences determine
the rate of adaptation, they do notmeasure the outcome. Fitness
may fluctuate, and absolute fitness must stay close to zero, on
average, if populations are to persist. Mustonen and Lässig
(2010) derive an intriguing relation between the gain in infor-
mation (equal to the reduction in entropy) and the fitnessfluxF:

2NE½F�$ 2DS where F ¼
ZT
0

X
i

biDpidt (28)

[(28) corrects a factor 2 error inMustonenandLässig (2010)].
This applies to a haploid population at linkage equilibrium, as
assumed throughout this paper. Selection may change arbi-
trarily over time so that this relation gives a lower bound on
the fitness flux F that is required to achieve a given gain in
information (i.e., reduction in entropyDS). If selection changes
slowly—as required for our MaxEnt approximation to be accu-
rate—then the inequality approaches an equality. The fitness
flux can be separated into a component resulting from selection
(which must be positive and equal to the additive variance in
fitness VW) and the remaining components, resulting from
mutation and drift. Because forces other than selection are
expected, on average, to act against adaptation, the latter com-
ponent is negative, so the additive variance in fitness should set
a bound on the rate of information gain (i.e., 2NVW $ 2DS).

Our approximation states that even out of equilibrium, the
distribution of allele frequencies minimizes the information
gain, subject to constraints on selected traits. By drastically
reducing the dimensionality of the system to cover only the
expectations of selected quantities, we can simplify expres-
sions for the total fitness flux and variance in fitness over the
evolutionary trajectory and therefore may be able to under-
stand how these quantities limit the amount of information
that can be accumulated by selection.

Acknowledgments

We thank Harold de Vladar and Richard Kollár for helpful
discussions. The research leading to these results has re-
ceived funding from the European Research Council under

the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement number 250152
(N.B.). This work was supported in part by the Human Fron-
tiers Science Program (grant number RGP-0065/2012 to G.T.).

Literature Cited

Barton, N., and J. Coe, 2009 On the application of statistical
physics to evolutionary biology. J. Theor. Biol. 259: 317–324.

Barton, N. H., and H. P. de Vladar, 2009 Statistical mechanics and
the evolution of polygenic quantitative traits. Genetics 181:
997–1011.

Barton, N. H., and A. M. Etheridge, 2004 The effect of selection
on genealogies. Genetics 166: 1115–1131.

Bialek, W., A. Cavagna, I. Giardina, T. Mora, E. Silvestri et al.,
2012 Statistical mechanics for natural flocks of birds. Proc.
Natl. Acad. Sci. USA 109: 4786–4791.

Bulmer, M., 1974 Linkage disequilibrium and genetic variability.
Genet. Res. 23: 281–289.

de Vladar, H. P., and N. H. Barton, 2011 The statistical mechanics
of a polygenic character under stabilizing selection, mutation
and drift. J. R. Soc. Interface 8: 720–739.

Ewens, W. J., 2012 Mathematical Population Genetics 1: Theoret-
ical Introduction (Interdisciplinary Applied Mathematics, Vol.
27). Springer, New York.

Fisher, R. A., 1919 XV.—the correlation between relatives on the
supposition of mendelian inheritance. Trans. R. Soc. Edinb. 52:
399–433.

Flegg, M. B., S. J. Chapman, and R. Erban, 2011 The two-regime
method for optimizing stochastic reaction-diffusion simulations.
J. R. Soc. Interface 9: 859–868.

Goeke, A., and S. Walcher, 2013 Quasi-steady state: Searching for
and utilizing small parameters, pp. 153–178 in Recent Trends in
Dynamical Systems. Springer, New York.

Goldman, N., and Z. Yang, 1994 A codon-based model of nucle-
otide substitution for protein-coding DNA sequences. Mol. Biol.
Evol. 11: 725–736.

Hallatschek, O., 2011 The noisy edge of traveling waves. Proc.
Natl. Acad. Sci. USA 108: 1783–1787.

Hick, P., and G. Stevens, 1987 Approximate solutions to the cos-
mic ray transport equation the maximum entropy method. As-
tron. Astrophys. 172: 350–358.

Hill, W. G., and M. Kirkpatrick, 2010 What animal breeding has
taught us about evolution. Annu. Rev. Ecol. Evol. Syst. 41: 1–19.

Iwasa, Y., 1988 Free fitness that always increases in evolution. J.
Theor. Biol. 135: 265–281.

Jaynes, E. T., 1957 Information theory and statistical mechanics.
Phys. Rev. 106: 620.

Kimura, M., 1955a Solution of a process of random genetic drift
with a continuous model. Proc. Natl. Acad. Sci. USA 41: 144.

Kimura, M., 1955b Stochastic processes and distribution of gene
frequencies under natural selection. Cold Spring Harb. Symp.
Quant. Biol. 20: 33–53.

Kimura, M., 1961 Natural selection as the process of accumulat-
ing genetic information in adaptive evolution. Genet. Res. 2:
127–140.

Kimura, M., 1962 On the probability of fixation of mutant genes
in a population. Genetics 47: 713.

Kimura, M., 1964 Diffusion models in population genetics. J.
Appl. Probab. 1: 177–232.

Kimura, M., 1977 Preponderance of synonymous changes as evidence
for the neutral theory of molecular evolution. Nature 267: 275–276.

Loewe, L., B. Charlesworth, C. Bartolomé, and V. Nöel,
2006 Estimating selection on nonsynonymous mutations. Ge-
netics 172: 1079–1092.

1534 K. Bod’ová, G. Tkačik, and N. H. Barton
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Appendix A: Solution of MaxEnt by the Method of Lagrange Multipliers
The variational problem

max
c

SH½c� ¼ 2

Z
½0;1�L

cðp; tÞlog
�
cðp; tÞ
fðpÞ

�
dp (A1)

with fðpÞ ¼ QL
i¼1ðpiqiÞ21 subject to constraintsZ

½0;1�L
cðpÞdp ¼ 1  ;

Z
½0;1�L

AðpÞcðpÞdp ¼ hAiobs* (A2)

[e.g., for directional selection and asymmetrical mutation A ¼ ðz;U;VÞ and a ¼ ðb;m; nÞ] can be solved by the method of
Lagrange multipliers, yielding an unconstrained maximization of a Lagrangian

L½c; l;a� ¼ SH½c�2 l

2
664

Z
½0;1�L

cðpÞdp2 1

3
77522N

X
k

ak

2
664

Z
½0;1�L

AkcðpÞdp2 hAkiobs

3
775 (A3)

with multipliers l and a. The variational derivative of this function with respect to its argument c is

dL½c; l;a� ¼
Z

½0;1�L
dc

�
log

c

f
2 12 l2 2Na � A

�
dp (A4)

and leads to a solution

cðpÞ ¼ fðpÞ
ℤ

e2Na�A (A5)

where the normalization ℤ ¼ expð212 lÞ and the Lagrange multipliers are such that observables are correctly matched. The
distribution cðpÞ coincides with the stationary solution of the Fokker-Planck equation (1) provided that the a values are the
evolutionary forces (selection, mutation) and the A values are the traits associated with the underlying processes. The
evolutionary forces appear in the constrained optimization as Lagrange multipliers 2Na.

Appendix B: Matrices B and C in the Continuous DynMaxEnt Approximation

When a ¼ ðb; h;m; nÞ and A ¼ ðz;H;U;VÞ, the explicit form of matrix B is

B* ¼ hXL
k¼1

2
6666666664

g2kpkqk 2gkp2kqkðqk 2 pkÞ gkqk 2gkpk

2gkp2kqkðqk 2 pkÞ 2p3kqkðqk2pkÞ2 2pkqkðqk 2 pkÞ 22p2kðqk 2 pkÞ

gkqk 2pkqkðqk 2 pkÞ 2
qk
pk

22

2gkpk 22p2kðqk 2 pkÞ 22 2
pk
qk

3
7777777775i (B1)

as implemented in the Mathematica notebook (File S1). Because the expectation hfðpÞi ¼ R
½0;1�L f ðpÞcðpÞdp is taken over the

stationary distribution cðpÞ, which depends on the effective parameters a*, the matrix B* is also a function of the effective
evolutionary forces. The components of matrix B* may be calculated using special functions, as in Barton and de Vladar
(2009).

Similarly, the components of the matrix C* can be written as

C*
i;j ¼ CovðAi;AjÞ ¼ hAiAji2 hAiihAji
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where AiðpÞ are functions of the microscopic allele frequencies, and after averaging over the stationary distribution cðpÞ, only
the dependence on the effective forces a* remains. Thus, the right-hand side of vector equation (14) is solely a function of effective
evolutionary forces a*, forming a system of ordinary differential equations of dimension equal to the number of observables.

Appendix C: Discrete Dynamics in the Limit of Small Nm

As 4Nm and 4Nn become very small, the probability distribution (7) becomes concentrated at the boundaries. The populations
then switch between fixation for the favorable and deleterious alleles at a given locus and can be described by the fraction P,
Q ¼ 12 P, of populations fixed (or nearly fixed) for each allele:

dP
dt

¼ lþQ2 l2P  (C1)

The probability of fixation for the favorable allele is P̂ ¼ ½n=mþ expð24NbÞ�21 (Kimura 1962), and the rates of substitution of
alleles by their counterparts, lþ and l2, are

l2 ¼ 4Nnb
e24Nb

12 e24Nb   and lþ ¼ 4Nmb
1

12 e24Nb (C2)

Hence, the exact dynamics in the regime of small mutations have a form

4N
dP
dt

¼ 4Nb
4NmQ2 4Nne24NbP

12 e24Nb (C3)

How does the standard MaxEnt approximation compare in the limit of low mutation rates? We keep mutation rates fixed and
follow a single variable P ¼ hpi; we define the complementary variable b* as the selection that gives P at stationarity. In the
limit of low mutation rates,

p ¼
R 1
0 p � p4Nm21q4Nn21e4Nb*ð2p21ÞdpR 1
0 p4Nm21q4Nn21e4Nb*ð2p21Þdp

�
1

4Nn

e24Nb* 1
4Nm

þ 1
4Nn

(C4)

implying

e4Nb* ¼ 4Nn
4Nm

P
Q
  (C5)

The same equilibrium formula is given by the ratio of substitution rates P=Q ¼ lþ=l2. Under the MaxEnt approximation, the
rate of change is

4N
dP
dt

¼ hpqið4Nb2 4Nb*Þ (C6)

Moreover, in the limit of small mutations,

hpqi ¼
R 1
0 p4Nmq4Nne4Nb*ð2p21ÞdpR 1

0 p4Nm21q4Nn21e4Nb*ð2p21Þdp
� e4Nb*2 1

4Nb*
�

1
4Nm

þ e4Nb*

4Nn

� (C7)

where this expression has been obtained by computing contributions to the integrals separately for each of the boundaries ½0; d�
and ½12 d; 1�, for d � 1 and for 4Nm; 4Nn � d. Note that integration by parts has been used, resulting in the presence of the
term 4Nb* in the denominator of (C7). Equation (C6) then becomes

4N
dP
dt

¼ 4NnP2 4NmQ
4Nb*

ð4Nb24Nb*Þ ¼

2
664 4Nb

log
�
4Nn
4Nm

P
Q

�2 1

3
775ð4NnP2 4NmQÞ (C8)
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Thus, theMaxEnt approximation to the full distribution does not converge to the exact dynamics (C3) asmutation rates become
small. Nevertheless, the dynamics are approximated quite well, provided that selection is not too strong (e.g., j4Nbj, 2). The
MaxEnt approximation greatly underestimates the rate of change at the margins and gives no effect of selection at the extreme
allele frequencies (see Figure C1, left).

Figure C1 Discrete MaxEnt approximation. (A) The exact rate of change, obtained from the discrete model (C3) (blue), compared with the
MaxEnt approximation (C8) (green) in the limit of small 4Nm ¼ 4Nn; Nb ¼ 0;0:5;1;2; 4 (bottom to top) and 2N ¼ 1000. Rates are scaled relative
to the neutral mutation rate, assumed to be symmetrical (m ¼ n). (B) Dynamics following an abrupt switch from 4Nb ¼ 20:5; 21; 2 2; 24 to
the reverse.

However, the equilibria necessarily agree: the exact and the approximate rates of change are zero at the samepoint. The right
plot in Figure C1 shows the exact PðtÞ and the MaxEnt approximation; these are close to 4Nb ¼ 62, but the solution becomes
poor for 4Nb ¼ 4 (upper pair of curves). The MaxEnt solution is accurate for 4Nb# 2 because P remains within the interior
[1=ð1þ e2Þ ¼ 0:112,P, 0:888), where the rate of change is approximated well.

Appendix D: Failure of the Continuous DynMaxEnt for 4Nm,4Nn < 1

The logmeanfitness typicallywill bea sumovermoments of allele frequencies. For example, a selectiongradientbona traitwith
mean z ¼ 2

P
igiðpi 2 qiÞ will introduce a component where aW ¼ b and AW ¼ z; a model with dominance requires

aW ¼ ðb; hÞ and AW ¼ ðz;HÞ, and epistasis introduces mixed second-order moments of the allele frequencies. Thus, the matrix
B is an expectation over polynomial functions of allele frequencies and is well behaved.

In contrast, the elements of B that describe mutation diverge when 4Nm, 1 or 4Nn, 1. To see this, consider a single locus
for which A ¼ ðz;H;U;VÞ ¼ ð2p2 1; 2 pq; 2 log p; 2 log qÞ, and the elements B3;3, B3;4, and B4;4 are h2q=pi, h22i, h2p=qi (B1).
Thus, B3;3 diverges when 4Nm, 1, and B4;4 diverges when 4Nn, 1. If we can assume that mutation rates are fixed, then we
can avoid the difficulty either by fixing the mutation rates always at their actual values (i.e., m ¼ m*, n ¼ n*) or by choosing a
reference distribution that includes mutation, e.g., f ¼ Q

kp
4Nm21
k q4Nn21

k , and dropping the observables U and V. These two
approaches are equivalent because fixing the mutation rate leads to @thzi ¼ B1;1ðb2b*Þ þ B1;2ðh2 h*Þ, leading to the same
dynamics for b* and h* as if the reference distribution included mutation.

We first explore the continuous DynMaxEnt approximation for 4Nm. 1 and compare its accuracy with that for 4Nm, 1.
We study the worst-case scenario when a selection suddenly changes sharply fromNb ¼ 2 4 to Nb ¼ 4; this is by no means
an adiabatic change. Mutations equal 4Nm ¼ 4Nn ¼ 2; 1=2; 1=4, where the first choice (4Nm. 1) allows a full continuous
DynMaxEnt approximation including constraints on hUi and hVi, while the second and third choices require a fixed
instantaneous mutation rate and constraints on hUi and hVi dropped to keep the entries of the additive covariance
matrix B finite. Figure D1 (top row) shows the predicted observables hzi, hU þ Vi, and hHi estimated by the continuous
DynMaxEnt method for each of the mutation rate alternatives compared with the exact solution, while keeping the het-
erozygosity fixed throughout the simulation (not employing the constraint on h2pqi). The method is accurate for 4Nm ¼ 2
(where the mutation rate also changes dynamically) but shows significant deviations from the true dynamics for
4Nm ¼ 4Nn ¼ 1=2; 1=4.

We also show simulations (Figure D1, D–F) in which the selection on heterozygosity h is treated as a dynamical force,
employing an additional constraint on hHi. This increases the number of degrees of freedom in the approximate dynamics and
affects the accuracy of the approximation. For instance, the decrease in performance for 4Nm;   4Nn, 1 is partially caused by
losing two degrees of freedom by fixing m and n. However, an increase in accuracy in Figure D1 (bottom row) is caused by
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Figure D1 Failure of the continuous DynMaxEnt approximation for strong selection. Dynamical response to a fast change in selection Nb ¼ 24 to
Nb ¼ 4 for symmetrical mutation rates that are unperturbed and 2N ¼ 1000. Each panel shows three simulations with mutation rates
4Nm ¼ 4Nn 2 f2;1=2; 1=4g (light-green to dark-green) where the exact observables (black) are compared with the continuous DynMaxEnt approxi-
mation (green, dashed). (A–C) Simulation with constraints hzi, hUi, and hVi when 4Nm; 4Nn.1 and a single constraint hzi when 4Nm;4Nn,1. (D–F)
Simulation with constraints z, hHi, hUi, and hVi when 4Nm;4Nn.1 and two constraints hzi and hHi when 4Nm;4Nn,1.

Figure D2 Effective coefficients
a* of the continuous DynMaxEnt
approximation for the scenario of
Figure D1. (A) 4Nm ¼ 4Nn ¼ 2,
(B) 4Nm ¼ 4Nn ¼ 1=2, and (C)
4Nm ¼ 4Nn ¼ 1=4 are compared
between the simulation without
(solid line) vs. with (dashed line)
the heterozygosity as a degree of
freedom. The population size is
2N ¼ 1000.

introducing additional constraints on h2pqi. This is visible both for 4Nm.1, where the number of Lagrange multipliers was
increased from three to four, and for 4Nm, 1, where the constraint on hzi was complemented by the second constraint on a
mean heterozygosity hHi ¼ h2pqi.

Figure D2 presents the dynamics of Lagrange multipliers in the example in Figure D1, where a sudden change in selection
from Nb ¼ 2 4 to Nb ¼ 4 was applied to three systems with different mutation rates Nm;   Nn 2 f2; 1=2; 1=4g. While in the
superthreshold regime 4Nm;   4Nn.1, the mutation is allowed to change in the continuous DynMaxEnt approximation; in the
subthreshold regime 4Nm;   4Nn, 1, it is fixed.

Figure D2 suggests that increasing the number of constraints; which increases the dimensionality of the problem, is
associated with a slower convergence to a steady state and a separation of timescales. This is visible both for 4Nm. 1 (left),
where the number of Lagrange multipliers was increased from three to four, and for 4Nm, 1, where the constraint on hzi was
complemented by the second constraint on a mean heterozygosity hHi ¼ h2pqi.

Next, suppose that the scaled mutation rate is initially high enough that the stationary distribution is concentrated in the
interior but then abruptly falls below the threshold at which populations are typically near fixation: 4Nm ¼ 4Nn falls from 2 to
0.1. (Note that a fall in Nm also could be due to a fall in population size rather than in mutation rate.) We also assume that
selection changes abruptly at the same time (i.e., Nb changes from 21 to 1) in order to give the most challenging example:
errors in estimating hpqi will be reflected in errors in the rate of change of the mean. Immediately after the fall in scaled
mutation rate, probability accumulates at the boundary and develops a boundary layer of a form �p4Nm21q4Nn21 that agrees
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with the stationary form, but polymorphism decays more slowly, so the full distribution is not from the stationary class. The
continuous DynMaxEnt method fails to capture the true dynamics because the mutation rates have to be instantly adjusted to
the terminal values.

Figure D3 shows that three measures of diversity (hUi; hVi; hpqi) change rapidly, with hUi and hVi falling most rapidly
because they aremore sensitive to the rapid changes near the boundary than hpqi. Note that hUi ¼ h2 log pi falls until t � 1=2N
because probability accumulates close to p ¼ 0 (note the log scale in Figure D3) but then increases again more slowly as
favorable mutations substitute, transferring probability away from p � 0. The mean changes rapidly and substantially while

Figure D3 Failure of continuous DynMaxEnt approximation for changing mutations 4Nm,1 and 2N ¼ 1000. (A) Changes in evolutionary forces that
draw the system out of equilibrium include a rapid decrease in mutation, complemented by a change in selection strength. (B, D, and E) The response of
the observed quantities hpi, hUi, and hVi. (C) The initial and final stationary allele frequency distributions. (F) The effective forces a*.

heterozygosity is still high but then changes more slowly after t � 1=2N, when the genetic variance is low and selection is
limited by the influx of new mutations.

The changes in effective parameters a* are shown in Figure D3F. Because we assume that the population is initially in its
stationary state, these parameters necessarily begin at their actual values (4Nm*,4Nn* ¼ 2,Nb* ¼ 21=2). After the mutation
rate decreases, the probability of being fixed increases rapidly, and therefore, 4Nm* and 4Nn* fall quickly, approaching their
new values byt=2N � 0:1;m* falls first because the probability of being near p ¼ 0 increases faster than the probability of being
near p ¼ 1. Over this time, Nb* changes even while the mean hpi hardly changes in order to compensate for changing Nm and
Nn. At later times, when the effective mutation rates are constant and close to their actual (low) rates, Nb* increases as the
mean changes.

Fixing the effective mutation rates makes DynMaxEnt unable to capture transient properties of the adaptation process. The
dynamics of the mean allele frequency follow p9 ¼ 2hpqiðb2b*Þ, where b* can be obtained at each time as a value that gives
the current mean allele frequency given m* ¼ m and n* ¼ n. The effective directional selection can be used further to compute
the change of observables, as displayed in Figure D3 (dashed blue). This continuous DynMaxEnt approximation fails to capture
transient dynamics of the observed quantities but still converges to the correct state. If the exact dynamics are followed for a
short time from the switch of the evolutionary forces and only then is the continuous DynMaxEnt approximation initialized, the
approximation would more closely agree with the actual observables. This is so because the real dynamics of the trait mean
slow down in time as the system gets close to an equilibrium and therefore are better captured by an approximate process
whose speed of adaptation is limited by the small fixed mutation rate.

Appendix E: Derivation of the General DynMaxEnt Approximation for Low Mutation from the Diffusion
Equation 1

We consider a directional selection acting on a single locus. The extension to multiple loci with different effects and
overdominance is straightforward and discussed later.

1540 K. Bod’ová, G. Tkačik, and N. H. Barton



The failure of the continuous DynMaxEnt method, described in Appendices C and D, requires a special treatment of the
boundaries of the allele frequency domain to avoid divergence of the method owing to singularities in matrix B. A naive
resolution is to completely disregard the boundaries and simply to truncate the allele frequency distribution. This ad hoc
method, despite resolving problems with divergence of matrix B, would not capture the dynamics at the boundaries very
accurately, particularly in the small-mutation regime. Thus, we approach the problem in a more pedantic way.

First, we split the domain to the interior and the boundaries and propose a dynamical model that captures all essential
processes. The new system depends on a truncation parameter e representing the width of the boundary layer. The stationary
distribution of the system still can be represented as a solution of the variational problem with two additional constraints and
Lagrange multipliers related to the boundary masses. The DynMaxEnt method can be derived for this expanded system.
However, the resulting macroscopic dynamics of the effective forces involve inclusion of the coupling terms at p ¼ e; 12 e,
which are microscopic quantities; these are not in general accessible. Therefore, we introduce an approximation that does not
directly prescribe the probability fluxes but circumvents this by setting the total mass at the boundaries consistently with the
continuous stationary distribution. This step is crucial for our approximation. The effect is that the expanded dynamics are
brought back to a dimension where only the mutation and selection forces are followed.

The derivation of the general DynMaxEnt approximation for a system where the stationary solution is a discontinuous
function

ceðp; tÞ ¼

8><
>:

c1
e ðp; tÞ p, e

c2
e ðp; tÞ else

c3
e ðp; tÞ p.12 e

(E1)

consists of the following steps:

1. Set up a piecewise-defined diffusion dynamics with the appropriate stationary solution.
2. Use the stationary solution as an ansatz for a solution of the diffusion problem, allowing only the Lagrange multipliers to

change in time.
3. Derive dynamics of the means of observables from this system and reduce it to a closed dynamical system for Lagrange

multipliers.

1. Diffusion equation (1) can be written in the flux form

@c

@t
¼ 2

@

@p
J½c; p� (E2)

where the flux J is defined as

J½c; p� ¼ ½MiðpiÞc�2 1
2

@

@p
½ViðpiÞc� (E3)

We set up the dynamical system for ceðp; tÞ separately in the three regions of the domain:
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where Je are the fluxes in the system with split domain (E5)
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and where the coupling between regions, which influences the probability of extreme allele frequencies, is set as

J1e
�
c1
e ; 0

� ¼ 0 (E6)

J3e
�
c3
e ; 1

� ¼ 0 (E7)

J1e
�
c1
e ; e

� ¼ J2e
�
c2
e ; e

� ¼ J½c; e� (E8)

J2e
�
c2
e ; 12 e

� ¼ J3e
�
c3
e ; 12 e

� ¼ J½c; 12 e� (E9)

While the conditions (E6 and E7) at p ¼ 0; 1 ensure that the probability mass does not dissipate through the boundaries, the
conditions at p ¼ e; 12 e set the fluxes in accordance with the fluxes of the original continuous dynamics (1), which are not
explicitly known. This results in the same stationary solution in the bulk as in the original diffusion process. Moreover, the
probability masses at the boundaries also will agree with the standard problem because the fluxes are identical. The stationary
solution, computed for p 2 ½0; eÞ as a solution of the problem J1e ½c1; p� ¼ 0 and analogously for subdomains ðe; 12 eÞ and
ð12 e; 1�, has a form (17). Moreover, setting the total mass at each subdomain equal to the corresponding mass of the
stationary solution (7) to leading order implies the choice of constant prefactors in (22).

2. The stationary distribution ceðpjaÞ in (17) depends on five parameters (for directional selection), including k and r

related to boundary masses. These parameters relate to a set of observables Afull ¼ ðz;Ue;Ve; x½0;e�; x½12e;1�Þ as the correspond-
ing Lagrange multipliers 2Nafull ¼ 2Nðb;m; n; k; rÞ. We derive the full DynMaxEnt method for this extended problem. Only
after the derivation of the full dynamics will we incorporate the relationship between k;m and r; n. We use an ansatz

ceðp; tÞ ¼ ceðpja*Þ þ dðp; tÞ (E10)

for the solution of (E4) that expresses the nonstationary solution of the equation as a sum of a stationary distribution, with
effective Lagrange multipliers a* changing in time and d representing the deviation from the stationary form. First, we express
the left-hand side of (E4) using a chain rule:

@ce

@t
¼ @ce

@b*
@b*
@t

þ⋯þ @ce

dr*
@r*
@t

þ @d

@t

Next, we calculate each summand and, for clarity, drop the notation in the exponent of afull:
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¼ 2
1
ℤ

@ℤ

@a*
k

ce þ 2NAkce ¼ 2N½Ak 2 hAki�ce

where hAki arises from differentiating ℤ and Ak from differentiating e2Na�A with respect to a*
k. This leads to
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¼ 2Nce

X5
k¼1

½Ak 2 hAki�
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k
@t
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Next, we express the right-hand side of (E4) by artificially adding an expression Je½ce; pja*�. This term represents dynamics
where the forces, applied to the system, equal the effective forces. Given stationarity, the term equals zero. The reason for its
inclusion is a cancellation of the diffusive part of the equation that does not depend ona. This leads to a simple outcomewhere
each term contains the difference between the true and the effective force:
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Equation (E4) thus becomes

1542 K. Bod’ová, G. Tkačik, and N. H. Barton
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where the function seðpÞ ¼ pq in the bulk and eq and pe when p, e and p. 12 e, respectively.
3. We then multiply the equation by Aj and average via allele frequency distribution. The goal is to find effective forces a*

such that the error terms vanish; i.e., the projection of the full dynamics to the space of macroscopic quantities A is closed.
Because there are k constraints and the same number of forces, sucha values in principle exist and are unique. Themost crucial
implication is that the approximation of macroscopic quantities is forced to coincide with the exact values A while the quasi-
stationarity is valid. The equation becomes

2N
X5
k¼1

@a*
k

@t

Z1
0

½AkAj2 hAkiAj�cedp ¼ 2
X5
k¼1

Z1
0

Aj
@

@p

�
seðpÞ
2

�
ak 2a*

k

� @Ak

@p
ce

�
dp (E12)

Next, we use integration by parts on the right-hand side of the equation. This introduces boundary terms, i.e., terms evaluated at
p ¼ 0; e; 12 e; 1 coming from the integration by parts. We neglected these terms by assuming a rapid convergence to the
stationary distribution and instantaneous adjustment of the fluxes at the boundaries of the subdomains to their stationary
values. This stationarity assumption is adopted to avoid dependence of the approximation on the microscopic details of the
distribution. This leads to a relationship between the moment dynamics and dynamics of Lagrange multipliers in the full
model:

2NCfull
e

@a*
@t

¼ Bfull
e ða2a*Þ (E13)

where a ¼ afull and symmetrical matrices

Bfull
e ¼

�
seðpÞ
2

@Aj

@p
@Ak

@p

	
and Cfull

e ¼ CovðAj;AkÞ

are obtained by averaging against the stationary e-dependent distribution

Bfull
e ¼

0
BBBB@

0 0
Be 0 0

0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA  (E14)
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with Be and Ce are defined as B and C but in the context of the truncated stationary distribution and constraints and with
asterisks denoting the symmetrical terms. The boundary masses entering into matrix Ce are defined as

Q ¼
Ze
0

ceðpÞdp  ; P ¼
Z1

12e

ceðpÞdp (E16)

The matrix Bfull
e is padded by zeros because @px½0;e� and @px½12e;1� vanish in the interior of the subdomains. By neglecting the

boundary terms coming from the integration by parts in the preceding calculation, we effectively limit the transfer of mass
between the bulk and the boundaries so that the boundary masses agree with the continuous stationary distribution.

Note that the stationary allele frequency distribution ceðpÞ depends on the allele frequencies but also on the effective forces
a*. Therefore, the matrices Be and Ce, as well as matrices Bfull

e and Cfull
e , obtained by averaging over the microscopic states are

still functions of effective forces as in the continuous DynMaxEnt method. However, because the averages require integration
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through the interior domain ½e; 12 e� and separately through the boundaries ½0; e� and ½12 e; 1�, the integrals can no longer be
written using the special functions and have to be evaluated numerically.

So far we have derived an extended dynamical system for the Lagrange multipliers a*. One of the key questions is whether
the dynamics converge to the target state a. Because the system has form

@a*
@t

¼ 2M*
eða*2aÞ (E17)

whereM*
e ¼ 1=2NðCfull

e Þ21Bfull
e (note that the standard form of the ODE has a negative sign in front ofM*

e), and convergence to
the steady-state is captured by the sign of the eigenvalues ofM*

e . When they are positive (i.e.,2M*
e has negative eigenvalues),

the target state is asymptotically stable. It is easy to see that bothBfull
e andCfull

e are symmetrical and positive semidefinite (Cfull
e is

a covariance matrix and utBfull
e u. 0 can be written as a square), and thus the matrix M*

e has nonnegative eigenvalues.
Therefore, the dynamics of Lagrange multipliers should converge to the fixed point. This fixed point is precisely the target
point a unless some of the eigenvalues converge to zero—then the dynamics may get trapped at a different point of the phase
space and be unable to continue all the way to the target state.

Moreover, because the dynamics of Lagrange multipliers are five dimensional, while the dynamics of observables, driven by
the Bmatrix, have only three degrees of freedom (because the entries of Bfull

e corresponding to A4 and A5 are zero), the method
is in principle underdetermined. This essentially means that Lagrange multipliers m and k and n and r may follow strange
dynamics that together nevertheless lead towell-approximated observables. This is why in the next step we need to employ the
constraints on k and r by slaving their dynamics with dynamics of mutation rates:

k ¼ 2
1
2N

logð4NmÞ  ; r ¼ 2
1
2N

logð4NnÞ (E18)

Imposing these constraints leads to reduced dynamics with only three degrees of freedom, A ¼ ðz;Ue;VeÞ and a ¼ ðb;m; nÞ.
The full dynamics can be reduced by disregarding the entries of Bfull

e that are identically equal to zero and considering only
the submatrix Be. Intuitively, one expects that the reduced dynamics will be identical to the dynamics (14) governed by 33 3
matrices Be and Ce ¼ CovðAj;AkÞ. However, we show that the Cmatrix involves additional terms. To do that, we start by taking
the first three equations from (E11), leaving out the equations for the dynamics of r and k and by substituting r and kwith the
expressions for m and n from (E18):
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We are left with a system of three ODEs that involve terms from the dynamics of k and r (the second sum on the left). We then
substitute values of k and r from (E18) and obtain the correct Cmatrix:
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resulting in a reduced dynamics @a*=@t ¼ ð1=2NÞðCeÞ21Beða2a*Þ. Note that despite the original intuition, the added terms in
the second and third columnsmust be present to reflect the dynamical character of the prefactors in the stationary distribution.
The case with dominance is treated in an analogous way and results in matrices Be and Ce of dimension 4 3 4.

An important question is whether the dynamics described in the preceding system converge to the statea. This is true for the
dynamics of observables, driven by matrix Be, no matter the initial and target state because of the symmetry and positive
definiteness. This means that the approximation can, in principle, work, but it remains to be seen if the dynamics of Lagrange
multipliers also have good convergence properties. ThematrixCe is no longer symmetrical, and thus ðCeÞ21Be is not necessarily
positive definite. However, all our simulations suggest that positive semidefiniteness holds, and the only way that the approx-
imation may fail to converge to the fixed point a is when some of the eigenvalues go to zero. In such a case, the trajectory gets
trapped at a different state. We have observed this behavior for 4Nm � 1, where one of the mutation rates approaches zero.
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Figure F1 Effect of Ne on performance of the general DynMaxEnt method. The response to a fast change in selection Nb ¼ 21 to 1 (or 22 to 2) has
been compared with the approximated response of the system while keeping mutations fixed at 4Nm ¼ 4Nn ¼ 1=2 (or 1/10) and no overdominance
Nh ¼ 0 and 2N ¼ 1000. Each panel shows all four combinations of parameter regimes, distinguished by color (Nb) and filling (4Nm). We used a method
that constrains expectations of three observables hzi, hUi, and hVi. Panels also contain the error of the continuous DynMaxEnt method plotted at
Ne ¼ 0 that was obtained by fixing effective mutations at m* ¼ m, n* ¼ n. (A) Relative error of the trait mean. (B) Relative error of the mean
heterozygosity.

Appendix F: Dependence on the Truncation Parameter Ne

Evolution of quantitative traits depends on the followingnondimensional parameters:Nb,Nm, andNn. The generalDynMaxEnt
approximation, as well as the piecewise-defined diffusion (E4), depends on an additional nondimensional parameter Ne that
influences the quality of the general DynMaxEnt approximation. As this parameter gets very small, the method approaches the
continuous method without boundary layers. Because in the limiting case matrix Be/B contains diverging components, the
error of the general approximation should increase as Ne gets smaller. Similarly, the error will be large when Ne � 1. This is so
because the relationship (22), which assumedNe � 1, no longermatches the boundarymasses of the approximated stationary
distribution with the correct stationary distribution. Moreover, the boundary is too wide for Ne � 1 to disentangle the effects
of selection and mutation.

Simulations in Figure F1 applied a sudden change in selection while the small mutation rates remained unperturbed. The
figure shows that there exists an optimal value of the thresholdNe that leads to the best approximation. This threshold seems to

Figure F2 Effect of Na on performance of the general DynMaxEnt method. The reference simulation undergoes a fast change in selection
Nb : 21/1, heterozygosity Nh : 4/0, and mutation 4Nm;4Nn : 0:5/0:1 and 2N ¼ 1000. The three panels show dependence of the simulation
error when the reference case parameters are changed one at a time. (A) Dependence on the strength of directional selection, changing from 2Nb to
Nb (plotted on a linear scale). (B) Dependence on the strength of selection for the heterozygous form, changing from Nh to 0 (plotted on a linear scale).
(C) Dependence on the magnitude of mutation, changing from 0.5 to 4Nm ¼ 4Nn (plotted on a logarithmic scale).
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Figure G1 Comparison among discrete, continuous, and general approximations. We show performance of the methods in two scenarios: (A) rapid
change in selection Nb ¼ 21 to 1 with the other parameters unperturbed Nh ¼ 0, Nm ¼ Nn 2 f225; . . . ; 22g; (B) rapid change in selection Nb ¼ 2 1
to 1 and mutation 4Nm ¼ 4Nn ¼ 1:1 to f225; . . . ;22g combined with a change in heterozygosity Nh ¼ 4 to 0. The population size is 2N ¼ 1000.

depend on the mutation rates Nm;Nn but also weakly on the selection rate Nb, which is consistent with a representation of
p,Ne as a mutation-dominated regime. The optimal threshold differs when considering error in the trait mean and in the
mean heterozygosity.

It is useful toknowhowthegeneralDynMaxEntmethodperforms for realistic examplesgivenasensiblefixedchoiceofNe.We
set 2Ne ¼ 1 such that e corresponds to a frequency of one in the total of 2N individuals. We took the reference simulation in
Example 2 and varied strengths of the parameters Nb, Nh, and 4Nm ¼ 4Nn one at a time. Figure F2 shows that the relative
error in a trait mean is for most parameter settings within 1%. The worst-case scenario occurs when the selection gradient is
strong and mutations drop rapidly to a small value. This is expected because strong and rapid change in selection implies a
large deviation from adiabatic regime; thus the quasi-stationarity assumption may fail. Additionally, small mutations lead to a
separation of timescales in the model that may be too complex to capture by a simple approximation. Surprisingly, stronger
selection on heterozygosity does not decrease the accuracy of the method, which is counterintuitive because large Nh leads to
more complex allele frequency distributions.

Appendix G: Comparison of Different Methods

We compare three available methods: the discrete approximation (see Appendix C), which captures responses to a change in
selection in the limit 4Nm; 4Nn/0; the continuous DynMaxEnt approximation (see Equation 14), valid for 4Nm; 4Nn. 1 with
a possibility to treat also small but static mutation; and the general DynMaxEnt approximation (see Equation 26), which
extends the validity to dynamic mutations of an arbitrary magnitude. Note that dynamic Lagrange multipliers also may
represent changing population size, not just the evolutionary forces.

Figure G1 shows two scenarios: perturbation of the system via a change of selection (A) and perturbation through changes
in all evolutionary parameters (B). In the case of (A), the continuous DynMaxEnt method can be applied even in the case of
small mutations 4Nm, 1 by enforcing a fixedmutation rate in time. But even then the continuousmethod performsworse than
the general method, which shows a relative error on the order of a few percent. In comparison, the discrete approximation
gives an accurate estimate when mutations drop below 4Nm, 0:1, but given its simplicity, it does not capture unequal and
dynamic mutation rates.

Thepowerof thegeneralDynMaxEnt isdemonstrated inFigureG1Bfordynamicmutations.This situationcannotbecaptured
by the simple discrete approximation, and the continuous DynMaxEnt, not valid for 4Nm, 1, shows divergence that is an

1546 K. Bod’ová, G. Tkačik, and N. H. Barton



Figure H1 Irreversibility of the dynamics for Example 2. The dynamics in Figure 2 have been complemented by dynamics with the initial state and the
final state reversed. (A) Values of evolutionary forces for the reversed simulation. (B) Initial and final allele frequency distributions for the reversed
simulation. (C and E) The paths between the initial/final conditions (circle/star) displayed in the space of observables, together with the exact dynamics,
shown in orange. We displayed the situation in two of six possible pairs of coordinates. (D and F) The dynamics visualized in the space of corresponding
Lagrange multipliers. All figures show the forward trajectory (Example 2) in gray-dashed curve and dynamics with reversed initial and final state in black-
dashed curve.

inherent property of the matrix B, approximating the dynamics of the observables. To show the performance of the continuous
method, we included N in the axis denoting the accuracy of the approximation.

Appendix H: Irreversibility of the Adaptation Dynamics

Figure H1 compares the dynamics of the observables and Lagrange multipliers for Example 2, where the initially trimodal
distribution loses polymorphism owing to a decrease in the selection for heterozygous individuals and a simultaneous decrease
in the mutation rate and a reversed dynamics with the initial and final conditions switched. The dynamics are irreversible
because switching the initial and final conditions leads to very different paths in the space of observables, as well as in the space
of the effective forces. The dynamics in the space of observables show a good agreement with the exact solution of the problem.
The paths from the initial to the final state are relatively straight. On the contrary, the dynamics of Lagrange multipliers show a
complicated response of the system that exhibits a separation of timescales and overshooting of the equilibrium levels; e.g., the
effective selection coefficient grows to a level Nb � 1:5 before decreasing back to Nb ¼ 1.

Appendix I: Equivalence Between Single-Locus Approximation and Multiple Loci with Equal Effects

A trait typically depends on many loci with different effects. If these effects are called gi, the simplest case is an additive trait
z ¼ P

igiðpi 2 qiÞ. If linkage equilibrium is assumed, the constraints can be written in terms of allele frequencies at the loci
where each constraint is additive via loci (Ai ¼

Pn
kA

ðkÞ
i ) with symmetrical expressions in terms of pi. While the selection-related

constraints depend on the distribution of effects g linearly, themutation-related constraints do not depend on it. If the effects of
the L loci on an additive trait are the same, and gi ¼ 1, then

BL ¼
*XL

k¼1

@A
@pk

pkqk
2

@AT

@pk

+
¼

XL
k¼1

*
@A
@p1

p1q1
2

@AT

@p1

+
¼ LB1

where BL is the matrix of genetic covariances for L loci. This is true even in the approximation for small dynamic mutations
because the boundary terms are also additive accross loci. A similar relationship holds for the covariance of fluctuations
CL ¼ LC1. Therefore, the matrix defining the MaxEnt dynamics of Lagrange multipliers in case of L loci with equal effects is
identical to dynamics of Lagrange multipliers in case of a single locus, i.e., C21

L BL ¼ C21
1 B1. As a result, the trait mean
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Figure J1 Example 3: dynamics of the quantitative traits for 100 loci of different effects. The effects are randomly drawn from (A) a uniform distribution
in ½0;2�, (B) an exponential distribution with mean 1, and (C) deterministic effects where 95 of the loci have effects 0.01, while the remaining 5 loci have
effects 19.81. The true forces a change at time t ¼ 0 and draw the system out of equilibrium. The response of the observed quantities hpqi,
h2logpi, and h2logqi is shown in blue dots, while the approximation is shown in green. The quality of the approximation for the trait mean hzi is
shown in Figure 3.

zn ¼ PL
k¼1ðpi 2 qiÞ ¼ Lðp2 qÞ ¼ nz1, where p represents the allele frequency in the single-locus simulation with other param-

eters unchanged. However, the calculation of a trait mean for L independent loci of equal effects gi ¼ 1 using the continuous
model gives

dzL
dt

¼ 2
XL
k¼1

dpi
dt

¼ L
dz1
dt

(I.1)

showing that the relationship zL ¼ Lz1 follows also from the model description.

Appendix J: Additional Results for Multiple Loci with Unequal Effects

Figure J1 shows details on the quality of the general DynMaxEnt approximation in Example 3, where a linear trait depending
on 100 loci with different effects evolves owing to a combination of a directional selection and selection on heterozygosity,
random drift, and mutation. The changes in evolutionary forces are the same as in Example 2.

1548 K. Bod’ová, G. Tkačik, and N. H. Barton
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