
Group Henzinger
Software Systems Theory

Group members

Sergiy Bogomolov Przemysław Daca Mirco Giacobbe Tom Henzinger

Hui Kong Bernhard Kragl Andrey Kupriyanov Tatjana Petrov

Jakob Ruess Roopsha Samanta Thorsten Tarrach

Computer-aided Concurrent Programming
Typical concurrency bugs such as data races are caused by sub-
tle synchronization errors. We aim to make concurrent program-
ming easier by automatically synthesizing tricky synchroniza-
tion primitives (locks). The programmer programs assuming
a non-preemptive (cooperative) scheduler that does not interrupt
threads. The synthesis procedure makes the program safe for a
preemptive scheduler.

How to automatically infer locks to ensure correctness?
How to infer minimal locks required for correctness?

Our solution is based on a a finitary abstraction, an automata-
theoretic language inclusion check, trace-generalization, rewrite
rules for synchronization inference and constraint-solving.

Input Program

Correct with
non-preemptive scheduler

Synchronization
Synthesizer Output Program

Correct with
preemptive scheduler

R. Samanta, T. Tarrach, and external collaborators

Performance-Aware Software Synthesis
Software systems are built using components such as counters,
pools, and queues. Components with strong guarantees (e.g.,
queues) are easier to reason about, while those with relaxed guar-
antees (e.g., pools) provide better performance.

How to ease the programming burden by automatically optimizing
the performance of component-based programs?

We allow the programmer to write a program P using components
{Ai}, and automatically synthesize glue code that dynamically
redirects calls to more efficient components {Bi} while ensuring that
P
(
{Ai}

)
is observationally equivalent to P

(
{Bi}

)
.

P
P

!

A1

B1

B2
B3

Synthesis
bisimulation
specification inference
functional synthesis
performance metric
non-interference

B. Kragl, A. Kupriyanov, and R. Samanta

Systems Biology
Biological systems can be seen as reactive systems, namely dy-
namical systems which interact with their environment by receiving
and transmitting signals. Gene regulatory networks (GRNs) are
systems for which proteins are produced and fed to the environment
in response to proteins coming from the environment. Moreover,
GRNs are subject to evolution which vary their behaviour.

How to reason about evolving reactive systems?

We use parametric model checking to compute the probability of an
evolving system to satisfy a property, i.e. its mutational robustness.

A B

wAB

wAA
wBA

wBB

iA iB

00 01

10 11

00 01

10 11

00 01

10 11

00 01

10 11

p1

p2

p3

p4p5

p6

p7

p8

p9
p10

p11

Syntax: Gene regulatory network Semantics: Markov chain of transition systems

M. Giacobbe, T. Petrov, and external collaborators

Hybrid Systems
We develop automatic techniques to verify and synthesize hybrid
systems. Hybrid systems consist of discrete software controllers
interacting with continuous physical environments.

How to automatically compute a system abstraction that
provides enough information to efficiently check a property?

In our work, we build system abstractions using flow-pipe construc-
tion, barrier-certificates and moment closures.

Flow-pipe construction

−2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x 2

Barrier certificate

S. Bogomolov, M. Giacobbe, H. Kong, J. Ruess, and external collaborators

Probabilistic Systems
Statistical model checking (SMC) is an approach to verification
of probabilistic systems, where we sample from the system, and
apply statistics to infer conclusions. We propose an SMC algorithm
for unbounded properties, e.g.:

What is the probability we reach state u once?
How about infinitely many times?

Our key idea is to detect recurrent states by observing simulations.

s

v1 · · · vn
1

1

t u

0.5

0.5

1

0.99
0.99

0.01 0.01

sv1v2 . . . vn−1 vnvnvn︸ ︷︷ ︸
recurrent

s tututu︸ ︷︷ ︸
recurrent

P. Daca, T. Petrov, and external collaborators

http://ist.ac.at/

