IST Austria: Statistical Machine Learning 2018/19 Christoph Lampert <chl@ist.ac.at> TAs: Nikola Konstantinov <nkonstan@ist.ac.at>, Mary Phuong <bphuong@ist.ac.at> Amelie Royer <aroyer@ist.ac.at> Exercise Sheet 3/6 (due date 29/10/2018)

1 Robustness of the Perceptron

Remember Perceptron training of Lecture 1 (deterministic with samples in fixed order). Look at the dataset with the following three points:

$$\mathcal{D} = \{ \begin{pmatrix} 2\\1 \end{pmatrix}, +1 \end{pmatrix}, \begin{pmatrix} -1\\-2 \end{pmatrix}, -1 \end{pmatrix}, \begin{pmatrix} a\\b \end{pmatrix}, +1 \} \subset \mathbb{R}^2 \times \{\pm 1\}.$$

- For any $0 < \rho \leq 1$, find values for a and b such that the Perceptron algorithm converges to a correct classifier with robustness ρ .
- What's the maximal robustness you can achieve for any choice of a and b?

2 Class Prior Shift

Assume a binary classification setting, $y \in \{-1, 1\}$. Somebody gives you the weight vector, w, and bias term b, of a logistic regression model

$$p_{LR}(y|x;w,b) = \frac{1}{1 + e^{-y(\langle w,x \rangle + b)}},$$

which was trained for an underlying probability distribution p(x, y) that has $p(y = 0) = p(y = 1) = \frac{1}{2}$.

- Derive a logistic regression model, q_{LR} , for a distribution q(x, y) that fulfills q(x|y) = p(x|y), but $q(y = -1) = \frac{1}{3}$, $q(y = 1) = \frac{2}{3}$.
- For any $a \in (0,1)$, derive a logistic regression model, $q_{LR;a}$ for the same situation as above but with q(y=-1) = a, q(y=1) = 1 a.
- What are the optimal decision functions for p_{LR} , q_{LR} , and $q_{LR;a}$ with 0/1-loss?

3 Hard-Margin SVM Dual

Compute the dual optimization problem to the hard-margin SVM training problem:

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \quad \frac{1}{2} \|w\|^2 \quad \text{subject to} \quad y^i(\langle w, x^i \rangle + b) \ge 1, \qquad \text{for } i = 1, \dots, n.$$

(Hint: it should be a quadratic objective function with linear constraints.)

4 Perceptron Training as (Convex) Optimization

The following form of Perceptron training can be interpreted as optimizing a convex, but non-differentiable, objective function by the stochastic subgradient method. What is the objective? What is the stepsize rule? Discuss advantages and shortcomings of this interpretation.

Algorithm 1 Randomized Perceptron Training

input linearly separable training set $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\} \subset \mathbb{R}^d \times \{\pm 1\}$ 1: $w_1 \leftarrow 0$ 2: for t = 1, ..., T do $(x, y) \leftarrow$ random example from \mathcal{D} 3: if $y\langle w_t, x\rangle \leq 0$ then 4: $w_{t+1} \leftarrow w_t + yx$ 5:else 6: 7: $w_{t+1} \leftarrow w_t$ 8: end if 9: end for output w_{T+1}

5 Missing Proofs

- Let f_1, \ldots, f_K be differentiable at w_0 and let $f(w) = \max\{f_1(w), \ldots, f_K(w)\}$. Let k be any index with $f_k(w_0) = f(w_0)$. Show that any v that is a subgradient of f_k at w_0 is also a subgradient of f at w_0 .
- Let f be a convex function and denote by w^* a (global) minimum of f. Let $w_{t+1} = w_t \eta_t v$, where v is a subgradient of the f at w_t .

Show: there exists a stepsize η_t such that $||w_{t+1} - w^*|| < ||w_t - w^*||$, except if w_t is a minimum already.

• In your above proof, w^* can be *any* minimum of f. Let w_1^* and w_2^* be two different minima, then w_t will approach both of them. Isn't this impossible?

Note: this is not a trivial question: convex functions can have multiple global minima, e.g. f(w) = 0 has infinitely many.

• Let $g(\alpha) = \max_{\theta \in \Theta} \left[f(\theta) + \sum_{i=1}^{k} \alpha_i g_i(\theta) \right]$ be the dual function of an optimization problem. Show: g is always a convex function w.r.t. α , even if the original optimization problem was not convex.

6 Practical Experiments V

- Implement a *linear support vector machine (SVM)* with training by the subgradient method.
- What error rates do both methods achieve on the datasets from sheet 1?
- For the *wine* data, make a plot of the SVM's objective values and the Euclidean distance to the optimium (after you computed it in an earlier run) after each iteration.