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1 Robustness of the Perceptron

Remember Perceptron training of Lecture 1 (deterministic with samples in fixed order). Look at the dataset
with the following three points:

D—{ ((i) +1), ((jé) 1), ((Z) 1)} C R x {£1}.

e For any 0 < p < 1, find values for a and b such that the Perceptron algorithm converges to a correct
classifier with robustness p.

e What’s the maximal robustness you can achieve for any choice of a and b?

2 Class Prior Shift

Assume a binary classification setting, y € {—1,1}. Somebody gives you the weight vector, w, and bias term b,
of a logistic regression model

pLalylTiwb) = T S

which was trained for an underlying probability distribution p(x,y) that has p(y =0) =p(y =1) =

N =

e Derive a logistic regression model, qg, for a distribution ¢(z,y) that fulfills ¢(z|y) = p(z|y), but ¢(y =
1) =3qy=1)=3

e For any a € (0,1), derive a logistic regression model, qpr,, for the same situation as above but with
qy=-1)=a,qly=1)=1-a.

e What are the optimal decision functions for ppr, qrr, and qrr., with 0/1-loss?

3 Hard-Margin SVM Dual

Compute the dual optimization problem to the hard-margin SVM training problem:

1 | |
i = subject to  y'((w,x") +b) > 1, fori=1,...,n.
Lmin ol sibjectto y((wa) 48 =1L fori=L..n

(Hint: it should be a quadratic objective function with linear constraints.)



4 Perceptron Training as (Convex) Optimization

The following form of Perceptron training can be interpreted as optimizing a convex, but non-differentiable,
objective function by the stochastic subgradient method. What is the objective? What is the stepsize rule?
Discuss advantages and shortcomings of this interpretation.

Algorithm 1 Randomized Perceptron Training

input linearly separable training set D = {(z!,¢%),..., (2", y")} C RY x {£1}
1: wy <0
2: fort=1,...,7 do

3:  (z,y) « random example from D
4:  if y(w,, ) <0 then

5: Wil < Wy + YT

6: else

7 Wey1 $ Wy

8 end if

9: end for

output wry

5 Missing Proofs

Let fi,..., fx be differentiable at wy and let f(w) = max{fi(w),..., fx(w)}. Let k be any index with
fr(wo) = f(wp). Show that any v that is a subgradient of fj at wy is also a subgradient of f at wy.

Let f be a convex function and denote by w* a (global) minimum of f. Let w;;1 = wy — nv, where v is a
subgradient of the f at w;.

Show: there exists a stepsize 7 such that ||w.1 — w*|| < |Jwy — w*||, except if wy is a minimum already.

In your above proof, w* can be any minimum of f. Let wj and wj be two different minima, then w; will
approach both of them. Isn’t this impossible?

Note: this is not a trivial question: convex functions can have multiple global minima, e.g. f(w) = 0 has
infinitely many.

Let g(o) = maxgeo [f(0) + S @;g:(0)] be the dual function of an optimization problem.

Show: ¢ is always a convex function w.r.t. «, even if the original optimization problem was not convex.

Practical Experiments V

Implement a linear support vector machine (SVM) with training by the subgradient method.
What error rates do both methods achieve on the datasets from sheet 17

For the wine data, make a plot of the SVM’s objective values and the Euclidean distance to the optimium
(after you computed it in an earlier run) after each iteration.



