IST Austria: Statistical Machine Learning 2018/19
Christoph Lampert chl@ist.ac.at
TAs: Nikola Konstantinov nkonstan@ist.ac.at, Mary Phuong bphuong@ist.ac.at
Amelie Royer aroyer@ist.ac.at
Exercise Sheet 3/6 (due date 29/10/2018)

1 Robustness of the Perceptron

Remember Perceptron training of Lecture 1 (deterministic with samples in fixed order). Look at the dataset with the following three points:

$$
\mathcal{D}=\left\{\left(\binom{2}{1},+1\right),\left(\binom{-1}{-2},-1\right),\left(\binom{a}{b},+1\right)\right\} \subset \mathbb{R}^{2} \times\{ \pm 1\} .
$$

- For any $0<\rho \leq 1$, find values for a and b such that the Perceptron algorithm converges to a correct classifier with robustness ρ.
- What's the maximal robustness you can achieve for any choice of a and b ?

2 Class Prior Shift

Assume a binary classification setting, $y \in\{-1,1\}$. Somebody gives you the weight vector, w, and bias term b, of a logistic regression model

$$
p_{L R}(y \mid x ; w, b)=\frac{1}{1+e^{-y(\langle w, x\rangle+b)}},
$$

which was trained for an underlying probability distribution $p(x, y)$ that has $p(y=0)=p(y=1)=\frac{1}{2}$.

- Derive a logistic regression model, $q_{L R}$, for a distribution $q(x, y)$ that fulfills $q(x \mid y)=p(x \mid y)$, but $q(y=$ $-1)=\frac{1}{3}, q(y=1)=\frac{2}{3}$.
- For any $a \in(0,1)$, derive a logistic regression model, $q_{L R ; a}$ for the same situation as above but with $q(y=-1)=a, q(y=1)=1-a$.
- What are the optimal decision functions for $p_{L R}, q_{L R}$, and $q_{L R ; a}$ with $0 / 1$-loss?

3 Hard-Margin SVM Dual

Compute the dual optimization problem to the hard-margin SVM training problem:

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \quad \frac{1}{2}\|w\|^{2} \quad \text { subject to } \quad y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right) \geq 1, \quad \text { for } i=1, \ldots, n
$$

(Hint: it should be a quadratic objective function with linear constraints.)

4 Perceptron Training as (Convex) Optimization

The following form of Perceptron training can be interpreted as optimizing a convex, but non-differentiable, objective function by the stochastic subgradient method. What is the objective? What is the stepsize rule? Discuss advantages and shortcomings of this interpretation.

```
Algorithm 1 Randomized Perceptron Training
input linearly separable training set \(\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathbb{R}^{d} \times\{ \pm 1\}\)
    \(w_{1} \leftarrow 0\)
    for \(t=1, \ldots, T\) do
        \((x, y) \leftarrow\) random example from \(\mathcal{D}\)
        if \(y\left\langle w_{t}, x\right\rangle \leq 0\) then
            \(w_{t+1} \leftarrow w_{t}+y x\)
        else
            \(w_{t+1} \leftarrow w_{t}\)
        end if
    end for
output \(w_{T+1}\)
```


5 Missing Proofs

- Let f_{1}, \ldots, f_{K} be differentiable at w_{0} and let $f(w)=\max \left\{f_{1}(w), \ldots, f_{K}(w)\right\}$. Let k be any index with $f_{k}\left(w_{0}\right)=f\left(w_{0}\right)$. Show that any v that is a subgradient of f_{k} at w_{0} is also a subgradient of f at w_{0}.
- Let f be a convex function and denote by w^{*} a (global) minimum of f. Let $w_{t+1}=w_{t}-\eta_{t} v$, where v is a subgradient of the f at w_{t}.
Show: there exists a stepsize η_{t} such that $\left\|w_{t+1}-w^{*}\right\|<\left\|w_{t}-w^{*}\right\|$, except if w_{t} is a minimum already.
- In your above proof, w^{*} can be any minimum of f. Let w_{1}^{*} and w_{2}^{*} be two different minima, then w_{t} will approach both of them. Isn't this impossible?
Note: this is not a trivial question: convex functions can have multiple global minima, e.g. $f(w)=0$ has infinitely many.
- Let $g(\alpha)=\max _{\theta \in \Theta}\left[f(\theta)+\sum_{i=1}^{k} \alpha_{i} g_{i}(\theta)\right]$ be the dual function of an optimization problem.

Show: g is always a convex function w.r.t. α, even if the original optimization problem was not convex.

6 Practical Experiments V

- Implement a linear support vector machine (SVM) with training by the subgradient method.
- What error rates do both methods achieve on the datasets from sheet 1 ?
- For the wine data, make a plot of the SVM's objective values and the Euclidean distance to the optimium (after you computed it in an earlier run) after each iteration.

