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1 Robustness of the Perceptron

Remember Perceptron training of Lecture 1 (deterministic with samples in fixed order). Look at the dataset
with the following three points:
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,+1)} ⊂ R2 × {±1}.

• For any 0 < ρ ≤ 1, find values for a and b such that the Perceptron algorithm converges to a correct
classifier with robustness ρ.

• What’s the maximal robustness you can achieve for any choice of a and b?

2 Class Prior Shift

Assume a binary classification setting, y ∈ {−1, 1}. Somebody gives you the weight vector, w, and bias term b,
of a logistic regression model

pLR(y|x;w, b) =
1

1 + e−y(〈w,x〉+b) ,

which was trained for an underlying probability distribution p(x, y) that has p(y = 0) = p(y = 1) = 1
2
.

• Derive a logistic regression model, qLR, for a distribution q(x, y) that fulfills q(x|y) = p(x|y), but q(y =
−1) = 1

3
, q(y = 1) = 2

3
.

• For any a ∈ (0, 1), derive a logistic regression model, qLR;a for the same situation as above but with
q(y = −1) = a, q(y = 1) = 1− a.

• What are the optimal decision functions for pLR, qLR, and qLR;a with 0/1-loss?

3 Hard-Margin SVM Dual

Compute the dual optimization problem to the hard-margin SVM training problem:

min
w∈Rd,b∈R

1

2
‖w‖2 subject to yi(〈w, xi〉+ b) ≥ 1, for i = 1, . . . , n.

(Hint: it should be a quadratic objective function with linear constraints.)
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4 Perceptron Training as (Convex) Optimization

The following form of Perceptron training can be interpreted as optimizing a convex, but non-differentiable,
objective function by the stochastic subgradient method. What is the objective? What is the stepsize rule?
Discuss advantages and shortcomings of this interpretation.

Algorithm 1 Randomized Perceptron Training

input linearly separable training set D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {±1}
1: w1 ← 0
2: for t = 1, . . . , T do
3: (x, y)← random example from D
4: if y〈wt, x〉 ≤ 0 then
5: wt+1 ← wt + yx
6: else
7: wt+1 ← wt
8: end if
9: end for

output wT+1

5 Missing Proofs

• Let f1, . . . , fK be differentiable at w0 and let f(w) = max{f1(w), . . . , fK(w)}. Let k be any index with
fk(w0) = f(w0). Show that any v that is a subgradient of fk at w0 is also a subgradient of f at w0.

• Let f be a convex function and denote by w∗ a (global) minimum of f . Let wt+1 = wt − ηtv, where v is a
subgradient of the f at wt.

Show: there exists a stepsize ηt such that ‖wt+1 − w∗‖ < ‖wt − w∗‖, except if wt is a minimum already.

• In your above proof, w∗ can be any minimum of f . Let w∗1 and w∗2 be two different minima, then wt will
approach both of them. Isn’t this impossible?

Note: this is not a trivial question: convex functions can have multiple global minima, e.g. f(w) = 0 has
infinitely many.

• Let g(α) = maxθ∈Θ

[
f(θ) +

∑k
i=1 αigi(θ)

]
be the dual function of an optimization problem.

Show: g is always a convex function w.r.t. α, even if the original optimization problem was not convex.

6 Practical Experiments V

• Implement a linear support vector machine (SVM) with training by the subgradient method.

• What error rates do both methods achieve on the datasets from sheet 1?

• For the wine data, make a plot of the SVM’s objective values and the Euclidean distance to the optimium
(after you computed it in an earlier run) after each iteration.
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