Statistical Machine Learning
 https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Institute of Science and Technology

Spring Semester 2018/2019
Lecture 1

Overview (tentative)

Date		no.	Topic
Oct 08	Mon	1	A Hands-On Introduction
Oct 10	Wed	-	self-study (Christoph traveling) Bayesian Decision Theory
Oct 15	Mon	2	Generative Probabilistic Models Oct 17
Wed	3	Discriminative Probabilistic Models Maximum Margin Classifiers	
Oct 22	Mon	4	Generalized Linear Classifiers, Optimization Oct 24 Wed
Oct 29	Mon	Evaluating Predictors; Model Selection	
Self-study (Christoph traveling)			
Oct 31	Wed	6	Overfitting/Underfitting, Regularization
Nov 05	Mon	7	Learning Theory I: classical/Rademacher bounds
Nov 07	Wed	8	Learning Theory II: miscellaneous
Nov 12	Mon	9	Probabilistic Graphical Models I
Nov 14	Wed	10	Probabilistic Graphical Models II
Nov 19	Mon	11	Probabilistic Graphical Models III
Nov 21	Wed	12	Probabilistic Graphical Models IV final project
until Nov 25			

What is Machine Learning

Definition (Mitchell, 1997)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

What is Machine Learning

Definition (Mitchell, 1997)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Example: Backgammon

- T)ask: Play backgammon.
- E)xperience: Games playes against itself
- P)erformance Measure: Games won against human players.

What is Machine Learning

Definition (Mitchell, 1997)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Example: Spam classification

- T)ask: determine if emails are Spam or non-Spam.
- E)xperience: Incoming emails with human classification
- P)erformance Measure: percentage of correct decisions

What is Machine Learning

Definition (Mitchell, 1997)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Example: Stock market predictions

- T)ask: predict the price of some shares
- E)xperience: past prices
- P)erformance Measure: money you win or lose

Notation

Task:

- \mathcal{X} : input set, set of all possible inputs
- \mathcal{Y} : output set, set of all possible outputs
- $f: \mathcal{X} \rightarrow \mathcal{Y}$: prediction function,
- e.g. $\mathcal{X}=\{$ all possible emails $\}, \mathcal{Y}=\{$ spam, ham $\}$ f spam filter: for new email $x \in \mathcal{X}: f(x)=\operatorname{spam}$ or $f(x)=$ ham.

Performance:

- $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$: loss function
- e.g. $\ell\left(y, y^{\prime}\right)$ is cost of predicting y^{\prime} if y is correct.
- $\ell\left(y, y^{\prime}\right)$ can be asymmetric: spam \rightarrow ham is annoying, but no big deal.
- ham \rightarrow spam can cause serious problems.

Experience: task-dependent, many different scenarios

- Supervised learning: a labeled training set examples from \mathcal{X} with outputs provided by an expert, $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$
- A person goes through his/her n emails and marks each one whether it is spam or not.

What is Machine Learning

Many other variants on how to formalize experience exist:

- Unsupervised Learning: $\mathcal{D}=\left\{x^{1}, \ldots, x^{n}\right\}$, only observing, no input from an expert/teacher
- Semi-supervised Learning:
$\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{l}, y^{l}\right)\right\} \cup\left\{x^{l+1}, \ldots, x^{n}\right\}:$ only a subset of
examples has labels (common for spam filters)
- Reinforcement Learning: $\mathcal{D}=\left\{\left(x^{1}, r^{1}\right), \ldots,\left(x^{n}, r^{n}\right)\right\}$ with $r^{i} \in \mathbb{R}$: actions and feedback how good the action was (backgammon: nobody tells you the best move, but eventually you observe the outcome of winning or losing)
- Multiple Instance Learning: $\mathcal{D}=\left\{\left(X^{1}, y^{1}\right), \ldots,\left(X^{n}, y^{n}\right)\right\}$ where $X^{i}=\left\{x^{i, 1}, \ldots, x^{i, n_{i}}\right\}$. Labels are given not for individual samples, but for groups (e.g. parmacy: a drug cocktail has a certain effect, but it could have been any of the active substances inside)
- Active Learning: $\mathcal{D}=\left\{x^{1}, \ldots, x^{n}\right\}$, but the algorithms may ask for labels (spam: email program can ask the user, if its not too often)

Supervised Learning

Definition

- A supervised learning system (or learner), L, is a (computable) function from the set of (finite) training sets to the set of prediction functions:

$$
\begin{array}{ll}
& L: \mathbb{P}^{<\infty}(\mathcal{X} \times \mathcal{Y}) \rightarrow \mathcal{Y}^{\mathcal{X}} \\
\text { i.e. } & L: \mathcal{D} \mapsto f
\end{array}
$$

If presented with a training set $\mathcal{D} \subset \mathcal{X} \times \mathcal{Y}$, it provides a decision rule/function $f: \mathcal{X} \rightarrow \mathcal{Y}$.

Definition

Let L be a learning system.

- The process of computing $f=L(\mathcal{D})$ is called training (phase).
- Applying f to new data is called prediction, or testing (phase).

Machine Learning: A very practical introduction:

We will look at examples of classical learning algorithms, to get a feeling what problems a learning system faces.

- Decision Trees
- Nearest Neighbor Classifiers
- Perceptron
- Boosting
- Artificial Neural Networks

Caveat: for each of these are there more advanced, often better, variants. Here, we look at the only as prototypes, not as guideline what to actually use in real life.

Decision Trees - analysis: Breiman 1980s

Task: decide what to do today
Classifier has a tree structure:

- each interior node makes a decision: it picks an attribute within x, branches for each possible value
- each leaf has one output label
- to classify a new example, we
- put it into the root node,
- follow the decisions until we reach a leaf.
- use the leaf value as the prediction

Decisions trees ('expert systems') are popular especially for non-experts:

- easy to use, and interpretable.

How to automatically build a decision tree

Given: training set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\}$.
Convention:

- each node contains a subset of examples,
- its label is the majority label of the examples in this node (any of the majority labels, if there's a tie)

Decision Tree - Training

initialize: put all examples in root node mark root as active

repeat

pick active node with largest number of misclassified examples mark the node as inactive
for each attributes, check error rate of splitting along this attribute keep the split with smallest error, if any, and mark children as active until no more active nodes.

Decision Tree - Classification

input decision tree, example x
assign x to root node
while x not in leaf node do
move x to child according to the test in node
end while
output label of the leaf that x is in

Decision Trees Example - Training

- We have a personalized dating agency, our only customer is Zoe.
- Task: For new customers registering, predict if Zoe should date them.
- Performance Measure: If Zoe is happy with the decision.
- Experience: We show Zoe a catalog of previous custemers and she tells us whether she would have like to date them or not.
- Let $x \in \mathcal{X}$ be a collection of values or properties, $x=\left(x_{1}, \ldots, x_{d}\right)$.

property	possible values
eye color	blue/brown/green
handsome	yes/no
height	short/tall
sex	male (M)/female (F)
soccer fan	yes/no

Decision Trees Example - Training phase

Preparation: you give Zoe a set of profiles to see whom she would like to date (none of these people really have to exists...)

Here's her answers, which we'll use as training data:

\mathcal{X}						\mathcal{Y}
person	eyes	handsome	height	sex	soccer	date?
Apu	blue	yes	tall	M	no	yes
Bernice	brown	yes	short	F	no	no
Carl	blue	no	tall	M	no	yes
Doris	green	yes	short	F	no	no
Edna	brown	no	short	F	yes	no
Prof. Frink	brown	yes	tall	M	yes	no
Gil	blue	no	tall	M	yes	no
Homer	green	yes	short	M	no	yes
Itchy	brown	no	short	M	yes	yes

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

$$
\text { root }=\{(A, y),(B, n),(C, y),(D, n),(E, n),(F, n),(G, n),(H, y),(1, y)\}
$$

For each feature, check the classification accuracy of this single feature:

Total accuracy eyes: 6/9

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

$$
\text { root }=\{(A, y),(B, n),(C, y),(D, n),(E, n),(F, n),(G, n),(H, y),(1, y)\}
$$

For each feature, check the classification accuracy of this single feature:

Total accuracy handsome: 5/9

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

$$
\text { root }=\{(A, y),(B, n),(C, y),(D, n),(E, n),(F, n),(G, n),(H, y),(1, y)\}
$$

For each feature, check the classification accuracy of this single feature:

feature	accuracies	\rightarrow total
eyes	blue: $(2 / 3)$, brown: $(3 / 4)$, green: $(1 / 2)$	\rightarrow total: $(6 / 9)$
handsome	yes: $(3 / 5)$, no: $(2 / 4)$	\rightarrow total: $(5 / 9)$
height	tall: $(2 / 4)$, short: $(3 / 5)$	\rightarrow total: $(5 / 9)$
sex	male: $(4 / 6)$, female: $(3 / 3)$	\rightarrow total: $(7 / 9)$
soccer	yes: $(3 / 4)$, no: $(3 / 6)$	\rightarrow total: $(6 / 9)$

Best feature: sex.

Decision Trees Example - Training phase

Step 1 result: first split ist along sex feature

Right node: no mistakes, no more splits
Left node: run checks again for remaining data

Step 2:

person	eyes	handsome	height	sex	soccer	date?
Apu	blue	yes	tall	male	no	yes
Carl	blue	no	tall	male	no	yes
Frink	brown	yes	tall	male	yes	no
Gil	blue	no	tall	male	yes	no
Homer	green	yes	short	male	no	yes
Itchy	brown	no	short	male	yes	yes

feature	accuracies	\rightarrow total
eyes	blue: $(2 / 3)$, brown: $(1 / 2)$, green: $(1 / 1)$	\rightarrow total: $(4 / 6)$
handsome	yes: $(2 / 3)$, no: $(2 / 3)$	\rightarrow total: $(4 / 6)$
height	tall: $(2 / 4)$, short: $(2 / 2)$	\rightarrow total: $(4 / 6)$
sex	male: $(4 / 6)$	\rightarrow total: $(4 / 6)$
soccer	yes: $(2 / 3)$, no: $(3 / 3)$	\rightarrow total: $(5 / 6)$

Best feature: soccer.

Decision Trees Example - Training phase

Step 2 result: second split ist along soccer feature

Left node: no mistakes, no more splits
Right node: run checks again for remaining data

Step 3:

person	eyes	handsome	height	sex	soccer	date?
Frink	brown	yes	tall	male	yes	no
Gil	blue	no	tall	male	yes	no
Itchy	brown	no	short	male	yes	yes

feature	accuracies	\rightarrow total
eyes	blue: $(1 / 1)$, brown: $(1 / 2)$, green: $(0 / 0)$	\rightarrow total: $(2 / 3)$
handsome	yes: $(1 / 1)$, no: $(1 / 2)$	\rightarrow total: $(2 / 3)$
height	tall: $(2 / 2)$, short: $(1 / 1)$	\rightarrow total: $(3 / 3)$
sex	male: $(2 / 3)$	\rightarrow total: $(2 / 3)$
soccer	yes: $(2 / 3)$	\rightarrow total: $(2 / 3)$

Best feature: height.

Decision Trees Example - Training phase

Step 3 result: third split ist along height feature

Left node: no mistakes, no more splits Right node: no mistakes, no more splits

Decision Trees Example - Training phase

Step 3 result: third split ist along height feature

Left node: no mistakes, no more splits Right node: no mistakes, no more splits
\rightarrow Decision tree learning complete.

Decision Trees Example - How good is this classifier?

Training example 1: correct

person	eyes	handsome	height	sex	soccer	date?
Apu	blue	yes	tall	male	no	yes

Decision Trees Example - How good is this classifier?

Training example 2: correct

person	eyes	handsome	height	sex	soccer	date?
Bernice	brown	yes	short	F	no	no

Decision Trees Example - How good is this classifier?

Training example 3: correct

person	eyes	handsome	height	sex	soccer	date?
Carl	blue	no	tall	M	no	yes

Decision Trees Example - How good is this classifier?

All training examples are classified correctly!

Decision Trees Example - How good is this classifier?

- All training examples are classified correctly!

Not overly surprising... that's how we constructed the tree.

Decision Trees Example - How good is this classifier?

What if we check on new data of the same kind?

person	eyes	handsome	height	sex	soccer	date?
Jimbo	blue	no	tall	M	no	yes
Krusty	green	yes	short	M	yes	no
Lisa	blue	yes	tall	F	no	no
Moe	brown	no	short	M	no	no
Ned	brown	yes	short	M	no	yes
Quimby	blue	no	tall	M	no	yes

Decision Trees Example - How good is this classifier?

What if we check on new data of the same kind?

| person | eyes | handsome | height | sex | soccer | date? |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | tree.

2 mistakes in $6, \mathrm{hm} . .$.

Observation

Zoe won't care if our tree classifier worked perfectly on the training data. What really matters is how it works on future data: ability to generalize

Decision Trees Example - How good is this classifier?

Observation

There is a relation between accuracy during training and accuracy at test time, but it isn't a simple one. Perfect performance on the training set does not guarantee perfect performance on future data!

Why did the tree make a mistake?
Maybe it took the training data too seriously?
Would Zoe really decide that male soccer fans are only datable, if they are short, but not if they are tall?
Let's see what happens in we simplify the tree?

Decision Trees Example - How good is this classifier?

Original four-level tree: 2 mistakes in 6.

person	eyes	handsome	height	sex	soccer	date?	tree
Jimbo	blue	no	tall	M	no	yes	yes
Krusty	green	yes	short	M	yes	no	yes
Lisa	blue	yes	tall	F	no	no	no
Moe	brown	no	short	M	no	no	yes
Ned	brown	yes	short	M	no	yes	yes
Quimby	blue	no	tall	M	no	yes	yes

Decision Trees Example - How good is this classifier?

Tree with three levels: 1 mistake in 6.

person	eyes	handsome	height	sex	soccer	date?	tree
Jimbo	blue	no	tall	M	no	yes	yes
Krusty	green	yes	short	M	yes	no	no
Lisa	blue	yes	tall	F	no	no	no
Moe	brown	no	short	M	no	no	yes
Ned	brown	yes	short	M	no	yes	yes
Quimby	blue	no	tall	M	no	yes	yes

Decision Trees Example - How good is this classifier?

Tree with two levels: 2 mistakes in 6 .

person	eyes	handsome	height	sex	soccer	date?	tree
Jimbo	blue	no	tall	M	no	yes	yes
Krusty	green	yes	short	M	yes	no	yes
Lisa	blue	yes	tall	F	no	no	no
Moe	brown	no	short	M	no	no	yes
Ned	brown	yes	short	M	no	yes	yes
Quimby	blue	no	tall	M	no	yes	yes

Decision Trees Example - How good is this classifier?

Tree with one level: 3 mistakes in 6 .
label: no

person	eyes	handsome	height	sex	soccer	date?	tree
Jimbo	blue	no	tall	M	no	yes	no
Krusty	green	yes	short	M	yes	no	no
Lisa	blue	yes	tall	F	no	no	no
Moe	brown	no	short	M	no	no	no
Ned	brown	yes	short	M	no	yes	no
Quimby	blue	no	tall	M	no	yes	no

Decision Trees Example - How good is this classifier?

Error analysis:

size	training error	test error
height 1	$4 / 9$	$3 / 6$
height 2	$2 / 9$	$2 / 6$
height 3	$1 / 9$	$1 / 6$
height 4 (full)	$0 / 9$	$2 / 6$

Decision Trees Example - How good is this classifier?

Error analysis:

size	training error	test error
height 1	$4 / 9$	$3 / 6$
height 2	$2 / 9$	$2 / 6$
height 3	$1 / 9$	$1 / 6$
height 4 (full)	$0 / 9$	$2 / 6$

Very typical behaviour of machine learning systems:

Decision Tree Example - Lessons learned

Classifiers can have different complexity:

- Complexity has impact on both: training error and testing error.
- Training error: usually decreases with increasing complexity
- Test error: first decreases, then might go up again.

Test error behavior is so common that it has its own name:

- too simple models: high test error due to underfitting
- the model cannot absorb the information from the training data
- too complex models: high test error due to overfitting
- the model tries to reproduce idiosyncracies of the training data that future data will not have

Optimal classifier has a complexity somewhere inbetween, but:

- we cannot tell from either training error or test error alone if we underfit, overfit or neither
- seeing the complete curve will tell us!

Decision Trees

- Categorial data can often be handled nicely by a tree.
- For continuous data, $\mathcal{X}=\mathbb{R}^{d}$, one typically uses splits by comparing any coordinate by a threshold: $\llbracket x_{i} \geq \theta \rrbracket$?
- Finding a split consists of checking all $i=1, \ldots, d$ and all (reasonable) thresholds, e.g. all $x_{i}^{1}, \ldots, x_{i}^{n}$
- If d is large, and all dimension are roughly of equal importance (e.g. time series), this is tedious, and the resulting tree might not be good.

Nearest Neighbor - analysis: Cover\&Thomas, 1967

Nearest Neighbor - Training

input dataset $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathbb{R}^{d} \times \mathcal{Y}$
store all examples $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$.

Nearest Neighbor - Prediction

input new example $x \in \mathbb{R}^{d}$
for each training example $\left(x^{i}, y^{i}\right)$ compute $\operatorname{dist}_{i}(x)=\left\|x-x^{i}\right\|$ (Euclidean distance)
output y^{j} for $j=\operatorname{argmin}_{j} \operatorname{dist}_{i}(x)$
(if argmin is not unique, pick between possible examples)

Definition (Decision Boundary)

Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a classifier with discrete $\mathcal{Y}=\{1, \ldots, M\}$. The points where f is discontinuous are called decision boundary.

Blackboard illustration

Nearest Neighbor

Nearest Neighbor prediction in the real world:

- very natural and intuitive
- we apply it without even considering it "learning" or "prediction"
- very popular in industry under the name 'case based reasoning', for example helpdesk: "Similar problems have similar solutions'.

From a machine learning point of view:

- consider data as points in a (potentially high-dim.) vector space
- distance between two points tells us their similarity
- Similar points tend to have the same label.

We can also use $N N$ for categorical labels: embed values into \mathbb{R}^{d}, e.g.
$x_{A p u}=(\underbrace{1}_{\text {blue }}, \underbrace{0}_{\text {brown }}, \underbrace{0}_{\text {green }}, \underbrace{1}_{\text {handsome not handsome tall }}, \underbrace{0}_{\text {short }}, \underbrace{1}_{\text {male }}, \underbrace{0}_{\text {female }}, \underbrace{1}_{\text {soccer }}, \underbrace{0}_{\text {notsoccer }})$

k-Nearest Neighbor

k-Nearest Neighbor - Training

input dataset $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathbb{R}^{d} \times \mathcal{Y}$
store all examples $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$.

k-Nearest Neighbor - Classification

input new example x
for each training example $\left(x^{i}, y^{i}\right)$ compute $d_{i}(x)=\left\|x-x^{i}\right\|$ (Euclidean distance)
sort d_{i} in increasing order
output majority vote among y^{i} s within the k smallest d^{i}

k-Nearest Neighbor

Observation: Previous "nearest neighbor" is 1-nearest neighbour. For $k>2, k$-NN can ignore training example, if the neighbors don't support their label.
k controls the complexity of the model:

- $k=n$, we always may the majority decision (underfitting).
- $k=1$, decisions based on a single (most similar) example at a time, this might have an unreliable label (overfitting).
- as before: there's a sweet spot inbetween.

Perceptron - Rosenblatt, 1957

So far we've seen two classifiers:

- decision tree: picks a few important features to base decision on
- k-NN: all features contribute equally (to Euclidean distance)

Often, neither is optimal:

- we have many features, we want to make use of them.
- but some features are more useful or reliable than others.

Idea: learn how important each feature, x_{j}, is by a weight, w_{j}
Perceptron algorightm: inspired by (early) neuroscience:

- neurons form a weighted sum of their inputs $x=\left(x_{1}, \ldots, x_{d}\right)$
- they output a spike if the result exceeds a threshold, θ

$$
h(x)=\left\{\begin{array}{ll}
+1 & \text { if } \sum_{j} w_{j} x_{j} \geq \theta \\
-1 & \text { otherwise }
\end{array} \quad=\operatorname{sign}(\langle w, x\rangle-\theta) .\right.
$$

Perceptron - Training (for $\theta=0$)

input training set $\mathcal{D} \subset \mathbb{R}^{d} \times\{-1,+1\}$
initialize $w=(0, \ldots, 0) \in \mathbb{R}^{d}$.
repeat
for all $(x, y) \in \mathcal{D}$: do
compute $a:=\langle w, x\rangle \quad$ ('activation')
if $y a \leq 0$ then
$w \leftarrow w+y x$
end if
end for
until w wasn't updated for a complete pass over \mathcal{D}

Perceptron - Classification (for $\theta=0$)

input new example x
output $f(x)=\operatorname{sign}\langle w, x\rangle \quad$ by convention, $\operatorname{sign}(0)=-1$

Perceptron - Example

$\mathcal{D}:\left(x^{1}, y^{1}\right)=\left(\binom{3}{1},+1\right),\left(x^{2}, y^{2}\right)=\left(\binom{1}{1},+1\right),\left(x^{3}, y^{3}\right)=\left(\binom{1}{4},-1\right)$.
Round 1:

$$
\begin{gathered}
w=\binom{0}{0}, \quad i=1:\left\langle w, x^{1}\right\rangle=0, \quad 1 \cdot 0=0 \leq 0 \quad \rightarrow \quad \text { update } \\
w_{\text {new }}=w_{\text {old }}+1 \cdot\binom{3}{1}=\binom{3}{1} \\
w=\binom{3}{1}, \quad i=2:\left\langle w, x^{2}\right\rangle=4 \quad 1 \cdot 4=4 \not \leq 0 \quad \rightarrow \text { no change } \\
*=\binom{3}{1}, \quad i=3:\left\langle w, x^{3}\right\rangle=7, \quad(-1) \cdot 7=-7 \leq 0 \quad \rightarrow \quad \text { update } \\
w_{\text {new }}=w_{\text {old }}+(-1)\binom{1}{4}=\binom{2}{-3}
\end{gathered}
$$

Perceptron - Example

$\mathcal{D}:\left(x^{1}, y^{1}\right)=\left(\binom{3}{1},+1\right),\left(x^{2}, y^{2}\right)=\left(\binom{1}{1},+1\right),\left(x^{3}, y^{3}\right)=\left(\binom{1}{4},-1\right)$.
Round 2:

$$
\begin{aligned}
& w=\binom{2}{-3}, \quad i=1:\left\langle w, x^{1}\right\rangle=3, \quad 1 \cdot 3=3 \not \leq 0 \quad \rightarrow \text { no change } \\
& w=\binom{2}{-3}, \quad i=2:\left\langle w, x^{2}\right\rangle=-1, \quad 1 \cdot(-1)=-1 \leq 0 \\
& \rightarrow \quad w_{\text {new }}=w_{\text {old }}+1\binom{1}{1}=\binom{3}{-2} \\
& w=\binom{3}{-2}, \quad i=3:\left\langle w, x^{3}\right\rangle=-5, \quad(-1) \cdot(-5)=5 \not \leq 0 \\
& \rightarrow \quad \text { no change }
\end{aligned}
$$

Perceptron - Example

$\mathcal{D}:\left(x^{1}, y^{1}\right)=\left(\binom{3}{1},+1\right),\left(x^{2}, y^{2}\right)=\left(\binom{1}{1},+1\right),\left(x^{3}, y^{3}\right)=\left(\binom{1}{4},-1\right)$.
Round 3:

$$
\begin{aligned}
& w=\binom{3}{-2}, i=1:\left\langle w, x^{1}\right\rangle=7, \quad 1 \cdot 7=7 \not \leq 0 \\
& w=\binom{3}{-2}, \quad i=2:\left\langle w, x^{2}\right\rangle=1, \quad 1 \cdot 1=1 \not \leq 0 \\
& w=\binom{3}{-2}, \quad i=3:\left\langle w, x^{3}\right\rangle=-5, \quad(-5) \cdot(-1)=5 \not \leq 0
\end{aligned}
$$

nothing changed for 1 complete round: converged

Perceptron - Example

$\mathcal{D}:\left(x^{1}, y^{1}\right)=\left(\binom{3}{1},+1\right),\left(x^{2}, y^{2}\right)=\left(\binom{1}{1},+1\right),\left(x^{3}, y^{3}\right)=\left(\binom{1}{4},-1\right)$.
Round 3:

$$
\begin{aligned}
& w=\binom{3}{-2}, i=1:\left\langle w, x^{1}\right\rangle=7, \\
& w=\binom{3}{-2}, i \cdot 7=7 \not \leq 0 \\
& w=\binom{3}{-2}, \\
& i=3:\left\langle w, x^{2}\right\rangle=1, \quad 1 \cdot 1=1 \not \leq 0 \\
&
\end{aligned}
$$

nothing changed for 1 complete round: converged

Final classifier: $f(x)=\operatorname{sign}\left(3 \cdot x_{1}-2 \cdot x_{2}\right)$
Limitation: always has a linear decision boundary, might not converge

Boosting

Given: training examples $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$. For simplicity: $\mathcal{Y}=\{ \pm 1\}$.

Main insight of Boosting:

- It's hard to guess a strong (=good) classifier.
- It's easy to guess weak classifiers.

Boosting takes a large set of weak classifiers and combines them into a single strong classifier.

Boosting - Weak Classifiers

For example: if our features are

property	possible values
eye color	blue/brown/green
handsome	yes/no
height	short/tall
sex	male (M)/female (F)
soccer fan	yes $/$ no

define (weak) classifiers:

$$
\begin{array}{ll}
h_{1}(x)= \begin{cases}+1 & \text { if eye color }=\text { brown } \\
-1 & \text { otherwise. }\end{cases} & h_{2}(x)= \begin{cases}+1 & \text { if eye color }=\text { blue } \\
-1 & \text { otherwise }\end{cases} \\
h_{3}(x)= \begin{cases}+1 & \text { if eye color }=\text { green } \\
-1 & \text { otherwise. }\end{cases} & h_{4}(x)= \begin{cases}-1 & \text { if eye color }=\text { brown } \\
+1 & \text { otherwise }\end{cases} \\
h_{5}(x)= \begin{cases}+1 & \text { if handsome }=\text { yes } \\
-1 & \text { otherwise } .\end{cases} & h_{6}(x)= \begin{cases}-1 & \text { if handsome }=\text { yes } \\
+1 & \text { otherwise }\end{cases}
\end{array}
$$

Set of all possible combinations: $\mathcal{H}=\left\{h_{1}, \ldots, h_{J}\right\}$.

AdaBoost - Training

 input training set \mathcal{D}, set of weak classifiers \mathcal{H}, number of iterations T.$$
\begin{aligned}
& d_{1}=d_{2}=\cdots=d_{n}=1 / n \quad \text { (weight for each example) } \\
& \text { for } \mathrm{t}=1, \ldots, \mathrm{~T} \text { do } \\
& \text { for } h \in \mathcal{H} \text { do } e^{t}(h)=\sum_{i=1}^{n} d_{i} \llbracket h\left(x^{i}\right) \neq y^{i} \rrbracket \quad \text { (weighted training error) } \\
& h_{t}=\operatorname{argmin}_{h \in \mathcal{H}} e^{t}(h) \quad \text { ("best" of the weak classifiers) } \\
& \alpha_{t}=\frac{1}{2} \log \left(\frac{1-e_{t}\left(h_{t}\right)}{e_{t}\left(h_{t}\right)}\right) \quad \text { (classifier importance, } \alpha_{t}=0 \text { if } e_{t}\left(h_{t}\right)=\frac{1}{2} \text {) }
\end{aligned}
$$

for $i=1, \ldots, n$ do $\tilde{d}_{i} \leftarrow d_{i} \times \begin{cases}e^{\alpha_{t}} & \text { if } h_{t}\left(x^{i}\right) \neq y^{i}, \\ e^{-\alpha_{t}} & \text { otherwise. }\end{cases}$
for $i=1, \ldots, n$ do $d_{i} \leftarrow \widetilde{d}_{i} / \sum_{i} \widetilde{d}_{i}$
end for
output classifier: $f(x)=\operatorname{sign} \sum_{t=1}^{T} \alpha_{t} h_{t}(x)$

AdaBoost - Example

Task: $\mathcal{X}=\mathbb{R}^{2}$, weak classifiers look at each dimension separately

AdaBoost - Example

Iteration $t=1, \quad d_{1}, \ldots, d_{n}=\left(\frac{1}{11}, \frac{1}{11}, \frac{1}{11}\right)$

AdaBoost - Example

Iteration $t=1$, best weak classifier, $e_{1}\left(h_{1}\right)=\frac{1}{11}, \alpha_{1}=1.15$

AdaBoost - Example

Iteration $t=1$, best weak classifier, $e_{1}\left(h_{1}\right)=\frac{1}{11}, \alpha_{1}=1.15$

AdaBoost - Example

Iteration $t=2, \quad d_{1}, \ldots, d_{n} \approx\left(\frac{1}{20}, \frac{1}{20}, \frac{1}{20}, \frac{1}{20}, \frac{1}{20}, \frac{1}{20}, \frac{1}{20}, \frac{1}{2}, \frac{1}{20}, \frac{1}{20}, \frac{1}{20}, \frac{1}{20}\right)$

AdaBoost - Example

Iteration $t=2$, best weak classifier, $e_{2}\left(h_{2}\right)=\frac{1}{20}, \alpha_{2}=1.47$

AdaBoost - Example

Iteration $t=2$, best weak classifier, $e_{2}\left(h_{2}\right)=\frac{1}{20}, \alpha_{2}=1.47$

AdaBoost - Example

Iteration $t=3$

AdaBoost - Example

Iteration $t=3$

AdaBoost - Example

Iteration $t=4$

AdaBoost - Example

Iteration $t=5$

AdaBoost - Example

Final classifier: $f(x)=\operatorname{sign}\left(1.15 h_{1}(x)+1.5 h_{2}(x)+\cdots+0.9 h_{5}(x)\right)$

Artificial Neural Network

Artificial Neural Network have been proposed as promising models to achieve artificial intelligence since the 1950s.

Main idea:

- stack layers of simple elements ("neurons")
- one layer's outputs are next layer's input.

Network parametrizes a function:

- each neuron N_{i} computes a linear/affine function

$$
a_{i}=\left\langle w_{i}, x_{\text {input }}\right\rangle+b_{i} \quad \text { "activation" }
$$

followed by a componentwise non-linear transformation, $\sigma: \mathbb{R} \rightarrow \mathbb{R}$,

$$
o_{i}=\sigma\left(a_{i}\right) \quad \text { e.g. } \quad \sigma(t)=\max \{0, t\}
$$

Training is a bit involved (later...)

Summary

Learning algorithms come in all kind of forms and flavors:

- tree structured, "expert systems"
- similarity-based, geometric
- linear thresholding function
- weighted combinations of simpler units
- iterated/stacked combinations of simpler units

Summary

Learning algorithms come in all kind of forms and flavors:

- tree structured, "expert systems"
- similarity-based, geometric
- linear thresholding function
- weighted combinations of simpler units
- iterated/stacked combinations of simpler units

Machine learning research

- explains their properties
- provides tools to choose between different methods
- allows constructing new ones (with better properties)

