
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Spring Semester 2018/2019
Lecture 4

1 / 33

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. Topic
Oct 08 Mon 1 A Hands-On Introduction
Oct 10 Wed – self-study (Christoph traveling)
Oct 15 Mon 2 Bayesian Decision Theory

Generative Probabilistic Models
Oct 17 Wed 3 Discriminative Probabilistic Models

Maximum Margin Classifiers
Oct 22 Mon 4 Generalized Linear Classifiers, Optimization
Oct 24 Wed 5 Evaluating Predictors; Model Selection
Oct 29 Mon – self-study (Christoph traveling)
Oct 31 Wed 6 Overfitting/Underfitting, Regularization
Nov 05 Mon 7 Learning Theory I: classical/Rademacher bounds
Nov 07 Wed 8 Learning Theory II: miscellaneous
Nov 12 Mon 9 Probabilistic Graphical Models I
Nov 14 Wed 10 Probabilistic Graphical Models II
Nov 19 Mon 11 Probabilistic Graphical Models III
Nov 21 Wed 12 Probabilistic Graphical Models IV
until Nov 25 final project 2 / 33

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian → polar coordinates

3 / 33

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian → polar coordinates 3 / 33

Nonlinear Classifiers

Definition (Max-margin Generalized Linear Classifier)

Let C > 0. Assume a necessarily linearly separable training set

D = {(x1, y1), . . . (xn, yn)} ⊂ X × Y.

Let φ : X → RD be a feature map from X into a feature space RD.

Then we can form a new training set

Dφ = { (φ(x1), y1), . . . , (φ(xn), yn) } ⊂ RD × Y.

The maximum-(soft)-margin linear classifier in RD,

g(x) = sign[〈w, φ(x)〉RD + b]

for w ∈ RD and b ∈ R is called max-margin generalized linear
classifier.

It is still linear w.r.t w, but (in general) nonlinear with respect to x.
4 / 33

Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset Dφ for φ : X → RD with X = R2 and RD = R2

φ(x, y) = (
√
x2 + y2, arctan y

x
) (and φ(0, 0) = (0, 0))

φ−→

Any classifier in RD induces a classifier in X .

5 / 33

Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset Dφ for φ : X → RD with X = R2 and RD = R2

φ(x, y) = (
√
x2 + y2, arctan y

x
) (and φ(0, 0) = (0, 0))

φ−→

Any classifier in RD induces a classifier in X .
5 / 33

Other popular feature mappings, φ

Example (d-th degree polynomials)

φ :
(
x1, . . . , xn

)
7→
(
1, x1, . . . , xn, x

2
1, . . . , x

2
n, x

2
1, x1x2, . . . , x

2
n, . . . , x

d
n

)
Resulting classifier: d-th degree polynomial in x. g(x) = sign f(x) with

f(x) = 〈w, φ(x)〉 =
∑

j
wjφ(x)j =

∑
i
aixi +

∑
ij
bijxixj + . . .

Example (Distance map)

For a set of prototype p1, . . . , pN ∈ X :

φ : ~x 7→
(
e−‖~x−~p1‖2

, . . . , e−‖~x−~pN‖2
)

Classifier: combine weights from close enough prototypes
g(x) = sign〈w, φ(x)〉 = sign

∑n

i=1
aie
−‖~x−~pi‖2

.

6 / 33

Other popular feature mappings, φ

Example (Pre-trained deep network)

Imagine somebody trained a (deep) neural network on a large dataset,
e.g. ImageNet for image classification.

Idea: use initial segment of network as feature extractor for other data:

Image: Steven Schmatz, https://www.quora.com/What-is-the-difference-between-transfer-learning-domain-adaptation-and-
multitask-learning-in-machine-learning

7 / 33

(Generalized) Maximum Margin Classifiers – Optimization II

min
w∈RD,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to

yi(〈w, φ(xi)〉+ b) ≥ 1− ξi, for i = 1, . . . , n,
ξi ≥ 0. for i = 1, . . . , n.

How to solve numerically?
• off-the-shelf Quadratic Program (QP) solver
only for small dimensions and training sets (a few hundred),
• variants of gradient descent,
high dimensional data, large training sets (millions)
• by convex duality,
for very high dimensional data and not so many examples (d� n)

8 / 33

(Generalized) Maximum Margin Classifiers – Optimization II

For simplifity of notation, switch back to linear classifier:

min
w∈Rd,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi, for i = 1, . . . , n,
ξi ≥ 0. for i = 1, . . . , n.

How to solve numerically?
• off-the-shelf Quadratic Program (QP) solver
only for small dimensions and training sets (a few hundred),
• variants of gradient descent,
high dimensional data, large training sets (millions)
• by convex duality,
for very high dimensional data and not so many examples (d� n)

9 / 33

Subgradient-Based Optimization

min
w∈Rd,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi, and ξi ≥ 0, for i = 1, . . . , n.

For any fixed (w, b) we can find the optimal ξ1, . . . , ξn:
ξi = max{ 0, 1− yi(〈w, xi〉+ b) }.

Plug into original problem:

min
w∈Rd,b∈R

1
2‖w‖

2 + C
n∑
i=1

max{ 0, 1− yi(〈w, xi〉+ b)}︸ ︷︷ ︸
"Hinge loss"

.

10 / 33

Subgradient-Based Optimization

min
w∈Rd,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi, and ξi ≥ 0, for i = 1, . . . , n.

For any fixed (w, b) we can find the optimal ξ1, . . . , ξn:
ξi = max{ 0, 1− yi(〈w, xi〉+ b) }.

Plug into original problem:

min
w∈Rd,b∈R

1
2‖w‖

2 + C
n∑
i=1

max{ 0, 1− yi(〈w, xi〉+ b)}︸ ︷︷ ︸
"Hinge loss"

.

10 / 33

Subgradient-Based Optimization

min
w∈Rd,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi, and ξi ≥ 0, for i = 1, . . . , n.

For any fixed (w, b) we can find the optimal ξ1, . . . , ξn:
ξi = max{ 0, 1− yi(〈w, xi〉+ b) }.

Plug into original problem:

min
w∈Rd,b∈R

1
2‖w‖

2 + C
n∑
i=1

max{ 0, 1− yi(〈w, xi〉+ b)}︸ ︷︷ ︸
"Hinge loss"

.

10 / 33

SVM Training in the Primal

min
w∈Rd,b∈R

1
2‖w‖

2 + C
n∑
i=1

max{ 0, 1− yi(〈w, xi〉+ b)}.

• unconstrained optimization problem
• convex

I 1
2‖w‖

2 is convex (differentiable with Hessian = Id < 0)
I linear/affine functions are convex
I pointwise max over convex functions is convex.
I sum of convex functions is convex.

• not differentiable!

We can’t use gradient descent, since some points have no gradients!

11 / 33

SVM Training in the Primal

min
w∈Rd,b∈R

1
2‖w‖

2 + C
n∑
i=1

max{ 0, 1− yi(〈w, xi〉+ b)}.

• unconstrained optimization problem
• convex

I 1
2‖w‖

2 is convex (differentiable with Hessian = Id < 0)
I linear/affine functions are convex
I pointwise max over convex functions is convex.
I sum of convex functions is convex.

• not differentiable!

We can’t use gradient descent, since some points have no gradients!

11 / 33

Subgradients

Definition: Let f : Rd → R be a convex function. A vector v ∈ Rd is
called a subgradient of f at w0, if

f(w) ≥ f(w0) + 〈v, w − w0〉 for all w.

f(w)

w

A general convex f can have more than one subgradient at a position.
• We write ∇f(w0) for the set of subgradients of f at w0,
• v ∈ ∇f(w0) indicates that v is a subgradient of f at w0.

12 / 33

Subgradients

Definition: Let f : Rd → R be a convex function. A vector v ∈ Rd is
called a subgradient of f at w0, if

f(w) ≥ f(w0) + 〈v, w − w0〉 for all w.

f(w)

w
w0

f(w0)

f(w0)+⟨v,w-w0⟩

v
1

A general convex f can have more than one subgradient at a position.
• We write ∇f(w0) for the set of subgradients of f at w0,
• v ∈ ∇f(w0) indicates that v is a subgradient of f at w0.

12 / 33

Subgradients

Definition: Let f : Rd → R be a convex function. A vector v ∈ Rd is
called a subgradient of f at w0, if

f(w) ≥ f(w0) + 〈v, w − w0〉 for all w.

f(w)

w
w0

f(w0)

f(w0)+⟨v,w-w 0⟩

v
1

A general convex f can have more than one subgradient at a position.
• We write ∇f(w0) for the set of subgradients of f at w0,
• v ∈ ∇f(w0) indicates that v is a subgradient of f at w0.

12 / 33

Subgradients

Definition: Let f : Rd → R be a convex function. A vector v ∈ Rd is
called a subgradient of f at w0, if

f(w) ≥ f(w0) + 〈v, w − w0〉 for all w.

f(w)

w
w0

f(w0)

f(w0)+⟨v,w-w 0⟩

v1

A general convex f can have more than one subgradient at a position.
• We write ∇f(w0) for the set of subgradients of f at w0,
• v ∈ ∇f(w0) indicates that v is a subgradient of f at w0.

12 / 33

Subgradients

Definition: Let f : Rd → R be a convex function. A vector v ∈ Rd is
called a subgradient of f at w0, if

f(w) ≥ f(w0) + 〈v, w − w0〉 for all w.

f(w)

w
w0

f(w0)

f(w0)+⟨v,w-w0⟩

v
1

A general convex f can have more than one subgradient at a position.
• We write ∇f(w0) for the set of subgradients of f at w0,
• v ∈ ∇f(w0) indicates that v is a subgradient of f at w0.

12 / 33

Subgradients

• For differentiable f , the gradient v = ∇f(w0) is the only
subgradient.

f(w)

w
w0

f(w0)
f(w0)+⟨v,w-w 0⟩

• If f1, . . . , fK are differentiable at w0 and

f(w) = max{f1(w), . . . , fK(w)},

then v = ∇fk(w0) is a subgradient of f at w0, where k any index
for which fk(w0) = f(w0).

• Subgradients are only well defined for convex functions!
13 / 33

Illustration: Optimization using Gradients

f(w1, w2) = (w1)2 + 2(w2)2 strictly convex, differentiable

Gradient of a differentiable function is a descent direction:
• for any wt there exists an η such that f(wt + ηv) < f(wt)

14 / 33

Illustration: Optimization using Gradients

f(w1, w2) = (w1)2 + 2(w2)2 strictly convex, differentiable

Gradient of a differentiable function is a descent direction:
• for any wt there exists an η such that f(wt + ηv) < f(wt)

14 / 33

Illustration: Optimization using Gradients

f(w1, w2) = (w1)2 + 2(w2)2 strictly convex, differentiable

x wt-1

v

Gradient of a differentiable function is a descent direction:
• for any wt there exists an η such that f(wt + ηv) < f(wt)

14 / 33

Illustration: Optimization using Gradients

f(w1, w2) = (w1)2 + 2(w2)2 strictly convex, differentiable

x wt

v

wt - 1v

Gradient of a differentiable function is a descent direction:
• for any wt there exists an η such that f(wt + ηv) < f(wt)

14 / 33

Illustration: Optimization using Gradients

f(w1, w2) = (w1)2 + 2(w2)2 strictly convex, differentiable

x wt

v

wt - 3v

Gradient of a differentiable function is a descent direction:
• for any wt there exists an η such that f(wt + ηv) < f(wt)

14 / 33

Illustration: Optimization using Gradients

f(w1, w2) = (w1)2 + 2(w2)2 strictly convex, differentiable

x wt

v

wt - 0.5v

Gradient of a differentiable function is a descent direction:
• for any wt there exists an η such that f(wt + ηv) < f(wt)

14 / 33

Illustration: Optimization using Gradients

f(w1, w2) = (w1)2 + 2(w2)2 strictly convex, differentiable

x wt

v

wt - 1v

Gradient of a differentiable function is a descent direction:
• for any wt there exists an η such that f(wt + ηv) < f(wt)

14 / 33

Illustration: Optimization using Subgradients?

f(w1, w2) = |w1|+ 2|w2| convex, not differentiable

Subgradient might not be a not a descent direction:
• for wt we might have f(wt + ηv) ≥ f(wt) for all η ∈ R

• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)

15 / 33

Illustration: Optimization using Subgradients?

f(w1, w2) = |w1|+ 2|w2| convex, not differentiable

Subgradient might not be a not a descent direction:
• for wt we might have f(wt + ηv) ≥ f(wt) for all η ∈ R

• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)

15 / 33

Illustration: Optimization using Subgradients?

f(w1, w2) = |w1|+ 2|w2| convex, not differentiable

x

v

wt

Subgradient might not be a not a descent direction:
• for wt we might have f(wt + ηv) ≥ f(wt) for all η ∈ R

• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)

15 / 33

Illustration: Optimization using Subgradients?

f(w1, w2) = |w1|+ 2|w2| convex, not differentiable

x

v

wt - v

wt

Subgradient might not be a not a descent direction:
• for wt we might have f(wt + ηv) ≥ f(wt) for all η ∈ R

• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)

15 / 33

Illustration: Optimization using Subgradients?

f(w1, w2) = |w1|+ 2|w2| convex, not differentiable

x

v

wt - 3v

wt

Subgradient might not be a not a descent direction:
• for wt we might have f(wt + ηv) ≥ f(wt) for all η ∈ R

• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)

15 / 33

Illustration: Optimization using Subgradients?

f(w1, w2) = |w1|+ 2|w2| convex, not differentiable

x

v

wt-0.2v
wt

Subgradient might not be a not a descent direction:
• for wt we might have f(wt + ηv) ≥ f(wt) for all η ∈ R

• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)

15 / 33

Illustration: Optimization using Subgradients?

f(w1, w2) = |w1|+ 2|w2| convex, not differentiable

x

v

wt - v

wt

Subgradient might not be a not a descent direction:
• for wt we might have f(wt + ηv) ≥ f(wt) for all η ∈ R

• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)

15 / 33

Illustration: Optimization using Subgradients?

f(w1, w2) = |w1|+ 2|w2| convex, not differentiable

x

v

wt

{ { dt

dt+1

Subgradient might not be a not a descent direction:
• for wt we might have f(wt + ηv) ≥ f(wt) for all η ∈ R
• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)

15 / 33

Subgradient Method (not Descent!)

input step sizes η1, η2, . . .
1: w1 ← 0
2: for t = 1, . . . , T do
3: v ← a subgradient of L at wt
4: wt+1 ← wt − ηtv
5: end for
output wt with smallest values L(wt) for t = 1, . . . , T

Stepsize rules: how to choose η1, η2, . . . ,?
• ηt = η constant: will get us (only) close to the optimum
• decrease slowly, but not too slowly: converges to optimum

∞∑
t=1

ηt =∞
∞∑
t=1

(ηt)2 <∞ e.g. ηt = η

t+ t0

How to choose overall η? trial-and-error
• Try different values, see which one decreases the objective (fastest)

16 / 33

Subgradient Method (not Descent!)

input step sizes η1, η2, . . .
1: w1 ← 0
2: for t = 1, . . . , T do
3: v ← a subgradient of L at wt
4: wt+1 ← wt − ηtv
5: end for
output wt with smallest values L(wt) for t = 1, . . . , T

Stepsize rules: how to choose η1, η2, . . . ,?
• ηt = η constant: will get us (only) close to the optimum
• decrease slowly, but not too slowly: converges to optimum

∞∑
t=1

ηt =∞
∞∑
t=1

(ηt)2 <∞ e.g. ηt = η

t+ t0

How to choose overall η? trial-and-error
• Try different values, see which one decreases the objective (fastest)

16 / 33

Stochastic Optimization

Many objective functions in ML contain a sum over all training exampes:

LLogReg(w) =
n∑
i=1

log(1 + exp(−yi(〈w, xi〉+ b))),

LSVM (w) = 1
2‖w‖

2 + C
n∑
i=1

max{ 0, 1− yi(〈w, xi〉+ b)}.

Computing the gradient or subgradient scales like O(nd),
• d is the dimensionality of the data
• n is the number of training examples.

Both d and n can be big (millions). What can we do?
• we’ll not get rid of O(d), since w ∈ Rd,
• but we can get rid of the scaling with O(n) for each update!

17 / 33

Let f(w) =
∑

i
fi(w), with convex, differentiable f1, . . . , fn.

Stochastic Gradient Descent

input step sizes η1, η2, . . .
1: w1 ← 0
2: for t = 1, . . . , T do
3: i← random index in 1, 2, . . . , n
4: v ← n∇fi(wt)
5: wt+1 ← wt − ηtv
6: end for
output wT , or average 1

T−T0

∑T
t=T0 wt

• Each iteration takes only O(d),
• Gradient is "wrong" is each step, but correct in expectation.
• No line search, since evaluating f(w − ηv) would be O(nd),
• Objective does not decrease in every step,
• Converges to optimum if ηt is square summable, but not summable.

18 / 33

Let f(w) =
∑

i
fi(w), with convex f1, . . . , fn.

Stochastic Subgradient Method

input step sizes η1, η2, . . .
1: w1 ← 0
2: for t = 1, . . . , T do
3: i← random index in 1, 2, . . . , n
4: v ← nv̄ for v̄ ∈ ∇fi(wt)
5: wt+1 ← wt − ηtv
6: end for
output wT , or average 1

T−T0

∑T
t=T0 wt

• Each iteration takes only O(d),
• Converges to optimum if ηt is square summable, but not summable.
• Even better: pick not completely at random but go in epochs:
randomly shuffle dataset, go through all examples, reshuffle, etc.

19 / 33

Stochastic Primal SVMs Training

LSVM (w, b) =
n∑
i=1

(1
2n‖w‖

2 + C max{ 0, 1− yi(〈w, xi〉+ b)}
)
.

input step sizes η1, η2, . . . or step size rule, such as ηt = η
t+t0

1: (w1, b1)← (0, 0)
2: for t = 1, . . . , T do
3: pick (x, y) from D (randomly, or in epochs)
4: if y〈x,w〉+ b ≥ 1 then
5: wt+1 ← (1− ηt)wt
6: else
7: wt+1 ← (1− ηt)wt + nCηtyx
8: bt+1 ← ηtnCy
9: end if

10: end for
output wT , or average 1

T−T0

∑T
t=T0 wt

Widely used for SVM training, but setting stepsizes can be painful. 20 / 33

SVM Optimization by Dualization

Back to the original formulation

min
w∈Rd,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to, for i = 1, . . . , n,

yi(〈w, xi〉+ b) ≥ 1− ξi, and ξi ≥ 0.

Convex optimization problem: we can study its dual problem.

21 / 33

General Principle of Dualization

Assume a constrained optimization problem:
min

θ∈Θ⊂RK
f(θ)

subject to

g1(θ) ≤ 0, g2(θ) ≤ 0, . . . , gk(θ) ≤ 0.

We define the Lagrangian, that combines objective and constraints
L(θ, α) = f(θ) + α1g1(θ) + · · ·+ αkgk(θ)

with Lagrange multipliers, α1, . . . , αk ≥ 0. Note:

max
α1≥0,...,αk≥0

L(θ, α) =
{
f(θ) if g1(θ) ≤ 0, g2(θ) ≤ 0, . . . , gk(θ) ≤ 0
∞ otherwise.

Any optimal solution, θ, for minθ∈Θ maxα≥0 L(θ, α) is also optimal for
the original constrained problem.

22 / 33

General Principle of Dualization

Assume a constrained optimization problem:
min

θ∈Θ⊂RK
f(θ)

subject to

g1(θ) ≤ 0, g2(θ) ≤ 0, . . . , gk(θ) ≤ 0.

We define the Lagrangian, that combines objective and constraints
L(θ, α) = f(θ) + α1g1(θ) + · · ·+ αkgk(θ)

with Lagrange multipliers, α1, . . . , αk ≥ 0. Note:

max
α1≥0,...,αk≥0

L(θ, α) =
{
f(θ) if g1(θ) ≤ 0, g2(θ) ≤ 0, . . . , gk(θ) ≤ 0
∞ otherwise.

Any optimal solution, θ, for minθ∈Θ maxα≥0 L(θ, α) is also optimal for
the original constrained problem. 22 / 33

General Principle of Dualization

Theorem (Special Case of Slater’s Condition)

If f is convex, g1, . . . , gk are affine functions, and there exists at least one
point θ ∈ relint(Θ) that is feasible (i.e. gi(θ) ≤ 0 for i = 1, . . . , k). Then

min
θ∈Θ

max
α≥0

L(θ, α) = max
α≥0

min
θ∈Θ

L(θ, α)

Call f(θ) the primal and h(α) = minθ∈Θ L(θ, α) be the dual function.

The theorem states that minimizing the primal f(θ) (with constraints
given by the gk) is equivalent to maximizing its dual h(α) (with α ≥ 0).

min
θ∈RK

f(θ) = max
α∈Rk

+

h(α)

23 / 33

General Principle of Dualization

Theorem (Special Case of Slater’s Condition)

If f is convex, g1, . . . , gk are affine functions, and there exists at least one
point θ ∈ relint(Θ) that is feasible (i.e. gi(θ) ≤ 0 for i = 1, . . . , k). Then

min
θ∈Θ

max
α≥0

L(θ, α) = max
α≥0

min
θ∈Θ

L(θ, α)

Call f(θ) the primal and h(α) = minθ∈Θ L(θ, α) be the dual function.

The theorem states that minimizing the primal f(θ) (with constraints
given by the gk) is equivalent to maximizing its dual h(α) (with α ≥ 0).

min
θ∈RK

f(θ) = max
α∈Rk

+

h(α)

23 / 33

Dualizing of the SVM optimization problem

The SVM optimization problem fulfills the conditions of the theorem.

min
w∈Rd,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to, for i = 1, . . . , n,

yi(〈w, xi〉+ b) ≥ 1− ξi, and ξi ≥ 0.

We can compute its minimal value as maxα≥0,β≥0 h(α, β) with

h(α, β) = min
(w,b)

1
2‖w‖

2+C
∑
i

ξi+
∑
i

αi
(
1−ξi−yi(〈w, xi〉+b)

)
−
∑
i

βiξi

(Blackboard...)
24 / 33

Dualizing of the SVM optimization problem

In a minimum w.r.t. (w, b):

0 = ∂

∂w
L(w, b, ξ, α, β) = w −

∑
i

αiy
ixi ⇒ w =

∑
i

αiy
ixi

0 = ∂

∂b
L(w, b, ξ, α, β) =

∑
i

αiy
i

0 = ∂

∂ξi
L(w, b, ξ, α, β) = C − αi − βi

Insert new constraints into objective:

max
α≥0

1
2‖
∑
i

αiy
ixi‖2 +

∑
i

αi −
∑
i

αiyi
〈∑

j

αjy
jxj , xi

〉

25 / 33

SVM Dual Optimization Problem

max
α≥0

−1
2
∑
i,j

αiαjy
iyj〈xi, xj〉+

∑
i

αi

subject to
∑
i

αiyi = 0 and 0 ≤ αi ≤ C, for i = 1, . . . , n.

• Examples xi with αi 6= 0 are called support vectors.
• From the coefficients α1, . . . , αn we can recover the optimal w:

w =
∑
i

αiy
ixi

b = 1− yi〈xi, w〉 for any i with 0 < αi < C

(more complex rule for b if no such i exists).
• The prediction rule becomes

g(x) = sign
(
〈w, x〉+ b

)
= sign

(n∑
i=1

αiyi〈xi, x〉+ b
)

26 / 33

SVM Dual Optimization Problem

max
α≥0

−1
2
∑
i,j

αiαjy
iyj〈xi, xj〉+

∑
i

αi

subject to∑
i

αiyi = 0 and 0 ≤ αi ≤ C, for i = 1, . . . , n.

Why solve the dual optimization problem?

• fewer unknowns: α ∈ Rn instead of (w, b, ξ) ∈ Rd+1+n

• less storage when d� n:
(〈xi, xj〉)i,j ∈ Rn×n instead of (x1, . . . , xn) ∈ Rn×d

• Kernelization (not in this course)

27 / 33

SVMs Without Bias Term

For optimization, the bias term is an annoyance
• In primal optimization, it often requires a different stepsize.
• In dual optimization, sometimes not straight-forward to recover.
• It couples the dual variables by an equality constraint:

∑
i αiyi = 0.

We can get rid of the bias by the augmentation trick.

Original:
• f(x) = 〈w, x〉Rd + b, with w ∈ Rd, b ∈ R.

New augmented:
• linear: f(x) = 〈w̃, x̃〉Rd+1 , with w̃ = (w, b), x̃ = (x, 1).

• generalized: f(x) = 〈w̃, φ̃(x)〉H̃ with w̃ = (w, b), φ̃(x) = (φ(x), 1).

28 / 33

SVMs Without Bias Term – Optimization

SVM without bias term – primal optimization problem

min
w∈Rd,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to, for i = 1, . . . , n,

yi〈w, xi〉 ≥ 1− ξi, and ξi ≥ 0.

Difference: no b variable to optimize over

SVM without bias term – dual optimization problem

max
α

−1
2
∑
i,j

αiαjy
iyj 〈xi, xj〉+

∑
i

αi

subject to, 0 ≤ αi ≤ C, for i = 1, . . . , n.

Difference to variant with bias term: no constraint
∑
i yiαi = 0.

29 / 33

SVMs Without Bias Term – Optimization

SVM without bias term – primal optimization problem

min
w∈Rd,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to, for i = 1, . . . , n,

yi〈w, xi〉 ≥ 1− ξi, and ξi ≥ 0.

Difference: no b variable to optimize over

SVM without bias term – dual optimization problem

max
α

−1
2
∑
i,j

αiαjy
iyj 〈xi, xj〉+

∑
i

αi

subject to, 0 ≤ αi ≤ C, for i = 1, . . . , n.

Difference to variant with bias term: no constraint
∑
i yiαi = 0.

29 / 33

Linear SVM Optimization in the Dual

Stochastic Coordinate Dual Ascent

α← 0.
for t = 1, . . . , T do
i← random index (uniformly random or in epochs)
solve QP w.r.t. αi with all αj for j 6= i fixed.

end for
return α

Properties:
• converges monotonically to global optimum
• each subproblem has smallest possible size: 1-dimensional

Open Problem:
• how to make each step efficient?

30 / 33

SVM Optimization in the Dual

What’s the complexity of the update step? Derive an explicit expression:
Original problem: maxα∈[0,C]n −1

2
∑
i,j αiαjy

iyj 〈xi, xj〉+
∑
i αi

When all αj except αi are fixed: maxαi∈[0,C] F (αi), with

F (αi) = −1
2α

2
i 〈xi, xi〉︸ ︷︷ ︸

=‖xi‖2

+αi
(
1− yi

∑
j 6=i

αjy
j 〈xi, xj〉

)
+ const.

∂

∂αi
F (αi) = −αi‖xi‖2 +

(
1− yi

∑
j 6=i

αjy
j 〈xi, xj〉

)
+ const.

αnewi = αi +
1− yi

∑n
j=1 αjy

j 〈xi, xj〉
‖xi‖2

, αi =


0 if αnewi < 0,
C if αnewi > C,
αnewi otherwise.(αi show up, because sum range is j = 1, . . . , n, not j 6= i)

• complexity of each update: n inner products = O(nd)
• if we pre-compute and store all 〈xi, xj〉: O(n) with O(n2) storage

31 / 33

SVM Optimization in the Dual

What’s the complexity of the update step? Derive an explicit expression:
Original problem: maxα∈[0,C]n −1

2
∑
i,j αiαjy

iyj 〈xi, xj〉+
∑
i αi

When all αj except αi are fixed: maxαi∈[0,C] F (αi), with

F (αi) = −1
2α

2
i 〈xi, xi〉︸ ︷︷ ︸

=‖xi‖2

+αi
(
1− yi

∑
j 6=i

αjy
j 〈xi, xj〉

)
+ const.

∂

∂αi
F (αi) = −αi‖xi‖2 +

(
1− yi

∑
j 6=i

αjy
j 〈xi, xj〉

)
+ const.

αnewi = αi +
1− yi

∑n
j=1 αjy

j 〈xi, xj〉
‖xi‖2

, αi =


0 if αnewi < 0,
C if αnewi > C,
αnewi otherwise.(αi show up, because sum range is j = 1, . . . , n, not j 6= i)

• complexity of each update: n inner products = O(nd)
• if we pre-compute and store all 〈xi, xj〉: O(n) with O(n2) storage

31 / 33

(Generalized) Linear SVM Optimization in the Dual

For n� d, we can improve using the linearity of 〈·, ·〉:

αnewi = αi +
1− yi

∑
j αjy

j 〈xi, xj〉
‖xi‖2

= αi +
1− yi〈xi,

∑
j αjy

j xj〉
‖xi‖2

remember w =
∑
j αjy

jxj . If we keep w stored explicitly:

= αi + 1− yi〈w, xi〉
‖xi‖2

,

• each update: O(d), independent of n
I 〈w, xi〉 takes O(d) for explicit w ∈ Rd

I taking care that w stays up-to-date: also O(d)

wnew = wold + (αnew
i − αold

i)yixi

32 / 33

SCDA for (Generalized) Linear SVMs [Hsieh, 2008]

initialize α← 0, w ← 0
for t = 1, . . . , T do
i← random index (uniformly random or in epochs)
δ ← 1−yi〈w,xi〉

‖xi‖2

ᾱ←


0, if αi + δ < 0,
C, if αi + δ > C,
αi + δ, otherwise.

w ← w + (ᾱ− αi)yixi
αi ← ᾱ

end for
return α, w

Properties:
• converges monotonically to global optimum
• complexity of each step is independent of n
• resembles stochastic gradient method, but step size is automatic

33 / 33

