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Overview (tentative)

Date no. | Topic
Oct 08 | Mon | 1 | A Hands-On Introduction
Oct 10 | Wed | — | self-study (Christoph traveling)
Oct 15 | Mon | 2 | Bayesian Decision Theory
Generative Probabilistic Models
Oct 17 | Wed | 3 | Discriminative Probabilistic Models
Maximum Margin Classifiers
Oct 22 | Mon | 4 | Generalized Linear Classifiers, Optimization
Oct 24 | Wed | 5 | Evaluating Predictors; Model Selection
Oct 29 | Mon | — | self-study (Christoph traveling)
Oct 31 | Wed | 6 | Overfitting/Underfitting, Regularization
Nov 05 | Mon | 7 | Learning Theory I: classical/Rademacher bounds
Nov 07 | Wed | 8 | Learning Theory Il: miscellaneous
Nov 12 | Mon | 9 | Probabilistic Graphical Models |
Nov 14 | Wed | 10 | Probabilistic Graphical Models Il
Nov 19 | Mon | 11 | Probabilistic Graphical Models Il
Nov 21 | Wed | 12 | Probabilistic Graphical Models IV
until Nov 25 final project 2/33



Nonlinear Classifiers

What, if a linear classifier is really not a good choice?
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Nonlinear Classifiers

What, if a linear classifier is really not a good choice?
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Change the data representation, e.g. Cartesian — polar coordinates 3,33



Nonlinear Classifiers

Definition (Max-margin Generalized Linear Classifier)

Let C > 0. Assume a necessarily linearly separable training set
D= {(@"y"),... (a"y")} C X x V.

Let ¢ : X — RP be a feature map from X into a feature space R”.

Then we can form a new training set
D? ={ (¢(z'),y"), ..., (¢(a™),y") } CRP x Y.

The maximum-(soft)-margin linear classifier in R?,

9(z) = sign[{w, ¢(z))ro + b]

for w € RP and b € R is called max-margin generalized linear
classifier.

It is still linear w.r.t w, but (in general) nonlinear with respect to x.
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Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset D? for ¢ : X — RP with X = R? and RP = R?

é(z,y) = (/22 + 32, arctan %) (and ¢(0,0) = (0,0))
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Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset D? for ¢ : X — RP with X = R? and RP = R?

é(z,y) = (/22 + 32, arctan %) (and ¢(0,0) = (0,0))
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Any classifier in R? induces a classifier in X
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Other popular feature mappings, ¢

Example (d-th degree polynomials)

. 2 2 .2 2 d
o : (:Cl,...,xn) — (1,371,...,xn,wl,...,xn,xl,xlxg,...,xn,...,xn>

Resulting classifier: d-th degree polynomial in z. g(x) = sign f(x) with
f(z) = <w7¢(x)> = Z w]¢ j = Z a;T; + Z bi; ;T +
Example (Distance map)
For a set of prototype p1,...,pny € X:
QT (e_”f_ﬁHQ, e ,e_”f_ﬁNW)

Classifier: combine weights from close enough prototypes
g(x) = sign(w, ¢(z)) = &gnZ a;e” 1=

12
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Other popular feature mappings, ¢

Example (Pre-trained deep network)

Imagine somebody trained a (deep) neural network on a large dataset,
e.g. ImageNet for image classification.

Idea: use initial segment of network as feature extractor for other data:

loss o

T ‘ Shallow classifier (e.g. SVM) 4
softmax ‘ e —
features——
G - ] =
fcl | | !
I conv3 | I oonv3 ‘
| p— | TRANSFER | conv2 |
I conv1 | | m:w‘l |
| |
Target data | | labels

Data and labels (e.g. ImageNet) '— |

Image: Steven Schmatz, https://www.quora.com/What-is-the-difference-between-transfer-learning-domain-adaptation-and-
multitask-| ing-in-machine-learning
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(Generalized) Maximum Margin Classifiers — Optimization Il

min —||lwl||* 4+ C v
weRD beR LR 2 el Z:ZI ¢

subject to

y((w, ¢(x)) +b) >1 ¢, fori=1,...,n,
>0, fori=1,...,n.
How to solve numerically?

off-the-shelf Quadratic Program (QP) solver

only for small dimensions and training sets (a few hundred),
variants of gradient descent,

high dimensional data, large training sets (millions)

by convex duality,

for very high dimensional data and not so many examples (d > n)
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(Generalized) Maximum Margin Classifiers — Optimization Il

For simplifity of notation, switch back to linear classifier:

1 9 L
min —||wl||* + C ¢
wER beR £eR 2 el ; ¢

subject to

yi((w,z?)y +b) >1—¢, fori=1,...,n,
€>0. fori=1,...,n.
How to solve numerically?

off-the-shelf Quadratic Program (QP) solver

only for small dimensions and training sets (a few hundred),
variants of gradient descent,

high dimensional data, large training sets (millions)

by convex duality,

for very high dimensional data and not so many examples (d > n)
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Subgradient-Based Optimization

1 n i
Sl +CY ¢
=1

min
weR beR, ECR™
subject to

yi((w,z?)y +b) >1—¢€, and £ >0, fori=1,...,n.
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Subgradient-Based Optimization

min
weR beR, ECR™

1 LI
Sl + 03¢

i=1
subject to

yi((w,z?)y +b) >1—¢€, and £ >0, fori=1,...,n.

For any fixed (w,b) we can find the optimal &1, ..., &
¢ =max{ 0,1 — y;((w, z;) +b) }.
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Subgradient-Based Optimization

1 n i
Sl +CY ¢
=1

min
weR beR, ECR™
subject to

yi((w,z?)y +b) >1—¢€, and £ >0, fori=1,...,n.

For any fixed (w,b) we can find the optimal &1, ..., &
¢ =max{ 0,1 — y;((w, z;) +b) }.

Plug into original problem:

; 1
min -

weRd,beR 2||w|]2 +C ) max{ 0,1 —y;((w, ;) +b)} .

i=1

"Hinge loss"

10/ 33



SVM Training in the Primal

) 1
min -

weRLbER 2 el + szax{ 0,1 —y;({w,z;) +b)}.

i=1

unconstrained optimization problem
convex

> 1|lw||? is convex (differentiable with Hessian = Id 3= 0)
» linear/affine functions are convex

> pointwise max over convex functions is convex.

» sum of convex functions is convex.

not differentiable!
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SVM Training in the Primal

) 1
min -

weRLbER 2 el + szax{ 0,1 —y;({w,z;) +b)}.

i=1

unconstrained optimization problem
convex
> 1|lw||? is convex (differentiable with Hessian = Id 3= 0)
» linear/affine functions are convex
> pointwise max over convex functions is convex.
» sum of convex functions is convex.

not differentiable!

We can’t use gradient descent, since some points have no gradients!
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Definition: Let f: RY — R be a convex function. A vector v € R? is
called a subgradient of f at wy, if

fw) > f(wo) + (v, w —wp) for all w.

f(w)
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Definition: Let f: RY — R be a convex function. A vector v € R? is
called a subgradient of f at wy, if

fw) > f(wo) + (v, w —wp) for all w.

f(wo)+ (V,W-Wo)
f(we) [1o

'Wo
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Definition: Let f: RY — R be a convex function. A vector v € R? is
called a subgradient of f at wy, if

fw) > f(wo) + (v, w —wp) for all w.
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Definition: Let f: RY — R be a convex function. A vector v € R? is
called a subgradient of f at wy, if

fw) > f(wo) + (v, w —wp) for all w.

f(wo)+(v,w-wo)

12 /33



Definition: Let f: RY — R be a convex function. A vector v € R? is
called a subgradient of f at wy, if

fw) > f(wo) + (v, w —wp) for all w.

f(wo)+ (V,W-Wo)
f(we) [1o

'Wo

A general convex f can have more than one subgradient at a position.
We write V f(wp) for the set of subgradients of f at wy,
v € V f(wp) indicates that v is a subgradient of f at wy.

12 /33



For differentiable f, the gradient v = V f(wy) is the only
subgradient.
fw)

"?GNUN+(VAN4NJ

If fi,..., fx are differentiable at wqy and

f(w) = max{fi(w),..., fr(w)},

then v = V fx(wo) is a subgradient of f at wg, where k any index
for which fk(wo) = f(wo).

Subgradients are only well defined for convex functions!

13 /33



lllustration: Optimization using Gradients

fwr, we) = (wr)? + 2(ws)? strictly convex, differentiable
10050 : , , : 5]
200 200
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lllustration: Optimization using Gradients

flwi, we) = (w1)? + 2(wy)?
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lllustration: Optimization using Gradients

flwy,wz) = (wy)? + 2(ws)? strictly convex, differentiable

100,

80f

60

40t

20

0

0 20 4:0 éO 50 100
Gradient of a differentiable function is a descent direction:

for any w; there exists an 7 such that f(w; + nv) < f(wy)
14 /33



lllustration: Optimization using Subgradients?

flwi,wa) = |wi| + 2|ws| convex, not differentiable
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lllustration: Optimization using Subgradients?

flwi,wa) = |wi| + 2|ws| convex, not differentiable
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lllustration: Optimization using Subgradients?

convex, not differentiable

flwr, wa) = |wi| + 2|ws|
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lllustration: Optimization using Subgradients?
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lllustration: Optimization using Subgradients?

flwi,wa) = |wi| + 2|ws| convex, not differentiable
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Subgradient might not be a not a descent direction:
for w; we might have f(w; +nv) > f(w;) for all n € R
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lllustration: Optimization using Subgradients?

flwi,wa) = |wi| + 2|ws| convex, not differentiable
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Subgradient might not be a not a descent direction:
for w; we might have f(w; +nv) > f(w;) for all n € R
but: there is an 7 that brings us closer to the optimum,
|lwipr —w*|| < |lwg —w*||  (Proof: exercise...)
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Subgradient Method (not Descent!)

input step sizes 11,72, . ..
1. wy <0
2. fort=1,...,7T do
3: v < a subgradient of £ at wy
4 Wiql & Wg — NV
5. end for
output w; with smallest values £(w;) fort =1,...,T

16 /33



Subgradient Method (not Descent!)

input step sizes 11,72, . ..
wy < 0
cfort=1,...,7T do
v < a subgradient of £ at w;
W41 < W — MU
5. end for
output w; with smallest values L(w;) fort =1,...,T

2 e

Stepsize rules: how to choose 11,172, ...,7
1y = 1 constant: will get us (only) close to the optimum
decrease slowly, but not too slowly: converges to optimum

o0 o0
2
= O < 00 e.g. =
;:1 Nt ;Zl(nt) g m=y

How to choose overall n? trial-and-error
Try different values, see which one decreases the objective (fastest)

16 /33



Stochastic Optimization

Many objective functions in ML contain a sum over all training exampes:

ELogReg ZIOg 1 +exp( yl(<w IL‘@> + b)))
=1
Lsyur(w) = *HUJII2+CZmaX{ 0,1 —yi((w,zi) +b)}.
=1

Computing the gradient or subgradient scales like O(nd),
d is the dimensionality of the data

n is the number of training examples.

Both d and n can be big (millions). What can we do?
we'll not get rid of O(d), since w € RY,
but we can get rid of the scaling with O(n) for each update!

17 /33



Let flw) = ZZ fi(w), with convex, differentiable fi,..., fy.

Stochastic Gradient Descent

input step sizes 11,12, . ..

wy <+ 0
cfort=1,...,7 do
1 < random index in 1,2,...,n

v < nV fi(wy)
Wi41 < Wy — NV
6: end for
output wr, or average T%TO ZtT:TO Wy

I o 2

Each iteration takes only O(d),

Gradient is "wrong" is each step, but correct in expectation.
No line search, since evaluating f(w — nv) would be O(nd),
Objective does not decrease in every step,

Converges to optimum if 7 is square summable, but not summable.
18 /33



Let f(w) = Zi fi(w), with convex fi,..., fn.

Stochastic Subgradient Method

input step sizes 11,12, . ..

w1<—0
cfort=1,...,T do
1 < random index in 1,2,...,n

v < no for v € V fi(wy)
W41 < W — MU
6: end for
output wr, or average T_lTO ZtT:TO wy

@ YR

Each iteration takes only O(d),
Converges to optimum if 7; is square summable, but not summable.

Even better: pick not completely at random but go in epochs:
randomly shuffle dataset, go through all examples, reshuffle, etc.

19 /33



Stochastic Primal SVMs Training

n

1
Lsvy(w,b) = Z (%HwH2 + Cmax{ 0,1 —y;((w,x;) + b)} )

=1
|
input step sizes 71,72, ... or step size rule, such as 7, = ﬁ

1: (wl,bl) < (0,0)
2. fort=1,...,7T do

3:  pick (x,y) from D (randomly, or in epochs)
4:  if y(z,w) +b>1 then

5: Wiyl < (]. = nt)wt

6: else

7 w1 < (1 —m)wy + nCpyx

8: bir1 < mnCy

9: endif

10: end for

1 T
output wp, or average T—Tp Zt:TO Wi

Widely used for SVM training, but setting stepsizes can be painful. 2033



SVM Optimization by Dualization

Back to the original formulation

1 9 LI
min —Nwl|]* +C E '
weRL bR LeRn 2 el = $

subject to, fori=1,...,n,

Y ((w, ) +b) >1—¢,  and £ >0.

Convex optimization problem: we can study its dual problem.

21 /33



General Principle of Dualization

Assume a constrained optimization problem:

i 0
eergé%;{ f( )
subject to
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General Principle of Dualization

Assume a constrained optimization problem:

i 0
eerggléff f( )
subject to

We define the Lagrangian, that combines objective and constraints

L0, ) = f(0) + 0191(0) + - - + cgr(0)

with Lagrange multipliers, a,...,a; > 0. Note:
0) if g1(0) <0 f) <o, ... 9) <0
max  £(0,0) =470 T =0, 9:(0) <0, 94(6) <
@120,...,a3,20 o0 otherwise.

Any optimal solution, 6, for mingcg max,>o £(6, ) is also optimal for
the original constrained problem. 22/33



General Principle of Dualization

Theorem (Special Case of Slater’s Condition)

If f is convex, g1, ..., g are affine functions, and there exists at least one
point 0 € relint(©) that is feasible (i.e. g;(#) <0 fori=1,...,k). Then

minmax £(f,a) = max min £(0,«)
0O a>0 a>0  6€O

23 /33



General Principle of Dualization

Theorem (Special Case of Slater’s Condition)

If f is convex, g1, ..., g are affine functions, and there exists at least one
point 0 € relint(©) that is feasible (i.e. g;(#) <0 fori=1,...,k). Then

minmax £(f,a) = max min £(0,«)
0O a>0 a>0  6€O

Call f(0) the primal and h(a) = mingcg L£(6, ) be the dual function.

The theorem states that minimizing the primal f(6) (with constraints
given by the gi) is equivalent to maximizing its dual h(«) (with a > 0).

in f(6) = h
min f(6) max (a)

23 /33



Dualizing of the SVM optimization problem

The SVM optimization problem fulfills the conditions of the theorem.

1 2 n N
min —||lwl||* 4+ C '
weRT beR LeR 2 el ; ¢

subject to, fori =1,...,n,

yi((w, ') +b) >1—¢, and € >0.

We can compute its minimal value as max,>¢ g>0 h(c, ) with

) = i 3ll0lP+C 56+ o (1-6 -y (w.a)49) Y i

(Blackboard...)

24 /33



Dualizing of the SVM optimization problem

In a minimum w.r.t. (w,b):

9 i i i
OZa—wﬁ(w,b,ﬁ,a,B):w—Zi:aiy:n = w:zi:aiyx

0 7
%E(w b ga a, ): Z’L:azy
885@ (’U)bg, 75)20*041*51

Insert new constraints into objective:

m;iox 5“ z:ozzyZ:chH2 + Zaz Zaiyi< Zajijj,mi>
i J

25 /33



SVM Dual Optimization Problem

1 S
max — > ooy (@t al) + > oy
ij i

a>0

subject to Zaiyi:O and 0< ; <C fori=1,...,n.

(2

Examples z! with o; # 0 are called support vectors.

From the coefficients «q, ..., o, we can recover the optimal w:
w = Z ayiat
i
b=1—y'(z', w) for any ¢ with 0 < oy; < C

(more complex rule for b if no such ¢ exists).

The prediction rule becomes

g(x) = sign ((w, x) + b) = sign (Zn: a;yi(Ti, x) + b)

=1 26 /33



SVM Dual Optimization Problem

1 S
max —o Z aoy'y’ (xf, 27) + Z 1%
ij i

a>0

subject to

Zaiyizo and 0<a; <C, fori=1,...,n.
i

Why solve the dual optimization problem?
fewer unknowns: a € R” instead of (w,b,£) € R+

less storage when d > n:
(2%, 29)); ; € R™" instead of (x1,...,2") € R4

Kernelization (not in this course)

27 /33



SVMs Without Bias Term

For optimization, the bias term is an annoyance
In primal optimization, it often requires a different stepsize.
In dual optimization, sometimes not straight-forward to recover.

It couples the dual variables by an equality constraint: »_, oy;y; = 0.

We can get rid of the bias by the augmentation trick.
Original:
f(z) = (w,z)ga +b, withw € R beR.

New augmented:

linear:  f(x) = (0, T)ga+1, with @ = (w,b), T = (z,1).

generalized: f(z) = (0, ¢(x))5 with @ = (w,b), d(z) = (¢(x),1).

28 /33



SVMs Without Bias Term — Optimization

SVM without bias term — primal optimization problem

min —||lwl||* + C !
| L ep Bt
subject to, fori =1,...,n,

yi(w, 2ty > 1 — € and £ >0.

Difference: no b variable to optimize over

29 /33



SVMs Without Bias Term — Optimization

SVM without bias term — primal optimization problem

min —||lwl||* + C !
Lcmin gl +C3 e
subject to, fori =1,...,n,

yi(w, 2ty > 1 — € and & >0.

Difference: no b variable to optimize over

SVM without bias term — dual optimization problem

1 o
max —g Z a;joy'y’ (z',2?) + Z oy
1,7 7

subjectto, 0<qo; <C, fori=1,...,n.

Difference to variant with bias term: no constraint ), y;a; = 0. 2053



Linear SVM Optimization in the Dual

Stochastic Coordinate Dual Ascent

a < 0.

fort=1,...,7 do
i < random index (uniformly random or in epochs)
solve QP w.r.t. a; with all o5 for j # i fixed.

end for

return o

Properties:
converges monotonically to global optimum

each subproblem has smallest possible size: 1-dimensional

Open Problem:

how to make each step efficient?

30/33



SVM Optimization in the Dual

What's the complexity of the update step? Derive an explicit expression:

Original problem: max ¢ cj» —3 > aiogyiyd (at2d) + 3, o
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SVM Optimization in the Dual

What's the complexity of the update step? Derive an explicit expression:
Original problem: max ¢ cj» —3 > aiogyiyd (at2d) + 3, o

When all oj except o are fixed:  max,,ep,c) F(ei), with

1 o , o
Flog) = —50%‘2 (', 2") +Oéi<1 — ' oy’ <a:l,xj>) + const.

=2 da
9 Q2 i J i o
gF(ai) = —ai||2'||* + (1 -y Zajy (", x )) + const.
¢ J#i
H new
ew 1— yi Z;’lzl ozjyj <l‘i,:L‘j> 0 If ok <0,
Q; = o; + Hx’HQ , = C if a?ew > C,
new :
(v show up, because sum range is j = 1,...,n, not j # i) & otherwise.

complexity of each update: n inner products = O(nd)
if we pre-compute and store all (z;,z;): O(n) with O(n?) storage
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(Generalized) Linear SVM Optimization in the Dual

For n > d, we can improve using the linearity of (-, ):

a™ = q; + 1= yi Zj ajyj <$i’xj>
’ ' e
1—yi(a’, Y ajyd a9)
= q; + ”sz]2 J

remember w = 3, cjy/x’. If we keep w stored explicitly:

1—y'(w,2")
=Nt R

each update: O(d), independent of n
> (w,x?) takes O(d) for explicit w € RY
» taking care that w stays up-to-date: also O(d)

w"W = wold + (azew _ agld)yzxz

32 /33



SCDA for (Generalized) Linear SVMs [Hsieh, 2008]

initialize a < 0, w < 0
fort=1,...,7T do
i <— random index (uniformly random or in epochs)

l_yi<w>$i>
0 & i
0, if 0 + 6 < 0,
aelc if s +0>C,

o; + 6, otherwise.
w < w+ (@ — a;)y'a’
Qj — Q
end for
return o, w

Properties:
converges monotonically to global optimum
complexity of each step is independent of n

resembles stochastic gradient method, but step size is automatic
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