Statistical Machine Learning https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

I S T AUSTRIA

Institute of Science and Technology

Spring Semester 2018/2019 Lecture 5

Overview (tentative)

Date		no.	Торіс
Oct 08	Mon	1	A Hands-On Introduction
Oct 10	Wed	_	self-study (Christoph traveling)
Oct 15	Mon	2	Bayesian Decision Theory
			Generative Probabilistic Models
Oct 17	Wed	3	Discriminative Probabilistic Models
			Maximum Margin Classifiers
Oct 22	Mon	4	Generalized Linear Classifiers, Optimization
Oct 24	Wed	5	Evaluating Predictors; Model Selection
Oct 29	Mon	_	self-study (Christoph traveling)
Oct 31	Wed	6	Overfitting/Underfitting, Regularization
Nov 05	Mon	7	Learning Theory I: classical/Rademacher bounds
Nov 07	Wed	8	Learning Theory II: miscellaneous
Nov 12	Mon	9	Probabilistic Graphical Models I
Nov 14	Wed	10	Probabilistic Graphical Models II
Nov 19	Mon	11	Probabilistic Graphical Models III
Nov 21	Wed	12	Probabilistic Graphical Models IV
until Nov 25			final project 2 / 37

Evaluating Predictors

So, you've trained a predictor, $f : \mathcal{X} \to \mathcal{Y}$. How good is it really?

• The loss on the training set, $\mathcal{D} = \{ (x^1, y^1), \dots, (x^n, y^n) \},\$

$$\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y^i, f(x^i))$$

tells us little about the quality of a learned predictor. Reporting it would be misleading as best.

• Really, we would care about the expected loss (=generalization loss),

$$\mathcal{R}(f) = \mathop{\mathbb{E}}_{(x,y) \sim p(x,y)} \ell(y, f(x)).$$

Unformately, we cannot compute it, because p(x, y) is unknown.

In practice, we use a a test set,

$$\mathcal{D}_{\mathsf{tst}} = \{ (x^1, y^1), \dots, (x^m, y^m) \},\$$

i.e. examples that were not used for training, and compute

$$\hat{\mathcal{R}}_{\mathsf{tst}}(f) = \frac{1}{m} \sum_{i=1}^{m} \ell(y^i, f(x^i))$$

Why?

So, you've trained a predictor, $f : \mathcal{X} \to \mathcal{Y}$. How good is it really?

• The loss on the training set, $\mathcal{D} = \{ (x^1, y^1), \dots, (x^n, y^n) \},\$

$$\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y^i, f(x^i))$$

tells us little about the quality of a learned predictor. Reporting it would be misleading as best.

Really, we would care about the expected loss (=generalization loss),

$$\mathcal{R}(f) = \mathop{\mathbb{E}}_{(x,y) \sim p(x,y)} \ell(y, f(x)).$$

Unformately, we cannot compute it, because p(x, y) is unknown.

In practice, we use a a test set,

Wł

$$\mathcal{D}_{\mathsf{tst}} = \{ (x^1, y^1), \dots, (x^m, y^m) \},\$$

i.e. examples that were not used for training, and compute

$$\hat{\mathcal{R}}_{\mathsf{tst}}(f) = \frac{1}{m} \sum_{i=1}^{m} \ell(y^i, f(x^i))$$

ny? Let's look at $\hat{\mathcal{R}}_{\mathsf{tst}}(f)$ as an **estimator** of $\mathcal{R}(f)$

4/37

Excurse: Estimators

Estimators

An estimator is a rule for calculating an estimate, $\hat{E}(S)$, of a quantity E based on observed data, S. If S is random, then $\hat{E}(S)$ is also random.

Properties of estimators: bias

Let \hat{E} be an estimator of E. We can compute the expected value of the estimate, $\mathbb{E}_S[\hat{E}(S)]$, and define:

$$\operatorname{bias}(\hat{E}) = \mathbb{E}_S[\hat{E}(S)] - E$$

Properties of estimators: unbiasedness

If \hat{E} is an estimator of E, we call it unbiased, if

$$bias(\hat{E}) = 0$$
 (i.e. $\mathbb{E}[\hat{E}(S)] = E$)

If \hat{E} is unbiased, we can think of it as a noisy version of E.

•
$$\hat{E}(S) = 1$$
 has bias $1 - \mu$. bias $(\hat{E}) = \mathbb{E}_S \hat{E}(S) - \mu = 1 - \mu$

Examples: let $S = \{z^1, z^2, \dots, z^n\}$ be independent samples from $\mathcal{N}(x; \mu, \sigma^2)$. We look at different estimators for μ :

• $\hat{E}(S) = 1$ has bias $1 - \mu$. bias $(\hat{E}) = \mathbb{E}_S \hat{E}(S) - \mu = 1 - \mu$

•
$$\hat{E}(S) = \frac{1}{n} \sum_{i=1}^{n} z^{i}$$
 is unbiased.

•
$$\hat{E}(S) = 1$$
 has bias $1 - \mu$. $\text{bias}(\hat{E}) = \mathbb{E}_S \hat{E}(S) - \mu = 1 - \mu$
• $\hat{E}(S) = \frac{1}{n} \sum_{i=1}^n z^i$ is unbiased.
 $\mathbb{E}_S[\hat{E}(S)] = \mathbb{E}_S[\frac{1}{n} \sum_i z^i] = \frac{1}{n} \sum_i \mathbb{E}_S[z^i] = \frac{1}{n} \sum_i \mu = \mu$

•
$$\hat{E}(S) = 1$$
 has bias $1 - \mu$. bias $(\hat{E}) = \mathbb{E}_S \hat{E}(S) - \mu = 1 - \mu$
• $\hat{E}(S) = \frac{1}{n} \sum_{i=1}^n z^i$ is unbiased.
 $\mathbb{E}_S[\hat{E}(S)] = \mathbb{E}_S[\frac{1}{n} \sum_i z^i] = \frac{1}{n} \sum_i \mathbb{E}_S[z^i] = \frac{1}{n} \sum_i \mu = \mu$
• $\hat{E}(S) = z^1$ is unbiased: $\mathbb{E}_S[\hat{E}(S)] = \mathbb{E}_S[z^1] = \mu$

•
$$\hat{E}(S) = 1$$
 has bias $1 - \mu$. bias $(\hat{E}) = \mathbb{E}_S \hat{E}(S) - \mu = 1 - \mu$
• $\hat{E}(S) = \frac{1}{n} \sum_{i=1}^n z^i$ is unbiased.
 $\mathbb{E}_S[\hat{E}(S)] = \mathbb{E}_S[\frac{1}{n} \sum_i z^i] = \frac{1}{n} \sum_i \mathbb{E}_S[z^i] = \frac{1}{n} \sum_i \mu = \mu$
• $\hat{E}(S) = z^1$ is unbiased: $\mathbb{E}_S[\hat{E}(S)] = \mathbb{E}_S[z^1] = \mu$
• $\hat{E}(S) = \frac{1}{n} + \frac{1}{n} \sum_{i=1}^n z^i$ has bias $\frac{1}{n}$

Example: Stochastic Gradient Descent

Reminder: we wanted to optimize

$$f(\theta) = \sum_{j=1}^{n} f_j(\theta)$$

$$v := \nabla f(\theta)$$

we use

$$\hat{v} := n \nabla f_i(\theta)$$
 with $i \overset{\text{uniformly}}{\sim} \{1, \dots, n\}$

Claim: \hat{v} is an unbiased estimator for v.

Example: Stochastic Gradient Descent

Reminder: we wanted to optimize

$$f(\theta) = \sum_{j=1}^{n} f_j(\theta)$$

$$v := \nabla f(\theta)$$

we use

$$\hat{v} := n \nabla f_i(\theta)$$
 with $i \stackrel{\text{uniformly}}{\sim} \{1, \dots, n\}$

Claim: \hat{v} is an unbiased estimator for v.

$$\mathbb{E}_{i}[\hat{v}] = \sum_{i=1}^{n} p(i)\hat{v}[i] = \sum_{i=1}^{n} \frac{1}{n} n\nabla f_{i}(\theta) = \sum_{i=1}^{n} \nabla f_{i}(\theta) = \nabla f(\theta)$$

How far is one estimate, $\hat{E}(S)$, from its expected value, $\mathbb{E}_S[\hat{E}(S)]$?

Properties of estimators: variance

$$\operatorname{Var}(\hat{E}) = \mathop{\mathbb{E}}_{S} \left[\left(\hat{E}(S) - \mathop{\mathbb{E}}_{S}[\hat{E}(S)] \right)^{2} \right]$$

If $Var(\hat{E})$ is large, then the estimate for different S differ a lot.

Examples:

•
$$\hat{E}(S) = 1$$
 has variance 0.
• $\hat{E}(S) = \frac{1}{n} \sum_{i=1}^{n} z_i$ has variance $\frac{\sigma^2}{n}$ (exercise)
• $\hat{E}(S) = z_1$ has variance σ^2
• $\hat{E}(S) = \frac{1}{n-1} \sum_{i=1}^{n} z_i$ has variance ? (exercise)

Bias-Variance Trade-Off

It's good to have small or no bias, and it's good to have small variance.

If you can't have both at the same time, look for a reasonable trade-off.

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html

What if we get more and more data, $S_n = \{z_1, \ldots, z_n\}$ for $n \to \infty$?

Properties of estimators: consistency

An estimator \hat{E} is called consistent, if

$$\hat{E}(S_n) \to E$$
 for $n \to \infty$.

Convergence is "in probability", i.e. it means,

$$\lim_{n \to \infty} \Pr\{ |\hat{E}(S_n) - E| > \epsilon \} = 0.$$

Any estimator \hat{E} with $\text{bias}(\hat{E}) \xrightarrow{n \to \infty} 0$ and $\text{Var}(\hat{E}) \xrightarrow{n \to \infty} 0$ is consistent. Proof... follows from later observations ls

$$\hat{\mathcal{R}}_{\mathsf{tst}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$$

a good estimator of

$$\mathcal{R}(f) = \mathop{\mathbb{E}}_{(x,y) \sim p(x,y)} \ell(y, f(x))$$

Yes, if we use the right data:

Test error as an unbiased estimator

If $\mathcal{D}_{tst} = \{ (x^1, y^1), \dots, (x^m, y^m) \}$ are sampled independently from the distribution p(x, y), and f was chosen independently of them. Then $\hat{\mathcal{R}}_{tst}$ is an unbiased and consistent estimator of \mathcal{R} :

Otherwise? Things might go wrong...

Proof: unbiased

- \mathcal{D} is a set of random variables, $(X^1, Y^1), \ldots, (X^m, Y^m) \in \mathcal{X} \times \mathcal{Y}$.
- All $(X^1, Y^1), \ldots, (X^m, Y^m)$ are independent with distribution p.
- For fixed functions f, ℓ , chosen independently of $\mathcal D$

$$\ell(Y^1, f(X^1)), \ldots, \ell(Y^m, f(X^m))$$

are independent (real-valued) random variables.

$$\mathbb{E}_{\mathcal{D} \sim p^{\otimes m}} \hat{\mathcal{R}}_{\mathsf{tst}}(\mathcal{D}) = \mathbb{E}_{(X^1, Y^1), \dots, (X^m, Y^m) \sim p} \frac{1}{m} \sum_{i=1}^m \ell(Y^i, f(X^i))$$

$$= \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{(X^1, Y^1), \dots, (X^m, Y^m) \sim p} \ell(Y^i, f(X^i))$$

$$= \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{(X^i, Y^i) \sim p} \ell(Y^i, f(X^i))$$

$$= \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{(X, Y) \sim p} \ell(Y, f(X))$$

$$= \mathbb{E}_{(X, Y) \sim p} \ell(Y, f(X)) = \mathcal{R}(f) \square$$

Excurse: Concentration of Measure I

Concentration of Measure Inequalities

• Z random variables, taking values $z \in \mathcal{Z} \subseteq \mathbb{R}$.

•
$$p(Z = z)$$
 probability distribution

•
$$\mu = \mathbb{E}[Z]$$
 mean
• $\operatorname{Var}[z] = \mathbb{E}[(Z - \mu)^2]$ variance

Lemma (Law of Large Numbers)

Let Z_1, Z_2, \ldots , be i.i.d. random variables with mean $\mathbb{E}[Z] < \infty$, then $\frac{1}{m} \sum_{i=1}^m Z_i \xrightarrow{m \to \infty} \mathbb{E}[Z]$ with probability 1.

In machine learning, we have finite data, so $m \to \infty$ is less important. Concentration of measure inequalities quantify the deviation between average and expectation for finite m.

Lemma (Markov's inequality)

$$\forall a > 0: \quad \mathbb{P}[Z \ge a] \le \frac{\mathbb{E}[Z]}{a}.$$

Proof. Step 1) We can write

$$\mathbb{E}[Z] = \int_{x=0}^{\infty} \mathbb{P}[Z \ge x] \ dx$$

Step 2) Since $\mathbb{P}[Z \ge x]$ is non-increasing in x, we have for any $a \ge 0$:

$$\mathbb{E}[Z] \geq \int_{x=0}^{a} \mathbb{P}[Z \geq x] \ \mathrm{d} \mathbf{x} \geq \int_{x=0}^{a} \mathbb{P}[Z \geq a] \ \mathrm{d} \mathbf{x} = a \, \mathbb{P}[Z \geq a]$$

Proof sketch of Step 1 inequality (ignoring questions of measurability and exchange of limit processes and writing the expression as if Z had a density p(z))

$$\mathbb{P}[Z \ge x] = \int_{z=x}^{\infty} p(z) dz = \int_{z=0}^{\infty} \llbracket z \ge x \rrbracket \ p(z) \ dz$$

$$\int_{x=0}^{\infty} \mathbb{P}[Z \ge x] \, dx = \int_{x=0}^{\infty} \int_{z=0}^{\infty} \llbracket z \ge x \rrbracket \, p(z) dz \, dx$$
$$= \int_{z=0}^{\infty} \underbrace{\int_{x=0}^{\infty} \llbracket z \ge x \rrbracket \, dx}_{=z} \, p(z) dz$$
$$= \int_{z=0}^{\infty} \int_{x=0}^{z} dx \, p(z) dz$$
$$= \int_{z=0}^{\infty} z \, p(z) dz$$
$$= \mathbb{E}[Z]$$

Lemma (Markov's inequality)

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a] \le \frac{\mathbb{E}[Z]}{a}.$$

Example

Is it possible that more than half of the population have a salary more than twice the mean salary?

Lemma (Markov's inequality)

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a] \le \frac{\mathbb{E}[Z]}{a}.$$

Corollary

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a \,\mathbb{E}[Z]] \le \frac{1}{a}.$$

Example

Is it possible that more than half of the population have a salary more than twice the mean salary? No, by corrolary with a = 2.

Lemma (Markov's inequality)

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a] \le \frac{\mathbb{E}[Z]}{a}.$$

Corollary

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a \,\mathbb{E}[Z]] \le \frac{1}{a}.$$

Example

Is it possible that more than half of the population have a salary more than twice the mean salary? No, by corrolary with a = 2.

Example

Is it possible that more than 90% of the population have a salary less than one tenth of the mean?

Lemma (Markov's inequality)

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a] \le \frac{\mathbb{E}[Z]}{a}.$$

Corollary

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a \,\mathbb{E}[Z]] \le \frac{1}{a}.$$

Example

Is it possible that more than half of the population have a salary more than twice the mean salary? No, by corrolary with a = 2.

Example

Is it possible that more than 90% of the population have a salary less than one tenth of the mean? Easily: p(\$1) = 0.99, p(\$100000) = 0.01.

Lemma (Chebyshev's inequality)

$$\forall a \ge 0: \quad \mathbb{P}[|Z - \mathbb{E}[Z]| \ge a] \le \frac{Var[Z]}{a^2}$$

Proof. Apply Markov's Inequality to the random variable $(Z - \mathbb{E}[Z])^2$.

Lemma (Chebyshev's inequality)

$$\forall a \geq 0: \quad \mathbb{P}[|Z - \mathbb{E}[Z]| \geq a] \leq \frac{\textit{Var}[Z]}{a^2}$$

Proof. Apply Markov's Inequality to the random variable $(Z - \mathbb{E}[Z])^2$. For any $a \ge 0$:

$$\mathbb{P}[|Z - \mathbb{E}[Z]| \ge a] = \mathbb{P}[(Z - \mathbb{E}[Z])^2 \ge a^2] \stackrel{\text{Markov}}{\le} \frac{\mathbb{E}[(Z - \mathbb{E}[Z])^2]}{a^2} = \frac{\operatorname{Var}[Z]}{a^2}.$$

Lemma (Chebyshev's inequality)

$$\forall a \geq 0: \quad \mathbb{P}[|Z - \mathbb{E}[Z]| \geq a] \leq \frac{\textit{Var}[Z]}{a^2}$$

Proof. Apply Markov's Inequality to the random variable $(Z - \mathbb{E}[Z])^2$. For any $a \ge 0$:

$$\mathbb{P}[|Z - \mathbb{E}[Z]| \ge a] = \mathbb{P}[(Z - \mathbb{E}[Z])^2 \ge a^2] \stackrel{\text{Markov}}{\le} \frac{\mathbb{E}[(Z - \mathbb{E}[Z])^2]}{a^2} = \frac{\mathsf{Var}[Z]}{a^2}.$$

Remark: Chebyshev ineq. has similar role as " σ -rules" for Gaussians:

- 68% of probability mass of a Gaussian lie within $\mu\pm\sigma$,
- 95% of probability mass of a Gaussian lie within $\mu\pm 2\sigma$,
- 99.7% of probability mass of a Gaussian lie within $\mu\pm3\sigma$,

Chebyshev holds for arbitrary probability distributions, not just Gaussians.

Chebyshev's Inequality

Example (Soccer Match Statistics)

•
$$z = -1$$
 for loss, $z = 0$ for draw, $z = 1$ for win.

•
$$p(-1) = \frac{1}{10}, \ p(1) = \frac{1}{10}, \ p(0) = \frac{4}{5}.$$

•
$$\mathbb{E}[Z] = 0$$

•
$$\operatorname{Var}[Z] = \mathbb{E}[(Z)^2] = \frac{1}{10}(-1)^2 + \frac{4}{5}0^2 + \frac{1}{10}(1)^2 = \frac{1}{5}$$

What if we pretended Z is Gaussian?

•
$$\mu = 0, \ \sigma = \sqrt{\frac{1}{5}} \approx 0.45,$$

• we expect $\leq 5\%$ prob.mass outside of the 2σ -interval [-0.9, 0.9]

• but really, its 20%!

With Chebyshev:

• $\mathbb{P}[|Z| \ge 0.9] \le \frac{1}{5}/(0.9)^2 \approx 0.247$, so bound is correct

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z_1, \ldots, Z_m be i.i.d. random variables with $\mathbb{E}[Z_i] = \mu$ and $Var[Z_i] \leq C$. Then, for any $\delta \in (0, 1)$, the following inequality holds with probability at least $1 - \delta$:

$$\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| < \sqrt{\frac{C}{\delta m}}.$$

Equivalent formulations:

$$\Pr\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| < \sqrt{\frac{C}{\delta m}}\right] \ge 1-\delta.$$

$$\Pr\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| \ge \sqrt{\frac{C}{\delta m}}\right] \le \delta.$$

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z_1, \ldots, Z_m be i.i.d. random variables with $\mathbb{E}[Z_i] = \mu$ and $Var[Z_i] \leq C$. Then, for any $\delta \in (0, 1)$,

$$\Pr\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| \geq \sqrt{\frac{C}{\delta m}}\right] \leq \delta.$$

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z_1, \ldots, Z_m be i.i.d. random variables with $\mathbb{E}[Z_i] = \mu$ and $Var[Z_i] \leq C$. Then, for any $\delta \in (0, 1)$,

$$\Pr\left[\left|\frac{1}{m}\sum_{i=1}^{m} Z_i - \mu\right| \ge \sqrt{\frac{C}{\delta m}}\right] \le \delta.$$

Proof. The Z_i are indep., so $\operatorname{Var}\left[\frac{1}{m}\sum_{i=1}^m Z_i\right] = \frac{1}{m^2}\sum_{i=1}^m \operatorname{Var}[Z_i] \le \frac{C}{m}$. 2) Chebyshev's inequality gives us for any $a \ge 0$:

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| \geq a\right] \leq \frac{\operatorname{Var}\left[\frac{1}{m}\sum_{i=1}^{m}Z_{i}\right]}{a^{2}} \leq \frac{C}{ma^{2}}.$$

Setting $\delta = \frac{C}{ma^2}$ and solving for a yields $a = \sqrt{\frac{C}{\delta m}}$.

Sanity check: How large should my test set be?

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| \leq \sqrt{\frac{C}{\delta m}}\right] \geq 1-\delta.$$

Setup: fixed classifier $g: \mathcal{X} \to \mathcal{Y}$, $0/1\text{-loss: } \ell(\bar{y}, y) = \llbracket \bar{y} \neq y \rrbracket$

- test set $\mathcal{D} = \{(x^1, y^1) \dots, (x^m, y^m)\} \stackrel{i.i.d.}{\sim} p(x, y),$
- random variables $Z_i = \llbracket g(x^i) \neq y^i \rrbracket \in \{0, 1\}$,
- $\mathbb{E}[Z^i] = \mathbb{E}\{\llbracket g(x^i) \neq y^i \rrbracket\} = \mu$ (generalization error of g)

•
$$\operatorname{Var}[Z^i] = \mathbb{E}\{(Z^i - \mu)^2\} = \mu(1 - \mu)^2 + (1 - \mu)\mu^2 = \mu(1 - \mu) \le \frac{1}{4} =: C$$

Setup: fixed confidence, e.g. $\delta=0.1,~\sqrt{\frac{C}{\delta m}}=\sqrt{\frac{0.25}{0.1m}}=\sqrt{\frac{2.5}{m}}$

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| \leq \sqrt{\frac{2.5}{m}}\right] \geq 0.9$$

To be 90%-certain that the error is within ± 0.05 , use $m \ge 1,000$.

Sanity check: How large should my test set be?

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| \leq \sqrt{\frac{C}{\delta m}}\right] \geq 1-\delta.$$

Setup: fixed classifier $g: \mathcal{X} \to \mathcal{Y}$, $0/1\text{-loss: } \ell(\bar{y}, y) = \llbracket \bar{y} \neq y \rrbracket$

- test set $\mathcal{D} = \{(x^1, y^1) \dots, (x^m, y^m)\} \stackrel{i.i.d.}{\sim} p(x, y),$
- random variables $Z_i = \llbracket g(x^i) \neq y^i \rrbracket \in \{0, 1\}$,
- $\mathbb{E}[Z^i] = \mathbb{E}\{\llbracket g(x^i) \neq y^i \rrbracket\} = \mu$ (generalization error of g)

•
$$\operatorname{Var}[Z^i] = \mathbb{E}\{(Z^i - \mu)^2\} = \mu(1 - \mu)^2 + (1 - \mu)\mu^2 = \mu(1 - \mu) \le \frac{1}{4} =: C$$

Setup: fixed confidence, e.g. $\delta = 0.1$, $\sqrt{\frac{C}{\delta m}} = \sqrt{\frac{0.25}{0.1m}} = \sqrt{\frac{2.5}{m}}$

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| \leq \sqrt{\frac{2.5}{m}}\right] \geq 0.9$$

To be 90%-certain that the error is within ± 0.05 , use $m \ge 1,000$. To be 99%-certain that the error is within ± 0.05 , use $m \ge 10,000$. To be 90%-certain that the error is within ± 0.005 , use $m \ge 100,000$.

(for this case, tighter bounds are possible: later...)

Back to machine learning

Predictor Training (idealized)

 $\begin{array}{l} \text{input training data } \mathcal{D}_{\mathsf{trn}} \\ \text{input learning procedure } A \\ g \leftarrow A[\mathcal{D}] \quad (\text{apply } A \text{ with } \mathcal{D} \text{ as training set}) \\ \text{output resulting predictor } g : \mathcal{X} \rightarrow \mathcal{Y} \\ \end{array}$

Predictor Evaluation

input trained predictor $g : \mathcal{X} \to \mathcal{Y}$ **input** test data \mathcal{D}_{tst} apply g to \mathcal{D}_{tst} and measure performance R_{tst} **output** performance estimate R_{tst}

Predictor Training (idealized)

 $\begin{array}{l} \text{input training data } \mathcal{D}_{\mathsf{trn}} \\ \text{input learning procedure } A \\ g \leftarrow A[\mathcal{D}] \quad (\text{apply } A \text{ with } \mathcal{D} \text{ as training set}) \\ \text{output resulting predictor } g : \mathcal{X} \rightarrow \mathcal{Y} \\ \end{array}$

Predictor Evaluation

```
input trained predictor g : \mathcal{X} \to \mathcal{Y}

input test data \mathcal{D}_{tst}

apply g to \mathcal{D}_{tst} and measure performance R_{tst}

output performance estimate R_{tst}
```

Remark: In commercial applications, this is realistic:

- given some training set one builds a single system,
- one deploys it to the customers,
- the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of data to work with, so one *simulates* the above protocol.

 $\begin{array}{ll} \text{input data } \mathcal{D} \\ \text{input learning method } A \\ \text{split } \mathcal{D} = \mathcal{D}_{\mathsf{trn}} \stackrel{.}{\cup} \mathcal{D}_{\mathsf{tst}} \text{ disjointly} \\ \text{set aside } \mathcal{D}_{\mathsf{tst}} \text{ to a safe place } // \text{ do not look at it} \\ g \leftarrow A[\mathcal{D}_{\mathsf{trn}}] // \text{ learn a predictor from } \mathcal{D}_{\mathsf{trn}} \\ \text{apply } g \text{ to } \mathcal{D}_{\mathsf{tst}} \text{ and measure performance } R_{\mathsf{tst}} \\ \\ \text{output performance estimate } R_{\mathsf{tst}} \end{array}$

 $\begin{array}{ll} \mbox{input} \mbox{ data } \mathcal{D} \\ \mbox{input} \mbox{ learning method } A \\ \mbox{ split } \mathcal{D} = \mathcal{D}_{\rm trn} \bdot \mbox{\mathcal{D}}_{\rm tst} \mbox{ disjointly} \\ \mbox{ set aside } \mathcal{D}_{\rm tst} \mbox{ to a safe place } // \mbox{ do not look at it} \\ g \leftarrow A[\mathcal{D}_{\rm trn}] \mbox{$/$/$/$/ learn a predictor from $\mathcal{D}_{\rm trn}$ \\ \mbox{ apply g to $\mathcal{D}_{\rm tst}$ and measure performance $R_{\rm tst}$ \\ \mbox{ output performance estimate $R_{\rm tst}$ } \end{array}$

Remark. \mathcal{D}_{tst} should be as small as possible, to keep \mathcal{D}_{trn} as big as possible, but large enough to be convincing.

- sometimes: 50%/50% for small datasets
- more often: 80% training data, 20% test data
- for large datasets: 90% training, 10% test data.

 $\begin{array}{ll} \text{input data } \mathcal{D} \\ \text{input learning method } A \\ \text{split } \mathcal{D} = \mathcal{D}_{\mathsf{trn}} \stackrel{.}{\cup} \mathcal{D}_{\mathsf{tst}} \text{ disjointly} \\ \text{set aside } \mathcal{D}_{\mathsf{tst}} \text{ to a safe place } // \text{ do not look at it} \\ g \leftarrow A[\mathcal{D}_{\mathsf{trn}}] // \text{ learn a predictor from } \mathcal{D}_{\mathsf{trn}} \\ \text{apply } g \text{ to } \mathcal{D}_{\mathsf{tst}} \text{ and measure performance } R_{\mathsf{tst}} \\ \\ \text{output performance estimate } R_{\mathsf{tst}} \end{array}$

Remark. \mathcal{D}_{tst} should be as small as possible, to keep \mathcal{D}_{trn} as big as possible, but large enough to be convincing.

- sometimes: 50%/50% for small datasets
- more often: 80% training data, 20% test data
- for large datasets: 90% training, 10% test data.

 \mathcal{D}_{tst} is "use once": it cannot be used for any decisions in building the predictor, only to evaluate it at the very end.

 $\begin{array}{ll} \mbox{input} \mbox{ data } \mathcal{D} \\ \mbox{input} \mbox{ learning method } A \\ \mbox{ split } \mathcal{D} = \mathcal{D}_{\rm trn} \bdot \mbox{\mathcal{D}}_{\rm tst} \mbox{ disjointly} \\ \mbox{ set aside } \mathcal{D}_{\rm tst} \mbox{ to a safe place } // \mbox{ do not look at it} \\ g \leftarrow A[\mathcal{D}_{\rm trn}] \mbox{$/$/$/$/ learn a predictor from $\mathcal{D}_{\rm trn}$ \\ \mbox{ apply g to $\mathcal{D}_{\rm tst}$ and measure performance $R_{\rm tst}$ \\ \hline \mbox{ output performance estimate $R_{\rm tst}$ } \end{array}$

In practice we often want more: not just train a classifier and evaluate it, but

- select the best algorithm out of multiple ones,
- select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure. This needs (at least) one additional data split:

Training and Selecting between Multiple Models

input data \mathcal{D} **input** set of method $\mathcal{A} = \{A_1, \ldots, A_K\}$ split $\mathcal{D} = \mathcal{D}_{trnval} \cup \mathcal{D}_{tst}$ disjointly set aside \mathcal{D}_{tst} to a safe place (do not look at it) split $\mathcal{D}_{trnval} = \mathcal{D}_{trn} \dot{\cup} \mathcal{D}_{val}$ disjointly for all models $A_i \in \mathcal{A}$ do $q_i \leftarrow A_i[\mathcal{D}_{\mathsf{trn}}]$ apply g_i to \mathcal{D}_{val} and measure performance $E_{val}(A_i)$ end for pick best performing A_i (optional) $q_i \leftarrow A_i[\mathcal{D}_{trnval}]$ // retrain best method on larger dataset

apply g_i to \mathcal{D}_{tst} and measure performance R_{tst} output performance estimate R_{tst}

How to split? For example $\frac{1}{3}: \frac{1}{3}: \frac{1}{3}$ or 70% : 10% : 20%.

Discussion.

- Each algorithm is trained on $\mathcal{D}_{\mathsf{trn}}$ and evaluated on disjoint $\mathcal{D}_{\mathsf{val}}$
- You select a predictor based on $\mathcal{R}_{\mathsf{val}}$ (its performance on $\mathcal{D}_{\mathsf{val}}$), only afterwards $\mathcal{D}_{\mathsf{tst}}$ is used. \checkmark
- \mathcal{D}_{tst} is used to evaluate the final predictor and nothing else. \checkmark

Discussion.

- Each algorithm is trained on $\mathcal{D}_{\sf trn}$ and evaluated on disjoint $\mathcal{D}_{\sf val}$ \checkmark
- You select a predictor based on $\mathcal{R}_{\mathsf{val}}$ (its performance on $\mathcal{D}_{\mathsf{val}}$), only afterwards $\mathcal{D}_{\mathsf{tst}}$ is used. \checkmark
- \mathcal{D}_{tst} is used to evaluate the final predictor and nothing else. \checkmark

Problems.

- small \mathcal{D}_{val} is bad: \mathcal{R}_{val} could be bad estimate of g_A 's true performance, and we might pick a suboptimal method.
- large \mathcal{D}_{val} is bad: \mathcal{D}_{trn} is much smaller than \mathcal{D}_{trnval} , so the classifier learned on \mathcal{D}_{trn} might be much worse than necessary.
- retraining the best model on \mathcal{D}_{trnval} might overcome that, but it comes at a risk: just because a model worked well when trained on \mathcal{D}_{trn} , this does not mean it'll also work well when trained on \mathcal{D}_{trnval} .

Leave-one-out Evaluation (for a single model/algorithm)

$\begin{array}{ll} \text{input algorithm } A \\ \text{input loss function } \ell \\ \text{input data } \mathcal{D} & (\text{trnval part only: test part set aside earlier}) \\ \text{for all } (x^i, y^i) \in \mathcal{D} \text{ do} \\ g^{\neg i} \leftarrow A[\ \mathcal{D} \setminus \{(x^i, y^i)\} \] & // \ \mathcal{D}_{\mathsf{trn}} \text{ is } \mathcal{D} \text{ with } i\text{-th example removed} \\ r^i \leftarrow \ell(y^i, g^{\neg i}(x^i)) & // \ \mathcal{D}_{\mathsf{val}} = \{(x^i, y^i)\}, \text{ disjoint to } \mathcal{D}_{\mathsf{trn}} \\ \text{end for} \\ \text{output } R_{\mathsf{loo}} = \frac{1}{n} \sum_{i=1}^n r^i \quad (\text{average leave-one-out risk}) \\ \end{array}$

Properties.

- Each r^i is a unbiased (but high variance) estimate of the risk $\mathcal{R}(g^{\neg i})$
- $\mathcal{D} \setminus \{(x^i, y^i)\}$ is almost the same as \mathcal{D} , so we can hope that each $g^{\neg i}$ is almost the same as $g = A[\mathcal{D}]$.
- Therefore, R_{loo} can be expected a good estimate of $\mathcal{R}(g)$

Problem: slow, trains n times on n-1 examples instead of once on n

K-fold Cross Validation (CV)

input algorithm A, loss function ℓ , data \mathcal{D} (trnval part) split $\mathcal{D} = \bigcup_{k=1}^{K} \mathcal{D}_k$ into K equal sized disjoint parts for $k = 1, \dots, K$ do $g^{\neg k} \leftarrow A[\mathcal{D} \setminus \mathcal{D}_k]$ $r^k \leftarrow \frac{1}{|\mathcal{D}_k|} \sum_{(x,y) \in \mathcal{D}_k} \ell(y^i, g^{\neg k}(x))$ end for output $R_{K\text{-CV}} = \frac{1}{K} \sum_{k=1}^n r^k$ (K-fold cross-validation risk)

Observation.

- for $K = |\mathcal{D}|$ same as leave-one-out error.
- approximately k times increase in runtime.
- most common: k = 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated. Exception: K = 2

5×2 Cross Validation (5×2 -CV)

input algorithm A, loss function ℓ , data \mathcal{D} (trnval part) for k = 1, ..., 5 do Split $\mathcal{D} = \mathcal{D}_1 \dot{\cup} \mathcal{D}_2$ $g_1 \leftarrow A[\mathcal{D}_1],$ $r_1^k \leftarrow \text{evaluate } q_1 \text{ on } \mathcal{D}_2$ $q_2 \leftarrow A[\mathcal{D}_2],$ $r_2^k \leftarrow \text{evaluate } g_2 \text{ on } \mathcal{D}_1$ $r^k \leftarrow \frac{1}{2}(r^1_k + r^2_k)$ end for output $\mathcal{R}_{5\times 2} = \frac{1}{5} \sum_{k=1}^{5} r^{k}$

Observation.

- 5×2 -CV is really the average of 5 runs of 2-fold CV
- very easy to implement: shuffle the data and split into halfs
- within each run the training sets are disjoint and the classifiers g_1 and g_2 are independent

Problem: training sets are smaller than in 5- or 10-fold CV.

If classes are *imbalanced* accuracy might not tell us much:

- p(y=-1)=0.99, $p(y=+1)=0.01~\rightarrow$ "always no" is 99% correct
- there might not be a better non-constant classifier

Three "solutions":

- balancing
 - use only subset of the majority class to balance data (5:1, or 1:1)
- reweighting
 - multiple loss in optimization with class-dependent constant C_{y_i} ,

$$\frac{1}{|\mathcal{D}_{+}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{+}}^{n} \ell(y_{i}, f(x_{i})) + \frac{1}{|\mathcal{D}_{-}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{-}}^{n} \ell(y_{i}, f(x_{i})) + \Omega(f)$$

treat as a retrieval problem instead of classification

Some classification tasks are really rather *retrieval* tasks, e.g.

• database lookup: is an entry x relevant (y = 1) or not (y = -1)?

A typical property:

- prediction is performed on a fixed database
- we have access to all elements of the test set at the same time
- positives (y = 1) are important, negative (y = -1) are a nuisanse
- we don't need all decisions, a few correct positives is enough

For a classifier $g(x) = \operatorname{sign} f(x)$ with $f(x) : \mathcal{X} \to \mathbb{R}$ (e.g., $f(x) = \langle w, x \rangle$), we interpret f(x) as its confidence.

To produce K positives we return the test samples of highest confidence. Equivalently, we decide by $g_{\theta}(x) = \operatorname{sign}(f(x) - \theta)$, for the right θ . Retrieval quality is often measure in terms of *precision* and *recall*:

Definition (Precision, Recall, F-Score)

For $\mathcal{Y} = \{\pm 1\}$, let $g : \mathcal{X} \to \mathcal{Y}$ a decision function and $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$ be a *database*.

Then we define

$$precision(g) = \frac{number of test samples with g(x^{j}) = 1 \text{ and } y^{j} = 1}{number of test samples with g(x^{j}) = 1}$$
$$recall(g) = \frac{number of test samples with g(x^{j}) = 1 \text{ and } y^{j} = 1}{number of test samples with y^{j} = 1}$$
$$F\text{-score}(g) = 2\frac{precision(g) \cdot recall(g)}{precision(g) + recall(g)}$$

For different thresholds, θ , we obtain different precision and recall values.

For different thresholds, θ , we obtain different precision and recall values.

- If pressured, summarize into one number: average precision.
- Curve/value depends on class ratio: higher values for more positives

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

$$\begin{aligned} & \textit{true-positive-rate}(g) = \frac{\textit{number of samples with } g(x^j) = 1 \textit{ and } y^j = 1 \\ & \textit{number of samples with } y^j = 1 \\ & \textit{false-positive-rate}(g) = \frac{\textit{number of samples with } g(x^j) = 1 \textit{ and } y^j = -1 \\ & \textit{number of samples with } y^j = -1 \end{aligned}$$

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

$$\begin{aligned} & \textit{true-positive-rate}(g) = \frac{\textit{number of samples with } g(x^j) = 1 \textit{ and } y^j = 1 \\ & \textit{number of samples with } y^j = 1 \\ & \textit{false-positive-rate}(g) = \frac{\textit{number of samples with } g(x^j) = 1 \textit{ and } y^j = -1 \\ & \textit{number of samples with } y^j = -1 \end{aligned}$$

Summarize into: area under ROC curve (AUC).

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

$$\begin{aligned} & \textit{true-positive-rate}(g) = \frac{\textit{number of samples with } g(x^j) = 1 \textit{ and } y^j = 1 \\ & \textit{number of samples with } y^j = 1 \\ & \textit{false-positive-rate}(g) = \frac{\textit{number of samples with } g(x^j) = 1 \textit{ and } y^j = -1 \\ & \textit{number of samples with } y^j = -1 \end{aligned}$$

Random classifier: AUC = 0.5, regardless of class proportions.