## Statistical Machine Learning

https://cvml.ist.ac.at/courses/SML_W18

## Christoph Lampert



Institute of Science and Technology

Spring Semester 2018/2019
Lecture 5

## Overview (tentative)

| Date |  | no. | Topic |
| :--- | :---: | :---: | :--- |
| Oct 08 | Mon | 1 | A Hands-On Introduction |
| Oct 10 | Wed | - | self-study (Christoph traveling) <br> Bayesian Decision Theory |
| Oct 15 | Mon | 2 | Generative Probabilistic Models <br> Oct 17 |
| Wed | 3 | Discriminative Probabilistic Models <br> Maximum Margin Classifiers |  |
| Oct 22 | Mon | 4 | Generalized Linear Classifiers, Optimization <br> Oct 24 Wed |
| Oct 29 | Mon | Evaluating Predictors; Model Selection |  |
| Self-study (Christoph traveling) |  |  |  |
| Oct 31 | Wed | 6 | Overfitting/Underfitting, Regularization |
| Nov 05 | Mon | 7 | Learning Theory I: classical/Rademacher bounds |
| Nov 07 | Wed | 8 | Learning Theory II: miscellaneous |
| Nov 12 | Mon | 9 | Probabilistic Graphical Models I |
| Nov 14 | Wed | 10 | Probabilistic Graphical Models II |
| Nov 19 | Mon | 11 | Probabilistic Graphical Models III |
| Nov 21 | Wed | 12 | Probabilistic Graphical Models IV <br> final project |
| until Nov 25 |  |  |  |

## Evaluating Predictors

So, you've trained a predictor, $f: \mathcal{X} \rightarrow \mathcal{Y}$. How good is it really?

- The loss on the training set, $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\}$,

$$
\hat{\mathcal{R}}(f)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{i}, f\left(x^{i}\right)\right)
$$

tells us little about the quality of a learned predictor. Reporting it would be misleading as best.

- Really, we would care about the expected loss (=generalization loss),

$$
\mathcal{R}(f)=\underset{(x, y) \sim p(x, y)}{\mathbb{E}} \ell(y, f(x)) .
$$

Unfornately, we cannot compute it, because $p(x, y)$ is unknown.

- In practice, we use a a test set,

$$
\mathcal{D}_{\mathrm{tst}}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{m}, y^{m}\right)\right\}
$$

i.e. examples that were not used for training, and compute

$$
\hat{\mathcal{R}}_{\mathrm{tst}}(f)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(y^{i}, f\left(x^{i}\right)\right)
$$

Why?

So, you've trained a predictor, $f: \mathcal{X} \rightarrow \mathcal{Y}$. How good is it really?

- The loss on the training set, $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\}$,

$$
\hat{\mathcal{R}}(f)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{i}, f\left(x^{i}\right)\right)
$$

tells us little about the quality of a learned predictor. Reporting it would be misleading as best.

- Really, we would care about the expected loss (=generalization loss),

$$
\mathcal{R}(f)=\underset{(x, y) \sim p(x, y)}{\mathbb{E}} \ell(y, f(x))
$$

Unfornately, we cannot compute it, because $p(x, y)$ is unknown.

- In practice, we use a a test set,

$$
\mathcal{D}_{\mathrm{tst}}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{m}, y^{m}\right)\right\}
$$

i.e. examples that were not used for training, and compute

$$
\hat{\mathcal{R}}_{\mathrm{tst}}(f)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(y^{i}, f\left(x^{i}\right)\right)
$$

Why? Let's look at $\hat{\mathcal{R}}_{\mathrm{tst}}(f)$ as an estimator of $\mathcal{R}(f)$.

## Excurse: Estimators

## Estimators

An estimator is a rule for calculating an estimate, $\hat{E}(S)$, of a quantity $E$ based on observed data, $S$. If $S$ is random, then $\hat{E}(S)$ is also random.

## Properties of estimators: bias

Let $\hat{E}$ be an estimator of $E$. We can compute the expected value of the estimate, $\mathbb{E}_{S}[\hat{E}(S)]$, and define:

$$
\operatorname{bias}(\hat{E})=\mathbb{E}_{S}[\hat{E}(S)]-E
$$

## Properties of estimators: unbiasedness

If $\hat{E}$ is an estimator of $E$, we call it unbiased, if

$$
\operatorname{bias}(\hat{E})=0 \quad \text { (i.e. } \underset{S}{\mathbb{E}}[\hat{E}(S)]=E)
$$

If $\hat{E}$ is unbiased, we can think of it as a noisy version of $E$.

## Example: Estimating the mean of a Gaussian

Examples: let $S=\left\{z^{1}, z^{2}, \ldots, z^{n}\right\}$ be independent samples from $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$. We look at different estimators for $\mu$ :

$$
\hat{E}(S)=1 \text { has bias } 1-\mu . \quad \operatorname{bias}(\hat{E})=\mathbb{E}_{S} \hat{E}(S)-\mu=1-\mu
$$

## Example: Estimating the mean of a Gaussian

Examples: let $S=\left\{z^{1}, z^{2}, \ldots, z^{n}\right\}$ be independent samples from $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$. We look at different estimators for $\mu$ :
$\hat{E}(S)=1$ has bias $1-\mu . \quad \operatorname{bias}(\hat{E})=\mathbb{E}_{S} \hat{E}(S)-\mu=1-\mu$

- $\hat{E}(S)=\frac{1}{n} \sum_{i=1}^{n} z^{i}$ is unbiased.


## Example: Estimating the mean of a Gaussian

Examples: let $S=\left\{z^{1}, z^{2}, \ldots, z^{n}\right\}$ be independent samples from $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$. We look at different estimators for $\mu$ :
$\hat{E}(S)=1$ has bias $1-\mu . \quad \operatorname{bias}(\hat{E})=\mathbb{E}_{S} \hat{E}(S)-\mu=1-\mu$

- $\hat{E}(S)=\frac{1}{n} \sum_{i=1}^{n} z^{i}$ is unbiased.

$$
\mathbb{E}_{S}[\hat{E}(S)]=\mathbb{E}_{S}\left[\frac{1}{n} \sum_{i} z^{i}\right]=\frac{1}{n} \sum_{i} \mathbb{E}_{S}\left[z^{i}\right]=\frac{1}{n} \sum_{i} \mu=\mu
$$

## Example: Estimating the mean of a Gaussian

Examples: let $S=\left\{z^{1}, z^{2}, \ldots, z^{n}\right\}$ be independent samples from $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$. We look at different estimators for $\mu$ :

- $\hat{E}(S)=1$ has bias $1-\mu . \quad \operatorname{bias}(\hat{E})=\mathbb{E}_{S} \hat{E}(S)-\mu=1-\mu$
- $\hat{E}(S)=\frac{1}{n} \sum_{i=1}^{n} z^{i}$ is unbiased.

$$
\mathbb{E}_{S}[\hat{E}(S)]=\mathbb{E}_{S}\left[\frac{1}{n} \sum_{i} z^{i}\right]=\frac{1}{n} \sum_{i} \mathbb{E}_{S}\left[z^{i}\right]=\frac{1}{n} \sum_{i} \mu=\mu
$$

- $\hat{E}(S)=z^{1}$ is unbiased: $\quad \mathbb{E}_{S}[\hat{E}(S)]=\mathbb{E}_{S}\left[z^{1}\right]=\mu$


## Example: Estimating the mean of a Gaussian

Examples: let $S=\left\{z^{1}, z^{2}, \ldots, z^{n}\right\}$ be independent samples from $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$. We look at different estimators for $\mu$ :

- $\hat{E}(S)=1$ has bias $1-\mu . \quad \operatorname{bias}(\hat{E})=\mathbb{E}_{S} \hat{E}(S)-\mu=1-\mu$
- $\hat{E}(S)=\frac{1}{n} \sum_{i=1}^{n} z^{i}$ is unbiased.

$$
\mathbb{E}_{S}[\hat{E}(S)]=\mathbb{E}_{S}\left[\frac{1}{n} \sum_{i} z^{i}\right]=\frac{1}{n} \sum_{i} \mathbb{E}_{S}\left[z^{i}\right]=\frac{1}{n} \sum_{i} \mu=\mu
$$

- $\hat{E}(S)=z^{1}$ is unbiased: $\quad \mathbb{E}_{S}[\hat{E}(S)]=\mathbb{E}_{S}\left[z^{1}\right]=\mu$
- $\hat{E}(S)=\frac{1}{n}+\frac{1}{n} \sum_{i=1}^{n} z^{i}$ has bias $\frac{1}{n}$


## Example: Stochastic Gradient Descent

Reminder: we wanted to optimize

$$
f(\theta)=\sum_{j=1}^{n} f_{j}(\theta)
$$

Instead of

$$
v:=\nabla f(\theta)
$$

we use

$$
\hat{v}:=n \nabla f_{i}(\theta) \quad \text { with } \quad i \stackrel{\text { uniformly }}{\sim}\{1, \ldots, n\}
$$

Claim: $\hat{v}$ is an unbiased estimator for $v$.

## Example: Stochastic Gradient Descent

Reminder: we wanted to optimize

$$
f(\theta)=\sum_{j=1}^{n} f_{j}(\theta)
$$

Instead of

$$
v:=\nabla f(\theta)
$$

we use

$$
\hat{v}:=n \nabla f_{i}(\theta) \quad \text { with } \quad i \stackrel{\text { uniformly }}{\sim}\{1, \ldots, n\}
$$

Claim: $\hat{v}$ is an unbiased estimator for $v$.

$$
\underset{i}{\mathbb{E}}[\hat{v}]=\sum_{i=1}^{n} p(i) \hat{v}[i]=\sum_{i=1}^{n} \frac{1}{n} n \nabla f_{i}(\theta)=\sum_{i=1}^{n} \nabla f_{i}(\theta)=\nabla f(\theta)
$$

How far is one estimate, $\hat{E}(S)$, from its expected value, $\mathbb{E}_{S}[\hat{E}(S)]$ ?

## Properties of estimators: variance

$$
\operatorname{Var}(\hat{E})=\underset{S}{\mathbb{E}}\left[(\hat{E}(S)-\underset{S}{\mathbb{E}}[\hat{E}(S)])^{2}\right]
$$

If $\operatorname{Var}(\hat{E})$ is large, then the estimate for different $S$ differ a lot.

## Examples:

Let $S=\left\{z^{1}, z^{2}, \ldots, z^{n}\right\}$ be independent samples from $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$.
We look at different estimators for $\mu$ :

- $\hat{E}(S)=1$ has variance 0 .
- $\hat{E}(S)=\frac{1}{n} \sum_{i=1}^{n} z_{i}$ has variance $\frac{\sigma^{2}}{n} \quad$ (exercise)
- $\hat{E}(S)=z_{1}$ has variance $\sigma^{2}$
- $\hat{E}(S)=\frac{1}{n-1} \sum_{i=1}^{n} z_{i}$ has variance ? (exercise)


## Bias-Variance Trade-Off

It's good to have small or no bias, and it's good to have small variance.


If you can't have both at the same time, look for a reasonable trade-off.

What if we get more and more data, $S_{n}=\left\{z_{1}, \ldots, z_{n}\right\}$ for $n \rightarrow \infty$ ?

## Properties of estimators: consistency

An estimator $\hat{E}$ is called consistent, if

$$
\hat{E}\left(S_{n}\right) \rightarrow E \quad \text { for } \quad n \rightarrow \infty
$$

Convergence is "in probability", i.e. it means,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|\hat{E}\left(S_{n}\right)-E\right|>\epsilon\right\}=0
$$

Any estimator $\hat{E}$ with $\operatorname{bias}(\hat{E}) \xrightarrow{n \rightarrow \infty} 0$ and $\operatorname{Var}(\hat{E}) \xrightarrow{n \rightarrow \infty} 0$ is consistent.
Proof... follows from later observations

## Back to learning...

Is

$$
\hat{\mathcal{R}}_{\mathrm{tst}}(f)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)
$$

a good estimator of

$$
\mathcal{R}(f)=\underset{(x, y) \sim p(x, y)}{\mathbb{E}} \ell(y, f(x))
$$

Yes, if we use the right data:

## Test error as an unbiased estimator

If $\mathcal{D}_{\text {tst }}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{m}, y^{m}\right)\right\}$ are sampled independently from the distribution $p(x, y)$, and $f$ was chosen independently of them. Then $\hat{\mathcal{R}}_{\text {tst }}$ is an unbiased and consistent estimator of $\mathcal{R}$ :

Otherwise? Things might go wrong...

## Proof: unbiased

- $\mathcal{D}$ is a set of random variables, $\left(X^{1}, Y^{1}\right), \ldots,\left(X^{m}, Y^{m}\right) \in \mathcal{X} \times \mathcal{Y}$.
- All $\left(X^{1}, Y^{1}\right), \ldots,\left(X^{m}, Y^{m}\right)$ are independent with distribution $p$.
- For fixed functions $f, \ell$, chosen independently of $\mathcal{D}$

$$
\ell\left(Y^{1}, f\left(X^{1}\right)\right), \ldots, \ell\left(Y^{m}, f\left(X^{m}\right)\right)
$$

are independent (real-valued) random variables.

$$
\begin{aligned}
\underset{\mathcal{D} \sim p^{\otimes m}}{\mathbb{E}} \hat{\mathcal{R}}_{\mathrm{tst}}(\mathcal{D}) & =\underset{\left(X^{1}, Y^{1}\right), \ldots,\left(X^{m}, Y^{m}\right) \sim p}{\mathbb{E}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(Y^{i}, f\left(X^{i}\right)\right) \\
& =\frac{1}{m} \sum_{i=1}^{m} \underset{\left(X^{1}, Y^{1}\right), \ldots,\left(X^{m}, Y^{m}\right) \sim p}{\mathbb{E}} \ell\left(Y^{i}, f\left(X^{i}\right)\right) \\
& =\frac{1}{m} \sum_{i=1}^{m} \underset{\left(X^{i}, Y^{i}\right) \sim p}{\mathbb{E}} \ell\left(Y^{i}, f\left(X^{i}\right)\right) \\
& =\frac{1}{m} \sum_{i=1}^{m} \underset{(X, Y) \sim p}{\mathbb{E}} \ell(Y, f(X)) \\
& =\underset{(X, Y) \sim p}{\mathbb{E}} \ell(Y, f(X))=\mathcal{R}(f)
\end{aligned}
$$

## Excurse: Concentration of Measure I

## Concentration of Measure Inequalities

- $Z$ random variables, taking values $z \in \mathcal{Z} \subseteq \mathbb{R}$.
- $p(Z=z)$ probability distribution
- $\mu=\mathbb{E}[Z] \quad$ mean
- $\operatorname{Var}[z]=\mathbb{E}\left[(Z-\mu)^{2}\right] \quad$ variance


## Lemma (Law of Large Numbers)

Let $Z_{1}, Z_{2}, \ldots$, be i.i.d. random variables with mean $\mathbb{E}[Z]<\infty$, then

$$
\frac{1}{m} \sum_{i=1}^{m} Z_{i} \quad \xrightarrow{m \rightarrow \infty} \mathbb{E}[Z] \quad \text { with probability } 1 .
$$

In machine learning, we have finite data, so $m \rightarrow \infty$ is less important. Concentration of measure inequalities quantify the deviation between average and expectation for finite $m$.

Assumption: $\mathcal{Z} \subseteq \mathbb{R}_{+}$, i.e. $Z$ takes only non-negative values.

## Lemma (Markov's inequality)

$$
\forall a>0: \quad \mathbb{P}[Z \geq a] \leq \frac{\mathbb{E}[Z]}{a}
$$

Proof. Step 1) We can write

$$
\mathbb{E}[Z]=\int_{x=0}^{\infty} \mathbb{P}[Z \geq x] d x
$$

Step 2) Since $\mathbb{P}[Z \geq x]$ is non-increasing in $x$, we have for any $a \geq 0$ :

$$
\mathbb{E}[Z] \geq \int_{x=0}^{a} \mathbb{P}[Z \geq x] \mathrm{dx} \geq \int_{x=0}^{a} \mathbb{P}[Z \geq a] \mathrm{dx}=a \mathbb{P}[Z \geq a]
$$

Proof sketch of Step 1 inequality (ignoring questions of measurability and exchange of limit processes and writing the expression as if $Z$ had a density $p(z)$ )

$$
\begin{aligned}
\mathbb{P}[Z \geq x] & =\int_{z=x}^{\infty} p(z) d z=\int_{z=0}^{\infty} \llbracket z \geq x \rrbracket p(z) d z \\
\int_{x=0}^{\infty} \mathbb{P}[Z \geq x] d x & =\int_{x=0}^{\infty} \int_{z=0}^{\infty} \llbracket z \geq x \rrbracket p(z) d z d x \\
& =\int_{z=0}^{\infty} \underbrace{\int_{x=0}^{\infty} \llbracket z \geq x \rrbracket d x}_{=z} p(z) d z \\
& =\int_{z=0}^{\infty} \int_{x=0}^{z} d x p(z) d z \\
& =\int_{z=0}^{\infty} z p(z) d z \\
& =\mathbb{E}[Z]
\end{aligned}
$$

Assumption: $\mathcal{Z} \subseteq \mathbb{R}_{+}$, i.e. $Z$ takes only non-negative values.

## Lemma (Markov's inequality)

$$
\forall a \geq 0: \quad \mathbb{P}[Z \geq a] \leq \frac{\mathbb{E}[Z]}{a}
$$

## Example

Is it possible that more than half of the population have a salary more than twice the mean salary?

Assumption: $\mathcal{Z} \subseteq \mathbb{R}_{+}$, i.e. $Z$ takes only non-negative values.

## Lemma (Markov's inequality)

$$
\forall a \geq 0: \quad \mathbb{P}[Z \geq a] \leq \frac{\mathbb{E}[Z]}{a}
$$

## Corollary

$$
\forall a \geq 0: \quad \mathbb{P}[Z \geq a \mathbb{E}[Z]] \leq \frac{1}{a}
$$

## Example

Is it possible that more than half of the population have a salary more than twice the mean salary? No, by corrolary with $a=2$.

Assumption: $\mathcal{Z} \subseteq \mathbb{R}_{+}$, i.e. $Z$ takes only non-negative values.

## Lemma (Markov's inequality)

$$
\forall a \geq 0: \quad \mathbb{P}[Z \geq a] \leq \frac{\mathbb{E}[Z]}{a}
$$

## Corollary

$$
\forall a \geq 0: \quad \mathbb{P}[Z \geq a \mathbb{E}[Z]] \leq \frac{1}{a}
$$

## Example

Is it possible that more than half of the population have a salary more than twice the mean salary? No, by corrolary with $a=2$.

## Example

Is it possible that more than $90 \%$ of the population have a salary less than one tenth of the mean?

Assumption: $\mathcal{Z} \subseteq \mathbb{R}_{+}$, i.e. $Z$ takes only non-negative values.

## Lemma (Markov's inequality)

$$
\forall a \geq 0: \quad \mathbb{P}[Z \geq a] \leq \frac{\mathbb{E}[Z]}{a}
$$

## Corollary

$$
\forall a \geq 0: \quad \mathbb{P}[Z \geq a \mathbb{E}[Z]] \leq \frac{1}{a}
$$

## Example

Is it possible that more than half of the population have a salary more than twice the mean salary? No, by corrolary with $a=2$.

## Example

Is it possible that more than $90 \%$ of the population have a salary less than one tenth of the mean? Easily: $p(\$ 1)=0.99, p(\$ 100000)=0.01$.

Lemma (Chebyshev's inequality)

$$
\forall a \geq 0: \quad \mathbb{P}[|Z-\mathbb{E}[Z]| \geq a] \leq \frac{\operatorname{Var}[Z]}{a^{2}}
$$

Proof. Apply Markov's Inequality to the random variable $(Z-\mathbb{E}[Z])^{2}$.

## Lemma (Chebyshev's inequality)

$$
\forall a \geq 0: \quad \mathbb{P}[|Z-\mathbb{E}[Z]| \geq a] \leq \frac{\operatorname{Var}[Z]}{a^{2}}
$$

Proof. Apply Markov's Inequality to the random variable $(Z-\mathbb{E}[Z])^{2}$.
For any $a \geq 0$ :
$\mathbb{P}[|Z-\mathbb{E}[Z]| \geq a]=\mathbb{P}\left[(Z-\mathbb{E}[Z])^{2} \geq a^{2}\right] \stackrel{\text { Markov }}{\leq} \frac{\mathbb{E}\left[(Z-\mathbb{E}[Z])^{2}\right]}{a^{2}}=\frac{\operatorname{Var}[Z]}{a^{2}}$.

## Lemma (Chebyshev's inequality)

$$
\forall a \geq 0: \quad \mathbb{P}[|Z-\mathbb{E}[Z]| \geq a] \leq \frac{\operatorname{Var}[Z]}{a^{2}}
$$

Proof. Apply Markov's Inequality to the random variable $(Z-\mathbb{E}[Z])^{2}$.
For any $a \geq 0$ :
$\mathbb{P}[|Z-\mathbb{E}[Z]| \geq a]=\mathbb{P}\left[(Z-\mathbb{E}[Z])^{2} \geq a^{2}\right] \stackrel{\text { Maroo }}{\leq} \frac{\mathbb{E}\left[(Z-\mathbb{E}[Z])^{2}\right]}{a^{2}}=\frac{\operatorname{Var}[Z]}{a^{2}}$.

Remark: Chebyshev ineq. has similar role as " $\sigma$-rules" for Gaussians:

- $68 \%$ of probability mass of a Gaussian lie within $\mu \pm \sigma$,
- $95 \%$ of probability mass of a Gaussian lie within $\mu \pm 2 \sigma$,
- $99.7 \%$ of probability mass of a Gaussian lie within $\mu \pm 3 \sigma$,

Chebyshev holds for arbitrary probability distributions, not just Gaussians.

## Chebyshev's Inequality

## Example (Soccer Match Statistics)

- $z=-1$ for loss, $z=0$ for draw, $z=1$ for win.
- $p(-1)=\frac{1}{10}, p(1)=\frac{1}{10}, p(0)=\frac{4}{5}$.
- $\mathbb{E}[Z]=0$.
- $\operatorname{Var}[Z]=\mathbb{E}\left[(Z)^{2}\right]=\frac{1}{10}(-1)^{2}+\frac{4}{5} 0^{2}+\frac{1}{10}(1)^{2}=\frac{1}{5}$

What if we pretended $Z$ is Gaussian?

- $\mu=0, \sigma=\sqrt{\frac{1}{5}} \approx 0.45$,
- we expect $\leq 5 \%$ prob.mass outside of the $2 \sigma$-interval $[-0.9,0.9]$
- but really, its $20 \%$ !

With Chebyshev:

- $\mathbb{P}[|Z| \geq 0.9] \leq \frac{1}{5} /(0.9)^{2} \approx 0.247$, so bound is correct


## Applying Chebyshev's Inequality

## Lemma (Quantitative Version of the Law of Large Numbers)

Set $Z_{1}, \ldots, Z_{m}$ be i.i.d. random variables with $\mathbb{E}\left[Z_{i}\right]=\mu$ and $\operatorname{Var}\left[Z_{i}\right] \leq C$. Then, for any $\delta \in(0,1)$, the following inequality holds with probability at least $1-\delta$ :

$$
\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right|<\sqrt{\frac{C}{\delta m}}
$$

Equivalent formulations:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right|<\sqrt{\frac{C}{\delta m}}\right] \geq 1-\delta . \\
& \operatorname{Pr}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right| \geq \sqrt{\frac{C}{\delta m}}\right] \leq \delta .
\end{aligned}
$$

## Applying Chebyshev's Inequality

## Lemma (Quantitative Version of the Law of Large Numbers)

Set $Z_{1}, \ldots, Z_{m}$ be i.i.d. random variables with $\mathbb{E}\left[Z_{i}\right]=\mu$ and $\operatorname{Var}\left[Z_{i}\right] \leq C$. Then, for any $\delta \in(0,1)$,

$$
\operatorname{Pr}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right| \geq \sqrt{\frac{C}{\delta m}}\right] \leq \delta
$$

## Applying Chebyshev's Inequality

## Lemma (Quantitative Version of the Law of Large Numbers)

Set $Z_{1}, \ldots, Z_{m}$ be i.i.d. random variables with $\mathbb{E}\left[Z_{i}\right]=\mu$ and $\operatorname{Var}\left[Z_{i}\right] \leq C$. Then, for any $\delta \in(0,1)$,

$$
\operatorname{Pr}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right| \geq \sqrt{\frac{C}{\delta m}}\right] \leq \delta
$$

Proof. The $Z_{i}$ are indep., so $\operatorname{Var}\left[\frac{1}{m} \sum_{i=1}^{m} Z_{i}\right]=\frac{1}{m^{2}} \sum_{i=1}^{m} \operatorname{Var}\left[Z_{i}\right] \leq \frac{C}{m}$.
2) Chebyshev's inequality gives us for any $a \geq 0$ :

$$
\mathbb{P}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right| \geq a\right] \leq \frac{\operatorname{Var}\left[\frac{1}{m} \sum_{i=1}^{m} Z_{i}\right]}{a^{2}} \leq \frac{C}{m a^{2}}
$$

Setting $\delta=\frac{C}{m a^{2}}$ and solving for $a$ yields $a=\sqrt{\frac{C}{\delta m}}$.

## Sanity check: How large should my test set be?

$$
\mathbb{P}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right| \leq \sqrt{\frac{C}{\delta m}}\right] \geq 1-\delta
$$

Setup: fixed classifier $g: \mathcal{X} \rightarrow \mathcal{Y}, 0 / 1$-loss: $\ell(\bar{y}, y)=\llbracket \bar{y} \neq y \rrbracket$

- test set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right) \ldots,\left(x^{m}, y^{m}\right)\right\} \stackrel{i . i . d .}{\sim} p(x, y)$,
- random variables $Z_{i}=\llbracket g\left(x^{i}\right) \neq y^{i} \rrbracket \in\{0,1\}$,
- $\mathbb{E}\left[Z^{i}\right]=\mathbb{E}\left\{\llbracket g\left(x^{i}\right) \neq y^{i} \rrbracket\right\}=\mu \quad$ (generalization error of $g$ )
- $\operatorname{Var}\left[Z^{i}\right]=\mathbb{E}\left\{\left(Z^{i}-\mu\right)^{2}\right\}=\mu(1-\mu)^{2}+(1-\mu) \mu^{2}=\mu(1-\mu) \leq \frac{1}{4}=: C$

Setup: fixed confidence, e.g. $\delta=0.1, \sqrt{\frac{C}{\delta m}}=\sqrt{\frac{0.25}{0.1 m}}=\sqrt{\frac{2.5}{m}}$

$$
\mathbb{P}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right| \leq \sqrt{\frac{2.5}{m}}\right] \geq 0.9
$$

To be $90 \%$-certain that the error is within $\pm 0.05$, use $m \geq 1,000$.

## Sanity check: How large should my test set be?

$$
\mathbb{P}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right| \leq \sqrt{\frac{C}{\delta m}}\right] \geq 1-\delta
$$

Setup: fixed classifier $g: \mathcal{X} \rightarrow \mathcal{Y}, 0 / 1$-loss: $\ell(\bar{y}, y)=\llbracket \bar{y} \neq y \rrbracket$

- test set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right) \ldots,\left(x^{m}, y^{m}\right)\right\} \stackrel{\text { i.i.d. }}{\sim} p(x, y)$,
- random variables $Z_{i}=\llbracket g\left(x^{i}\right) \neq y^{i} \rrbracket \in\{0,1\}$,
- $\mathbb{E}\left[Z^{i}\right]=\mathbb{E}\left\{\llbracket g\left(x^{i}\right) \neq y^{i} \rrbracket\right\}=\mu \quad$ (generalization error of $g$ )
- $\operatorname{Var}\left[Z^{i}\right]=\mathbb{E}\left\{\left(Z^{i}-\mu\right)^{2}\right\}=\mu(1-\mu)^{2}+(1-\mu) \mu^{2}=\mu(1-\mu) \leq \frac{1}{4}=: C$

Setup: fixed confidence, e.g. $\delta=0.1, \sqrt{\frac{C}{\delta m}}=\sqrt{\frac{0.25}{0.1 m}}=\sqrt{\frac{2.5}{m}}$

$$
\mathbb{P}\left[\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mu\right| \leq \sqrt{\frac{2.5}{m}}\right] \geq 0.9
$$

To be $90 \%$-certain that the error is within $\pm 0.05$, use $m \geq 1,000$.
To be $99 \%$-certain that the error is within $\pm 0.05$, use $m \geq 10,000$.
To be $90 \%$-certain that the error is within $\pm 0.005$, use $m \geq 100,000$.
(for this case, tighter bounds are possible: later...)

## Back to machine learning

## Predictor Training (idealized)

input training data $\mathcal{D}_{\text {trn }}$
input learning procedure $A$
$g \leftarrow A[\mathcal{D}] \quad$ (apply $A$ with $\mathcal{D}$ as training set)
output resulting predictor $g: \mathcal{X} \rightarrow \mathcal{Y}$

## Predictor Evaluation

input trained predictor $g: \mathcal{X} \rightarrow \mathcal{Y}$ input test data $\mathcal{D}_{\text {tst }}$
apply $g$ to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{\text {tst }}$ output performance estimate $R_{\text {tst }}$

## Predictor Training (idealized)

input training data $\mathcal{D}_{\text {trn }}$
input learning procedure $A$
$g \leftarrow A[\mathcal{D}] \quad$ (apply $A$ with $\mathcal{D}$ as training set)
output resulting predictor $g: \mathcal{X} \rightarrow \mathcal{Y}$

## Predictor Evaluation

input trained predictor $g: \mathcal{X} \rightarrow \mathcal{Y}$ input test data $\mathcal{D}_{\text {tst }}$
apply $g$ to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{\text {tst }}$
output performance estimate $R_{\text {tst }}$
Remark: In commercial applications, this is realistic:

- given some training set one builds a single system,
- one deploys it to the customers,
- the customers use it on their own data, and complain if disappointed In research, one typically has no customer, but only a fixed amount of data to work with, so one simulates the above protocol.


## Classifier Training and Evaluation

input data $\mathcal{D}$
input learning method $A$
split $\mathcal{D}=\mathcal{D}_{\text {trn }} \dot{\cup} \mathcal{D}_{\text {tst }}$ disjointly
set aside $\mathcal{D}_{\text {tst }}$ to a safe place // do not look at it
$g \leftarrow A\left[\mathcal{D}_{\mathrm{trn}}\right] \quad / /$ learn a predictor from $\mathcal{D}_{\mathrm{trn}}$ apply $g$ to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{\text {tst }}$
output performance estimate $R_{\text {tst }}$

## Classifier Training and Evaluation

input data $\mathcal{D}$
input learning method $A$
split $\mathcal{D}=\mathcal{D}_{\text {trn }} \dot{\cup} \mathcal{D}_{\text {tst }}$ disjointly
set aside $\mathcal{D}_{\text {tst }}$ to a safe place // do not look at it
$g \leftarrow A\left[\mathcal{D}_{\mathrm{trn}}\right] \quad / /$ learn a predictor from $\mathcal{D}_{\text {trn }}$
apply $g$ to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{\text {tst }}$
output performance estimate $R_{\text {tst }}$

Remark. $\mathcal{D}_{\text {tst }}$ should be as small as possible, to keep $\mathcal{D}_{\text {trn }}$ as big as possible, but large enough to be convincing.

- sometimes: $50 \% / 50 \%$ for small datasets
- more often: $80 \%$ training data, $20 \%$ test data
- for large datasets: $90 \%$ training, $10 \%$ test data.


## Classifier Training and Evaluation

input data $\mathcal{D}$
input learning method $A$
split $\mathcal{D}=\mathcal{D}_{\text {trn }} \dot{\cup} \mathcal{D}_{\text {tst }}$ disjointly
set aside $\mathcal{D}_{\text {tst }}$ to a safe place // do not look at it
$g \leftarrow A\left[\mathcal{D}_{\mathrm{trn}}\right] \quad / /$ learn a predictor from $\mathcal{D}_{\text {trn }}$
apply $g$ to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{\text {tst }}$
output performance estimate $R_{\text {tst }}$

Remark. $\mathcal{D}_{\text {tst }}$ should be as small as possible, to keep $\mathcal{D}_{\text {trn }}$ as big as possible, but large enough to be convincing.

- sometimes: $50 \% / 50 \%$ for small datasets
- more often: $80 \%$ training data, $20 \%$ test data
- for large datasets: $90 \%$ training, $10 \%$ test data.
$\mathcal{D}_{\text {tst }}$ is "use once": it cannot be used for any decisions in building the predictor, only to evaluate it at the very end.


## Classifier Training and Evaluation

input data $\mathcal{D}$
input learning method $A$
split $\mathcal{D}=\mathcal{D}_{\text {trn }} \cup \dot{\mathcal{D}} \mathcal{D}_{\text {tst }}$ disjointly
set aside $\mathcal{D}_{\text {tst }}$ to a safe place // do not look at it
$g \leftarrow A\left[\mathcal{D}_{\text {trn }}\right] \quad / /$ learn a predictor from $\mathcal{D}_{\text {trn }}$ apply $g$ to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{\text {tst }}$
output performance estimate $R_{\text {tst }}$

In practice we often want more: not just train a classifier and evaluate it, but

- select the best algorithm out of multiple ones,
- select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure. This needs (at least) one additional data split:

## Training and Selecting between Multiple Models

input data $\mathcal{D}$
input set of method $\mathcal{A}=\left\{A_{1}, \ldots, A_{K}\right\}$
split $\mathcal{D}=\mathcal{D}_{\text {trnval }} \cup \dot{\mathcal{D}} \mathcal{D}_{\text {tst }}$ disjointly
set aside $\mathcal{D}_{\text {tst }}$ to a safe place (do not look at it)
split $\mathcal{D}_{\text {trnval }}=\mathcal{D}_{\text {trn }} \dot{\cup} \mathcal{D}_{\text {val }}$ disjointly
for all models $A_{i} \in \mathcal{A}$ do
$g_{i} \leftarrow A_{i}\left[\mathcal{D}_{\text {trn }}\right]$
apply $g_{i}$ to $\mathcal{D}_{\text {val }}$ and measure performance $E_{\text {val }}\left(A_{i}\right)$
end for
pick best performing $A_{i}$
(optional) $g_{i} \leftarrow A_{i}\left[\mathcal{D}_{\text {trnval }}\right] \quad / /$ retrain best method on larger dataset apply $g_{i}$ to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{\text {tst }}$
output performance estimate $R_{\text {tst }}$
How to split? For example $\frac{1}{3}: \frac{1}{3}: \frac{1}{3}$ or $70 \%: 10 \%: 20 \%$.

## Discussion.

- Each algorithm is trained on $\mathcal{D}_{\text {trn }}$ and evaluated on disjoint $\mathcal{D}_{\text {val }} \checkmark$
- You select a predictor based on $\mathcal{R}_{\text {val }}$ (its performance on $\mathcal{D}_{\text {val }}$ ), only afterwards $\mathcal{D}_{\text {tst }}$ is used. $\checkmark$
- $\mathcal{D}_{\text {tst }}$ is used to evaluate the final predictor and nothing else. $\sqrt{ }$


## Discussion.

- Each algorithm is trained on $\mathcal{D}_{\text {trn }}$ and evaluated on disjoint $\mathcal{D}_{\text {val }} \checkmark$
- You select a predictor based on $\mathcal{R}_{\text {val }}$ (its performance on $\mathcal{D}_{\text {val }}$ ), only afterwards $\mathcal{D}_{\text {tst }}$ is used.
- $\mathcal{D}_{\text {tst }}$ is used to evaluate the final predictor and nothing else.


## Problems.

- small $\mathcal{D}_{\text {val }}$ is bad: $\mathcal{R}_{\text {val }}$ could be bad estimate of $g_{A}$ 's true performance, and we might pick a suboptimal method.
- large $\mathcal{D}_{\text {val }}$ is bad: $\mathcal{D}_{\text {trn }}$ is much smaller than $\mathcal{D}_{\text {trnval }}$, so the classifier learned on $\mathcal{D}_{\text {trn }}$ might be much worse than necessary.
- retraining the best model on $\mathcal{D}_{\text {trnval }}$ might overcome that, but it comes at a risk: just because a model worked well when trained on $\mathcal{D}_{\text {trn }}$, this does not mean it'll also work well when trained on $\mathcal{D}_{\text {trnval }}$.


## Leave-one-out Evaluation (for a single model/algorithm)

input algorithm $A$
input loss function $\ell$
input data $\mathcal{D}$ (trnval part only: test part set aside earlier)
for all $\left(x^{i}, y^{i}\right) \in \mathcal{D}$ do
$g^{\neg i} \leftarrow A\left[\mathcal{D} \backslash\left\{\left(x^{i}, y^{i}\right)\right\}\right] \quad / / \mathcal{D}_{\text {trn }}$ is $\mathcal{D}$ with $i$-th example removed
$r^{i} \leftarrow \ell\left(y^{i}, g^{\urcorner i}\left(x^{i}\right)\right) \quad / / \mathcal{D}_{\text {val }}=\left\{\left(x^{i}, y^{i}\right)\right\}$, disjoint to $\mathcal{D}_{\text {trn }}$
end for
output $R_{\text {loo }}=\frac{1}{n} \sum_{i=1}^{n} r^{i} \quad$ (average leave-one-out risk)

## Properties.

- Each $r^{i}$ is a unbiased (but high variance) estimate of the risk $\mathcal{R}\left(g^{\neg i}\right)$
- $\mathcal{D} \backslash\left\{\left(x^{i}, y^{i}\right)\right\}$ is almost the same as $\mathcal{D}$, so we can hope that each $g \neg^{i}$ is almost the same as $g=A[\mathcal{D}]$.
- Therefore, $R_{\text {loo }}$ can be expected a good estimate of $\mathcal{R}(g)$

Problem: slow, trains $n$ times on $n-1$ examples instead of once on $n$

Compromise: use fixed number of small $\mathcal{D}_{\text {val }}$

## $K$-fold Cross Validation (CV)

input algorithm $A$, loss function $\ell$, data $\mathcal{D}$ (trnval part)
split $\mathcal{D}=\dot{U}_{k=1}^{K} \mathcal{D}_{k}$ into $K$ equal sized disjoint parts
for $k=1, \ldots, K$ do

$$
\begin{aligned}
& g^{{ }^{k}} \leftarrow A\left[\mathcal{D} \backslash \mathcal{D}_{k}\right] \\
& r^{k} \leftarrow \frac{1}{\left|\mathcal{D}_{k}\right|} \sum_{(x, y) \in \mathcal{D}_{k}} \ell\left(y^{i}, g^{\urcorner k}(x)\right)
\end{aligned}
$$

end for
output $R_{K-\mathrm{CV}}=\frac{1}{K} \sum_{k=1}^{n} r^{k} \quad(K$-fold cross-validation risk)

## Observation.

- for $K=|\mathcal{D}|$ same as leave-one-out error.
- approximately $k$ times increase in runtime.
- most common: $k=10$ or $k=5$.

Problem: training sets overlap, so the error estimates are correlated.
Exception: $K=2$

## $5 \times 2$ Cross Validation ( $5 \times 2$-CV)

input algorithm $A$, loss function $\ell$, data $\mathcal{D}$ (trnval part)
for $k=1, \ldots, 5$ do
Split $\mathcal{D}=\mathcal{D}_{1} \dot{\cup} \mathcal{D}_{2}$
$g_{1} \leftarrow A\left[\mathcal{D}_{1}\right]$,
$r_{1}^{k} \leftarrow$ evaluate $g_{1}$ on $\mathcal{D}_{2}$
$g_{2} \leftarrow A\left[\mathcal{D}_{2}\right]$,
$r_{2}^{k} \leftarrow$ evaluate $g_{2}$ on $\mathcal{D}_{1}$
$r^{k} \leftarrow \frac{1}{2}\left(r_{k}^{1}+r_{k}^{2}\right)$
end for
output $\mathcal{R}_{5 \times 2}=\frac{1}{5} \sum_{k=1}^{5} r^{k}$

## Observation.

- $5 \times 2$-CV is really the average of 5 runs of 2 -fold CV
- very easy to implement: shuffle the data and split into halfs
- within each run the training sets are disjoint and the classifiers $g_{1}$ and $g_{2}$ are independent

Problem: training sets are smaller than in 5 - or 10 -fold CV.

## Classification with Imbalanced Classes

If classes are imbalanced accuracy might not tell us much:

- $p(y=-1)=0.99, p(y=+1)=0.01 \rightarrow$ "always no" is $99 \%$ correct
- there might not be a better non-constant classifier

Three "solutions":

- balancing
- use only subset of the majority class to balance data (5:1, or $1: 1$ )
- reweighting
- multiple loss in optimization with class-dependent constant $C_{y_{i}}$,

$$
\frac{1}{\left|\mathcal{D}_{+}\right|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}_{+}}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)+\frac{1}{\left|\mathcal{D}_{-}\right|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}_{-}}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)+\Omega(f)
$$

- treat as a retrieval problem instead of classification


## Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.

- database lookup: is an entry $x$ relevant $(y=1)$ or not $(y=-1)$ ?

A typical property:

- prediction is performed on a fixed database
- we have access to all elements of the test set at the same time
- positives $(y=1)$ are important, negative $(y=-1)$ are a nuisanse
- we don't need all decisions, a few correct positives is enough

For a classifier $g(x)=\operatorname{sign} f(x)$ with $f(x): \mathcal{X} \rightarrow \mathbb{R}$ (e.g., $f(x)=\langle w, x\rangle)$, we interpret $f(x)$ as its confidence.

To produce $K$ positives we return the test samples of highest confidence.
Equivalently, we decide by $g_{\theta}(x)=\operatorname{sign}(f(x)-\theta)$, for the right $\theta$.

## Evaluating Retrieval Systems

Retrieval quality is often measure in terms of precision and recall:

## Definition (Precision, Recall, F-Score)

For $\mathcal{Y}=\{ \pm 1\}$, let $g: \mathcal{X} \rightarrow \mathcal{Y}$ a decision function and $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$ be a database.

Then we define

$$
\begin{aligned}
\operatorname{precision}(g) & =\frac{\text { number of test samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of test samples with } g\left(x^{j}\right)=1} \\
\text { recall }(g) & =\frac{\text { number of test samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of test samples with } y^{j}=1} \\
\text { F-score }(g) & =2 \frac{\text { precision }(g) \cdot \operatorname{recall}(g)}{\text { precision }(g)+\operatorname{recall}(g)}
\end{aligned}
$$

For different thresholds, $\theta$, we obtain different precision and recall values.

They are summarized by a precision-recall curve:


For different thresholds, $\theta$, we obtain different precision and recall values.

They are summarized by a precision-recall curve:


- If pressured, summarize into one number: average precision.
- Curve/value depends on class ratio: higher values for more positives

A similar role in different context:
Receiver Operating Characteristic (ROC) Curve
true-positive-rate $(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of samples with } y^{j}=1}$
false-positive-rate $(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=-1}{\text { number of samples with } y^{j}=-1}$


A similar role in different context:

## Receiver Operating Characteristic (ROC) Curve

true-positive-rate $(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of samples with } y^{j}=1}$
false-positive-rate $(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=-1}{\text { number of samples with } y^{j}=-1}$


Summarize into: area under ROC curve (AUC).

A similar role in different context:

## Receiver Operating Characteristic (ROC) Curve

true-positive-rate $(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of samples with } y^{j}=1}$
false-positive-rate $(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=-1}{\text { number of samples with } y^{j}=-1}$


Random classifier: $A U C=0.5$, regardless of class proportions.

