
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Spring Semester 2018/2019
Lecture 6

1 / 40

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. Topic
Oct 08 Mon 1 A Hands-On Introduction
Oct 10 Wed – self-study (Christoph traveling)
Oct 15 Mon 2 Bayesian Decision Theory

Generative Probabilistic Models
Oct 17 Wed 3 Discriminative Probabilistic Models

Maximum Margin Classifiers
Oct 22 Mon 4 Generalized Linear Classifiers, Optimization
Oct 24 Wed 5 Evaluating Predictors; Model Selection
Oct 29 Mon – self-study (Christoph traveling)
Oct 31 Wed 6 Overfitting/Underfitting, Regularization
Nov 05 Mon 7 Learning Theory I: classical/Rademacher bounds
Nov 07 Wed 8 Learning Theory II: miscellaneous
Nov 12 Mon 9 Probabilistic Graphical Models I
Nov 14 Wed 10 Probabilistic Graphical Models II
Nov 19 Mon 11 Probabilistic Graphical Models III
Nov 21 Wed 12 Probabilistic Graphical Models IV
until Nov 25 final project 2 / 40

Learning from Data

In the real world, p(x, y) is unknown, but we have a training set D.

Definition
Given a training set D, we call it
• a generative probabilistic approach:

if we use D to build a model p̂(x, y) of p(x, y), and then define

f(x) := argmin
y∈Y

E
ȳ∼p̂(x,ȳ)

`(ȳ, y).

• a discriminative probabilistic approach:
if we use D to build a model p̂(y|x) of p(y|x) and define

f(x) := argmin
y∈Y

E
ȳ∼p̂(ȳ|x)

`(ȳ, y).

• a decision theoretic approach: if we use D to directly seach for a
classifier f in a hypothesis class H ⊂ {h : X → Y}.

3 / 40

Empirical Risk Minimization

Definition
Given a training set D = { (x1, y1), . . . , (xn, yn) }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

f := argmin
h∈H

R̂(h) for R̂(f) = 1
n

n∑
i=1

`(yi, f(xi))

where H ⊂ {h : X → Y} is called the hypothesis set.

Examples:

• Least-Squared Regression: minw
∑
i(〈w, xi〉 − yi)2

• Logistic Regression: minw
∑
i log(1 + e−y

i〈w,xi〉)
• SVM: minw C

∑
i max{0, 1− yi〈w, xi〉} +‖w‖2

We know that for any fixed h, R̂(h) is an unbiased estimate of R(h).
Does that mean that R̂(f) is an unbiased estimate of R(f)?
No, unfortunately not!

4 / 40

Empirical Risk Minimization

Definition
Given a training set D = { (x1, y1), . . . , (xn, yn) }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

f := argmin
h∈H

R̂(h) for R̂(f) = 1
n

n∑
i=1

`(yi, f(xi))

where H ⊂ {h : X → Y} is called the hypothesis set.

Examples:
• Least-Squared Regression: minw

∑
i(〈w, xi〉 − yi)2

• Logistic Regression: minw
∑
i log(1 + e−y

i〈w,xi〉)
• SVM: minw C

∑
i max{0, 1− yi〈w, xi〉} +‖w‖2

We know that for any fixed h, R̂(h) is an unbiased estimate of R(h).
Does that mean that R̂(f) is an unbiased estimate of R(f)?
No, unfortunately not!

4 / 40

Empirical Risk Minimization

Definition
Given a training set D = { (x1, y1), . . . , (xn, yn) }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

f := argmin
h∈H

R̂(h) for R̂(f) = 1
n

n∑
i=1

`(yi, f(xi))

where H ⊂ {h : X → Y} is called the hypothesis set.

Examples:
• Least-Squared Regression: minw

∑
i(〈w, xi〉 − yi)2

• Logistic Regression: minw
∑
i log(1 + e−y

i〈w,xi〉)

• SVM: minw C
∑
i max{0, 1− yi〈w, xi〉} +‖w‖2

We know that for any fixed h, R̂(h) is an unbiased estimate of R(h).
Does that mean that R̂(f) is an unbiased estimate of R(f)?
No, unfortunately not!

4 / 40

Empirical Risk Minimization

Definition
Given a training set D = { (x1, y1), . . . , (xn, yn) }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

f := argmin
h∈H

R̂(h) for R̂(f) = 1
n

n∑
i=1

`(yi, f(xi))

where H ⊂ {h : X → Y} is called the hypothesis set.

Examples:
• Least-Squared Regression: minw

∑
i(〈w, xi〉 − yi)2

• Logistic Regression: minw
∑
i log(1 + e−y

i〈w,xi〉)
• SVM: minw C

∑
i max{0, 1− yi〈w, xi〉} +‖w‖2

We know that for any fixed h, R̂(h) is an unbiased estimate of R(h).
Does that mean that R̂(f) is an unbiased estimate of R(f)?
No, unfortunately not!

4 / 40

Empirical Risk Minimization

Definition
Given a training set D = { (x1, y1), . . . , (xn, yn) }, we call it empirical
risk minimization, if we find a classifier by minimizing the empirical risk:

f := argmin
h∈H

R̂(h) for R̂(f) = 1
n

n∑
i=1

`(yi, f(xi))

where H ⊂ {h : X → Y} is called the hypothesis set.

Examples:
• Least-Squared Regression: minw

∑
i(〈w, xi〉 − yi)2

• Logistic Regression: minw
∑
i log(1 + e−y

i〈w,xi〉)
• SVM: minw C

∑
i max{0, 1− yi〈w, xi〉} +‖w‖2

We know that for any fixed h, R̂(h) is an unbiased estimate of R(h).
Does that mean that R̂(f) is an unbiased estimate of R(f)?
No, unfortunately not! 4 / 40

Empirical Risk Minimization

1) first choose f : X → Y, then observe D = {(x1, y1), . . . , (xn, yn)}:

R̂(f) = 1
n

n∑
i=1

`(yi, f(xi)) unbiased, consistent estimator of R(f)

• Zi := `(yi, f(xi)) are independent random variables

2) first observe D = {(x1, y1), . . . , (xn, yn)}, then choose f based on D:

R̂(f) = 1
n

n∑
i=1

`(yi, f(xi)) E
D

[R̂(f)] = ???

• Zi := `(yi, f(xi)) are not independent, no law of large numbers.

So why would minimizing one be useful for the other?
5 / 40

Relation between training loss and generalization loss
Example: 1D curve fitting

0 2 4 6 8 10
4

2

0

2

4

6

8

10
true signal
training points

training points

6 / 40

Relation between training loss and generalization loss
Example: 1D curve fitting

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 2 fit, R̂= 8. 44

true signal R= 14. 64

training points

best learned polynomial of degree 2: large R̂, large R

6 / 40

Relation between training loss and generalization loss
Example: 1D curve fitting

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 7 fit, R̂= 0. 02

true signal R= 0. 39

training points

best learned polynomial of degree 7: small R̂, small R

6 / 40

Relation between training loss and generalization loss
Example: 1D curve fitting

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 12 fit, R̂= 0. 00

true signal R= 102. 49

training points

best learned polynomial of degree 12: small R̂, large R

6 / 40

We found a model fθ∗ by minimizing the training error R̂.

Q: Will its generalization error, R, be small?

A: Unfortunately, that is not guaranteed.

Underfitting/Overfitting

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 2 fit, R̂= 8. 44

true signal R= 14. 64

training points

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 12 fit, R̂= 0. 00

true signal R= 102. 49

training points

Underfitting Overfitting
(to some extend) detectable from R̂ not detectable from R̂ !

7 / 40

Where does overfitting come from?

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing a predictor based on R̂ vs. R

R(θi)

generalization error R for 7 different predictors

8 / 40

Where does overfitting come from?

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing a predictors based on R̂ vs. R

R(θi)

generalization error R for 7 different predictors

8 / 40

Where does overfitting come from?

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing a predictors based on R̂ vs. R

R(θi)

R̂S3
(θi)

training error R̂ for a training set, S

8 / 40

Where does overfitting come from?

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

training errors R̂ for 5 possible training sets

8 / 40

Where does overfitting come from?

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

model with smallest training error can have high generalization error

8 / 40

Preventing Overfitting

9 / 40

Reminder: Overfitting

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 12 fit, R̂= 0. 00

true signal R= 102. 49

training points

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

overfitting R̂ vs. R

How can we prevent overfitting when learning a model?

10 / 40

Preventing overfitting

1) larger training set

larger training set → smaller variance of R̂

11 / 40

Preventing overfitting 1) larger training set

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

larger training set → smaller variance of R̂

11 / 40

Preventing overfitting 1) larger training set

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

lower probability that R̂ differs strongly from R

→ overfitting less likely

11 / 40

Preventing overfitting 1) larger training set

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

lower probability that R̂ differs strongly from R → overfitting less likely

11 / 40

Preventing overfitting 2) reduce the number of hypotheses

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

12 / 40

Preventing overfitting 2) reduce the number of hypotheses

1 2 3 4 5 6 7

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing a predictors based on R̂ vs. R

R(θi)

12 / 40

Preventing overfitting 2) reduce the number of hypotheses

1 2 3

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

12 / 40

Preventing overfitting 2) reduce the number of hypotheses

1 2 3

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

fewer models → lower probability of a model with small R̂ but high R

12 / 40

Preventing overfitting 2) reduce the number of hypotheses

1 2 3

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

fewer models → lower probability of a model with small R̂ but high R

12 / 40

But: danger of underfitting

to few models select to from → danger that no model with low R is left!

13 / 40

But: danger of underfitting

1 2 3

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

to few models select to from → danger that no model with low R is left!

13 / 40

But: danger of underfitting

1 2

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

to few models select to from → danger that no model with low R is left!

13 / 40

But: danger of underfitting

1 2

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

Underfitting!

13 / 40

But: danger of underfitting

1 2

θi

0.0

0.2

0.4

0.6

0.8

1.0
Choosing hypothesis based on R̂ vs. R

R(θi)

R̂S1
(θi)

R̂S2
(θi)

R̂S3
(θi)

R̂S4
(θi)

R̂S5
(θi)

Underfitting!

13 / 40

Overfitting happens when . . .

• there are too many models to choose from
(not strictly true: there’s usually infinitely many models anyway)

• the models we search over are too "flexible", so they fit not only the
signal but also the noise
(not strictly true: the models themselves are not "flexible" at all)

• the models have too many free parameters
(not strictly true: even models with very few parameters can overfit)

How to avoid overfitting? Use a model class that is
• "as simple as possible", but
• still contains a model with low R̂

14 / 40

Regularization

15 / 40

Regularization

Models with big difference between training error and generalization error
are typically extreme cases:
• a large number of model parameters
• large values of the model parameters
• for polynomials: high degree , etc.

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 7 fit, R̂= 0. 02

training points

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 14 fit, R̂= 0. 00

training points

coeffs: θi ∈ [−2.4, 4.6] coeffs: θi ∈ [−1312.5, 1136.6]

Regularization: avoid overfitting by preventing extremes to occur
• explicit regularization (changing the objective function)
• implicit regularization (modifying the optimization procedure)

16 / 40

Regularization

Models with big difference between training error and generalization error
are typically extreme cases:
• a large number of model parameters
• large values of the model parameters
• for polynomials: high degree , etc.

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 7 fit, R̂= 0. 02

training points

0 2 4 6 8 10
4

2

0

2

4

6

8

10 degree 14 fit, R̂= 0. 00

training points

coeffs: θi ∈ [−2.4, 4.6] coeffs: θi ∈ [−1312.5, 1136.6]

Regularization: avoid overfitting by preventing extremes to occur
• explicit regularization (changing the objective function)
• implicit regularization (modifying the optimization procedure)

16 / 40

Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives
large values to extreme parameter choices.

Regularized risk minimization
Take a training set, S = {(x1, y1), . . . , (xn, yn)}, find θ∗ by solving,

min
θ

Jλ(θ) with Jλ(θ) =
n∑
i=1

`(yi, fθ(xi))︸ ︷︷ ︸
empirical risk

+ λΩ(θ)︸ ︷︷ ︸
regularizer

e.g. with Ω(θ) = ‖θ‖2L2 =
∑

j
θ2
j or Ω(θ) = ‖θ‖L1 =

∑
j
|θj |

Optimization looks for model with small empirical risk, but also small
absolute values of the model parameters.
Regularization (hyper)parameter λ ≥ 0: trade-off between both.
• λ = 0: empirical risk minimization (risk of overfitting)
• λ→∞: all parameters 0 (risk of underfitting)

17 / 40

Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives
large values to extreme parameter choices.

Regularized risk minimization
Take a training set, S = {(x1, y1), . . . , (xn, yn)}, find θ∗ by solving,

min
θ

Jλ(θ) with Jλ(θ) =
n∑
i=1

`(yi, fθ(xi))︸ ︷︷ ︸
empirical risk

+ λΩ(θ)︸ ︷︷ ︸
regularizer

e.g. with Ω(θ) = ‖θ‖2L2 =
∑

j
θ2
j or Ω(θ) = ‖θ‖L1 =

∑
j
|θj |

Optimization looks for model with small empirical risk, but also small
absolute values of the model parameters.
Regularization (hyper)parameter λ ≥ 0: trade-off between both.
• λ = 0: empirical risk minimization (risk of overfitting)
• λ→∞: all parameters 0 (risk of underfitting) 17 / 40

Explicit regularization

Add a regularization term (=regularizer) to the empirical risk that gives
large values to extreme parameter choices.

Regularized risk minimization
Take a training set, S = {(x1, y1), . . . , (xn, yn)}, find θ∗ by solving,

min
θ

Jλ(θ) with Jλ(θ) =
n∑
i=1

`(yi, fθ(xi))︸ ︷︷ ︸
empirical risk

+ λΩ(θ)︸ ︷︷ ︸
regularizer

e.g. with Ω(θ) = ‖θ‖2L2 =
∑

j
θ2
j or Ω(θ) = ‖θ‖L1 =

∑
j
|θj |

Examples:
• Ridge Regression: minw λ‖w‖2 +

∑
i(〈w, xi〉 − yi)2

• Logistic Regression: minw λ‖w‖2 +
∑
i log(1 + e−y

i〈w,xi〉)
• SVM: minw ‖w‖2 + C

∑
i max{0, 1− yi〈w, xi〉}

17 / 40

Regularization as Trading Off Bias and Variance

Training error, R̂, is a noise estimate of the generalization error, R
• original risk R̂ is unbiased, but variance can be huge
• regularization introduces a bias, but reduces variance
• for λ→∞, the variance goes to 0, but the bias gets very big

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
18 / 40

Regularization as Trading Off Bias and Variance

Training error, R̂, is a noise estimate of the generalization error, R
• original risk R̂ is unbiased, but variance can be huge
• regularization introduces a bias, but reduces variance
• for λ→∞, the variance goes to 0, but the bias gets very big

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
18 / 40

Regularization as Trading Off Bias and Variance

Training error, R̂, is a noise estimate of the generalization error, R
• original risk R̂ is unbiased, but variance can be huge
• regularization introduces a bias, but reduces variance
• for λ→∞, the variance goes to 0, but the bias gets very big

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
18 / 40

Regularization as Trading Off Bias and Variance

Training error, R̂, is a noise estimate of the generalization error, R
• original risk R̂ is unbiased, but variance can be huge
• regularization introduces a bias, but reduces variance
• for λ→∞, the variance goes to 0, but the bias gets very big

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
18 / 40

Example: regularized linear least-squared regression

min
w

Jλ(w) for Jλ(w) =
n∑
i=1

(w>xi − yi)2 + λ‖w‖2

Train/test error for classifier c(x) = sign〈w, x〉 from minimizing Jλ with
varying amounts of regularization:

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

regularization strength λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6
training error, R̂

eye dataset: 737 examples for training, 736 examples for evaluation

19 / 40

Example: regularized linear least-squared regression

min
w

Jλ(w) for Jλ(w) =
n∑
i=1

(w>xi − yi)2 + λ‖w‖2

Train/test error for classifier c(x) = sign〈w, x〉 from minimizing Jλ with
varying amounts of regularization:

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

regularization strength λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6
training error, R̂

eye dataset: 737 examples for training, 736 examples for evaluation
19 / 40

Example: regularized linear least-squared regression

min
w

Jλ(w) for Jλ(w) =
n∑
i=1

(w>xi − yi)2 + λ‖w‖2

Train/test error for classifier c(x) = sign〈w, x〉 from minimizing Jλ with
varying amounts of regularization:

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

regularization strength λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6
training error, R̂
test error, R̂tst

eye dataset: 737 examples for training, 736 examples for evaluation
19 / 40

Example: regularized linear least-squared regression

min
w

Jλ(w) for Jλ(w) =
n∑
i=1

(w>xi − yi)2 + λ‖w‖2

Train/test error for classifier c(x) = sign〈w, x〉 from minimizing Jλ with
varying amounts of regularization:

over-
fitting

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

regularization strength λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

training error, R̂
test error, R̂tst

under-
fitting

sweet
spot

eye dataset: 737 examples for training, 736 examples for evaluation
19 / 40

Implicit regularization

Numerical optimization is performed iteratively, e.g. gradient descent

Gradient descent optimization

• initialize θ(0)

• for t = 1, 2, . . .
• θ(t) ← θ(t−1) − ηt∇θJ(θ(t−1)) (ηt ∈ R is some stepsize rule)
• until convergence

Implicit regularization methods modify these steps, e.g.
• early stopping
• weight decay
• data jittering
• dropout

20 / 40

Implicit regularization: early stopping

Gradient descent optimization with early stopping

• initialize θ(0)

• for t = 1, 2, . . . , T (T ∈ N is number of steps)
• θ(t) ← θ(t−1) − ηt∇θJ(θ(t−1))

Early stopping: stop optimization before convergence

• idea: if parameters are update only a small number of time, they
might not reach extreme values

• T hyperparameter controls trade-off:
I large T : parameters approach risk minimizer → risk of overfitting
I small T : parameters stay close to initialization → risk of underfitting

21 / 40

Implicit regularization: early stopping

Gradient descent optimization with early stopping

• initialize θ(0)

• for t = 1, 2, . . . , T (T ∈ N is number of steps)
• θ(t) ← θ(t−1) − ηt∇θJ(θ(t−1))

Early stopping: stop optimization before convergence

• idea: if parameters are update only a small number of time, they
might not reach extreme values

• T hyperparameter controls trade-off:
I large T : parameters approach risk minimizer → risk of overfitting
I small T : parameters stay close to initialization → risk of underfitting

21 / 40

Implicit regularization: weight decay

Gradient descent optimization with weight decay

• initialize θ(0)

• for t = 1, 2, . . .
• θ(t) ← θ(t−1) − ηt∇θJ(θ(t−1))
• θ(t) ← γθ(t) for, e.g., γ = 0.99
• until convergence

Weight decay:
Multiply parameters with a constant smaller than 1 in each iteration
• two ’forces’ in parameter update:

I θ(t)←θ(t−1) − ηt∇θJ(θ(t−1))
pull towards empirical risk minimizer → risk of overfitting

I θ(t) ← γθ(t) pulls towards 0 → risk of underfitting
• convergence: both effects cancel out → trade-off controlled by ηt, γ

Note: essentially same effect as explicit regularization with Ω = γ
2‖θ‖

2

22 / 40

Implicit regularization: weight decay

Gradient descent optimization with weight decay

• initialize θ(0)

• for t = 1, 2, . . .
• θ(t) ← θ(t−1) − ηt∇θJ(θ(t−1))
• θ(t) ← γθ(t) for, e.g., γ = 0.99
• until convergence

Weight decay:
Multiply parameters with a constant smaller than 1 in each iteration
• two ’forces’ in parameter update:

I θ(t)←θ(t−1) − ηt∇θJ(θ(t−1))
pull towards empirical risk minimizer → risk of overfitting

I θ(t) ← γθ(t) pulls towards 0 → risk of underfitting
• convergence: both effects cancel out → trade-off controlled by ηt, γ

Note: essentially same effect as explicit regularization with Ω = γ
2‖θ‖

2
22 / 40

Implicit regularization: data jittering (="virtual samples")

Gradient descent optimization with data jittering

• initialize θ(0)

• for t = 1, 2, . . .
• for i = 1, . . . , n:
• x̃i ← randomly perturbed version of xi

• set J̃(θ) =
∑n
i=1 `(yi, fθ(x̃i))

• θ(t) ← θ(t−1) − ηt∇θJ̃(θ(t−1))
• until convergence

Jittering: use randomly perturbed examples in each iteration
• idea: a good model should be robust to small changes of the data
• simulate (infinitely-)large training set → hopefully less overfitting

(also possible: just create large training set of jittered examples in the beginning)
• problem: coming up with perturbations needs domain knowledge

23 / 40

Implicit regularization: data jittering (="virtual samples")

Gradient descent optimization with data jittering

• initialize θ(0)

• for t = 1, 2, . . .
• for i = 1, . . . , n:
• x̃i ← randomly perturbed version of xi

• set J̃(θ) =
∑n
i=1 `(yi, fθ(x̃i))

• θ(t) ← θ(t−1) − ηt∇θJ̃(θ(t−1))
• until convergence

Jittering: use randomly perturbed examples in each iteration
• idea: a good model should be robust to small changes of the data
• simulate (infinitely-)large training set → hopefully less overfitting

(also possible: just create large training set of jittered examples in the beginning)
• problem: coming up with perturbations needs domain knowledge

23 / 40

Implicit regularization: dropout

Gradient descent optimization with dropout

• initialize θ(0)

• for t = 1, 2, . . .
• θ̃ ← θ(t−1) with a random fraction p of values set to 0, e.g. p = 1

2

• θ(t) ← θ(t−1) − ηt∇θJ(θ̃)
• until convergence

Dropout: every time we evaluate the model, a random subset of its
parameters are set to zero.

• aims for model with low empirical risk even if parameters are missing
• idea: no single parameter entry can become ’too important’
• similar to jittering, but without need for domain knowledge about x’s
• overfitting vs. underfitting tradeoff controlled by p

24 / 40

Implicit regularization: dropout

Gradient descent optimization with dropout

• initialize θ(0)

• for t = 1, 2, . . .
• θ̃ ← θ(t−1) with a random fraction p of values set to 0, e.g. p = 1

2

• θ(t) ← θ(t−1) − ηt∇θJ(θ̃)
• until convergence

Dropout: every time we evaluate the model, a random subset of its
parameters are set to zero.

• aims for model with low empirical risk even if parameters are missing
• idea: no single parameter entry can become ’too important’
• similar to jittering, but without need for domain knowledge about x’s
• overfitting vs. underfitting tradeoff controlled by p

24 / 40

Regularization

Often, more than one regularization techniques are combined, e.g.

Explicit regularization: e.g. "elastic net"
• Ω(θ) = α‖θ‖2L2 + (1− α)‖θ‖L1

Explicit/implicit regularization: e.g. large-scale support vector machines
• Ω(θ) = ‖θ‖2L2 , early stopping, potentially jittering

Implicit regularization: e.g. deep networks
• early stopping, weight decay, dropout, potentially jittering

25 / 40

Summary

Regularization can prevent overfitting
Intuition: avoid "extreme" models, e.g. very large parameter values

Explicit Regularization: modify object function

Implicit Regularization: change optimization procedure

Regularization introduces additional (hyper)parameters

How much of a regularization method to apply is a free parameter, often
called regularization constant. The optimal values are problem specific.

26 / 40

The Holy Grail of Statistical Machine Learning

Understanding the test error
from the training error

Generalization Bound
For every f ∈ H it holds:

E
(x,y)

`(y, f(x))︸ ︷︷ ︸
generalization loss

≤ 1
n

∑
i

`(yi, f(xi))︸ ︷︷ ︸
training loss

+ something

Image: http://typemoon.wikia.com/
27 / 40

The Holy Grail of Statistical Machine Learning

Understanding the test error
from the training error

Generalization Bound
For every f ∈ H it holds:

E
(x,y)

`(y, f(x))︸ ︷︷ ︸
generalization loss

≤ 1
n

∑
i

`(yi, f(xi))︸ ︷︷ ︸
training loss

+ something

Image: http://typemoon.wikia.com/
27 / 40

Typical structure of a generalization bound
Fixed learning setting:
• input data X , output space Y,
• data distribution p over X × Y (with some properties),
• hypothesis set H ⊂ {f : X → Y},
• loss function, ` : Y × Y → R+ (with some properties),

For any δ > 0, the following statement holds with probablity at least
1− δ over the (random) training set Dn = {(x1, y1), . . . , (xn, yn)} i.i.d.∼ p.

For all f ∈ H:

E
(x,y)

`(y, f(x)) ≤ 1
n

n∑
i=1

`(y, f(x)) + something

"something" typically increases for δ → 0 and decreases for n→∞.

Observation: if inequality holds, it holds uniformly for all f .
→ by minimizing the right hand side, we can find the "most promising" f

28 / 40

Reminder: (soft-margin) support vector machine (SVM):

min
w

λ

2 ‖w‖
2 + 1

m

∑
i

max{0, 1− yi〈w, xi〉}

Example: SVM radius/margin bound

Let `(x, y;w) := max{0, 1− y〈w, x〉} be the hinge loss. Let p be a
distribution on Rd × Y such that Pr{ ‖x‖ ≤ R } = 1 and let
H = {w : ‖w‖ ≤ B}.
Then, with prob. at least 1− δ over Dm

i.i.d.∼ p the following inequality
holds for all w ∈ H:

E
(x,y)∼p

J〈w, x〉 6= yK ≤ 1
m

m∑
i=1

`(xi, yi, w) + 2BR√
m

+

√
log 1

δ

2m .

Properties:
• uniform in w, i.e. holds even for minimizer of r.h.s. → almost SVM
• B is a upper bound on ‖w‖ → small ‖w‖ are most promising
• dimensionality of x does not show up, no curse of dimensionality!

29 / 40

Reminder: (soft-margin) support vector machine (SVM):

min
w

λ

2 ‖w‖
2 + 1

m

∑
i

max{0, 1− yi〈w, xi〉}

Example: SVM radius/margin bound

Let `(x, y;w) := max{0, 1− y〈w, x〉} be the hinge loss. Let p be a
distribution on Rd × Y such that Pr{ ‖x‖ ≤ R } = 1 and let
H = {w : ‖w‖ ≤ B}.
Then, with prob. at least 1− δ over Dm

i.i.d.∼ p the following inequality
holds for all w ∈ H:

E
(x,y)∼p

J〈w, x〉 6= yK ≤ 1
m

m∑
i=1

`(xi, yi, w) + 2BR√
m

+

√
log 1

δ

2m .

Properties:
• uniform in w, i.e. holds even for minimizer of r.h.s. → almost SVM
• B is a upper bound on ‖w‖ → small ‖w‖ are most promising
• dimensionality of x does not show up, no curse of dimensionality!

29 / 40

Excurse: Concentration of Measure II

30 / 40

Hoeffding’s Lemma and Inequality

Lemma (Hoeffding’s Lemma)

Let Z be a random variable that takes values in [a, b] and E[Z] = 0.
Then, for every λ > 0,

E[eλX] ≤ e
λ2(b−a)2

8 .

Proof: Exercise...

31 / 40

Lemma (Hoeffding’s Inequality)

Let Z1, . . . , Zm be i.i.d. random variables that take values in the interval
[a, b]. Let Z̄ = 1

m

∑m
i=1 Zi and denote E[Z̄] = µ. Then, for any ε > 0,

P
[(1

m

m∑
i=1

Zi − µ
)
> ε

]
≤ e−m

ε2
(b−a)2 .

and

P
[(
µ− 1

m

m∑
i=1

Zi
)
> ε

]
≤ e−m

ε2
(b−a)2 .

and

P
[∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣ > ε

]
≤ 2e−m

ε2
(b−a)2 .

32 / 40

Hoeffding’s Inequality – Proof

Define new RVs: Xi = Zi − E[Zi], X̄ = 1
m

∑
iXi

• E[Xi] = 0; E[X̄] = 0; each Xi takes values in [a− E[Zi], b− E[Zi]]

Use 1) monotonicity of exp and 2) Markov’s inequality to check

P[X̄ ≥ ε] 1)= P[eλX̄ ≥ eλε]
2)
≤ e−λε E[eλX̄]

From 3) the independence of the Xi we have

E[eλX̄] = E[
n∏
i=1

eλXi/m] 3)=
n∏
i=1

E[eλXi/m]

Use 4) Hoeffding’s Lemma for every i:

E[eλXi/m]
4)
≤ e

λ2(b−a)2

8m2 .

In combination:
P[X̄ ≥ ε] ≤ e−λεe

λ2(b−a)2
8m

33 / 40

Hoeffding’s Inequality – Proof cont.

Previous step:
P[X̄ ≥ ε] ≤ e−λεe

λ2(b−a)2
8m

So far, λ was arbitrary. Now we set λ = 4mε
(b−a)2

P[X̄ ≥ ε] ≤ e
− 4mε

(b−a)2 ε+
(

4mε
(b−a)2

)2 (b−a)2
8m = e

− 2mε2
(b−a)2

This proves the first statement.
If we repeat the same steps again for −X̄ instead of X, we get

P[X̄ ≤ −ε] ≤ e
− 2mε2

(b−a)2

This proves the second statement.
Use the union bound : P[A ∨B] ≤ P[A] + P[B], to combine both
directions:

P[|X̄| ≥ ε] = P[(X̄ ≥ ε) ∨ (X̄ ≤ −ε)] ≤ 2e−
2mε2

(b−a)2 .

2
34 / 40

How large should my test set be?

P[
∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ > ε] ≤ 2e−

2mε2
(b−a)2 .

Setup: fixed classifier g : X → Y
• test set D = {(x1, y1) . . . , (xm, ym)} i.i.d.∼ p(x, y),
• random variables Zi = Jg(xi) 6= yiK ∈ {0, 1}, → b− a = 1
• E[Zi] = E{Jg(xi) 6= yiK} = µ (test error of g)

Setup: m = 1
2 log(2

δ)/ε2.
For fixed confidence δ = 0.1⇒ ε =

√
log(20)/(2m) ≈ 1.22

√
1
m

P
[∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≤ 1.22

√
1
m

]
≥ 0.9

To be 90%-certain that the error is within 0.05, use m ≥ 600.

To be 99%-certain that the error is within 0.05, use m ≥ 1060.
To be 90%-certain that the error is within 0.005, use m ≥ 59914.

35 / 40

How large should my test set be?

P[
∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ > ε] ≤ 2e−

2mε2
(b−a)2 .

Setup: fixed classifier g : X → Y
• test set D = {(x1, y1) . . . , (xm, ym)} i.i.d.∼ p(x, y),
• random variables Zi = Jg(xi) 6= yiK ∈ {0, 1}, → b− a = 1
• E[Zi] = E{Jg(xi) 6= yiK} = µ (test error of g)

Setup: m = 1
2 log(2

δ)/ε2.
For fixed confidence δ = 0.1⇒ ε =

√
log(20)/(2m) ≈ 1.22

√
1
m

P
[∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≤ 1.22

√
1
m

]
≥ 0.9

To be 90%-certain that the error is within 0.05, use m ≥ 600.
To be 99%-certain that the error is within 0.05, use m ≥ 1060.
To be 90%-certain that the error is within 0.005, use m ≥ 59914.

35 / 40

Difference: Chebyshev’s vs. Hoeffding’s Inequality

With R̂ = 1
m

∑m
i=1 Zi and R = E[1

m

∑m
i=1 Zi]:

• Chebyshev’s: Var[Zi] ≤ C

P

 |R̂ − R| >
√

C

δm

 ≤ δ, P
[
|R̂ − R| > ε

]
≤ C

ε2m

• interval decreases like 1√
m
, confidence grows like 1− 1

m

• Hoeffding’s: Zi takes values in [a, b]:

P

 |R̂ − R| >
√

(b− a)2 log 2
δ

m

 ≤ δ, P
[
|R̂ − R| > ε

]
≤ 2e−

2mε2
(b−a)2 .

• interval decreases like 1√
m
, confidence grows like 1− e−m

Both are typical PAC (probably approximately correct) statements:
“With prob. 1− δ, the estimated R̂ is an ε-close approximation of R.”

36 / 40

Back to Machine Learning

37 / 40

Classical Generalization Bounds

Finite Hypothesis Set
Setup:
• `(y, ȳ) = Jy 6= ȳK (0-1 loss)
• finite number of possible classifiers H = {f1, . . . , fT } ⊂ YX

For any δ > 0, the following statement holds with probability at least
1− δ over the training set D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y):

For all f ∈ H:

R(f) ≤ R̂(f) +

√
log |H|+ log 1/δ

2n

Proof: blackboard...
38 / 40

Classical Generalization Bounds

Proof.
1) For any fixed f ∈ H, we get from Hoeffding’s inequality:

P[R(f)− R̂(f) > ε︸ ︷︷ ︸
=:Cf

] ≤ e−2nε2 .

2) By a union bound, P[
∨
f∈HCf] ≤

∑
f∈H P[Cf], we obtain

P[∃f ∈ H : R(f) > R̂(f) + ε] ≤ |H|e−2nε2 .

3) Right hand side should be δ, solve for ε:

ε =

√
log(Hδ)

2n

4) Put together, using that

P[∀f ∈ H : R(f) ≤ R̂(f) + ε] = 1− P[∃f ∈ H : R(f) > R̂(f) + ε]
39 / 40

Examples: Finite hypothesis classes

Model selection:
• Clients offer me trained classifiers: 1) decision tree, 2) LogReg or an
3) SVM? Which of the three should I buy?

Finite precision:
• For X ⊂ Rd, the hypothesis set H = {f(x) = sign〈w, x〉} is infinite.
• But: on a computer with w restricted to 32-bit floats: |H| = 232d.

log |H| ≈ 22d

Implementation:
• H = { all algorithms implementable in 1MB C-code } is finite.

Logarithmic dependence on |H| makes even large (finite) hypothesis sets
(kind of) practical.

40 / 40

