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Overview (tentative)

Date no. | Topic
Oct 08 | Mon | 1 | A Hands-On Introduction
Oct 10 | Wed | — | self-study (Christoph traveling)
Oct 15 | Mon | 2 | Bayesian Decision Theory
Generative Probabilistic Models
Oct 17 | Wed | 3 | Discriminative Probabilistic Models
Maximum Margin Classifiers
Oct 22 | Mon | 4 | Generalized Linear Classifiers, Optimization
Oct 24 | Wed | 5 | Evaluating Predictors; Model Selection
Oct 29 | Mon | — | self-study (Christoph traveling)
Oct 31 | Wed | 6 | Overfitting/Underfitting, Regularization
Nov 05 | Mon | 7 | Learning Theory I: classical/Rademacher bounds
Nov 07 | Wed | 8 | Learning Theory Il: miscellaneous
Nov 12 | Mon | 9 | Probabilistic Graphical Models |
Nov 14 | Wed | 10 | Probabilistic Graphical Models Il
Nov 19 | Mon | 11 | Probabilistic Graphical Models Il
Nov 21 | Wed | 12 | Probabilistic Graphical Models IV
until Nov 25 final project 227



Classical generalization bounds
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Classical Generalization Bounds

Reminder: Finite Hypothesis Set

Setup:

Uy, y) = ly # 9l (0-1 loss)
finite number of possible classifiers % = {f1,..., fr} C Y%

For any § > 0, the following statement holds with probability at least
1 — § over the training set D = {(z',y')..., (", y")} bk p(z,y):

For all f € H:

log |H| + log1/6
2n

R(f) < R(f) +\/

Proof steps:
Bound prob. of R(f) — R(f) > € separately for each classifier f
Combine by union bound — log |H| term a/27



Discussion: union bound

set of "bad" training sets _ . observation: if classifiers
for a specific classifier worst case: exceptional set are very similar,
{ different for each classifier exceptional sets will overlap

J

space of
data sets

Hoeffding Inequality Union Bound

Union bound is "worst case": usually overly pessimistic

Image: https://work.caltech.edu/library/
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Classical Generalization Bounds

Can we find a better way to characterize hypothesis classes than
simply the number of elements?

Suggested complexity measures:
covering numbers
growth function
VC dimension

Rademacher complexity

In particular, these work also for infinitely large hypothesis sets.
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Covering Numbers
VA
Definition (Covering)

Let F be a set of functions. We say F is e-covered by
F' with respect to a norm || - ||:

VieF 3feF |If-f<e

F'is called an e-cover of F.

Definition (Covering Number)

Let F be a set of functions. The e-covering number, N (e, F, || - ||), is
the size of the smallest e-cover of F with respect to || - ||.

Main idea: N(e, F,||-||) can be small (finite), even if F is large (infinite).
We can use the cover F’ for everything, yet still only make a small error.

Image: Lee Wee Sun. https://slideplayer.com/slide/7277867/
727



Growth function

Definition (Growth function)

Let H C {f: X — {£1}} be a set of binary-valued hypotheses. The
growth function Il : N — N of H is defined as:

y(n) = max [{(R(@1), - h(wn)) : h e M|

For any n € N, IIy(n) is the largest number of different labelings that
can be produced with functions in H.
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Growth function:

[Iy(n) = max ‘{(h(arl),...,h(a;n)) the H}‘

Ty, T E€X

Examples: growth function

H={f+, f-} where fi(x) =+1 and f_(z) = —1 (for all z € X)
— Iy(n)=2foralln>1
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L1, n E€X

Examples: growth function

H={f+, f-} where fi(x) =+1 and f_(z) = —1 (for all z € X)
— Iy(n)=2foralln>1

H = {fl, ey fT} — HH(n) < min{2”, "H|}

H={f:X — {£1}} (all binary values functions) and |X| = oo
— HH(’II) =2"

X =R?4 H = {sign({w,z) +b) : w € R: b€ R} all linear classifiers
— IIy(n) =2" forn <d+1, butIly(n)<2™forn>d+1.

X =R, H = {sign(sin(wzx)), weR}
— Hq.[(n) =2"
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Classical Generalization Bounds

Growth Function Generalization Bound

Setup:

Uy, y) = [y # 9l (0-1 loss)
H{f:X—{£1}}

For any § > 0, the following statement holds with probability at least
1 — & over the training set D = {(z!, ") ..., (z",y"™)} s p(z,y):

For all f € H:

2log IT log1/6
0g H+\/0g/

n 2n

R(f) < R(f) +\/
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Classical Generalization Bounds

Growth Function Generalization Bound

Setup:

Uy, y) = [y # 9l (0-1 loss)
H{f:X—{£1}}

For any § > 0, the following statement holds with probability at least
1 — & over the training set D = {(z!, ") ..., (z",y"™)} s p(z,y):

For all f € H:

2log IT log1/6
0g H+\/0g/

n 2n

R(f) < R(f) +\/

for || < oo, we (almost) recover the bound for finite hypothesis sets
bound is vacuous for Iy (n) = 2", but interesting for Iy (n) < 2"
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Problem: growth function (for all n € N) is hard to determine
Easier: at what value does it change from IIy(n) = 2" to Iy (n) < 2" ?

Definition (VC Dimension)

The VC dimension of a hypothesis class #, denoted VCdim(H), is the
maximal value n, such that Ty (n) = 2" (i.e. [y (n + 1) < 2"F1).
If no such value exists, we say that VCdim(H) = oc.
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Definition (VC Dimension)

The VC dimension of a hypothesis class #, denoted VCdim(H), is the
maximal value n, such that Ty (n) = 2" (i.e. [y (n + 1) < 2"F1).
If no such value exists, we say that VCdim(H) = oc.

Examples:
H=A{f+, -} for fr(x) =41 and f_(x) = —-1. — VCdim(H) =1

H={fi.....fr}  — VCdim(H) < |log, |H|]

H={f:X — {£1}} (all binary values functions) and |X| = oo
—  VCdim(H) = o

X =R4 H = {sign((w,z) +b) :w R becR} (linear classifiers)
~ VCdim(H) = d + 1

X =R, H = {sign(sin(wz)), weR}
— VCdim(H) = oo
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Definition (VC Dimension)

The VC dimension of a hypothesis class #, denoted VCdim(H), is the
maximal value n, such that ITy(n) = 2", or co if no such value exists.

Lemma (Sauer’s Lemma)

vCdim(H) /o
For any H with VCdim(H) < oo, for any m: Ty (n) < Z ()
=0 \"

Consequence:
up to n = VCdim(H), growth function grows exponentially
for n > VCdim(H)+1, growth function grows only polynomially:

Iy (n) < (en/d)?. (proof: textbook)

2log I3 (n)
n

complexity term starts decreasing for n > VCdim(H)
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Classical Generalization Bounds

VC-Dimension Generalization Bound

Setup:

Uy, y) =y # vl (0-1 loss)
Hc{f: X {£1})

For any § > 0, the following statement holds with probability at least
1 — 6 over the training set D = {(z',y')..., (", y")} g p(z,y):

For all f € H:

R(f) < R(f) + \/W;geél+ \/logQTll/(S

where d = VCdim(H)

Crucial quantity: %. Non-trivial bound only for n > d.
13 /27



More examples: VC dimension (from the literature)

1) threshold functions, 1 = {hy(z) = sign(x — 0),for § € R}.
VCdim(H) = 1
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More examples: VC dimension (from the literature)

1) threshold functions, 1 = {hy(z) = sign(x — 0),for § € R}.
VCdim(H) = 1

n=1 D={x}
> for 6 < xy: hg(zy) =1,
» for 6 > x1, ho(xz1) = 0.

(1) =2 =2

D ={x1,22}, wlog x1 <z
> for 0 < xy : (ho(z1), ho(z2)) = (1,1)
> forcp <0 <co: hg(er), ho(ea) =0,1
» for 0 > ¢y : hg(c1),hg(c2) = 0,0

» there is no h € H with hy(c1), ho(c2) = 1,0.
M3(2) = 3 < 22, no matter what c1,cz are  (except ¢ = c3).

‘H can arbitrarily label a set of size 1, but no set of size 2
= VCdim(H) =1
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More examples: VC dimension (from the literature)

1) threshold functions, 1 = {hy(z) = sign(x — 0),for § € R}.
VCdim(H) =1
2) polynomial classifiers,

H = {h(x) = sign f(z),for f any polynomial of degree k in R%}.

VCdim(H) = f (4

: 7
=0
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i=0
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More examples: VC dimension (from the literature)

1) threshold functions, 1 = {hy(z) = sign(x — 0),for § € R}.
VCdim(H) =1
2) polynomial classifiers,

H = {h(x) = sign f(z),for f any polynomial of degree k in R%}.
k

VCdim(H) = 3 (*1)
i=0

3) boosting: base set, F, of weak classifiers with VCdim D.

T
’H—{f(x)—;atgt(x), for g1,...,9r € F and ay,...,ar € R}

VCdim(H) <T(D +1) - (3log(T(D + 1)) + 2)
4) neural networks with binary activation functions,
VCdim(H) < O(dlogd) where d is number of network weights

5) neural networks with binary and linear activation functions,
VCdim(H) < O(d?) where d is number of network weights
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From classical to modern
generalization bounds
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Modern Generalization Bounds

Generalization bounds so far: with probability at least 1 — §:

VieH: R(f) <R(f)+ B(H,n,o)

Observation:
B(H,n,9) is data-independent
data distribution does not show up anywhere
— holds for "easy" as well as "hard" learning problems

Recently, more interest in distribution-dependent bounds.
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Rademacher Complexity

Z: input set (later: Z=X or Z =X x))
p(z): probability distribution over Z
F CH{f: Z — R}: set of real-valued functions

Definition

Let F = {f : Z — R} be a set of real-valued functions and
Di ={z1,...,2m} a finite set. The empirical Rademacher
complexity of F with respect to D,, is defined as

S)A‘ipm(]:) lsup( Zazf % )]

feF

where 01, ...,0y, are independent binary random variables with
p(+1) = p(—1) = & (called Rademacher variables).

Intuition: think of o; as random noise. The sup measures how well the
function can correlate to arbitrary values (=memorize random noise).

Note: f)?{pm is data-dependent, it depends on D,,. 18 /27



Example

Let 7 = {f} (a single function). Then, for any m,

Rp, (F ( ZU’ zz>:;2@[ai]f(zi):0

Example

Let F = {f : Z — [-B, B]} all bounded functions. Then, when there
are no duplicates in D,

Si{Dm(f):Igsupfe]-‘< Z@f Zz) = IE
(same argument would work, e.g., for piecewise linear functions)
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Example

Let F ={f1,...,.fx} with f; : X — [-B,B] fori =1,..., K (finitely
many bounded function). Then

2log K

EAR/D’IIL (‘F) S B
m

Proof: textbook

Example

Let F = {f =w'z:R?— R} with ||w|| < B all linear functions with
bounded slope. If m > d, then zi,..., 2z, are linearly dependent and
sup can't fit all possible signs  —  Rp,, (F) will decrease with m.

(we'll prove a more rigorous statement later)

20 /27



Definition
The Rademacher complexity of F is defined as

9%m("r) = E [ﬁc{Dm(I) ]

Dm Np®m

Note: R, is a distribution-dependent quantity (w.r.t. p).

In some cases, more convenient to compute than the empirical one.

21 /27



Slightly more general notation than before:
hypothesis set H C {X — R} (can be real-valued)
loss £: X x Y xH — R, eg. l(z,y,h) =max{0,1—yh(x)},

Rz(h‘) = IE(aﬁ,y)wp g(l‘,y,h), ﬁg(h) =1 i e(l‘i,yi, h)

m £i=1

22 /27



Slightly more general notation than before:
hypothesis set H C {X — R} (can be real-valued)
loss £: X x Y xH — R, eg. l(z,y,h) =max{0,1—yh(x)},

Rz(h‘) = IE(aﬁ,y)wp €($7yah)7 ﬁg(h) =1 i e(l‘i,yi, h)

m i=1

Theorem (Rademacher-based generalization bound)

Let ¢(z,y,h) < ¢ be a bounded loss function and set
F={loh:heH} ={lz,y,h(x)):heH}C{f: X xY >R}

Then, with prob. at least 1 — 6 over Dy, s p, it holds for all h € H.:

RUR) < RUR) + 2Rn(F) + ¢ 1%%{‘”

Also, with prob. at least 1 — ¢, it holds for all h € H.:

RUR) < RE(h) + 2P, (F) + 3¢y m‘)gm("‘/é)

Proof. blackboard/notes 22 b7



Useful properties:

Lemma

For F C RY let F':= {f + fo: f € F} be a translated version for some
fo: X — R . Then, for any m,

Rp,,(F') = Rp,, (F)

Lemma

For F C RY let 7' := {\f : f € F} be scaled by a constant )\ € R.
Then, for any m,
Rp,,(F') = \Rp,, (F)

Lemma

For FCRY and ¢:R =R let F':= {pof:feF}). Ifois
L-Lipschitz continuous, i.e. |¢(t) — ¢(t')| < L|t —t'|, then for any m,

Rp,, (F') < L-Rp,, (F)
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Lemma

Let Z be an inner-product space (e.g. R? with (-,-)). Let
F={f=(w,z): X - R} be the set of linear functions with ||w|| < B.
Then, for any Dy, = {z1,..., 2m},

. B
Fip, (F) < =[5 a2

Proof: blackboard/notes

Lemma

Let F = {f = (w,2) : X — R} be linear functions with ||w| < B and let
p be such that Pr{||z|| < R} =1 Then

Ron (F) < BR\/E

Proof: Rp, (F) < B\/mR? with prob. 1, so Ep R < B\/mR2, too.

24 /27




Reminder: (soft-margin) support vector machine (SVM):

LA 1
min §Hw||2 ey Ei:max{o, 1 —yi(w, z)}
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Reminder: (soft-margin) support vector machine (SVM):

LA 1
min §Hw||2 ey ;max{()’ 1 —yi(w, z)}

Example: SVM "radius/margin" bound

Let ¢(x,y; w) := max{0,1 — y(w, x)} be the hinge loss. Let p be a
distribution on R? x ) such that Pr{||z|| < R} =1 and let

H={w: |lu] < B} )

Then, with prob. at least 1 — § over D,, g p the following inequality
holds for all w € H:

1 & , , 2BR log &
E [sign{w, < — ) max{0,1 —y"(w,z")} + — + o
o Elign(w, ) # 4] m; 0,1 -y w, o)} + ==+ 50

Properties:
complexity terms decrease with rate O(,/1)

short ||w|| is better than long ||wl|

dimensionality of x does not show up, no curse of dimensionality!
25 /27



Proof sketch:
|lz|| < R (with probability 1)
"ramp loss": ¢(z,y,h) = min{ max{0,1 — y(w,z)},1 } €[0,1]
H={h(z) = (w,z) : |w| < B}, F={loh, hecH}

log(1/9)

With prob. 1 —6: Vh e H : Rﬁ(h) < ﬁg(h) + 2R, (F) + om

¢ is 1-Lipschitz, i.e. for F ={foh: h € H}:

1-Lip. Lemma 1
Rn(F) < Ru(H) < BRy—

¢ is upper bounds to 0/1 error and lower bound to hinge loss

Prih(z) £y} < R'(K)  RL(h) < % 3" masc{0, 1 - yyfw, .}
=1

With prob. 1 — ¢ for every w € H:

. 1 & 2RB log(1/0)
< s )
Pr{sign(w,z) # y} < - ;Zl max{0, 1 — y;(w, x;} + ~ + o
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Theorem (Connections to other complexity measures)

Let H={h:X — {£1}} be a hypothesis class. Then

X /21
Fon (1) < 1| 228 e 124 s finite,
m

Fn(H) < 2log Iy (m)

where I1y(m) is the growth function,
m

& 2d1
Ry (M) < W where d = VCdim(H).

Theorem (Connections to covering numbers)

Let H C {X — [~1,1]} and D “%" p(z,y) with |D| = m. Then

P (H) < info o + \/N(Q’MZ’ Ll ]

where N are covering numbers of the set of values that H assigns to D.
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