Statistical Machine Learning https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

I S T AUSTRIA

Institute of Science and Technology

Spring Semester 2018/2019 Lecture 7

Overview (tentative)

Date		no.	Торіс
Oct 08	Mon	1	A Hands-On Introduction
Oct 10	Wed	_	self-study (Christoph traveling)
Oct 15	Mon	2	Bayesian Decision Theory
			Generative Probabilistic Models
Oct 17	Wed	3	Discriminative Probabilistic Models
			Maximum Margin Classifiers
Oct 22	Mon	4	Generalized Linear Classifiers, Optimization
Oct 24	Wed	5	Evaluating Predictors; Model Selection
Oct 29	Mon	_	self-study (Christoph traveling)
Oct 31	Wed	6	Overfitting/Underfitting, Regularization
Nov 05	Mon	7	Learning Theory I: classical/Rademacher bounds
Nov 07	Wed	8	Learning Theory II: miscellaneous
Nov 12	Mon	9	Probabilistic Graphical Models I
Nov 14	Wed	10	Probabilistic Graphical Models II
Nov 19	Mon	11	Probabilistic Graphical Models III
Nov 21	Wed	12	Probabilistic Graphical Models IV
until Nov 25			final project 2 / 27

Classical generalization bounds

Reminder: Finite Hypothesis Set

Setup:

•
$$\ell(y, \bar{y}) = \llbracket y \neq \bar{y} \rrbracket$$
 (0-1 loss)

• finite number of possible classifiers $\mathcal{H} = \{f_1, \dots, f_T\} \subset \mathcal{Y}^{\mathcal{X}}$

For any $\delta > 0$, the following statement holds with probability at least $1 - \delta$ over the training set $\mathcal{D} = \{(x^1, y^1) \dots, (x^n, y^n)\} \stackrel{i.i.d.}{\sim} p(x, y)$:

For all $f \in \mathcal{H}$:

$$\mathcal{R}(f) \le \hat{\mathcal{R}}(f) + \sqrt{\frac{\log |\mathcal{H}| + \log 1/\delta}{2n}}$$

Proof steps:

- Bound prob. of $\mathcal{R}(f) \hat{\mathcal{R}}(f) > \epsilon$ separately for each classifier f
- Combine by union bound $\rightarrow \log |\mathcal{H}|$ term

Discussion: union bound

Hoeffding Inequality

Union Bound

Union bound is "worst case": usually overly pessimistic

Image: https://work.caltech.edu/library/

Can we find a better way to characterize hypothesis classes than simply the number of elements?

Suggested complexity measures:

- covering numbers
- growth function
- VC dimension
- Rademacher complexity

In particular, these work also for infinitely large hypothesis sets.

Definition (Covering)

Let \mathcal{F} be a set of functions. We say \mathcal{F} is ϵ -covered by \mathcal{F}' with respect to a norm $\|\cdot\|$:

$$\forall f \in \mathcal{F} \quad \exists f' \in \mathcal{F}' \quad \|f - f'\| < \epsilon$$

 \mathcal{F}' is called an ϵ -cover of \mathcal{F} .

Definition (Covering Number)

Let \mathcal{F} be a set of functions. The ϵ -covering number, $\mathcal{N}(\epsilon, \mathcal{F}, \|\cdot\|)$, is the size of the smallest ϵ -cover of \mathcal{F} with respect to $\|\cdot\|$.

Main idea: $\mathcal{N}(\epsilon, \mathcal{F}, \|\cdot\|)$ can be small (finite), even if \mathcal{F} is large (infinite). We can use the cover \mathcal{F}' for everything, yet still only make a small error.

Image: Lee Wee Sun. https://slideplayer.com/slide/7277867/

Definition (Growth function)

Let $\mathcal{H} \subset \{f : \mathcal{X} \to \{\pm 1\}\}$ be a set of binary-valued hypotheses. The **growth function** $\Pi_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$ of \mathcal{H} is defined as:

$$\Pi_{\mathcal{H}}(n) = \max_{x_1, \dots, x_n \in \mathcal{X}} \left| \left\{ \left(h(x_1), \dots, h(x_n) \right) : h \in \mathcal{H} \right\} \right|$$

For any $n \in \mathbb{N}$, $\Pi_{\mathcal{H}}(n)$ is the largest number of different labelings that can be produced with functions in \mathcal{H} .

$$\Pi_{\mathcal{H}}(n) = \max_{x_1,\dots,x_n \in \mathcal{X}} \left| \left\{ \left(h(x_1),\dots,h(x_n) \right) : h \in \mathcal{H} \right\} \right.$$

•
$$\mathcal{H} = \{f_+, f_-\}$$
, where $f_+(x) = +1$ and $f_-(x) = -1$ (for all $x \in \mathcal{X}$)
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2$ for all $n \ge 1$

$$\Pi_{\mathcal{H}}(n) = \max_{x_1,\dots,x_n \in \mathcal{X}} \left| \left\{ \left(h(x_1),\dots,h(x_n) \right) : h \in \mathcal{H} \right\} \right.$$

•
$$\mathcal{H} = \{f_+, f_-\}$$
, where $f_+(x) = +1$ and $f_-(x) = -1$ (for all $x \in \mathcal{X}$)
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2$ for all $n \ge 1$

•
$$\mathcal{H} = \{f_1, \dots, f_T\} \quad \rightarrow \quad \Pi_{\mathcal{H}}(n) \le \min\{2^n, |\mathcal{H}|\}$$

$$\Pi_{\mathcal{H}}(n) = \max_{x_1, \dots, x_n \in \mathcal{X}} \left| \left\{ \left(h(x_1), \dots, h(x_n) \right) : h \in \mathcal{H} \right\} \right.$$

•
$$\mathcal{H} = \{f_+, f_-\}$$
, where $f_+(x) = +1$ and $f_-(x) = -1$ (for all $x \in \mathcal{X}$)
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2$ for all $n \ge 1$

•
$$\mathcal{H} = \{f_1, \dots, f_T\} \quad \rightarrow \quad \Pi_{\mathcal{H}}(n) \le \min\{2^n, |\mathcal{H}|\}$$

•
$$\mathcal{H} = \{f : \mathcal{X} \to \{\pm 1\}\}$$
 (all binary values functions) and $|\mathcal{X}| = \infty$
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2^n$

$$\Pi_{\mathcal{H}}(n) = \max_{x_1, \dots, x_n \in \mathcal{X}} \left| \left\{ \left(h(x_1), \dots, h(x_n) \right) : h \in \mathcal{H} \right\} \right.$$

•
$$\mathcal{H} = \{f_+, f_-\}$$
, where $f_+(x) = +1$ and $f_-(x) = -1$ (for all $x \in \mathcal{X}$)
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2$ for all $n \ge 1$

•
$$\mathcal{H} = \{f_1, \dots, f_T\} \quad \rightarrow \quad \Pi_{\mathcal{H}}(n) \le \min\{2^n, |\mathcal{H}|\}$$

•
$$\mathcal{H} = \{f : \mathcal{X} \to \{\pm 1\}\}$$
 (all binary values functions) and $|\mathcal{X}| = \infty$
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2^n$

•
$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{H} = \{ \operatorname{sign}(\langle w, x \rangle + b) : w \in \mathbb{R}^d, b \in \mathbb{R} \}$ all linear classifiers
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2^n \text{ for } n \leq d+1, \text{ but } \Pi_{\mathcal{H}}(n) < 2^n \text{ for } n > d+1.$

$$\Pi_{\mathcal{H}}(n) = \max_{x_1, \dots, x_n \in \mathcal{X}} \left| \left\{ \left(h(x_1), \dots, h(x_n) \right) : h \in \mathcal{H} \right\} \right.$$

•
$$\mathcal{H} = \{f_+, f_-\}$$
, where $f_+(x) = +1$ and $f_-(x) = -1$ (for all $x \in \mathcal{X}$)
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2$ for all $n \ge 1$

•
$$\mathcal{H} = \{f_1, \dots, f_T\} \quad \rightarrow \quad \Pi_{\mathcal{H}}(n) \le \min\{2^n, |\mathcal{H}|\}$$

•
$$\mathcal{H} = \{f : \mathcal{X} \to \{\pm 1\}\}$$
 (all binary values functions) and $|\mathcal{X}| = \infty$
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2^n$

•
$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{H} = \{ sign(\langle w, x \rangle + b) : w \in \mathbb{R}^d, b \in \mathbb{R} \}$ all linear classifiers
 $\rightarrow \Pi_{\mathcal{H}}(n) = 2^n \text{ for } n \leq d+1, \text{ but } \Pi_{\mathcal{H}}(n) < 2^n \text{ for } n > d+1.$

•
$$\mathcal{X} = \mathbb{R}, \ \mathcal{H} = \{ \operatorname{sign}(\sin(\omega x)), \quad \omega \in \mathbb{R} \}$$

 $\rightarrow \Pi_{\mathcal{H}}(n) = 2^n$

Growth Function Generalization Bound

Setup:

•
$$\ell(y, \bar{y}) = \llbracket y \neq \bar{y} \rrbracket$$
 (0-1 loss)

•
$$\mathcal{H} \subset \{f : \mathcal{X} \to \{\pm 1\}\}$$

For any $\delta > 0$, the following statement holds with probability at least $1 - \delta$ over the training set $\mathcal{D} = \{(x^1, y^1) \dots, (x^n, y^n)\} \stackrel{i.i.d.}{\sim} p(x, y)$:

For all $f \in \mathcal{H}$:

$$\mathcal{R}(f) \le \hat{\mathcal{R}}(f) + \sqrt{\frac{2\log \Pi_{\mathcal{H}}}{n}} + \sqrt{\frac{\log 1/\delta}{2n}}$$

Growth Function Generalization Bound

Setup:

•
$$\ell(y, \bar{y}) = \llbracket y \neq \bar{y} \rrbracket$$
 (0-1 loss)

•
$$\mathcal{H} \subset \{f : \mathcal{X} \to \{\pm 1\}\}$$

For any $\delta > 0$, the following statement holds with probability at least $1 - \delta$ over the training set $\mathcal{D} = \{(x^1, y^1) \dots, (x^n, y^n)\} \stackrel{i.i.d.}{\sim} p(x, y)$:

For all $f \in \mathcal{H}$:

$$\mathcal{R}(f) \le \hat{\mathcal{R}}(f) + \sqrt{\frac{2\log \Pi_{\mathcal{H}}}{n}} + \sqrt{\frac{\log 1/\delta}{2n}}$$

for |H|<∞, we (almost) recover the bound for finite hypothesis sets
bound is vacuous for Π_H(n) = 2ⁿ, but interesting for Π_H(n) ≪ 2ⁿ

Problem: growth function (for all $n \in \mathbb{N}$) is hard to determine Easier: at what value does it change from $\Pi_{\mathcal{H}}(n) = 2^n$ to $\Pi_{\mathcal{H}}(n) < 2^n$?

Definition (VC Dimension)

The VC dimension of a hypothesis class \mathcal{H} , denoted VCdim (\mathcal{H}) , is the maximal value n, such that $\Pi_{\mathcal{H}}(n) = 2^n$. (i.e. $\Pi_{\mathcal{H}}(n+1) < 2^{n+1}$). If no such value exists, we say that VCdim $(\mathcal{H}) = \infty$.

Problem: growth function (for all $n \in \mathbb{N}$) is hard to determine Easier: at what value does it change from $\Pi_{\mathcal{H}}(n) = 2^n$ to $\Pi_{\mathcal{H}}(n) < 2^n$?

Definition (VC Dimension)

The VC dimension of a hypothesis class \mathcal{H} , denoted VCdim (\mathcal{H}) , is the maximal value n, such that $\Pi_{\mathcal{H}}(n) = 2^n$. (i.e. $\Pi_{\mathcal{H}}(n+1) < 2^{n+1}$). If no such value exists, we say that VCdim $(\mathcal{H}) = \infty$.

Examples:

•
$$\mathcal{H} = \{f_+, f_-\}$$
 for $f_+(x) = +1$ and $f_-(x) = -1$. $\rightarrow \mathsf{VCdim}(\mathcal{H}) = 1$

•
$$\mathcal{H} = \{f_1, \dots, f_T\} \longrightarrow \mathsf{VCdim}(\mathcal{H}) \le \lfloor \log_2 |\mathcal{H}| \rfloor$$

•
$$\mathcal{H} = \{f : \mathcal{X} \to \{\pm 1\}\}$$
 (all binary values functions) and $|\mathcal{X}| = \infty$
 \to VCdim $(\mathcal{H}) = \infty$

•
$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{H} = \{ \operatorname{sign}(\langle w, x \rangle + b) : w \in \mathbb{R}^d, b \in \mathbb{R} \}$ (linear classifiers)
 $\rightarrow \quad \mathsf{VCdim}(\mathcal{H}) = d + 1$

•
$$\mathcal{X} = \mathbb{R}, \ \mathcal{H} = \{ \operatorname{sign}(\sin(\omega x)), \quad \omega \in \mathbb{R} \}$$

 $\rightarrow \operatorname{VCdim}(\mathcal{H}) = \infty$

Definition (VC Dimension)

The **VC dimension** of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximal value n, such that $\Pi_{\mathcal{H}}(n) = 2^n$, or ∞ if no such value exists.

Lemma (Sauer's Lemma)

For any \mathcal{H} with $\mathsf{VCdim}(\mathcal{H}) < \infty$, for any m: $\Pi_{\mathcal{H}}(n) \leq \sum_{i=1}^{\mathsf{VCdim}(\mathcal{H})} {n \choose i}$.

Consequence:

- up to $n = \mathsf{VCdim}(\mathcal{H})$, growth function grows **exponentially**
- for $n > VCdim(\mathcal{H}) + 1$, growth function grows only **polynomially**:

 $\Pi_{\mathcal{H}}(n) < (en/d)^d$. (proof: textbook)

• complexity term $\sqrt{\frac{2\log \Pi_{\mathcal{H}}(n)}{n}}$ starts decreasing for $n > \mathsf{VCdim}(\mathcal{H})$

 $VCdim(\mathcal{H})$

VC-Dimension Generalization Bound

Setup:

•
$$\ell(y, \bar{y}) = \llbracket y \neq \bar{y} \rrbracket$$
 (0-1 loss)

•
$$\mathcal{H} \subset \{f : \mathcal{X} \to \{\pm 1\}\}$$

For any $\delta > 0$, the following statement holds with probability at least $1 - \delta$ over the training set $\mathcal{D} = \{(x^1, y^1) \dots, (x^n, y^n)\} \overset{i.i.d.}{\sim} p(x, y)$: For all $f \in \mathcal{H}$:

$$\mathcal{R}(f) \le \hat{\mathcal{R}}(f) + \sqrt{\frac{2d\log\frac{en}{d}}{n}} + \sqrt{\frac{\log 1/\delta}{2n}}$$

where $d = \mathsf{VCdim}(\mathcal{H})$

Crucial quantity: $\frac{d}{n}$. Non-trivial bound only for n > d.

1) threshold functions, $\mathcal{H} = \{h_{\theta}(x) = \operatorname{sign}(x - \theta), \text{ for } \theta \in \mathbb{R}\}.$ VCdim $(\mathcal{H}) = 1$

1) threshold functions, $\mathcal{H} = \{h_{\theta}(x) = \operatorname{sign}(x - \theta), \text{ for } \theta \in \mathbb{R}\}.$ VCdim $(\mathcal{H}) = 1$

•
$$n = 1, \mathcal{D} = \{x_1\}$$

• for $\theta < x_1 : h_{\theta}(x_1) = 1$,
• for $\theta \ge x_1, h_{\theta}(x_1) = 0$.
 $\Pi_{\mathcal{H}}(1) = 2 = 2^1$.

•
$$\mathcal{D} = \{x_1, x_2\}$$
, w.l.o.g. $x_1 < x_2$
• for $\theta < x_1$: $(h_{\theta}(x_1), h_{\theta}(x_2)) = (1, 1)$
• for $c_1 \le \theta < c_2$: $h_{\theta}(c_1), h_{\theta}(c_2) = 0, 1$
• for $\theta \ge c_2$: $h_{\theta}(c_1), h_{\theta}(c_2) = 0, 0$
• there is no $h \in \mathcal{H}$ with $h_{\theta}(c_1), h_{\theta}(c_2) = 1, 0$.
 $\Pi_{\mathcal{H}}(2) = 3 < 2^2$, no matter what c_1, c_2 are (except $c_1 = c_2$).

 $\mathcal H$ can arbitrarily label a set of size 1, but no set of size 2 \Rightarrow $\mathsf{VCdim}(\mathcal H)=1$

- 1) threshold functions, $\mathcal{H} = \{h_{\theta}(x) = \operatorname{sign}(x \theta), \text{ for } \theta \in \mathbb{R}\}.$ VCdim $(\mathcal{H}) = 1$
- 2) polynomial classifiers,

 $\begin{aligned} \mathcal{H} &= \{h(x) = \operatorname{sign} f(x), \text{for } f \text{ any polynomial of degree } k \text{ in } \mathbb{R}^d \}. \\ \mathsf{VCdim}(\mathcal{H}) &= \sum_{i=0}^k {d+1 \choose i} \end{aligned}$

- 1) threshold functions, $\mathcal{H} = \{h_{\theta}(x) = \operatorname{sign}(x \theta), \text{ for } \theta \in \mathbb{R}\}.$ VCdim $(\mathcal{H}) = 1$
- 2) polynomial classifiers,

 $\begin{aligned} \mathcal{H} &= \{h(x) = \operatorname{sign} f(x), \text{for } f \text{ any polynomial of degree } k \text{ in } \mathbb{R}^d \}. \\ \mathsf{VCdim}(\mathcal{H}) &= \sum_{i=0}^k {d+1 \choose i} \end{aligned}$

3) **boosting**: base set, \mathcal{F} , of weak classifiers with VCdim D.

$$\mathcal{H} = \left\{ f(x) = \sum_{t=1}^{T} \alpha_t g_t(x), \text{ for } g_1, \dots, g_T \in \mathcal{F} \text{ and } \alpha_1, \dots, \alpha_T \in \mathbb{R} \right\}$$
$$\mathsf{VCdim}(\mathcal{H}) \leq T(D+1) \cdot (3\log(T(D+1)) + 2)$$

- 1) threshold functions, $\mathcal{H} = \{h_{\theta}(x) = \operatorname{sign}(x \theta), \text{ for } \theta \in \mathbb{R}\}.$ VCdim $(\mathcal{H}) = 1$
- 2) polynomial classifiers,

 $\begin{aligned} \mathcal{H} &= \{h(x) = \operatorname{sign} f(x), \text{for } f \text{ any polynomial of degree } k \text{ in } \mathbb{R}^d \}. \\ \mathsf{VCdim}(\mathcal{H}) &= \sum_{i=0}^k {d+1 \choose i} \end{aligned}$

3) **boosting**: base set, \mathcal{F} , of weak classifiers with VCdim D.

$$\mathcal{H} = \left\{ f(x) = \sum_{t=1}^{T} \alpha_t g_t(x), \text{ for } g_1, \dots, g_T \in \mathcal{F} \text{ and } \alpha_1, \dots, \alpha_T \in \mathbb{R} \right\}$$
$$\mathsf{VCdim}(\mathcal{H}) \leq T(D+1) \cdot (3\log(T(D+1)) + 2)$$

4) neural networks with binary activation functions, $VCdim(\mathcal{H}) \leq O(d\log d)$ where d is number of network weights

5) neural networks with binary and linear activation functions, $\operatorname{VCdim}(\mathcal{H}) \leq O(d^2)$ where d is number of network weights

From classical to modern generalization bounds

Generalization bounds so far: with probability at least $1 - \delta$:

```
\forall f \in \mathcal{H}: \quad \mathcal{R}(f) \leq \hat{\mathcal{R}}(f) + B(\mathcal{H}, n, \delta)
```

Observation:

- $B(\mathcal{H}, n, \delta)$ is data-independent
- data distribution does not show up anywhere
 → holds for "easy" as well as "hard" learning problems

Recently, more interest in distribution-dependent bounds.

Rademacher Complexity

- \mathcal{Z} : input set (later: $\mathcal{Z} = \mathcal{X}$ or $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$)
- p(z): probability distribution over \mathcal{Z}
- $\mathcal{F} \subseteq \{f : \mathcal{Z} \to \mathbb{R}\}$: set of real-valued functions

Definition

Let $\mathcal{F} = \{f : \mathbb{Z} \to \mathbb{R}\}$ be a set of real-valued functions and $\mathcal{D}_m = \{z_1, \dots, z_m\}$ a finite set. The **empirical Rademacher** complexity of \mathcal{F} with respect to \mathcal{D}_m is defined as

$$\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \left(\frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i) \right) \right]$$

where $\sigma_1, \ldots, \sigma_m$ are independent binary random variables with $p(+1) = p(-1) = \frac{1}{2}$ (called **Rademacher variables**).

Intuition: think of σ_i as random noise. The sup measures how well the function can correlate to arbitrary values (=memorize random noise). Note: $\hat{\mathfrak{R}}_{\mathcal{D}_m}$ is data-dependent, it depends on \mathcal{D}_m .

Example

Let $\mathcal{F} = \{f\}$ (a single function). Then, for any m,

$$\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}) = \mathop{\mathbb{E}}_{\sigma} \left(\frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i) \right) = \frac{1}{m} \sum_{i=1}^m \mathop{\mathbb{E}}_{\sigma}[\sigma_i] f(z_i) = 0$$

Example

Let $\mathcal{F}=\{f:\mathcal{Z}\to [-B,B]\}$ all bounded functions. Then, when there are no duplicates in \mathcal{D} ,

$$\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}) = \mathop{\mathbb{E}}_{\sigma} \sup_{f \in \mathcal{F}} \left(\frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i) \right) \stackrel{f(z_i) = B\sigma_i}{=} \mathop{\mathbb{E}}_{\sigma} \frac{1}{m} \sum_{i=1}^m B = \mathop{\mathbb{E}}_{\sigma} B = B$$

(same argument would work, e.g., for piecewise linear functions)

Example

Let $\mathcal{F} = \{f_1, \dots, f_K\}$ with $f_i : \mathcal{X} \to [-B, B]$ for $i = 1, \dots, K$ (finitely many bounded function). Then

$$\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}) \le B\sqrt{\frac{2\log K}{m}}$$

Proof: textbook

Example

Let $\mathcal{F} = \{f = w^{\top}z : \mathbb{R}^d \to \mathbb{R}\}$ with $||w|| \leq B$ all *linear* functions with bounded slope. If m > d, then z_1, \ldots, z_m are linearly dependent and sup can't fit all possible signs $\to \hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F})$ will decrease with m.

(we'll prove a more rigorous statement later)

Definition

The Rademacher complexity of \mathcal{F} is defined as

$$\mathfrak{R}_m(\mathcal{F}) = \mathbb{E}_{\mathcal{D}_m \sim p^{\otimes m}} [\ \hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}) \]$$

Note: \mathfrak{R}_m is a distribution-dependent quantity (w.r.t. p).

In some cases, more convenient to compute than the empirical one.

Slightly more general notation than before:

- hypothesis set $\mathcal{H} \subset \{\mathcal{X} \to \mathbb{R}\}$ (can be real-valued)
- loss $\ell: \mathcal{X} \times \mathcal{Y} \times \mathcal{H} \to \mathbb{R}$, e.g. $\ell(x, y, h) = \max\{0, 1 yh(x)\},\$

•
$$\mathcal{R}^{\ell}(h) = \mathbb{E}_{(x,y)\sim p} \ell(x,y,h), \quad \hat{\mathcal{R}}^{\ell}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(x_i,y_i,h)$$

Slightly more general notation than before:

- hypothesis set $\mathcal{H} \subset \{\mathcal{X} \to \mathbb{R}\}$ (can be real-valued)
- loss $\ell: \mathcal{X} \times \mathcal{Y} \times \mathcal{H} \to \mathbb{R}$, e.g. $\ell(x, y, h) = \max\{0, 1 yh(x)\},\$

•
$$\mathcal{R}^{\ell}(h) = \mathbb{E}_{(x,y)\sim p} \ell(x,y,h), \quad \hat{\mathcal{R}}^{\ell}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(x_i,y_i,h)$$

Theorem (Rademacher-based generalization bound)

 $\begin{array}{l} \text{Let } \ell(x,y,h) \leq c \text{ be a bounded loss function and set} \\ \mathcal{F} = \{\ell \circ h : h \in \mathcal{H}\} \quad = \{\ell(x,y,h(x)) : h \in \mathcal{H}\} \subset \{f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}\} \end{array}$

Then, with prob. at least $1 - \delta$ over $\mathcal{D}_m \stackrel{i.i.d.}{\sim} p$, it holds for all $h \in \mathcal{H}$:

$$\mathcal{R}^{\ell}(h) \leq \hat{\mathcal{R}}^{\ell}(h) + 2\mathfrak{R}_m(\mathcal{F}) + c\sqrt{\frac{\log(1/\delta)}{2m}}.$$

Also, with prob. at least $1 - \delta$, it holds for all $h \in \mathcal{H}$:

$$\mathcal{R}^{\ell}(h) \leq \hat{\mathcal{R}}^{\ell}(h) + 2\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}) + 3c\sqrt{\frac{2\log(4/\delta)}{m}}.$$

Proof. blackboard/notes

Useful properties:

Lemma

For $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ let $\mathcal{F}' := \{f + f_0 : f \in \mathcal{F}\}$ be a translated version for some $f_0 : \mathcal{X} \to \mathbb{R}$. Then, for any m,

$$\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}') = \hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F})$$

Lemma

For $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ let $\mathcal{F}' := \{\lambda f : f \in \mathcal{F}\}$ be scaled by a constant $\lambda \in \mathbb{R}$. Then, for any m,

$$\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}') = \lambda \hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F})$$

Lemma

For $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ and $\phi : \mathbb{R} \to \mathbb{R}$ let $\mathcal{F}' := \{\phi \circ f : f \in \mathcal{F}\}$. If ϕ is L-Lipschitz continuous, i.e. $|\phi(t) - \phi(t')| \leq L|t - t'|$, then for any m,

$$\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}') \le L \cdot \hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F})$$

Lemma

Let \mathcal{Z} be an inner-product space (e.g. \mathbb{R}^d with $\langle \cdot, \cdot \rangle$). Let $\mathcal{F} = \{f = \langle w, z \rangle : \mathcal{X} \to \mathbb{R}\}$ be the set of linear functions with $||w|| \leq B$. Then, for any $\mathcal{D}_m = \{z_1, \ldots, z_m\}$,

$$\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}) \le \frac{B}{m} \sqrt{\sum_i \|z_i\|^2}$$

Proof: blackboard/notes

Lemma

Let $\mathcal{F} = \{f = \langle w, z \rangle : \mathcal{X} \to \mathbb{R}\}$ be linear functions with $||w|| \leq B$ and let p be such that $\Pr\{||z|| < R\} = 1$ Then

$$\mathfrak{R}_m(\mathcal{F}) \le BR\sqrt{\frac{1}{m}}$$

Proof: $\hat{\mathfrak{R}}_{\mathcal{D}_m}(\mathcal{F}) \leq \frac{B}{m}\sqrt{mR^2}$ with prob. 1, so $\mathbb{E}_{\mathcal{D}}\hat{\mathfrak{R}} \leq \frac{B}{m}\sqrt{mR^2}$, too.

Reminder: (soft-margin) support vector machine (SVM):

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{m} \sum_{i} \max\{0, 1 - y_i \langle w, x_i \rangle\}$$

Reminder: (soft-margin) support vector machine (SVM):

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{m} \sum_{i} \max\{0, 1 - y_i \langle w, x_i \rangle\}$$

Example: SVM "radius/margin" bound

Let $\ell(x, y; w) := \max\{0, 1 - y \langle w, x \rangle\}$ be the *hinge loss*. Let p be a distribution on $\mathbb{R}^d \times \mathcal{Y}$ such that $\Pr\{ \|x\| \le R \} = 1$ and let $\mathcal{H} = \{w : \|w\| \le B\}$. Then, with prob. at least $1 - \delta$ over $\mathcal{D}_m \stackrel{i.i.d.}{\sim} p$ the following inequality holds for all $w \in \mathcal{H}$: $\underset{(x,y)\sim p}{\mathbb{E}} [sign\langle w, x \rangle \ne y] \le \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y^i \langle w, x^i \rangle\} + \frac{2BR}{\sqrt{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$

Properties:

- complexity terms decrease with rate $O(\sqrt{\frac{1}{m}})$
- short $\|w\|$ is better than long $\|w\|$
- dimensionality of x does not show up, no curse of dimensionality!

Proof sketch:

•
$$||x|| \leq R$$
 (with probability 1)

- "ramp loss": $\ell(x,y,h) = \min\{ \ \max\{0,1-y\langle w,x\rangle\},1 \ \} \ \in [0,1]$
- $\mathcal{H} = \{h(x) = \langle w, x \rangle : \|w\| \le B\}, \quad \mathcal{F} = \{\ell \circ h, h \in \mathcal{H}\}$

With prob.
$$1 - \delta$$
: $\forall h \in \mathcal{H} : \mathcal{R}^{\ell}(h) \le \hat{\mathcal{R}}^{\ell}(h) + 2\mathfrak{R}_{m}(\mathcal{F}) + \sqrt{\frac{\log(1/\delta)}{2m}}$

• ℓ is 1-Lipschitz, i.e. for $\mathcal{F} = \{\ell \circ h : h \in \mathcal{H}\}$:

$$\mathfrak{R}_m(\mathcal{F}) \stackrel{ extsf{1-Lip.}}{\leq} \mathfrak{R}_m(\mathcal{H}) \stackrel{ extsf{Lemma}}{\leq} BR\sqrt{rac{1}{m}}$$

• ℓ is upper bounds to 0/1 error and lower bound to hinge loss

$$\Pr\{h(x) \neq y\} \le \mathcal{R}^{\ell}(h) \qquad \hat{\mathcal{R}}^{\ell}(h) \le \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle w, x_i\}$$

With prob. $1 - \delta$ for every $w \in \mathcal{H}$:

$$\Pr\{\operatorname{sign}\langle w, x \rangle \neq y\} \le \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle w, x_i\} + \frac{2RB}{\sqrt{m}} + \sqrt{\frac{\log(1/\delta)}{2m}}$$

26 / 27

Theorem (Connections to other complexity measures)

Let $\mathcal{H} = \{h : \mathcal{X} \to \{\pm 1\}\}$ be a hypothesis class. Then

$$\begin{split} \hat{\mathfrak{R}}_{m}(\mathcal{H}) &\leq \sqrt{\frac{2 \log |\mathcal{H}|}{m}} \quad \text{if } |\mathcal{H}| \text{ is finite,} \\ \hat{\mathfrak{R}}_{m}(\mathcal{H}) &\leq \sqrt{\frac{2 \log \Pi_{\mathcal{H}}(m)}{m}} \quad \text{where } \Pi_{\mathcal{H}}(m) \text{ is the growth function,} \\ \hat{\mathfrak{R}}_{m}(\mathcal{H}) &\leq \sqrt{\frac{2 d \log m}{m}} \quad \text{where } d = \textit{VCdim}(\mathcal{H}). \end{split}$$

Theorem (Connections to covering numbers)

Let
$$\mathcal{H} \subset \{\mathcal{X} \to [-1,1]\}$$
 and $\mathcal{D} \stackrel{i.i.d.}{\sim} p(x,y)$ with $|\mathcal{D}| = m$. Then
 $\hat{\mathfrak{R}}_m(\mathcal{H}) \leq \inf_{\alpha} \left[\alpha + \sqrt{\frac{\mathcal{N}(\alpha, \mathcal{H}|_{\mathcal{D}}, \|\cdot\|_{L_1})}{m}} \right]$

where \mathcal{N} are covering numbers of the set of values that \mathcal{H} assigns to \mathcal{D} .