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Overview (tentative)

Date no. Topic
Oct 08 Mon 1 A Hands-On Introduction
Oct 10 Wed – self-study (Christoph traveling)
Oct 15 Mon 2 Bayesian Decision Theory

Generative Probabilistic Models
Oct 17 Wed 3 Discriminative Probabilistic Models

Maximum Margin Classifiers
Oct 22 Mon 4 Generalized Linear Classifiers, Optimization
Oct 24 Wed 5 Evaluating Predictors; Model Selection
Oct 29 Mon – self-study (Christoph traveling)
Oct 31 Wed 6 Overfitting/Underfitting, Regularization
Nov 05 Mon 7 Learning Theory I: classical/Rademacher bounds
Nov 07 Wed 8 Learning Theory II: miscellaneous
Nov 12 Mon 9 Probabilistic Graphical Models I
Nov 14 Wed 10 Probabilistic Graphical Models II
Nov 19 Mon 11 Probabilistic Graphical Models III
Nov 21 Wed 12 Probabilistic Graphical Models IV
until Nov 25 final project 2 / 27



Classical generalization bounds
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Classical Generalization Bounds

Reminder: Finite Hypothesis Set
Setup:
• `(y, ȳ) = Jy 6= ȳK (0-1 loss)
• finite number of possible classifiers H = {f1, . . . , fT } ⊂ YX

For any δ > 0, the following statement holds with probability at least
1− δ over the training set D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y):

For all f ∈ H:

R(f) ≤ R̂(f) +

√
log |H|+ log 1/δ

2n

Proof steps:
• Bound prob. of R(f)− R̂(f) > ε separately for each classifier f
• Combine by union bound → log |H| term 4 / 27



Discussion: union bound

Union bound is "worst case": usually overly pessimistic
Image: https://work.caltech.edu/library/
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Classical Generalization Bounds

Can we find a better way to characterize hypothesis classes than
simply the number of elements?

Suggested complexity measures:
• covering numbers
• growth function
• VC dimension
• Rademacher complexity

In particular, these work also for infinitely large hypothesis sets.
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Covering Numbers

Definition (Covering)

Let F be a set of functions. We say F is ε-covered by
F ′ with respect to a norm ‖ · ‖:

∀f ∈ F ∃f ′ ∈ F ′ ‖f − f ′‖ < ε

F ′ is called an ε-cover of F .

Definition (Covering Number)

Let F be a set of functions. The ε-covering number, N (ε,F , ‖ · ‖), is
the size of the smallest ε-cover of F with respect to ‖ · ‖.

Main idea: N (ε,F , ‖ · ‖) can be small (finite), even if F is large (infinite).
We can use the cover F ′ for everything, yet still only make a small error.

Image: Lee Wee Sun. https://slideplayer.com/slide/7277867/
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Growth function

Definition (Growth function)

Let H ⊂ {f : X → {±1}} be a set of binary-valued hypotheses. The
growth function ΠH : N→ N of H is defined as:

ΠH(n) = max
x1,...,xn∈X

∣∣∣{(h(x1), . . . , h(xn)
)

: h ∈ H
}∣∣∣

For any n ∈ N, ΠH(n) is the largest number of different labelings that
can be produced with functions in H.
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Growth function:

ΠH(n) = max
x1,...,xn∈X

∣∣∣{(h(x1), . . . , h(xn)
)

: h ∈ H
}∣∣∣

Examples: growth function
• H = {f+, f−}, where f+(x) = +1 and f−(x) = −1 (for all x ∈ X )
→ ΠH(n) = 2 for all n ≥ 1

• H = {f1, . . . , fT } → ΠH(n) ≤min{2n, |H|}

• H = {f : X → {±1} } (all binary values functions) and |X | =∞
→ ΠH(n) = 2n

• X = Rd, H = {sign(〈w, x〉+ b) : w ∈ Rd, b ∈ R } all linear classifiers
→ ΠH(n) = 2n for n ≤ d+ 1, but ΠH(n) < 2n for n > d+ 1.

• X = R, H = {sign(sin(ωx)), ω ∈ R }
→ ΠH(n) = 2n
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Classical Generalization Bounds

Growth Function Generalization Bound
Setup:
• `(y, ȳ) = Jy 6= ȳK (0-1 loss)
• H ⊂ {f : X → {±1}}

For any δ > 0, the following statement holds with probability at least
1− δ over the training set D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y):

For all f ∈ H:

R(f) ≤ R̂(f) +

√
2 log ΠH

n
+

√
log 1/δ

2n

• for |H|<∞, we (almost) recover the bound for finite hypothesis sets
• bound is vacuous for ΠH(n) = 2n, but interesting for ΠH(n)� 2n
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Problem: growth function (for all n ∈ N) is hard to determine
Easier: at what value does it change from ΠH(n) = 2n to ΠH(n) < 2n ?

Definition (VC Dimension)

The VC dimension of a hypothesis class H, denoted VCdim(H), is the
maximal value n, such that ΠH(n) = 2n. (i.e. ΠH(n+ 1) < 2n+1).
If no such value exists, we say that VCdim(H) =∞.

Examples:
• H = {f+, f−} for f+(x) = +1 and f−(x) = −1. → VCdim(H) = 1

• H = {f1, . . . , fT } → VCdim(H) ≤ blog2 |H|c

• H = {f : X → {±1} } (all binary values functions) and |X | =∞
→ VCdim(H) =∞

• X = Rd, H = {sign(〈w, x〉+ b) : w ∈ Rd, b ∈ R } (linear classifiers)
→ VCdim(H) = d+ 1

• X = R, H = {sign(sin(ωx)), ω ∈ R }
→ VCdim(H) =∞
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Definition (VC Dimension)

The VC dimension of a hypothesis class H, denoted VCdim(H), is the
maximal value n, such that ΠH(n) = 2n, or ∞ if no such value exists.

Lemma (Sauer’s Lemma)

For any H with VCdim(H) <∞, for any m: ΠH(n) ≤
VCdim(H)∑

i=0

(
n

i

)
.

Consequence:
• up to n = VCdim(H), growth function grows exponentially
• for n ≥ VCdim(H)+1, growth function grows only polynomially:

ΠH(n) ≤ (en/d)d. (proof: textbook)

• complexity term
√

2 log ΠH(n)
n starts decreasing for n > VCdim(H)
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Classical Generalization Bounds

VC-Dimension Generalization Bound
Setup:
• `(y, ȳ) = Jy 6= ȳK (0-1 loss)
• H ⊂ {f : X → {±1}}

For any δ > 0, the following statement holds with probability at least
1− δ over the training set D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y):

For all f ∈ H:

R(f) ≤ R̂(f) +

√
2d log en

d

n
+

√
log 1/δ

2n

where d = VCdim(H)

Crucial quantity: d
n . Non-trivial bound only for n > d.
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More examples: VC dimension (from the literature)

1) threshold functions, H = {hθ(x) = sign(x− θ), for θ ∈ R}.
VCdim(H) = 1

• n = 1, D = {x1}
I for θ < x1 : hθ(x1) = 1,
I for θ ≥ x1, hθ(x1) = 0.

ΠH(1) = 2 = 21.

• D = {x1, x2}, w.l.o.g. x1 < x2
I for θ < x1 : (hθ(x1), hθ(x2) ) = (1, 1)
I for c1 ≤ θ < c2 : hθ(c1), hθ(c2) = 0, 1
I for θ ≥ c2 : hθ(c1), hθ(c2) = 0, 0
I there is no h ∈ H with hθ(c1), hθ(c2) = 1, 0.

ΠH(2) = 3 < 22, no matter what c1, c2 are (except c1 = c2).

H can arbitrarily label a set of size 1, but no set of size 2
⇒ VCdim(H) = 1
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More examples: VC dimension (from the literature)

1) threshold functions, H = {hθ(x) = sign(x− θ), for θ ∈ R}.
VCdim(H) = 1

2) polynomial classifiers,

H = {h(x) = sign f(x), for f any polynomial of degree k in Rd}.

VCdim(H) =
k∑
i=0

(d+1
i

)

3) boosting: base set, F , of weak classifiers with VCdim D.

H=
{
f(x)=

T∑
t=1

αtgt(x), for g1, . . . , gT ∈ F and α1, . . . , αT ∈ R
}

VCdim(H) ≤ T (D + 1) · (3 log(T (D + 1)) + 2)
4) neural networks with binary activation functions,

VCdim(H) ≤ O(d log d) where d is number of network weights
5) neural networks with binary and linear activation functions,

VCdim(H) ≤ O(d2) where d is number of network weights
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From classical to modern
generalization bounds
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Modern Generalization Bounds

Generalization bounds so far: with probability at least 1− δ:

∀f ∈ H : R(f) ≤ R̂(f) +B(H, n, δ)

Observation:
• B(H, n, δ) is data-independent
• data distribution does not show up anywhere
→ holds for "easy" as well as "hard" learning problems

Recently, more interest in distribution-dependent bounds.
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Rademacher Complexity

• Z: input set (later: Z = X or Z = X × Y)
• p(z): probability distribution over Z
• F ⊆ {f : Z → R}: set of real-valued functions

Definition
Let F = {f : Z → R} be a set of real-valued functions and
Dm = {z1, . . . , zm} a finite set. The empirical Rademacher
complexity of F with respect to Dm is defined as

R̂Dm(F) = E
σ

[
sup
f∈F

(
1
m

m∑
i=1

σif(zi)
)]

where σ1, . . . , σm are independent binary random variables with
p(+1) = p(−1) = 1

2 (called Rademacher variables).

Intuition: think of σi as random noise. The sup measures how well the
function can correlate to arbitrary values (=memorize random noise).
Note: R̂Dm is data-dependent, it depends on Dm. 18 / 27



Example
Let F = {f} (a single function). Then, for any m,

R̂Dm(F) = E
σ

(
1
m

m∑
i=1

σif(zi)
)

= 1
m

m∑
i=1

E
σ

[σi]f(zi) = 0

Example
Let F = {f : Z → [−B,B]} all bounded functions. Then, when there
are no duplicates in D,

R̂Dm(F) = E
σ

supf∈F

(
1
m

m∑
i=1

σif(zi)
)
f(zi)=Bσi= E

σ

1
m

m∑
i=1

B = E
σ
B = B

(same argument would work, e.g., for piecewise linear functions)
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Example
Let F = {f1, . . . , fK} with fi : X → [−B,B] for i = 1, . . . ,K (finitely
many bounded function). Then

R̂Dm(F) ≤ B

√
2 logK
m

Proof: textbook

Example
Let F = {f = w>z : Rd → R} with ‖w‖ ≤ B all linear functions with
bounded slope. If m > d, then z1, . . . , zm are linearly dependent and
sup can’t fit all possible signs → R̂Dm(F) will decrease with m.

(we’ll prove a more rigorous statement later)
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Definition
The Rademacher complexity of F is defined as

Rm(F) = E
Dm∼p⊗m

[ R̂Dm(F) ]

Note: Rm is a distribution-dependent quantity (w.r.t. p).

In some cases, more convenient to compute than the empirical one.
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Slightly more general notation than before:
• hypothesis set H ⊂ {X → R} (can be real-valued)
• loss ` : X × Y ×H → R, e.g. `(x, y, h) = max{0, 1−yh(x)},
• R`(h) = E(x,y)∼p `(x, y, h), R̂`(h) = 1

m

∑m
i=1 `(xi, yi, h)

Theorem (Rademacher-based generalization bound)

Let `(x, y, h) ≤ c be a bounded loss function and set
F = {` ◦ h : h ∈ H} = {`(x, y, h(x)) : h ∈ H} ⊂ {f : X × Y → R}

Then, with prob. at least 1− δ over Dm
i.i.d.∼ p, it holds for all h ∈ H:

R`(h) ≤ R̂`(h) + 2Rm(F) + c

√
log(1/δ)

2m .

Also, with prob. at least 1− δ, it holds for all h ∈ H:

R`(h) ≤ R̂`(h) + 2R̂Dm(F) + 3c

√
2 log(4/δ)

m
.

Proof. blackboard/notes 2
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Useful properties:

Lemma
For F ⊂ RX let F ′ := {f + f0 : f ∈ F} be a translated version for some
f0 : X → R . Then, for any m,

R̂Dm(F ′) = R̂Dm(F)

Lemma
For F ⊂ RX let F ′ := {λf : f ∈ F} be scaled by a constant λ ∈ R.
Then, for any m,

R̂Dm(F ′) = λR̂Dm(F)

Lemma
For F ⊂ RX and φ : R→ R let F ′ := {φ ◦ f : f ∈ F}. If φ is
L-Lipschitz continuous, i.e. |φ(t)− φ(t′)| ≤ L|t− t′|, then for any m,

R̂Dm(F ′) ≤ L · R̂Dm(F)
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Lemma
Let Z be an inner-product space (e.g. Rd with 〈·, ·〉). Let
F = {f = 〈w, z〉 : X → R} be the set of linear functions with ‖w‖ ≤ B.
Then, for any Dm = {z1, . . . , zm},

R̂Dm(F) ≤ B

m

√∑
i

‖zi‖2

Proof: blackboard/notes

Lemma
Let F = {f = 〈w, z〉 : X → R} be linear functions with ‖w‖ ≤ B and let
p be such that Pr{‖z‖ < R} = 1 Then

Rm(F) ≤ BR
√

1
m

Proof: R̂Dm(F) ≤ B
m

√
mR2 with prob. 1, so ED R̂ ≤ B

m

√
mR2, too.
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Reminder: (soft-margin) support vector machine (SVM):

min
w

λ

2 ‖w‖
2 + 1

m

∑
i

max{0, 1− yi〈w, xi〉}

Example: SVM "radius/margin" bound

Let `(x, y;w) := max{0, 1− y〈w, x〉} be the hinge loss. Let p be a
distribution on Rd × Y such that Pr{ ‖x‖ ≤ R } = 1 and let
H = {w : ‖w‖ ≤ B}.
Then, with prob. at least 1− δ over Dm

i.i.d.∼ p the following inequality
holds for all w ∈ H:

E
(x,y)∼p

Jsign〈w, x〉 6= yK ≤ 1
m

m∑
i=1

max{0, 1− yi〈w, xi〉}+ 2BR√
m

+

√
log 1

δ

2m .

Properties:
• complexity terms decrease with rate O(

√
1
m)

• short ‖w‖ is better than long ‖w‖
• dimensionality of x does not show up, no curse of dimensionality!
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• short ‖w‖ is better than long ‖w‖
• dimensionality of x does not show up, no curse of dimensionality!
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Proof sketch:
• ‖x‖ ≤ R (with probability 1)
• "ramp loss": `(x, y, h) = min{ max{0, 1− y〈w, x〉}, 1 } ∈ [0, 1]
• H = {h(x) = 〈w, x〉 : ‖w‖ ≤ B}, F = {` ◦ h, h ∈ H}

With prob. 1− δ: ∀h ∈ H : R`(h) ≤ R̂`(h) + 2Rm(F) +

√
log(1/δ)

2m
• ` is 1-Lipschitz, i.e. for F = {` ◦ h : h ∈ H}:

Rm(F)
1-Lip.
≤ Rm(H)

Lemma
≤ BR

√
1
m

• ` is upper bounds to 0/1 error and lower bound to hinge loss

Pr{h(x) 6= y} ≤ R`(h) R̂`(h) ≤ 1
m

m∑
i=1

max{0, 1− yi〈w, xi}

With prob. 1− δ for every w ∈ H:

Pr{sign〈w, x〉 6= y} ≤ 1
m

m∑
i=1

max{0, 1− yi〈w, xi}+ 2RB√
m

+

√
log(1/δ)

2m
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Theorem (Connections to other complexity measures)

Let H = {h : X → {±1} } be a hypothesis class. Then

R̂m(H) ≤

√
2 log |H|

m
if |H| is finite,

R̂m(H) ≤

√
2 log ΠH(m)

m
where ΠH(m) is the growth function,

R̂m(H) ≤

√
2d logm

m
where d = VCdim(H).

Theorem (Connections to covering numbers)

Let H ⊂ {X → [−1, 1]} and D i.i.d.∼ p(x, y) with |D| = m. Then

R̂m(H) ≤ infα
[
α+

√
N
(
α,H|D, ‖ · ‖L1

)
m

]
where N are covering numbers of the set of values that H assigns to D.
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