
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Spring Semester 2018/2019
Lecture 8

1 / 38

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. Topic
Oct 08 Mon 1 A Hands-On Introduction
Oct 10 Wed – self-study (Christoph traveling)
Oct 15 Mon 2 Bayesian Decision Theory

Generative Probabilistic Models
Oct 17 Wed 3 Discriminative Probabilistic Models

Maximum Margin Classifiers
Oct 22 Mon 4 Generalized Linear Classifiers, Optimization
Oct 24 Wed 5 Evaluating Predictors; Model Selection
Oct 29 Mon – self-study (Christoph traveling)
Oct 31 Wed 6 Overfitting/Underfitting, Regularization
Nov 05 Mon 7 Learning Theory I: classical/Rademacher bounds
Nov 07 Wed 8 Learning Theory II: miscellaneous
Nov 12 Mon 9 Probabilistic Graphical Models I
Nov 14 Wed 10 Probabilistic Graphical Models II
Nov 19 Mon 11 Probabilistic Graphical Models III
Nov 21 Wed 12 Probabilistic Graphical Models IV
until Nov 25 final project 2 / 38

Beyond complexity measures

3 / 38

Algorithm-dependent bounds

Generalization bounds so far: with probability at least 1− δ:

∀f ∈ H : R(f) ≤ R̂(f) + "something"

Observation:
• holds simultaneous for all hypotheses in H, we can pick any we like

but: in practice, we have some algorithm that choses the hypothesis
and really only need the result for that

Goal: algorithm-dependent bounds
Instead of
• "For which hypothesis sets does learning not overfit?"

ask
• "Which learning algorithms do not overfit?"

4 / 38

Algorithm-dependent bounds

Generalization bounds so far: with probability at least 1− δ:

∀f ∈ H : R(f) ≤ R̂(f) + "something"

Observation:
• holds simultaneous for all hypotheses in H, we can pick any we like

but: in practice, we have some algorithm that choses the hypothesis
and really only need the result for that

Goal: algorithm-dependent bounds
Instead of
• "For which hypothesis sets does learning not overfit?"

ask
• "Which learning algorithms do not overfit?"

4 / 38

• Z: input set (typically Z = X × Y)
• H: set of hypotheses
• L(h, z): loss function of the form L(h, z) = `(y, f(x))

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite
subset, Dm ⊂ Z, and outputs a hypothesis A[D] ∈ H.

Definition (Uniform stability)

For a training set, D = {z1, . . . , zm}, we call the training set with the
i-th element removed D\i = {z1, . . . , zi−1, zi+1, . . . , zm}.

A learning algorithm, A, has uniform stability β with respect to the loss
` if the following holds,

∀Dm ⊂ Z ∀i ∈ {1, 2, . . . ,m} ‖L(A[D], ·)− L(A[D\i], ·)‖∞ ≤ β

For a uniformly stable algorithm, changing the training set a little has
only a small effect.

5 / 38

• Z: input set (typically Z = X × Y)
• H: set of hypotheses
• L(h, z): loss function of the form L(h, z) = `(y, f(x))

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite
subset, Dm ⊂ Z, and outputs a hypothesis A[D] ∈ H.

Definition (Uniform stability)

For a training set, D = {z1, . . . , zm}, we call the training set with the
i-th element removed D\i = {z1, . . . , zi−1, zi+1, . . . , zm}.

A learning algorithm, A, has uniform stability β with respect to the loss
` if the following holds,

∀Dm ⊂ Z ∀i ∈ {1, 2, . . . ,m} ‖L(A[D], ·)− L(A[D\i], ·)‖∞ ≤ β

For a uniformly stable algorithm, changing the training set a little has
only a small effect.

5 / 38

Theorem (Stable algorithms generalize well [Bousquet et al ., 2002])

Let A be a β-uniformly stable learning algorithm. For a training set D
that consists of m i.i.d. samples, denote by f = A[D] be the output of A
on D. Let `(y, ȳ) be bounded by M .

Then, for any δ > 0, with probability at least 1− δ,

R(f) ≤ R̂(f) + 2β + (4mβ +M)

√
log(1/δ)

2m

Bound is useful, if stability β behaves (at least) like 1
m .

6 / 38

Stochastic gradient descent (SGD): minimize a function

f(θ) = 1
m

m∑
i=1

f(θ; zi)

Theorem (Stability of Stochastic Gradient Descent [Hardt et al ., 2016])

Let f(·, z) be γ-smooth, convex and L-Lipschitz for every z. Suppose
that we run SGD with step sizes αt ≤ 2/γ for T steps. Then, SGD
satisfies uniform stability with

β ≤ 2L2

m

T∑
t=1

αt.

Let f(·, z) be γ-smooth and L-Lipschitz, but not necessarily convex.
Assume we run SGD with monotonically non-increasing step sizes
αt ≤ c/t for some c. Then, SGD satisfies uniform stability with

β ≤
1 + 1

γc

m− 1 (2cL2)
1

γc+1T
γc
γc+1 .

7 / 38

The power of compression

8 / 38

Reminder:
Perceptron – Training

input training set D ⊂ Rd × {−1,+1}
initialize w = (0, . . . , 0) ∈ Rd.
repeat
for all (x, y) ∈ D: do

compute a := 〈w, x〉 (’activation’)
if ya ≤ 0 then
w ← w + yx

end if
end for

until w wasn’t updated for a complete pass over D

Let’s assume D is very large, so we don’t need multiple passes.
Properties:
• sequential training, one pass over data
• only those examples matter, where perceptron made a mistake
(only those lead to changes of w)

9 / 38

Towards Sample Compression Bounds

• Take training set as a sequence:

T =
(
(x1, y1), (x2, y2), . . . , (xn, yn)

)
• algorithm A processes T in order, producting output f := A(T)

• What only a subset of examples influence the algorithm output?

• for increasing subsequence, I ⊂ {1, . . . , n}, with |I| = l, set

TI =
(
(xi1 , yi1), (xi2 , yi2), . . . , (xil , yil)

)
Definition
I is a compression set for T , if A(T) = A(TI).

Example: I = {set of examples where Perceptron made a mistake}

10 / 38

Towards Sample Compression Bounds

Definition (Compression scheme [Littlestone/Warmuth, 1986])

A learning algorithm A is called compression scheme, if there is a pair
of functions: C (called compression function), and L (called
reconstruction function), such that:
• C takes as input a finite dataset and outputs a subsequence of
indices
• L takes as input a finite dataset and outputs a predictor
• A is the result of applying L to the data selected by C

A = L(TI) for I = C(T)

Examples:
• Perceptron (I = indices of examples where will be updated)
• SVMs (I = set of support vectors)
• k-NN (I = set of examples that support the decision boundaries)

11 / 38

R̂I(h) = 1
|I|
∑
i∈I

`(yi, h(xi)) and R̂¬I(h) = 1
n− |I|

∑
i 6∈I

`(yi, h(xi))

Theorem (Compression Bound [Littlestone/Warmuth, 1986; Graepel 2005])

Let A be a compression scheme with compression function C. Let the
loss ` be bounded by [0, 1]. Then, with probability at least 1− δ over the
random draw of T , we have that:

If R̂¬I(A(T)) = 0:

R(A(T)) ≤ 1
m− l

(
(l + 1) logm+ log 1

δ

)
.

For general R̂¬I(A(T)):

R(A(T)) ≤ m

m− l
R̂¬I(A(T)) +

√
(l + 2) logm+ log 1

δ

2(m− l)

where I = C(T) and l = |I|.
12 / 38

The power of randomization

13 / 38

PAC-Bayesian Generalization Bounds

The problem of overfitting emerges mainly because we pick only a single
classifier, h, and just by accident it can have R(h)� R̂(h).
If we choose many classifiers and combine their decisions, chances of
overfitting should be lower.

Definition (Majority-vote)

Let Y = {±1} (only for convenience of notation). Let h1, . . . , hT ∈ H be
a set of hypotheses. We define the uniform majority vote classifier as

hmajority(x) = sign 1
T

T∑
i=1

hi(x)

14 / 38

Definition (Majority-vote)

More generally, for weights αi ∈ [0, 1],
∑
i αi = 1, the α-weighted

majority vote classifier is:

hαmajority(x) = sign
T∑
i=1

αihi(x) = E
i∼α

[hi(x)]

Weighting make a convenient framework:
• we can use a base set of many (even countably infinite) classifier
• we assign weights to good classifiers, e.g. based on training data
• classical setting is included: for α = δi=j : hαmajority = hj

Unfortunately, majority vote classifiers are not easy to classify:
• classical bounds hold equally for any h ∈ H
• if hαmajority ∈ H, bound no better than for others
• if hαmajority 6∈ H, no bound at all

Trick: analyze stochastic classifiers

15 / 38

Definition (Majority-vote)

More generally, for weights αi ∈ [0, 1],
∑
i αi = 1, the α-weighted

majority vote classifier is:

hαmajority(x) = sign
T∑
i=1

αihi(x) = E
i∼α

[hi(x)]

Weighting make a convenient framework:
• we can use a base set of many (even countably infinite) classifier
• we assign weights to good classifiers, e.g. based on training data
• classical setting is included: for α = δi=j : hαmajority = hj

Unfortunately, majority vote classifiers are not easy to classify:
• classical bounds hold equally for any h ∈ H
• if hαmajority ∈ H, bound no better than for others
• if hαmajority 6∈ H, no bound at all

Trick: analyze stochastic classifiers
15 / 38

Stochastic Classifiers

Standard scenario:
• X : input set, Y: output set, p probability distribution over X × Y
• H ⊂ {X → Y}: hypothesis set, `: loss function
• D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y): training set

New:
• Q probability distribution over H

Definition (Gibbs classifier)

For a distribution Q over H ⊂ {h : X → Y}, the Gibss classifier, hQ, is
defined by the procedure:
• input: x ∈ X
• sample h ∼ Q
• output: h(x)

The Gibbs classifier is a stochastic classifier, its output is a random
variable (wrt Q).

16 / 38

Stochastic Classifiers

Standard scenario:
• X : input set, Y: output set, p probability distribution over X × Y
• H ⊂ {X → Y}: hypothesis set, `: loss function
• D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y): training set

New:
• Q probability distribution over H

Definition (Gibbs classifier)

For a distribution Q over H ⊂ {h : X → Y}, the Gibss classifier, hQ, is
defined by the procedure:
• input: x ∈ X
• sample h ∼ Q
• output: h(x)

The Gibbs classifier is a stochastic classifier, its output is a random
variable (wrt Q). 16 / 38

Stochastic Classifiers

Definition (Gibbs classifier)

For a distribution Q over H ⊂ {h : X → Y}, the Gibbs classifier, hQ, is
defined by the procedure:
• input: x ∈ X
• sample h ∼ Q
• output: h(x)

Because the classifier output is random, so are the risks:

R(hQ) = E
(x,y)∼p

`(y, hQ(x)) R̂(hQ) =
n∑
i=1

`(yi, hQ(xi))

We can study their expected value:

R(Q) = E
h∼Q
R(h) = E

h∼Q
E

(x,y)∼p
`(y, h(x)) R̂(Q) = E

h∼Q

n∑
i=1

`(yi, h(xi))

17 / 38

Learning

• X : input set, Y: output set, p probability distribution over X × Y
• H ⊂ {X → Y}: hypothesis set, `: loss function

What’s the analog of deterministic learning?
Given a training set, D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y), identify a
distribution Q (arbitrary, or from a parametric family), such that R(Q) is
as small as possible.

What would a generalization bound look like?

R(Q) ≤ R̂(Q) + "something"

18 / 38

Gibbs classifier vs. majority vote

Majority vote classifier: (now calling weights Q instead of α)
• evaluate all classifiers, h(x) for h ∈ H
• combine their outputs according to their weights, Eh∼Q h(x)
• make one decision based on the result, signEh∼Q h(x)
• evaluate the loss of this decision, `(y, signEh∼Q h(x))

Gibbs classifier:
• evaluate all classifiers, h(x) for h ∈ H
• evaluate the loss of all their decisions, `(y, h(x)) for h ∈ H
• combine their losses according to their weights, Eh∼Q `(y, h(x))

How are the two situations related?

19 / 38

Lemma

Rmajority(Q) ≤ 2RGibbs(Q)

Observation:

hQmajority(x) = sign E
h∼Q

h(x) =

+1 if more than 50% (probability mass)

of the individual classifiers say +1

−1 otherwise

`(y, hmajority(x)) = 1 ⇒ Pr
h∼Q
{`(y, h(x)) = 1} ≥ 0.5

`(y, hmajority(x)) = 1 ⇒ 2 E
h∼Q

[`(y, h(x))] ≥ 1

2 E
h∼Q

[`(y, h(x))] ≥ `(y, hmajority(x))

2RGibbs(Q) ≥ Rmajority(Q)

Generalization bounds for RGibbs also hold for Rmajority (up to factor 2).
20 / 38

Example: Generalization bound for Gibbs classifier

Theorem (PAC-Bayesian generalization bound [McAllester, 1999])

Let the loss, `, be a bounded in [0, 1]. Let P be a "prior" distribution of
H, chosen independently of D. With prob 1− δ over D i.i.d.∼ p⊗n, it holds
for all "posterior" distributions Q:

R(Q) ≤ R̂(Q) + 1√
n

(
KL(Q||P) + 1

8 + log 1
δ

)

• Called PAC-Bayesian, because it makes a PAC-style statement
(different between finite sample and expect error), but for
Bayesian-style objects (distributions over classifiers/parameters)
• prior and posterior are in quotation marks, because the posterior is
not the result of applying Bayes’ rule.
• The prior is only a technical tool and shows up in the KL term. We
don’t have to "believe" in it or anything.

21 / 38

Towards a proof:

Theorem (Change of Measure Inequality)

For any distributions P,Q over H and function φ : H → R:

E
h∼Q

[φ(h)] ≤ 1
λ

(
KL(Q||P) + log E

h∼P
eλφ(h))

with KL(Q||P) = E
h∼Q

[
log Q(h)

P (h)
]

We shift from an expectation over P to an expectation over Q.

Very useful, e.g.
• P will be a typically a simple, data-independent, distribution
• Q will depend on a training set → "trained classifier"
• we "pay" for this: EQ(·) turns into logEP exp(·)

22 / 38

Proof sketch, pretending P and Q have densities.
General observation:

E
h∼P

[f(h)] =
∫
H
P (h)f(h)dh =

∫
H
Q(h)P (h)

Q(h)f(h)dh = E
h∼Q

[P (h)
Q(h)f(h)

]

log E
h∼P

[eλφ(h)] = log E
h∼Q

[
eλφ(h)P (h)

Q(h)
]

Jensen’s ineq.
≥ E

h∼Q

[
log eλφ(h)P (h)

Q(h)
]

= E
h∼Q

[
λφ(h)− log Q(h)

P (h)
]

= λ E
h∼Q

[φ(h)]− KL(Q||P)

rearrange, · 1
λ⇒ E

h∼Q
[φ(h)] ≤ 1

λ

(
log E

h∼P
[eλφ(h)] + KL(Q||P)

)
23 / 38

Theorem (Change of Measure Inequality)

For any distributions P,Q over H and function φ : H → R:

E
h∼Q

[φ(h)] ≤ 1
λ

(
KL(Q||P) + log E

h∼P
eλφ(h))

Theorem (PAC-Bayesian generalization bound [McAllester, 1999])

` bounded in [0, 1]. P independent of D.
With prob 1− δ over D i.i.d.∼ p⊗n, it holds for all distributions Q:

R(Q) ≤ R̂(Q) + 1√
n

(
KL(Q||P) + 1

8 + log 1
δ

)

24 / 38

PAC-Bayesian generalization bound

Proof sketch.

• Change of measure inequality:

E
h∼Q

[φ(h)] ≤ 1
λ

(
KL(Q||P) + log E

h∼P
eλφ(h)

)
• apply with prior P , posterior Q and φ(h) = R(h)− R̂(h):

R(Q)− R̂(Q) ≤ 1
λ

(
KL(Q||P) + log E

h∼P
eλ[R(h)−R̂(h)]

)
• P and φ are independent (in contrast to Q), so with prob. ≥ 1− δ

log E
h∼P

eλ[R(h)−R̂(h)] Hoeffing’s lemma, Markov ineq.
≤ λ2n

8 + log(1/δ)

• theorem follows by setting λ = 1
n .

25 / 38

Example: reproving a bound for finite hypothesis sets

• H = {h1, . . . , hT } finite
• P (h) = (1

T , . . . ,
1
T) uniform distribution

• Q(h) = δh=hk(h) indicator on one hypothesis
• KL(Q||P) =

∑
tQ(t) log Q(t)

P (t) = log 1
P (hk) = log T

The PAC-Bayesian statement for Gibbs classifiers:

For every dist. Q: R(Q) ≤ R̂(Q) + 1√
n

(
KL(Q||P) + 1

8 + log 1
δ

)
translates into a bound for a ordinary (deterministic) classifiers:

For every h ∈ H: R(h) ≤ R̂(h) + 1√
n

(
log T + 1

8 + log 1
δ

)
which is similar to the previous bound for finite hypotheses sets.

26 / 38

Example: reproving a bound for finite hypothesis sets

• H = {h1, . . . , hT } finite
• P (h) = (1

T , . . . ,
1
T) uniform distribution

• Q(h) = δh=hk(h) indicator on one hypothesis
• KL(Q||P) =

∑
tQ(t) log Q(t)

P (t) = log 1
P (hk) = log T

The PAC-Bayesian statement for Gibbs classifiers:

For every dist. Q: R(Q) ≤ R̂(Q) + 1√
n

(
KL(Q||P) + 1

8 + log 1
δ

)
translates into a bound for a ordinary (deterministic) classifiers:

For every h ∈ H: R(h) ≤ R̂(h) + 1√
n

(
log T + 1

8 + log 1
δ

)
which is similar to the previous bound for finite hypotheses sets.

26 / 38

Example: weighted finite hypothesis set bound

New: we can freely chose the prior, it does not have to be uniform.
• H = {h1, . . . , hT } finite (or countable infinite)
• P (h) = (π1, . . . , πT) arbitrary prior distribution (fix before seeing D)
• Q(h) = δh=hk(h) indicator on one hypothesis
• KL(Q||P) =

∑
tQ(t) log Q(t)

P (t) = log 1
πk

For every hk ∈ H:

R(hk) ≤ R̂(hk) + 1√
n

(
log 1

πk
+ 1

8 + log 1
δ

)
Better bound, if well-working hypotheses are (a priori) more likely.

27 / 38

Example: justifying L2-regularization

• H =
{
hw(x) : X → Y, w ∈ Rd

}
parameterized by w ∈ Rd

• P (w) ∝ e−λ‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−λ‖w−v‖2 posterior: Gaussian around v
• KL(Q||P) = λ‖v‖2

R(Q) ≤ R̂(Q) + 1√
n

(
λ‖v‖2 + 1

8 + log 1
δ

)
• most promising classifier: minimize right hand side w.r.t v
→ "regularizer" ‖v‖2 appears naturally in the objective

Caveat: ‖ · ‖2 appears because we put it into the exponents of P and Q.
Other distributions (which are our choice) yield other bounds/regularizers.

"PAC-Bayes is a bound-generation machine."

28 / 38

Example: justifying L2-regularization

• H =
{
hw(x) : X → Y, w ∈ Rd

}
parameterized by w ∈ Rd

• P (w) ∝ e−λ‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−λ‖w−v‖2 posterior: Gaussian around v
• KL(Q||P) = λ‖v‖2

R(Q) ≤ R̂(Q) + 1√
n

(
λ‖v‖2 + 1

8 + log 1
δ

)
• most promising classifier: minimize right hand side w.r.t v
→ "regularizer" ‖v‖2 appears naturally in the objective

Caveat: ‖ · ‖2 appears because we put it into the exponents of P and Q.
Other distributions (which are our choice) yield other bounds/regularizers.

"PAC-Bayes is a bound-generation machine."

28 / 38

Example: SVM bound

• H =
{
h(x) = sign〈w, x〉, w ∈ Rd

}
linear classifiers

• P (w) ∝ e−λ‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−λ‖w−v‖2 posterior: Gaussian around v

P

Q

prior: uniform w.r.t. direction posterior: non-uniform

29 / 38

Example: SVM bound

• H =
{
h(x) = sign〈w, x〉, w ∈ Rd

}
linear classifiers

• P (w) ∝ e−λ‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−λ‖w−v‖2 posterior shifted by v (non-uniform)

R(Q) ≤ R̂(Q) + 1√
n

(
λ‖v‖2 + 1

8 + log 1
δ

)

When ` is 0-1 loss:
• deterministic classifier sign〈v, x〉 is identical to majority vote of Q
• we can relate R̂(Q) to R̂(v):

R̂(Q) = 1
n

n∑
i=1

Φ̄(yi〈v, xi〉
‖xi‖

) for Φ̄(t) = 1
2
(
1− erf(t√

2
)
)
,

Together:

1
2R(v) ≤ 1

n

n∑
i=1

Φ̄(yi〈v, xi〉
‖xi‖

) + λ√
n
‖v‖2 +

1
8 + log 1

δ√
n

30 / 38

Example: SVM bound

• H =
{
h(x) = sign〈w, x〉, w ∈ Rd

}
linear classifiers

• P (w) ∝ e−λ‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−λ‖w−v‖2 posterior shifted by v (non-uniform)

R(Q) ≤ R̂(Q) + 1√
n

(
λ‖v‖2 + 1

8 + log 1
δ

)
When ` is 0-1 loss:
• deterministic classifier sign〈v, x〉 is identical to majority vote of Q
• we can relate R̂(Q) to R̂(v):

R̂(Q) = 1
n

n∑
i=1

Φ̄(yi〈v, xi〉
‖xi‖

) for Φ̄(t) = 1
2
(
1− erf(t√

2
)
)
,

Together:

1
2R(v) ≤ 1

n

n∑
i=1

Φ̄(yi〈v, xi〉
‖xi‖

) + λ√
n
‖v‖2 +

1
8 + log 1

δ√
n

30 / 38

Example: Transfer bound

• H =
{
hw(x) : X → Y, w ∈ Rd

}
parameterized by w ∈ Rd

• P (w) ∝ e−λ‖w−v0‖2 prior: Gaussian around v0

• Q(w) ∝ e−λ‖w−v‖2 posterior: Gaussian around v
• KL(Q||P) = λ‖v − v0‖2

R(Q) ≤ R̂(Q) + 1√
n

(
λ‖v − v0‖2 + 1

8 + log 1
δ

)

Typical situation for fine-tuning:
• inititalize classifier parameters as v0

• train on D using (stochastic) gradient descent

Good generalization, if parameters don’t move far from initialization.

31 / 38

"A PAC-Bayesian Tutorial with A Dropout Bound" [McAllester, 2013]

• "dropout rate" α ∈ [0, 1]
• set of posterior distributions: Qθ,α:

for each weight: wi =
{

0 with prob. α
θi + εi otherwise, for εi ∼ N (0, 1)

• prior distribution: P = Q0,α

• KL(Q||P) = 1−α
2 ‖θ‖

2

Zero-ing out weights reduces complexity by factor 1−α
2 :

R(Qθ,α) ≤ R̂(Qθ,α) + 1√
n

(1− α
2 ‖θ‖2 + 1

8 + log 1
δ

)
Training: optimize R̂(Qθ,α) + . . . via SGD → "dropout training"

Prediction: majority vote over many stochastic networks
32 / 38

Bounds for Deep Learning?

33 / 38

"Understanding deep learning requires rethinking generalization"
[Zhang, Bengio, Hardt, Recht, Vinyals, ICLR 2017]

Observation:
• Deep Neural Networks can have 100s of millions parameters.
• We train them with less than 1 million examples.
• Yet, they don’t seem to overfit.
• Could it be that their capacity is much smaller than one would
expect from the number of parameters?

Empirical study:
• let’s explore their empirical Rademacher complexity
• train network with real input data, but random ±1 labels
• result: networks can learn random labels (R̂ → 0)

Conclusion:
• we still don’t know why deep networks don’t overfit
• Rademacher-style learning theory does not explain it

34 / 38

"Understanding deep learning requires rethinking generalization"
[Zhang, Bengio, Hardt, Recht, Vinyals, ICLR 2017]

Observation:
• Deep Neural Networks can have 100s of millions parameters.
• We train them with less than 1 million examples.
• Yet, they don’t seem to overfit.
• Could it be that their capacity is much smaller than one would
expect from the number of parameters?

Empirical study:
• let’s explore their empirical Rademacher complexity
• train network with real input data, but random ±1 labels

• result: networks can learn random labels (R̂ → 0)

Conclusion:
• we still don’t know why deep networks don’t overfit
• Rademacher-style learning theory does not explain it

34 / 38

"Understanding deep learning requires rethinking generalization"
[Zhang, Bengio, Hardt, Recht, Vinyals, ICLR 2017]

Observation:
• Deep Neural Networks can have 100s of millions parameters.
• We train them with less than 1 million examples.
• Yet, they don’t seem to overfit.
• Could it be that their capacity is much smaller than one would
expect from the number of parameters?

Empirical study:
• let’s explore their empirical Rademacher complexity
• train network with real input data, but random ±1 labels
• result: networks can learn random labels (R̂ → 0)

Conclusion:
• we still don’t know why deep networks don’t overfit
• Rademacher-style learning theory does not explain it

34 / 38

"Understanding deep learning requires rethinking generalization"
[Zhang, Bengio, Hardt, Recht, Vinyals, ICLR 2017]

Observation:
• Deep Neural Networks can have 100s of millions parameters.
• We train them with less than 1 million examples.
• Yet, they don’t seem to overfit.
• Could it be that their capacity is much smaller than one would
expect from the number of parameters?

Empirical study:
• let’s explore their empirical Rademacher complexity
• train network with real input data, but random ±1 labels
• result: networks can learn random labels (R̂ → 0)

Conclusion:
• we still don’t know why deep networks don’t overfit
• Rademacher-style learning theory does not explain it

34 / 38

"Stronger generalization bounds for deep nets via a compression approach"
[Arora, Ge, Neyshabur, Zhang. ICML 2018]

• f : X → Y: trained network with many parameters
• G: a set of (smaller) neural networks parametrized by q parameters,
each of which can take r different values.

Theorem
Let S = {(x1, y1), . . . , (xm, ym)} be a training set with m samples.
For λ > 0, if f can be approximated by a network g ∈ G in the sense
that |f(xi)− g(xi)| ≤ γ for i = 1, . . . ,m, then (with high probability),

R(g) ≤ 1
m

m∑
i=1

Jyif(xi) ≤ γK +O
(√q log r

m

)
Examples:
• quantize real-valued network parameter to a few (e.g. r = 4) bits
• low-rank decomposition of weight matrices to reduce number of
coefficients

35 / 38

"Stronger generalization bounds for deep nets via a compression approach"
[Arora, Ge, Neyshabur, Zhang. ICML 2018]

• f : X → Y: trained network with many parameters
• G: a set of (smaller) neural networks parametrized by q parameters,
each of which can take r different values.

Theorem
Let S = {(x1, y1), . . . , (xm, ym)} be a training set with m samples.
For λ > 0, if f can be approximated by a network g ∈ G in the sense
that |f(xi)− g(xi)| ≤ γ for i = 1, . . . ,m, then (with high probability),

R(g) ≤ 1
m

m∑
i=1

Jyif(xi) ≤ γK +O
(√q log r

m

)
Problem:
• theorem bounds quality of g, not f .
• the bound itself follows immediately from finite hypothesis set:

I R(g) ≤ R̂(g) +
√

log |G|+log 1/δ
m and log |G| = log rq = q log r

I R̂(g) = 1
m

∑m
i=1Jy

ig(xi) ≤ 0K ≤ 1
m

∑m
i=1Jy

if(xi) ≤ γK
36 / 38

"Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
Networks with Many More Parameters than Training Data" [Dziugaite, Roy. UAI 2016]

Observation:
• deep networks trained by SGD work well

Hypothesis:
• solution found by SGD are "shallow" minima of the objective, so it is
robust against small perturbations of the network parameters

Approach:
• PAC-Bayesian bound:

I prior: Gaussian around weight initialization w0
I posterior: Gaussian around learned parameters

• variance of Gaussians learned from bound itself (needs union bound)
• several approximations to approximate empirical risk

37 / 38

"Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
Networks with Many More Parameters than Training Data" [Dziugaite, Roy. UAI 2016]

Observation:
• deep networks trained by SGD work well

Hypothesis:
• solution found by SGD are "shallow" minima of the objective, so it is
robust against small perturbations of the network parameters

Approach:
• PAC-Bayesian bound:

I prior: Gaussian around weight initialization w0
I posterior: Gaussian around learned parameters

• variance of Gaussians learned from bound itself (needs union bound)
• several approximations to approximate empirical risk

37 / 38

More...

"Spectrally-normalized margin bounds for neural networks"
[Bartlett, Foster Telgarsky, NIPS 2017]

"A PAC-Bayesian approach to spectrally-normalized margin
bounds for neural networks" [Neyshabur, Bhojanapalli, Srebro, ICML 2018]

38 / 38

