Statistical Machine Learning https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Institute of Science and Technology

Winter Semester 2018/2019
Lecture 9
(lots of material courtesy of S. Nowozin, http://www.nowozin.net)

Standard Regression/Classification:

$$
f: \mathcal{X} \rightarrow \mathbb{R}
$$

- inputs \mathcal{X} can be any kind of objects
- output $y \in \mathcal{Y}$ is a number (real or integer)

Structured Prediction:

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

- inputs \mathcal{X} can be any kind of objects
- outputs $y \in \mathcal{Y}$ are complex (structured) objects

What is structured data?

Ad hoc definition: data that consists of several parts, and not only the parts themselves contain information, but also the way in which the parts belong together.

Text

Documents/HyperText

Molecules / Chemical Structures

Images

What is structured output prediction?

Ad hoc definition: predicting structured outputs from input data (in contrast to predicting just a single number, like in classification or regression)

- Natural Language Processing:
- Automatic Translation (output: sentences)
- Bioinformatics:
- Secondary Structure Prediction (output: bipartite graphs)
- Speech Processing:
- Text-to-Speech (output: audio signal)
- Robotics:
- Planning (output: sequence of actions)
- Information Retrieval:
- Ranking (output: ordered list of documents)

This lecture: mainly examples from Computer Vision

Example: Human Pose Estimation

$$
x \in \mathcal{X}
$$

$y \in \mathcal{Y}$

- Given an image, where is a person and how is it articulated?

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

- Image x, but what is $y \in \mathcal{Y}$ precisely?

Example: Human Pose Estimation

Example $y_{\text {head }}$

- Body Part: $y_{\text {head }}=(u, v, \theta)$ where (u, v) center, θ rotation - $(u, v) \in\{1, \ldots, M\} \times\{1, \ldots, N\}, \theta \in\left\{0,45^{\circ}, 90^{\circ}, \ldots\right\}$

Example: Human Pose Estimation

Example $y_{\text {head }}$

- Body Part: $y_{\text {head }}=(u, v, \theta)$ where (u, v) center, θ rotation - $(u, v) \in\{1, \ldots, M\} \times\{1, \ldots, N\}, \theta \in\left\{0,45^{\circ}, 90^{\circ}, \ldots\right\}$

Example: Human Pose Estimation

Example $y_{\text {head }}$

- Body Part: $y_{\text {head }}=(u, v, \theta)$ where (u, v) center, θ rotation - $(u, v) \in\{1, \ldots, M\} \times\{1, \ldots, N\}, \theta \in\left\{0,45^{\circ}, 90^{\circ}, \ldots\right\}$

Example: Human Pose Estimation

Example $y_{\text {head }}$

- Body Part: $y_{\text {head }}=(u, v, \theta)$ where (u, v) center, θ rotation - $(u, v) \in\{1, \ldots, M\} \times\{1, \ldots, N\}, \theta \in\left\{0,45^{\circ}, 90^{\circ}, \ldots\right\}$

Example: Human Pose Estimation

Example $y_{\text {head }}$

- Body Part: $y_{\text {head }}=(u, v, \theta)$ where (u, v) center, θ rotation - $(u, v) \in\{1, \ldots, M\} \times\{1, \ldots, N\}, \theta \in\left\{0,45^{\circ}, 90^{\circ}, \ldots\right\}$

Example: Human Pose Estimation

Example $y_{\text {head }}$

- Body Part: $y_{\text {head }}=(u, v, \theta)$ where (u, v) center, θ rotation - $(u, v) \in\{1, \ldots, M\} \times\{1, \ldots, N\}, \theta \in\left\{0,45^{\circ}, 90^{\circ}, \ldots\right\}$

Example: Human Pose Estimation

Example $y_{\text {head }}$

- Body Part: $y_{\text {head }}=(u, v, \theta)$ where (u, v) center, θ rotation - $(u, v) \in\{1, \ldots, M\} \times\{1, \ldots, N\}, \theta \in\left\{0,45^{\circ}, 90^{\circ}, \ldots\right\}$
- same for torso, left arm, right arm, ...
- Entire Body: $y=\left(y_{\text {head }}, y_{\text {torso }}, y_{\text {left-lower-arm }}, \ldots\right) \in \mathcal{Y}$

Example: Human Pose Estimation

- Idea: Have a head detector (CNN, SVM, RF, ...)

$$
f_{\text {head }}: \mathcal{X} \rightarrow \mathbb{R}
$$

Example: Human Pose Estimation

- Idea: Have a head detector (CNN, SVM, RF, ...)

$$
f_{\text {head }}: \mathcal{X} \rightarrow \mathbb{R}
$$

- Evaluate for every possible location and record score
- Same construction for all other body parts

Example: Human Pose Estimation

Image $x \in \mathcal{X}$

- Put together body from individual parts

$$
y^{\text {best }}=\left(y_{\text {head }}^{\text {best }}, y_{\text {torso }}^{\text {best }}, \cdots\right)
$$

Example: Human Pose Estimation

Image $x \in \mathcal{X}$

Prediction $y^{\text {best }} \in \mathcal{Y}$

- Put together body from individual parts

$$
y^{\text {best }}=\left(y_{\text {head }}^{\text {best }}, y_{\text {torso }}^{\text {best }}, \cdots\right)
$$

- Each part looks reasonable, but overall makes no sense

Example: Human Pose Estimation

Image: Ben Sapp

Enforce relations between parts

- For example, head must be connected to torso
- Problem:

$$
y^{\text {best }} \neq\left(y_{\text {head }}^{\text {best }}, y_{\text {torso }}^{\text {best }}, \cdots\right)
$$

independent decisions for each body part are not optimal anymore

Example: Human Pose Estimation

Enforce relations between parts

- For example, head must be connected to torso
- Problem:

$$
y^{\text {best }} \neq\left(y_{\text {head }}^{\text {best }}, y_{\text {torso }}^{\text {best }}, \cdots\right)
$$

independent decisions for each body part are not optimal anymore

- Needs structured output prediction function $f: \mathcal{X} \rightarrow \mathcal{Y}$

The general recipe

Normal prediction function, $\mathcal{X}=$ anything, $\mathcal{Y}=\mathbb{R}$
Extract feature vector from x and compute a number from it

$$
\text { e.g. } \quad f(x)=\langle w, \phi(x)\rangle+b
$$

The general recipe

Normal prediction function, $\mathcal{X}=$ anything, $\mathcal{Y}=\mathbb{R}$

Extract feature vector from x and compute a number from it

$$
\text { e.g. } \quad f(x)=\langle w, \phi(x)\rangle+b
$$

Structured output prediction function, $\mathcal{X}=$ anything, $\mathcal{Y}=$ anything

1) Define auxiliary function, $g: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$,

$$
\text { e.g. } \quad g(x, y)=\prod_{i} \psi_{i}\left(y_{i}, x\right) \prod_{i \sim j} \psi_{i j}\left(y_{i}, y_{j}, x\right)
$$

2) Construct $f: \mathcal{X} \rightarrow \mathcal{Y}$ from g, e.g., $f(x)=\operatorname{argmax}_{y \in \mathcal{Y}} g(x, y)$

Challenges:

- how to learn $g(x, y)$ from training data?
- how to compute $f(x)$ from $g(x, y)$?

Supervised Learning Problem

- Given training examples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathcal{X} \times \mathcal{Y}$ $x \in \mathcal{X}$: input, e.g. image
$y \in \mathcal{Y}$: structured output, e.g. human pose, sentence

Images: HumanEva dataset

- How to make predictions for new inputs, i.e. learn a function $f: \mathcal{X} \rightarrow \mathcal{Y}$?

Supervised Learning Problem

- Given training examples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathcal{X} \times \mathcal{Y}$ $x \in \mathcal{X}$: input, e.g. image $y \in \mathcal{Y}$: structured output, e.g. human pose, sentence
- How to make predictions for new inputs, i.e. learn $f: \mathcal{X} \rightarrow \mathcal{Y}$?

Approach 1) Discriminative Probabilistic Learning

1) Use training data to obtain an estimate $p(y \mid x)$.
2) Use $f(x)=\operatorname{argmin}_{\bar{y} \in \mathcal{Y}} \sum_{y} p(y \mid x) \Delta(y, \bar{y})$ to make predictions. $\Delta: \mathcal{Y} \rightarrow \mathcal{Y} \rightarrow \mathbb{R}_{+}$is a structured loss function (later...)

Approach 2) Loss-minimizing Parameter Estimation

1) Use training data to learn a compatibility function $g(x, y)$
2) Use $f(x):=\operatorname{argmax}_{y \in \mathcal{Y}} g(x, y)$ to make predictions.

Probabilistic Graphical Models

Refresher: Conditional Probability Distributions

Binary Classification

$\mathcal{X}=\{$ anything $\}, \mathcal{Y}=\{ \pm 1\}$

- $p(y \mid x): 2$ values for each x, 1 degree of freedom
- learn one function: $\mathcal{X} \rightarrow \mathbb{R}$

Multi-class prediction

$y \in \mathcal{Y}=\{1, \ldots, K\}$

- $p(y \mid x): K$ values for each x,
- learn $K-1$ functions, or K functions with normalization

Structured objects: predicting M variables jointly
$\mathcal{Y}=\{1, K\} \times\{1, K\} \cdots \times\{1, K\}$
For each x :

- K^{M} values, $K^{M}-1$ d.o.f.
$\rightarrow K^{M}$ functions

Example: pose estimation

$$
\begin{aligned}
& \mathcal{Y}_{\text {part }}=\{1, \ldots, W\} \times\{1, \ldots, H\} \\
& \times\{1, \ldots, 360\} \\
& \mathcal{Y}=\mathcal{Y}_{\text {head }} \times \mathcal{Y}_{\text {left-arm }} \times \cdots \times \mathcal{Y}_{\text {right-foot }}
\end{aligned}
$$

For each x :

- $(360 W H)^{\text {\#body parts }}$ values \rightarrow many billions function

Example: image denoising

$$
\mathcal{Y}=\{640 \times 480 \text { RGB images }\}
$$

For each x :

too much!

$$
\begin{aligned}
& \left(255^{3}\right)^{640 \cdot 480} \text { values in } p(y \mid x), \\
& \rightarrow \quad \text { over } 10^{2,000,000} \text { functions }
\end{aligned}
$$

Example: image denoising

$$
\mathcal{Y}=\{640 \times 480 \text { RGB images }\}
$$

For each x :

too much!

- $\left(255^{3}\right)^{640 \cdot 480}$ values in $p(y \mid x)$, \rightarrow over $10^{2,000,000}$ functions

We cannot consider all possible distributions, we must impose structure.

Probabilistic Graphical Models

A (probabilistic) graphical model defines a family of probability distributions over a set of random variables, by means of a graph.

Probabilistic Graphical Models

A (probabilistic) graphical model defines a family of probability distributions over a set of random variables, by means of a graph.

Popular classes of graphical models,

- Undirected graphical models (Markov random fields),
- Directed graphical models (Bayesian networks),
- Factor graphs,
- Others: chain graphs, influence diagrams, etc.

Probabilistic Graphical Models

A (probabilistic) graphical model defines

- a family of probability distributions over a set of random variables, by means of a graph.

Popular classes of graphical models,

- Undirected graphical models (Markov random fields),
- Directed graphical models (Bayesian networks),
- Factor graphs,
- Others: chain graphs, influence diagrams, etc.

The graph encodes conditional independence assumptions
 between the variables:

- Let $N(i)$ be the neighbors of node i in the graph (V, \mathcal{E}). Then

$$
\begin{aligned}
& \qquad p\left(y_{i} \mid y_{V \backslash\{i\}}\right)=p\left(y_{i} \mid y_{N(i)}\right) \\
& \text { with } y_{V \backslash\{i\}}=\left(y_{1}, \ldots, y_{i-1}, y_{i+1}, y_{n}\right)
\end{aligned}
$$

Example: Pictorial Structures for Articulated Pose Estimation

- All parts depend on each other.
- Knowing where the head is puts constraints on where the feet can be.
- But conditional independences as specified by the graph:
- If we fix where the left leg is, the left foot's position does not depend on the torso or the head position anymore, etc.

$$
p\left(y_{\text {left-foot }} \mid y_{\text {top }}, \ldots, y_{\text {torso }}, \ldots, y_{\text {right-foot }}, x\right)=p\left(y_{\text {left-foot }} \mid y_{\text {left-leg }}, x\right)
$$

Factor Graphs

- Decomposable output $y=\left(y_{1}, \ldots, y_{|V|}\right)$
- Graph: $G=(V, \mathcal{F})$,
- variable nodes V,
- factor nodes \mathcal{F},
- each factor $F \in \mathcal{F}$ connects a subset of nodes,
- write $F=\left\{v_{1}, \ldots, v_{|F|}\right\}$ and $y_{F}=\left(y_{v_{1}}, \ldots, y_{v_{|F|}}\right)$

Factor graph

Factor Graphs

- Decomposable output $y=\left(y_{1}, \ldots, y_{|V|}\right)$
- Graph: $G=(V, \mathcal{F})$,
- variable nodes V,
- factor nodes \mathcal{F},
- each factor $F \in \mathcal{F}$ connects a subset of nodes,
- write $F=\left\{v_{1}, \ldots, v_{|F|}\right\}$ and

$$
y_{F}=\left(y_{v_{1}}, \ldots, y_{v_{|F|}}\right)
$$

Factor graph

- Distribution factorizes into potentials ψ at factors:

$$
p(y)=\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{F}\right)
$$

- Z is a normalization constant, called partition function:

$$
Z=\sum_{y \in \mathcal{Y}} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{F}\right)
$$

Conditional Distributions

How to model $p(y \mid x)$?

- Potentials become also functions of (part of) $x: \psi_{F}\left(y_{F} ; x_{F}\right)$ instead of just $\psi_{F}\left(y_{F}\right)$

$$
p(y \mid x)=\frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{F} ; x_{F}\right)
$$

- Partition function depends on x_{F}

Factor graph

$$
Z(x)=\sum_{y \in \mathcal{Y}} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{F} ; x_{F}\right)
$$

- Note: x is treated just as an argument, not as a random variable.

Conventions: Potentials and Energy Functions

Assume $\psi_{F}\left(y_{F}\right)>0$. Then

- instead of potentials, we can use energies:

$$
\begin{array}{rlr}
E_{F}\left(y_{F} ; x_{F}\right) & =-\log \left(\psi_{F}\left(y_{F} ; x_{F}\right)\right) & \text { for each factor } F . \\
E(y ; x) & =\sum_{F \in \mathcal{F}} E_{F}\left(y_{F} ; x_{F}\right) & \text { total energy }
\end{array}
$$

Conventions: Potentials and Energy Functions

Assume $\psi_{F}\left(y_{F}\right)>0$. Then

- instead of potentials, we can use energies:

$$
\begin{array}{rlr}
E_{F}\left(y_{F} ; x_{F}\right) & =-\log \left(\psi_{F}\left(y_{F} ; x_{F}\right)\right) & \text { for each factor } F . \\
E(y ; x) & =\sum_{F \in \mathcal{F}} E_{F}\left(y_{F} ; x_{F}\right) & \text { total energy }
\end{array}
$$

- $p(y \mid x)$ can be written as Gibbs distribution

$$
\begin{aligned}
p(y \mid x) & =\frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{F} ; x_{F}\right) \\
& =\frac{1}{Z(x)} \exp \left(-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F} ; x_{F}\right)\right)=\frac{1}{Z(x)} \exp (-E(y ; x))
\end{aligned}
$$

In practice, one directly models the energy function
\rightarrow the probability distribution is uniquely determined by it.

Example: An Energy Function for Human Pose Estimation

$$
E(y ; x)=\sum_{i \in\{\text { head,torso }, \ldots\}} E_{i}\left(y_{i} ; x\right)+\sum_{(i, j)} E_{i j}\left(y_{i}, y_{j}\right)
$$

- unary factors (depend on one label): appearance
- e.g. $E_{\text {head }}(y ; x)$ "Does location y in image x look like a head?"
- pairwise factors (depend on two labels): geometry
- e.g. $E_{\text {head-torso }}\left(y_{\text {head }}, y_{\text {torso }}\right)$ "Is location $y_{\text {head }}$ above location $y_{\text {torso }}$?"

Example: An Energy Function for Image Segmentation

Object segmentation: e.g. horse
\mathcal{X} :

Energy function components ("Ising" model):

- $E_{i}\left(y_{i}=1, x_{i}\right)= \begin{cases}\text { low } & \text { if } x_{i} \text { is the right color, e.g. brown } \\ \text { high } & \text { otherwise }\end{cases}$
- $E_{i}\left(y_{i}=0, x_{i}\right)=-E_{i}\left(y_{i}=1, x_{i}\right)$
- $E_{i}\left(y_{i}, y_{j}\right)= \begin{cases}\text { low } & \text { if } y_{i}=y_{j} \\ \text { high } & \text { otherwise }\end{cases}$
prefer that neighbors have the same label \rightarrow smooth labelings

What to do with Structured Prediction Models?

Case 1) $p(y \mid x)$ is known

MAP Prediction

Predict $f: \mathcal{X} \rightarrow \mathcal{Y}$ by optimization

$$
y^{*}=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(y \mid x)=\underset{y \in \mathcal{Y}}{\operatorname{argmin}} E(y, x)
$$

Probabilistic Inference

Compute marginal probabilities

$$
p\left(y_{F} \mid x\right)
$$

for any factor F, in particular, $p\left(y_{i} \mid x\right)$ for all $i \in V$.

What to do with Structured Prediction Models?

input image

$\operatorname{argmax}_{y} p(y \mid x)$

$p\left(y_{i} \mid x\right)$ for $i=1, \ldots, 6$

- MAP makes a single (structured) prediction
- best overall pose
- Marginal probabilities $p\left(y_{i} \mid x\right)$ give us
- potential positions
- uncertainty
of the individual body parts.

What to do with Structured Prediction Models?

Case 2) $p(y \mid x)$ is unknown, but we have training data

Structure Learning

Learn graph structure from training data.

Variable Learning

Learn, whether to use additional (latent) variables, and which ones. (input and output variables are fixed by the task we try to solve).

Parameter Learning

Assume a fixed factor graph, learn parameters of the energy.

Conditional Random Fields

$$
\boldsymbol{\operatorname { m a x }}_{w} p(y \mid x ; w)
$$

Conditional Random Field Learning

Goal: learn a conditional distribution

$$
p(y \mid x)=\frac{1}{Z(x)} e^{\left.-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F} ; x\right)\right\rangle}
$$

with $\mathcal{F}=\{$ all factors $\}$: all unary, pairwise, potentially higher order, ...

- parameterize each $E_{F}\left(y_{F} ; x\right)=\left\langle w_{F}, \phi_{F}\left(x, y_{F}\right)\right\rangle$.
- fixed feature functions $\left(\phi_{1}\left(x, y_{1}\right), \ldots, \phi_{|\mathcal{F}|}\left(x, y_{|\mathcal{F}|}\right)\right) \equiv: \phi(x, y)$
- weight vectors $\left(w_{1}, \ldots, w_{|\mathcal{F}|}\right) \equiv: w$

Result: log-linear model with parameter vector w

$$
\begin{aligned}
p(y \mid x ; w) & =\frac{1}{Z(x ; w)} e^{-\langle w, \phi(y, x)\rangle} \\
\text { with } \quad Z(x ; w) & =\sum_{\bar{y} \in \mathcal{Y}} e^{-\langle w, \phi(\bar{y}, x)\rangle} \quad(\text { "partition function") }
\end{aligned}
$$

New goal: find best parameter vector $w \in \mathbb{R}^{D}$.

Probabilistic Learning

Maximize conditional likelihood, $p\left(\mathcal{D}_{y} \mid \mathcal{D}_{x} ; w\right)$, or maximum posterior, $p(w \mid \mathcal{D})$. Equivalently, minimize

$$
\begin{aligned}
\mathcal{L}(w) & =\frac{\lambda}{2}\|w\|^{2}-\sum_{n=1}^{N} \log p\left(y^{n} \mid x^{n} ; w\right) \\
& =\frac{\lambda}{2}\|w\|^{2}+\sum_{n=1}^{N}\left[\left\langle w, \phi\left(x^{n}, y^{n}\right)\right\rangle+\log \sum_{y \in \mathcal{Y}} e^{-\left\langle w, \phi\left(x^{n}, y\right)\right\rangle}\right]
\end{aligned}
$$

($\lambda=0$ makes it unregularized)

Same optimization problem as for multi-class logistic regression.

- unconstrained
- smooth
- convex

Solving the Training Optimization Problem in Practice

Task: Compute $v=\nabla_{w} \mathcal{L}\left(w_{\text {cur }}\right)$ and evaluate $\mathcal{L}\left(w_{\text {cur }}+\eta v\right)$:

$$
\begin{aligned}
\mathcal{L}(w) & =\frac{\lambda}{2}\|w\|^{2}+\sum_{n=1}^{N}\left[\left\langle w, \phi\left(x^{n}, y^{n}\right)\right\rangle+\log \sum_{y \in \mathcal{Y}} e^{-\left\langle w, \phi\left(x^{n}, y\right)\right\rangle}\right] \\
\nabla_{w} \mathcal{L}(w) & =\lambda w+\sum_{n=1}^{N}\left[\phi\left(x^{n}, y^{n}\right)-\sum_{y \in \mathcal{Y}} p\left(y \mid x^{n} ; w\right) \phi\left(x^{n}, y\right)\right]
\end{aligned}
$$

Solving the Training Optimization Problem in Practice

Task: Compute $v=\nabla_{w} \mathcal{L}\left(w_{\text {cur }}\right)$ and evaluate $\mathcal{L}\left(w_{\text {cur }}+\eta v\right)$:

$$
\begin{aligned}
\mathcal{L}(w) & =\frac{\lambda}{2}\|w\|^{2}+\sum_{n=1}^{N}\left[\left\langle w, \phi\left(x^{n}, y^{n}\right)\right\rangle+\log \sum_{y \in \mathcal{Y}} e^{-\left\langle w, \phi\left(x^{n}, y\right)\right\rangle}\right] \\
\nabla_{w} \mathcal{L}(w) & =\lambda w+\sum_{n=1}^{N}\left[\phi\left(x^{n}, y^{n}\right)-\sum_{y \in \mathcal{Y}} p\left(y \mid x^{n} ; w\right) \phi\left(x^{n}, y\right)\right]
\end{aligned}
$$

Problem: \mathcal{Y} typically is very (exponentially) large:

- binary image segmentation: $|\mathcal{Y}|=2^{640 \times 480} \approx 10^{92475}$
- ranking N images: $|\mathcal{Y}|=N$!, e.g. $N=1000:|\mathcal{Y}| \approx 10^{2568}$.

We must use the structure in \mathcal{Y}, otherwise we're lost.

Solving the Training Optimization Problem in Practice

$$
\nabla_{w} \mathcal{L}(w)=\lambda w+\sum_{n=1}^{N}\left[\phi\left(x^{n}, y^{n}\right)-\underset{y \sim p\left(y \mid x^{n} ; w\right)}{\mathbb{E}} \phi\left(x^{n}, y\right)\right]
$$

Computing the Gradient (naive): $O\left(K^{M} N D\right)$

$$
\mathcal{L}(w)=\frac{\lambda}{2}\|w\|^{2}+\sum_{n=1}^{N}\left[\left\langle w, \phi\left(x^{n}, y^{n}\right)\right\rangle+\log Z\left(x^{n} ; w\right)\right]
$$

Line Search (naive): $O\left(K^{M} N D\right)$ per evaluation of \mathcal{L}

- N : number of samples
- D: dimension of feature space
- M : number of output variables ≈ 10 s to $1,000,000$ s
- K : number of possible labels of each output variables ≈ 2 to 1000 s

Solving the Training Optimization Problem in Practice

In a graphical model with factors \mathcal{F}, the features decompose:

$$
\begin{aligned}
\phi(x, y) & =\left(\phi_{F}\left(x, y_{F}\right)\right)_{F \in \mathcal{F}} \\
\underset{y \sim p(y \mid x ; w)}{\mathbb{E}} \phi(x, y) & =\left(\underset{y \sim p(y \mid x ; w)}{\mathbb{E}} \phi_{F}\left(x, y_{F}\right)\right)_{F \in \mathcal{F}} \\
& =\left(\underset{y_{F} \sim p\left(y_{F} \mid x ; w\right)}{\mathbb{E}} \phi_{F}\left(x, y_{F}\right)\right)_{F \in \mathcal{F}} \\
\underset{y_{F} \sim p\left(y_{F} \mid x ; w\right)}{\mathbb{E}} \phi_{F}\left(x, y_{F}\right) & =\underbrace{\sum_{y_{F} \in \mathcal{Y}_{F}}}_{K^{|F|} \text { terms }} \underbrace{p\left(y_{F} \mid x ; w\right)}_{\text {factor marginals }} \phi_{F}\left(x, y_{F}\right)
\end{aligned}
$$

Factor marginals $\mu_{F}=p\left(y_{F} \mid x ; w\right)$

- are much smaller than complete joint distribution $p(y \mid x ; w)$,
- compute/approximate them by probabilistic inference

