Statistical Machine Learning https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Institute of Science and Technology

IST AUSTRIA

Winter Semester 2018/2019 Lecture 11

(lots of material courtesy of S. Nowozin, http://www.nowozin.net)

Overview (tentative)

Date		no.	Торіс
Oct 08	Mon	1	A Hands-On Introduction
Oct 10	Wed	_	self-study (Christoph traveling)
Oct 15	Mon	2	Bayesian Decision Theory
			Generative Probabilistic Models
Oct 17	Wed	3	Discriminative Probabilistic Models
			Maximum Margin Classifiers
Oct 22	Mon	4	Generalized Linear Classifiers, Optimization
Oct 24	Wed	5	Evaluating Predictors; Model Selection
Oct 29	Mon	_	self-study (Christoph traveling)
Oct 31	Wed	6	Overfitting/Underfitting, Regularization
Nov 05	Mon	7	Learning Theory I: classical/Rademacher bounds
Nov 07	Wed	8	Learning Theory II: miscellaneous
Nov 12	Mon	9	Probabilistic Graphical Models I
Nov 14	Wed	10	Probabilistic Graphical Models II
Nov 19	Mon	11	Probabilistic Graphical Models III
Nov 21	Wed	12	Probabilistic Graphical Models IV
until Nov 25			final project 2 / 34

Structured Loss Functions

 $\Delta(\bar{y},y)$

How to judge if a (structured) prediction is good?

• Define a loss function

$$\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+,$$

 $\Delta(\bar{y}, y)$ measures the loss incurred by predicting y when \bar{y} is correct.

• The loss function is application dependent

Loss is 0 for perfect prediction, 1 otherwise:

$$\Delta_{0/1}(\bar{y}, y) = \llbracket \bar{y} \neq y \rrbracket = \begin{cases} 0 & \text{if } \bar{y} = y \\ 1 & \text{otherwise} \end{cases}$$

Every mistake is equally bad. Usually not very useful in *structured prediction*.

Count the number of mislabeled variables:

$$\Delta_H(\bar{y}, y) = \frac{1}{|V|} \sum_{i \in V} \llbracket \bar{y}_i \neq y_i \rrbracket$$

Used, e.g., for graph labeling tasks

If we can add elements in \mathcal{Y}_i (pixel intensities, optical flow vectors, etc.).

Sum of squared errors

$$\Delta_Q(\bar{y}, y) = \frac{1}{|V|} \sum_{i \in V} \|\bar{y}_i - y_i\|^2.$$

Used, e.g., in stereo reconstruction, part-based object detection.

Example 4: Task specific losses

Object detection

- bounding boxes, or
- arbitrarily shaped regions

Intersection-over-union loss:

$$\Delta_{\mathsf{loU}}(bary, y) = 1 - \frac{\operatorname{area}(\bar{y} \cap y)}{\operatorname{area}(\bar{y} \cup y)} = 1 - \frac{1}{1 - \frac$$

Used, e.g., in PASCAL VOC challenges for object detection, because its scale-invariance (no bias for or against big objects).

Given a distribution p(y|x), what is the best way to predict $f : \mathcal{X} \to \mathcal{Y}$?

Bayesian decision theory: pick f(x) that causes minimal expected loss:

$$\begin{split} f(x) &= \mathop{\mathrm{argmin}}_{y \in \mathcal{Y}} \mathcal{R}_{\Delta}(y) \\ \text{for} \quad \mathcal{R}_{\Delta}(y) &= \mathop{\mathbb{E}}_{\bar{y} \sim p(y|x)} \{ \Delta(\bar{y}, y) \} = \sum_{\bar{y} \in \mathcal{Y}} \Delta(\bar{y}, y) p(\bar{y}|x) \end{split}$$

For many loss functions not tractable, but some exceptions:

•
$$\mathcal{R}_{\Delta_{0/1}}(y) = 1 - p(y|x)$$
, so $f(x) = \operatorname{argmax}_y p(y|x)$

•
$$\mathcal{R}_{\Delta_H}(y) = 1 - \sum_{i \in V} p(y_i|x)$$
, so $f(x) = (y_1, \dots, y_n)$
for $y_i = \operatorname{argmax}_{k \in \mathcal{Y}_i} p(y_i = k|x)$

Structured Support Vector Machines

 $\min_f \mathbb{E}_{(x,y)} \Delta(y, f(x))$

Loss-Minimizing Parameter Learning

- $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ i.i.d. training set
- $\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^D$ be a feature function, like for CRF
- $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ be a loss function.
- Find a weight vector w^* that minimizes the expected loss

$$\mathbb{E}_{(x,y)}\Delta(y,f(x))$$

for $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$.

Loss-Minimizing Parameter Learning

- $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ i.i.d. training set
- $\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^D$ be a feature function, like for CRF
- $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ be a loss function.
- Find a weight vector w^* that minimizes the expected loss

$$\mathbb{E}_{x,y)}\Delta(y,f(x))$$

for
$$f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$$
.

Advantage:

- We directly optimize for the quantity of interest: expected loss.
- No expensive-to-compute partition function Z will show up.

Disadvantage:

- We need to know the loss function already at training time.
- We can't use probabilistic reasoning to find w^* .

Inspiration: multi-class SVM

• \mathcal{X} anything, $\mathcal{Y} = \{1, 2, \dots, K\}$,

- feature map $\phi : \mathcal{X} \to \mathcal{H}$ (explicit or implicit via kernel)
- training data $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- goal: learn functions $g_k(x) = \langle w_k, \phi(x) \rangle$ for $k = 1, \dots, K$.

Prediction:
$$f(x) = \underset{k=1,...,K}{\operatorname{argmax}} g_k(x) = \underset{k=1,...,K}{\operatorname{argmax}} \langle w_k, \phi(x) \rangle$$

Enforce a margin between the correct and all incorrect labels:

$$\min_{w_1,\dots,w_K,\xi} \quad \frac{1}{2} \sum_{k=1}^K \|w_k\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to, for $i = 1, \ldots, n$,

$$\langle w_{y^i}, \phi(x^i)\rangle \geq 1 + \langle w_k, \phi(x^i)\rangle - \xi^i, \quad \text{for all } k \neq y_i.$$

Crammer-Singer Multiclass SVM

Equivalent parameterization:

•
$$\mathcal{X}$$
 anything, $\mathcal{Y} = \{1, 2, \dots, K\}$,
• feature map $\psi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^D$ (explicit or implicit via kernel)
• $\psi(x, y) = (\llbracket y = 1 \rrbracket \phi(x), \llbracket y = 2 \rrbracket \phi(x), \dots, \llbracket y = K \rrbracket$
• $w = (w_1, \dots, w_K) \in \mathbb{R}^{KD}$
• goal: learn a function $g(x, y) = \langle w, \psi(x, y) \rangle$
Prediction: $f(x) = \underset{k=1,\dots,M}{\operatorname{argmax}} \langle w, \psi(x, y) \rangle$

Enforce a margin of 1 between the correct and any incorrect label:

$$\min_{w,\xi} \quad \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi^i$$

subject to, for $i = 1, \ldots, n$,

 $\langle w, \psi(x_i, y_i) \rangle \ge 1 + \langle w, \psi(x_i, \bar{y}) \rangle - \xi_i, \text{ for all } \bar{y} \neq y_i.$

Observation:

• for structure outputs, not all "incorrect" labels are equally bad \rightarrow margin between y_i and \bar{y} should depend on $\Delta(y_i, \bar{y})$

Structured (Output) Support Vector Machine

Goal: learn a function $g(x,y) = \langle w, \psi(x,y) \rangle$

 $\label{eq:prediction:} \mathbf{Prediction:} \quad f(x) = \underset{k=1,\dots,M}{\operatorname{argmax}} \ \left< w, \psi(x,y) \right>$

Enforce a margin $\Delta(y_i, y)$ between the correct and any incorrect label:

$$\min_{w,\xi} \quad \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to, for $i = 1, \ldots, n$,

 $\langle w, \psi(x_i, y_i) \rangle \ge \Delta(y_i, \bar{y}) + \langle w, \psi(x_i, \bar{y}) \rangle - \xi_i, \text{ for all } \bar{y} \in \mathcal{Y}.$

Structured Output Support Vector Machine

Equivalent unconstrained formulation (solve for optimal ξ_1, \ldots, ξ_n):

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \max_{\bar{y} \in \mathcal{Y}} \left[\Delta(y_i, \bar{y}) + \langle w, \psi(x_i, \bar{y}) \rangle - \langle w, \psi(x_i, y_i) \rangle \right]$$

Conditional Random Field

Regularized conditional log-likelihood:

$$\min_{w} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \log \sum_{\bar{y} \in \mathcal{Y}} \exp\left(\langle w, \psi(x_{i}, \bar{y}) \rangle - \langle w, \phi(x_{i}, y_{i}) \rangle\right)$$

CRFs and SSVMs have more in common than usually assumed.

- $\log \sum_y \exp(\cdot)$ can be interpreted as a soft-max (differentiable)
- SSVM training takes loss function into account
- CRF is trained without specific loss, loss enters at prediction time

Structured Output Support Vector Machine

Equivalent unconstrained formulation (solve for optimal ξ_1, \ldots, ξ_n):

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \max_{\bar{y} \in \mathcal{Y}} \left[\Delta(y_i, \bar{y}) + \langle w, \psi(x_i, \bar{y}) \rangle - \langle w, \psi(x_i, y_i) \rangle \right]$$

Conditional Random Field

Regularized conditional log-likelihood:

$$\min_{w} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \log \sum_{\bar{y} \in \mathcal{Y}} \exp\left(\langle w, \psi(x_{i}, \bar{y}) \rangle - \langle w, \phi(x_{i}, y_{i}) \rangle\right)$$

CRFs and SSVMs have more in common than usually assumed.

- $\log \sum_y \exp(\cdot)$ can be interpreted as a soft-max (differentiable)
- SSVM training takes loss function into account
- CRF is trained without specific loss, loss enters at prediction time

AAAAACCCCCCCCAGAGGAGAUUG GAGAUCAAAGGUGGUUCGGAUGUC \rightarrow GAAGUGUACCGAACCCGGGGG

- $\mathcal{X} = \Sigma^*$ for $\Sigma = \{A, C, G, U\}$ (nucleotide sequence)
- $\mathcal{Y} = \{(i,j) : i, j \in \mathbb{N}, i < j\}$ (i,j) mean " x_i binds with x_j "
- $\psi(x, y)$ domain-specific features: binding energy of $x_i \leftrightarrow x_j$, prefered patterns (motifs), loop properties, ...
- $\Delta(\bar{y},y)$: number of wrong/missing bindings (Hamming loss)

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \max_{\bar{y} \in \mathcal{Y}} \left[\Delta(y_i, \bar{y}) + \langle w, \psi(x_i, \bar{y}) \rangle - \langle w, \psi(x_i, y_i) \rangle \right]$$

- $\mathcal{X} = \{ \mathsf{English sentences} \}$
- $\mathcal{Y} = \{ parse tree \}$
- $\psi(x,y)$ domain-specific features:
 - ▶ word properties, e.g. ". starts with capital letter", ". ends in ing"
 - grammatical rules: $NP \rightarrow DT + NN$
- $\Delta(\bar{y}, y)$: number of wrong assignments

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^n \max_{\bar{y} \in \mathcal{Y}} \left[\Delta(y_i, \bar{y}) + \langle w, \psi(x_i, \bar{y}) \rangle - \langle w, \psi(x_i, y_i) \rangle \right]$$

- continuous
- unconstrained
- convex
- non-differentiable

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w) = \max_y \ell_y(x_i,y_i,w)$, and

 $\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w) = \max_y \ell_y(x_i,y_i,w)$, and

$$\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$$

19/34

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w) = \max_y \ell_y(x_i,y_i,w)$, and

$$\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$$

For each $y \in \mathcal{Y}$, $\ell_y(w)$ is a linear function of w.

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w) = \max_y \ell_y(x_i,y_i,w)$, and

 $\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$

For each $y \in \mathcal{Y}$, $\ell_y(w)$ is a linear function of w.

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w) = \max_y \ell_y(x_i,y_i,w)$, and

$$\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$$

 \max over finite \mathcal{Y} : piece-wise linear

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w) = \max_y \ell_y(x_i,y_i,w)$, and

$$\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$$

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w) = \max_y \ell_y(x_i,y_i,w)$, and

 $\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$

Subgradient of ℓ at w_0 : find maximal (active) y.

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w)= \max_y \ell_y(x_i,y_i,w)$, and

$$\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$$

Subgradient of ℓ at w_0 : find maximal (active) y, use $v = \nabla \ell_y(w_0)$.

Computing a subgradient:

$$\min_{w} \ \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i, w)$$

with $\ell(x_i,y_i,w)= \max_y \ell_y(x_i,y_i,w)$, and

$$\ell_y(x_i, y_i, w) := \Delta(y_i, y) + \langle w, \psi(x_i, y) \rangle - \langle w, \psi(x_i, y_i) \rangle$$

Not necessarily unique, but $v = \nabla \ell_y(w_0)$ works for any maximal y

Subgradient Method S-SVM Training

input training pairs $\{(x^1, y^1), \ldots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$, input feature map $\phi(x, y)$, loss function $\Delta(y, y')$, regularizer λ , input number of iterations T, stepsizes η_t for $t = 1, \ldots, T$

1:
$$w \leftarrow 0$$

2: for t=1,...,T do
3: for i=1,...,n do
4: $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$
5: $v^n \leftarrow \phi(x^n, \hat{y}) - \phi(x^n, y^n)$
6: end for
7: $w \leftarrow w - \eta_t (\lambda w - \frac{1}{N} \sum_n v^n)$
8: end for

output prediction function $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$.

Obs: each update of w needs N argmax-prediction (one per example). Obs: computing the argmax is (loss augmented) energy minimization₃₄

- \mathcal{X} images, $\mathcal{Y} = \{$ binary segmentation masks $\}$.
- Training example(s): $(x^n, y^n) = \left(\bigcup_{i=1}^{n} a_i \right)$

• $\Delta(y, \bar{y}) = \sum_{p} \llbracket y_p \neq \bar{y}_p \rrbracket$ (Hamming loss)

- \mathcal{X} images, $\mathcal{Y} = \{$ binary segmentation masks $\}$.

• $\Delta(y, \bar{y}) = \sum_{p} \llbracket y_p \neq \bar{y}_p \rrbracket$ (Hamming loss)

$$\begin{split} t &= 1: \ w = 0, \\ \hat{y} &= \operatorname*{argmax}_{y} \left[\ \langle w, \phi(x^n, y) \rangle + \Delta(y^n, y) \ \right] \\ &\stackrel{w=0}{=} \operatorname*{argmax}_{y} \Delta(y^n, y) \quad = \text{"the opposite of } y^n \text{"} \end{split}$$

- \mathcal{X} images, $\mathcal{Y} = \{$ binary segmentation masks $\}$.
- Training example(s): $(x^n, y^n) = \left(\bigcirc \$,

• $\Delta(y, \bar{y}) = \sum_{p} \llbracket y_p \neq \bar{y}_p \rrbracket$ (Hamming loss)

 $t=1:\; \hat{y}=$ $\phi(y^n)-\phi(\hat{y}):\; {
m black}$ +, white +, green –, blue –, gray –

- \mathcal{X} images, $\mathcal{Y} = \{$ binary segmentation masks $\}$.
- Training example(s): $(x^n, y^n) = \left(\bigcup_{i=1}^{n} b_i \right)$

• $\Delta(y, \bar{y}) = \sum_{p} \llbracket y_p \neq \bar{y}_p \rrbracket$ (Hamming loss)

- \mathcal{X} images, $\mathcal{Y} = \{ \text{ binary segmentation masks } \}.$
- Training example(s): $(x^n, y^n) = \left(\begin{array}{c} & & \\ &$

• $\Delta(y, \bar{y}) = \sum_{p} [\![y_p \neq \bar{y}_p]\!]$ (Hamming loss)

- \mathcal{X} images, $\mathcal{Y} = \{ \text{ binary segmentation masks } \}.$
- Training example(s): $(x^n, y^n) = \left(\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \right)$,

• $\Delta(y, \bar{y}) = \sum_{p} \llbracket y_p \neq \bar{y}_p \rrbracket$ (Hamming loss)

Example: Image Segmenatation

- \mathcal{X} images, $\mathcal{Y} = \{ \text{ binary segmentation masks } \}.$
- Training example(s): $(x^n,y^n)=\left(egin{array}{c} \end{array}
 ight)$,

• $\Delta(y, \bar{y}) = \sum_{p} \llbracket y_p \neq \bar{y}_p \rrbracket$ (Hamming loss)

 $t = 6, \ldots$: no more changes.

Images: [Carreira, Li, Sminchisescu, "Object Recognition by Sequential Figure-Ground Ranking", IJCV 2010]

Same trick as for CRFs: stochastic updates:

Stochastic Subgradient Method S-SVM Training

input training pairs $\{(x^1, y^1), \ldots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$, input feature map $\phi(x, y)$, loss function $\Delta(y, y')$, regularizer λ , input number of iterations T, stepsizes η_t for $t = 1, \ldots, T$

1:
$$w \leftarrow \vec{0}$$

2: for t=1,...,T do
3: $(x^n, y^n) \leftarrow$ randomly chosen training example pair
4: $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$
5: $w \leftarrow w - \eta_t (\lambda w - \frac{1}{N} [\phi(x^n, \hat{y}) - \phi(x^n, y^n)])$
6: end for

output prediction function $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$.

Observation: each update of w needs only 1 argmax -prediction (but we'll need many iterations until convergence)

Structured Support Vector Machine:

$$\min_{w} \quad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right) \right]$$

Subgradient method converges slowly. Can we do better?

Structured Support Vector Machine:

$$\min_{w} \quad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right) \right]$$

Subgradient method converges slowly. Can we do better?

We can use **inequalities** and **slack variables** to reformulate the optimization.

Structured SVM (equivalent formulation):

Idea: slack variables

$$\min_{w,\xi} \quad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \xi^n$$

subject to, for $n=1,\ldots,N$,

$$\max_{y \in \mathcal{Y}} \ \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right] \leq \xi^n$$

Note: $\xi^n \ge 0$ automatic, because left hand side is non-negative.

Differentiable objective, convex, N non-linear contraints,

Structured SVM (also equivalent formulation):

Idea: expand \max term into individual constraints

$$\min_{w,\xi} \quad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \xi^n$$

subject to, for $n=1,\ldots,N$,

 $\Delta(y^n,y) + \langle w,\phi(x^n,y)\rangle - \langle w,\phi(x^n,y^n)\rangle \leq \xi^n, \quad \text{for all } y\in\mathcal{Y}$

Differentiable objective, convex, $N|\mathcal{Y}|$ linear constraints

Solve an S-SVM like a linear Support Vector Machine:

$$\min_{w \in \mathbb{R}^{D}, \xi \in \mathbb{R}^{n}} \quad \frac{\lambda}{2} \|w\|^{2} + \frac{1}{N} \sum_{n=1}^{N} \xi^{n}$$

subject to, for $i = 1, \ldots n$,

 $\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, y) \rangle \geq \Delta(y^n, y) \ - \ \xi^n, \quad \text{for all } y \in \mathcal{Y}.$

Introduce feature vectors $\delta \phi(x^n, y^n, y) := \phi(x^n, y^n) - \phi(x^n, y)$.

Solving S-SVM Training Numerically

Solve

$$\min_{w \in \mathbb{R}^{D}, \xi \in \mathbb{R}^{n}_{+}} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{N} \sum_{n=1}^{N} \xi^{n}$$

subject to, for $i=1,\ldots n,$ for all $y\in \mathcal{Y}$,

$$\langle w, \delta \phi(x^n, y^n, y) \rangle \ge \Delta(y^n, y) - \xi^n.$$

Same structure as an ordinary SVM!

- quadratic objective ③
- linear constraints ③

Solving S-SVM Training Numerically

Solve

$$\min_{w \in \mathbb{R}^{D}, \xi \in \mathbb{R}^{n}_{+}} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{N} \sum_{n=1}^{N} \xi^{n}$$

subject to, for $i=1,\ldots n,$ for all $y\in \mathcal{Y}$,

$$\langle w, \delta \phi(x^n, y^n, y) \rangle \ge \Delta(y^n, y) - \xi^n.$$

Same structure as an ordinary SVM!

- quadratic objective ③
- linear constraints ☺

Question: Can we use an ordinary SVM/QP solver?

Solving S-SVM Training Numerically

Solve

$$\min_{w \in \mathbb{R}^D, \xi \in \mathbb{R}^n_+} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \xi^n$$

subject to, for $i=1,\ldots n,$ for all $y\in \mathcal{Y}$,

$$\langle w, \delta \phi(x^n, y^n, y) \rangle \ge \Delta(y^n, y) \ - \ \xi^n.$$

Same structure as an ordinary SVM!

- quadratic objective ©
- linear constraints ☺

Question: Can we use an ordinary SVM/QP solver?

Answer: Almost! We could, if there weren't $|N|\mathcal{Y}|$ constraints .

• E.g. 100 binary 16×16 images: 10^{79} constraints

Solving S-SVM Training Numerically – Working Set

Solution: working set training

- It's enough if we enforce the **active constraints**. The others will be fulfilled automatically.
- We don't know which ones are active for the optimal solution.
- But it's likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solution: working set training

- It's enough if we enforce the **active constraints**. The others will be fulfilled automatically.
- We don't know which ones are active for the optimal solution.
- But it's likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically – Working Set

- Start with working set $S = \emptyset$ (no contraints)
- Repeat until convergence:
 - Solve S-SVM training problem with constraints from S
 - Check, if solution violates any of the full constraint set
 - if no: we found the optimal solution, terminate.
 - \blacktriangleright if yes: add most violated constraints to S, iterate.

Solution: working set training

- It's enough if we enforce the **active constraints**. The others will be fulfilled automatically.
- We don't know which ones are active for the optimal solution.
- But it's likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically – Working Set

- Start with working set $S = \emptyset$ (no contraints)
- Repeat until convergence:
 - Solve S-SVM training problem with constraints from S
 - Check, if solution violates any of the full constraint set
 - if no: we found the optimal solution, terminate.
 - \blacktriangleright if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:

• polynomial time convergence ϵ -close to the global optimum

Working Set S-SVM Training

input training pairs $\{(x^1, y^1), \ldots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$, **input** feature map $\phi(x, y)$, loss function $\Delta(y, y')$, regularizer λ

- 1: $w \leftarrow 0$, $S \leftarrow \emptyset$
- 2: repeat
- 3: $(w,\xi) \leftarrow \text{solution to } QP \text{ only with constraints from } S$
- 4: for $i=1,\ldots,n$ do
- 5: $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \ \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle$
- 6: **if** $\hat{y} \neq y^n$ then
- 7: $S \leftarrow S \cup \{(x^n, \hat{y})\}$
- 8: end if
- 9: end for

10: **until** S doesn't change anymore.

output prediction function $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$.

Obs: each update of w needs N argmax-predictions (one per example), but we solve globally for next w, not by local steps.

Example: Object Localization

- \mathcal{X} images, $\mathcal{Y} = \{ \text{ object bounding box } \} \subset \mathbb{R}^4.$
- Training examples:

• Goal: $f: \mathcal{X} \to \mathcal{Y}$ \mapsto

• Loss function: area overlap
$$\Delta(y,y') = 1 - rac{\operatorname{area}(y \cap y')}{\operatorname{area}(y \cup y')}$$

[Blaschko, Lampert: "Learning to Localize Objects with Structured Output Regression", ECCV 2008]

Structured SVM:

• $\phi(x,y):=$ "bag-of-words histogram of region y in image x"

$$\min_{w \in \mathbb{R}^D, \xi \in \mathbb{R}^n} \quad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \xi^n$$

subject to, for $i = 1, \ldots n$,

$$\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, y) \rangle \geq \Delta(y^n, y) \ - \ \xi^n, \quad \text{for all } y \in \mathcal{Y}.$$

Interpretation:

- For every image, the correct bounding box, yⁿ, should have a higher score than any wrong bounding box.
- Less overlap between the boxes \rightarrow bigger difference in score

Working set training – Step 1:

• $w \leftarrow 0$.

For every example:

•
$$\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \quad \Delta(y^n, y) + \underbrace{\langle w, \phi(x^n, y) \rangle}_{=0}$$

 $\mbox{maximal Δ-loss} \quad \equiv \quad \mbox{minimal overlap with y^n} \quad \equiv \quad \hat{y} \cap y^n = \emptyset$

add constraint

$$\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, \hat{y}) \rangle \ge 1 - \xi^n$$

Note: similar to binary SVM training for object detection:

- positive examples: ground truth bounding boxes
- negative examples: random boxes from 'image background'

Example: Object Localization

Working set training – Later Steps:

For every example:

• $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}}$

$$\underbrace{\Delta(y^n,y)}$$

+ $\langle w, \phi(x^n, y) \rangle$

bias towards 'wrong' regions object detection score

• if $\hat{y} = y^n$: do nothing, else: add constraint

$$\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, \hat{y}) \rangle \ge \Delta(y^n, \hat{y}) - \xi^n$$

enforces \hat{y} to have lower score after re-training.

Note: similar to hard negative mining for object detection:

- perform detection on training image
- if detected region is far from ground truth, add as negative example

Difference: S-SVM handles regions that overlap with ground truth.

Dual S-SVM

We can also dualize the S-SVM optimization:

subject to, for $n=1,\ldots,N$,

$$\alpha_{ny} \ge 0,$$
 and $\sum_{y \in \mathcal{Y}} \alpha_{ny} \le \frac{2}{\lambda N}.$

Quadratic (convex) objective, linear constraints, $N|\mathcal{Y}|$ unknowns

Dual S-SVM

We can also dualize the S-SVM optimization:

$$\max_{\alpha \in \mathbb{R}^{N|\mathcal{Y}|}} \quad -\frac{1}{2} \sum_{\substack{y, \bar{y} \in \mathcal{Y} \\ n, \bar{n} = 1, \dots, N}} \alpha_{ny} \alpha_{\bar{n}\bar{y}} \langle \phi(x^n, y), \phi(x^{\bar{n}}, \bar{y}) \rangle + \sum_{\substack{n = 1, \dots, N \\ y \in \mathcal{Y}}} \alpha_{ny} \Delta(y^n, y)$$

subject to, for $n=1,\ldots,N$,

$$\alpha_{ny} \ge 0,$$
 and $\sum_{y \in \mathcal{Y}} \alpha_{ny} \le \frac{2}{\lambda N}.$

Quadratic (convex) objective, linear constraints, $N|\mathcal{Y}|$ unknowns

Recover weight vector from dual coefficients:

$$w = \sum_{n,\alpha} \alpha_{ny} \phi(x^n, y)$$

State-of-the-art: solve dual with **Frank-Wolfe algorithm**.