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Machine Learning
Artificial Intelligence
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Machine Learning (Artificial Intelligence) is a way to develop
software.
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Example Task: Sorting

Classic Software Development
1) formalize the problem
• function: sort : X → Y
• input set X : array of numbers
• output set Y: array of numbers

• specification:
– y = sort(x) is a permutation of x
– y is sorted, i.e. ∀i, j ∈ [|x|] : i ≤ j ⇒ yi ≤ yj

2) developer comes up with an algorithm

3) prove formally that it solves the task

4) implement the algorithm

5) check that it works correctly using test cases: some random, some extremes.
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Example Task: Recognize Voice Commands

Classic Software Development
1) formalize the problem
• function: recognize : X → Y
• input set X : audio signal
• output set Y: possible commands, e.g. {start, stop}

• specification: ???

2) developer fails to come up with an algorithm

Classic software development fails for tasks that we cannot formally describe.
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Example Task: Recognize Voice Commands

Machine Learning
1) formalize the problem
• function: recognize : X → Y
• input set X : audio signal
• output set Y: possible commands, e.g. {start, stop}

• no specification
• instead: dataset of inputs with their correct output

S = {(x1, y1), . . . , (xn, yn)} "training set"

2) machine learning algorithm comes up with an implementation
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Without a specification, how do we know if the implementation is correct?

What does "correct" mean?

We specify a "loss function" between outputs: ℓ : Y × Y → R
• ℓ(y, y′) quantifies how bad it is if model outputs y′ but correct would be y

Example: easiest choice for discrete outputs:

ℓ(y, y′) = 1{y ̸= y′} "0/1-loss"

Example: easiest choice for continuous outputs:

ℓ(y, y′) = (y − y′)2 "squared loss"
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Which model to pick? f∗ ← min
f∈F

n∑
i=1

ℓ(yi, f(xi)) (smallest number of errors)

Example: neural network learning

1) F : large set of parameterized functions, e.g.
– concatenation of simpler components

f(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x) ) ) )

– each component performs linear transformation
followed by componentwise nonlinearity

f (l)(x) = σl(Wlx + bl) for l = 1, . . . , L

– parameters: Wl ∈ Rnl−1×nl , bl ∈ Rnl

– nonlinearity: σ(t) = max{0, t} "neural network"

2) perform minimization by (stochastic) gradient descent optimization

"Deep Learning"
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Summary: Solving Tasks with Machine Learning

Task to solve:
• input set X , e.g. audio signals
• output set Y, e.g. {start, stop}:
• we’re looking for function: f : X → Y

To use machine learning, we need:
• loss function: ℓ : Y × Y → R
• a training set S = {(x1, y1), . . . , (xn, yn)}
• parametrized set of potential models: F = {fθ : θ ∈ Θ}, e.g. neural networks

Use a form of gradient descent to find a model that makes as few mistakes as possible:

min
θ∈Θ

n∑
i=1

ℓ(yi, fθ(xi)) "training"

Is that enough? Will it work (reliably) in the future? What do we mean by "the future"?
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Excurse: Embrace probabilities
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Embrace probabilities

Most quantities in daily life are not fully deterministic.

• true randomness of events
– a photon reaches a camera’s CCD chip. If it detected or not is a quantum effect → stochastic

• measurement error
– GPS only accurate ±50m

• incomplete knowledge
– what’s on the next slide?

• insufficient representation
– from what material is that green object made?

Often these are indistinguable! (though do remember Eyke’s lecture)

Probability theory allows us to deal with all of them.
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Back to Machine Learning

Problem: we don’t know what inputs the future will bring!

Probabilities to the rescue:
• we are uncertain about future input data → use random variable X

• X : all possible images, p(x) probability to see any x ∈ X

Problem: we don’t know what the right outputs are for the inputs.

Probabilities to the rescue:
• we are uncertain about the outputs → use random variable Y

• Y: all possible outputs, p(y|x) probability that y ∈ Y is correct for some x ∈ X
(could be deterministic)

Note: we don’t pretend that we know p(x) or p(y|x), we just assume they exist.
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• general setup: inputs X , outputs Y, set of models: fθ for θ ∈ Θ
• loss function: ℓ : Y × Y → R, a training set S = {(x1, y1), . . . , (xn, yn)}

What do we want from a model?
To work well in the future, that means, has small expected loss

R(fθ) = E
(x,y)∼p(x,y)

[ ℓ( y, fθ(x)) ] "risk"

Problem: we can’t compute R(f), because we don’t know p(x, y) (nor p(x), nor p(y|x))

Statistical Learning Theory:
Establish conditions on S, F etc that allow proving statements about R(f).
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When do learned systems work?

17 / 62



Independent and identically distributed (i.i.d.) training data
Assume that the training set S is sampled independently from the distribution p(x, y), and F
is not too large (in a technical sense). Let

R̂(f) = 1
n

n∑
i=1

ℓ(yi, f(xi)) and R(f) = E
(x,y)∼p

ℓ(y, f(x))

Then, for f∗ ∈ argminf∈F R̂(f) it holds with high probability (in a technical sense) that

R(f∗) ≤min
f∈F
R(f) + 2C(F , n) with C(F , n) = O( 1√

n
).

Insight: minizing the training loss is a good strategy. Given enough data, the resulting model
is arbitrarily close to optimal.
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What can go wrong?

situation consequence what to do
not enough data guarantees are weak collect more data, change model

class, transfer learning, . . .
training set not sampled i.i.d.
from the target distribution

guarantees do not hold → training-time robustness

distribution p not representative
of situation at prediction time

guarantees useless → prediction-time robustness

we are not (just) interested in
the expected value of the loss

guarantees in wrong form → prediction-time robustness

other quantities matter than
just accuracy

guarantees insufficient → algorithmic fairness
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Robustness in ML – Prediction Time
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Assumption so far: training set is representative of future data. What if it is not?

Problem 1: oversights

Example: voice control model f : X → Y
• X : audio signal,
• Y = {start, stop}

What, if the input signal is neigther "start" nor "stop"?

Problem 2: the world is dynamic

Example:
• object recognition model f : X → Y trained on data from 2016

What, if in 2017 the input image shows a fidget spinner?

Out-of-Distribution Data
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How to deal with out-of-distribution data?

Idea 1: add another "unknown" class: f : X → Y ∪ {unknown}

• problem: how to train the model for this?

• case 1: training data for "unknown" is available
→ then it’s not actually unknown anymore

• case 2: no training data for "unknown" is available
→ classifier will learn to never predict it

Idea 2: system outputs not only decisions but also confidence: f : X → RY

• hope: for out-of-distribution x, confidence for all outputs will be low
• problem: no guarantee that this is so

Overall: no perfect solutions, active field of research
23 / 62



Adversarial Machine Learning

Assumption so far: future data is described by a probability distribution. What if it is not?

System might interact with an environment
that tries to exploit its weaknesses.

Image: xkcd.com
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Adversarial Examples [Szegedy et al ., 2013]

image 1

image 2 difference (magnified)

human:

panda panda

model:

panda gibbon

"Adversarial Example"

Image: https://openai.com/blog/adversarial-example-research/
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Adversarial Examples

What are adversarial examples?

Definition (not formal, but catches the essence)
Let f : X → Y be a model and x ∈ X be a correctly classified inputs. An input x′ ∈ X is
called adversarial example if x and x′ "look indistinguiable" to a human, but f classifies x′

incorrectly.

"Indistinguishable" not checkable by computer, so one relies on proxies:

∥x− x′∥Lp ≤ ϵ x↔ x′ small transformation
here: 2 deg rotation
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How to generate adversarial examples?

Observation 1:
• simply adding random noise does not suffice
• perturbation must be tailored to the model

Observation 2:
• model f is differentiable with respect to its input
• we can use gradient descent to find a perturbation that maximally changes model output

Algorithm 1 Adversarial Example by Gradient Descent
init: x′ ← x with f(x) > 0
repeat

x′ ← x′ − η∇xf(x)
until f(x′) < 0

• not surprising that algorithm produces x′

• surprising that for most models, η can be tiny and very few steps suffice
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How to prevent adversarial examples?

Fixing a trained model
Idea: for trained model f , create adversarial examples, add to the training set and retrain.

Problem: does not work, new adversarial images emerge

Robust training

Idea: optimize robustified training error f∗ ← min
f∈F

n∑
i=1

max
∥x′−x∥≤ϵ

ℓ(yi, f(x′
i))

Problem: can’t solve exactly, approximations protect only against some attacks, not all

Robust network architecture
Idea: make sure that model has small Lipschitz constant, such that x′ ≈ x⇒ f(x′) ≈ f(x).

→ example in Part II
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Robustness in ML – Training Time
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Domain Adaptation

What, if we cannot collect a training set from the right data distribution
• too expensive, too time-consuming, technically impossible

Can we use other data as a proxy?

Common scenario: (Unsupervised) Domain Adaptation
• Training set with annotation from source distribution, Ssrc ∼ psrc

– e.g. driving simulator: all objects, 3D-positions, etc., known
• Only unlabeled data from target distribution, Stgt ∼ ptgt

– e.g. real driving data: no ground truth information

Image: https://www.kaggle.com/datasets/kumaresanmanickavelu/lyft-udacity-challenge
30 / 62



Domain Adaptation

Reminder: neural networks consist of layers

f(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x) ) ) ) with f (l)(x) = σl(Wlx + bl) for l = 1, . . . , L

We can think of this as two parts: f(x) = c(ϕ(x))
• feature exactor: ϕ : X → Rd, e.g. first L− 1 layers
• classifier: c : Rd → Y, e.g. last layer

Idea: If we select ϕ such that
1. ϕ(Ssrc) ≈ ϕ(Stgt)
2. c has small error on ϕ(Ssrc)

then f should also have small error w.r.t. to ptgt.
input

output

features

feature
extractor

classifier
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Domain-adversarial training of neural networks

How to measure if ϕ(Ssrc) ≈ ϕ(Stgt) ?

discϕ(Ssrc, Stgt) = max
c′

[
1
|Ssrc|

∑
(x,y)∈Ssrc

ℓ
(
0, fc′,ϕ(x)

)
+ 1
|Stgt|

∑
(x,y)∈Stgt

ℓ
(
1, fc′,ϕ(x)

)]

How to combine with c being a good classifier?

min
c,ϕ

[ ∑
(x,y)∈Ssrc

ℓ(y, fc,ϕ(x)) + λdiscϕ(Ssrc, Stgt)
]

Difficult min−max optimization, but can be trained
jointly using cute optimization tricks ("gradient reversal
layer", see [Y. Ganin et al ., 2016])

green: DSLR images
blue: Webcam images

[Y. Ganin et al ., "Domain-Adversarial Training of Neural Networks", JMLR 2016]
Illustration: [J. Donahue et al ., "Decaf: A deep convolutional activation feature for generic visual recognition", 2014]
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Dealing with label noise or outliers

Other common problems for real-world data:

Label errors

Lazy/incompetent annotators

Data entry errors, e.g. off-by-one error in Excel
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Dealing with label noise or outliers

Possible solution: robust loss functions

per-sample robustness across-samples robustness
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g(x)

f∗ ← min
f∈F

1
t

log
n∑

i=1
etℓ(yi,f(x′

i))

saturating loss ℓ robust aggregation (for t < 0)

Shortcoming: harder to optimize, helps only against certain problems
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Adversarial Training Data: Data Poisoning

What, if a fraction of the training data can be arbitrarily manipulated?

Observation: A small number of manipulated examples can cause high error on future data.

Image: [P. W. Koh, J. Steinhardt, P. Liang. "Stronger Data Poisoning Attacks Break Data Sanitization Defenses", ML 2021]
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Adversarial Training Data: Backdoor Injection

Example: face recognition

Manipulated training data can introduce undetectable unwanted model behavior.

Images based on: [X. Chen, C. Liu, B. Li, K. Lu, D. Song. "Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning", arXiv:1712.05526]
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Adversarial Training Data: How to prevent?

How to defend against manipulated training data? No universal solution!

Formal setting:
• data distribution p(x, y)
• original (clean) training set S

i.i.d.∼ p
• adversary can manipulate a fraction α < 1

2 of datapoints in S
• resulting dataset S′ is given to a learning algorithm

Theorem ([Kearns&Li, 1993])

There exists no algorithm that could guarantee

R(f) <
α

1− α

even if there exists a classifier f∗ ∈ F with R(f∗) = 0.

But: we’ll see a way out later

[Michael Kearns, Ming Li. "Learning in the Presence of Malicious Errors", SIAM Journal on Computing, 1993] 38 / 62



Summary: Robust Machine Learning

A number of problems emerge when training or test data do not follow the expected data
distribution.

Prediction time
• out-of-distribution data
• adversarial examples

Training time

• distribution shift
• label noise, outliers
• data poisoning
• backdoor injection

• Some kind of stochastic data problems
can be addressed.

• Adversarial data problems are harder,
sometimes unsolvable.

• For trustworthy systems, data quality is
crucial.
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Bias and Fairness
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Example from Austria: Public Employment Service (AMS)
In 2018 it was announced that starting in 2020, an algorithm will suggest which jobseekers
should get funding for additional training measures and which ones should not.

Features entering the decision are:
• age
• citizenship
• gender
• education
• care responsibilities

• health impairments
• past employment
• contacts with the AMS
• location of residence

In August 2020, the deployment of the system was stopped by the Austrian data protection
agency after public protests.
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Machine Learning has started to influence our everyday lives

Example from the USA: Recidivism Scoring
The commercial software tool COMPAS is used by U.S. courts to predict the probability that a
defendent in court will commit a new crime at a later time.

Features used by the system are not public, but include replies to a 137-question survey that
asks for
• gender
• age
• marital status
• race

• charge degree
• criminal history
• family criminality
• drug usage

• housing situation
• education
• recreational activities
• personality traits

In 2016, ProPublica investigated the software and reported a strong racial bias again blacks.
The software manufactorer denies the claim, aiming that the analysis was done incorrectly.

https://en.wikipedia.org/wiki/COMPAS_(software)
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Original article by PropPublica: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
Reply by NorthPointe https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
Reply by PropPublica article: https://www.propublica.org/article/technical-response-to-northpointe
Discussion in the context of explainable/interpretable models (Cynthia Rudin): https://youtu.be/zsRKPxgHURQ?t=1391
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Bias and Fairness in Machine Learning

Bias is often used informally to describe an "imbalanced representation".

Data sources should not have a bias.
• in 2018, Google image search for "CEO" returned almost exclusively pictures of men
• face recognition datasets contain predominanlty white faces

?→ in 2015 Google’s image tagger labeled some pictures of black faces as "gorilla"
• Google translate tends to make all "doctors" male and all "nurses" female.
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Bias and Fairness in Machine Learning

Algorithmic fairness is a formal framework that studies how to create decision systems that
do not discriminate against certain "protected groups".

Machine Learning systems should be fair.
Imagine that some attributes of input data can be considered sensitive, e.g.
• gender, age, religion, income, ethnicity, sexual orientation, health information, . . .

A fair decision should not treat cases differently just because of sensitive attributes, e.g.
• individual fairness: if someone gets a salary increase should not depend on their gender
• group fairness: women should receive the same salary as men

Individual fairness is hard, too hard for this lecture. We’ll only talk about group fairness.

Reference: S. Barocas, M. Hardt, A. Narayanan: "Fairness and machine learning", https://fairmlbook.org/
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Group Fairness
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Example: Objective Recruiting?

Hope: an automatic classifier could be more objective and decide based only on relevant facts,
not based on human bias/prejudice.

Automatic Gradschool Admissions
Data:
• applications and admittance decisions from previous years

Classifier:
• train on data from previous years, use to rank applications in the next year

Problem: dataset bias!
• if any group has been treated unfairly in the past (e.g. rejected too often), then the

classifier will learn to do that as well
• measured quality will be high, because there is no unbiased test data available

Rest of the segment: how to define, measure and ultimately enforce fairness?
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(Group) Fairness in the Language of Probability

Notation: random variables
• X, taking values x ∈ X : input
• A, taking values a ∈ A: sensitive attributes of X, e.g. gender or race
• Y , taking values y ∈ Y: target value, e.g. true label
• R, taking values r ∈ R: classifier output/score eg r = f(x) or r = sign f(x)

Example (Gradschool Recruiting)

How can we make sure that, e.g., female job applicants are treated fairly?
• X = application documents: resume, research statement, reference letters, transcripts
• A = applicant’s gender (explicitly asked for in online form)
• Y = if the candidate will be a good graduate student
• R = if we make the candidate a job offer
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Fairness Through Unawareness

Idea: to ensure fair treatment, we should not ask for the sensitive attributes A, e.g. gender.
(typical requirement in many anti-discrimination laws)

Observation: not going to fool an automatic classifier. There’s plenty of non-sensitive data
correlated with gender.
• first name, family name
• photo
• career breaks due to maternity leave
• change of surname due to marriage
• names of supervised students
• memberships
• research areas
• pronouns in reference letters

If the predictor trained with A has a gender bias, so will probably the one trained without A.
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Formal Fairness Criteria

If we want a predictor not to discriminate based on A, we have to explicitly enforce fairness!

Notions of Group Fairness
There are many formal fairness criteria in the literature, typically based on the joint
distribution of prediction R, the sensitive attribute A, and the true target variable Y .

We’re going to discuss two of them:
• Independence: R ⊥ A also know as "demographic parity"

• Separation: R ⊥ A |Y also know as "equalized odds"

Note: we can only influence R, so these are contraints how the predictor output should behave

Resources: Tutorial at NeurIPS 2017: https://nips.cc/Conferences/2017/Schedule?showEvent=8734

51 / 62

https://nips.cc/Conferences/2017/Schedule?showEvent=8734


Formal Fairness Criteria: Independence

Definition (Independence)
The response variable R fulfills independence with respect to the sensitive attribute A, if R is
statistically independent of A: R ⊥ A.

For binary responses, R ∈ {0, 1}: "accept" or "reject", this means, for all a, b ∈ A

Pr(R = 1|A = a) = Pr(R = 1|A = b) "acceptance probability"

Independence enforces that each group has the same acceptance probability.

Example:
• Male and female applicants have the probability of getting a job offer.
• Black applicants have the same chance of getting a loan as white people.
• Paper submissions from China have the same chance of getting accepted as submissions

from the USA.

Independence is also called demographic parity, statistical parity, (no) disparate impact.
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Achieving Fairness: Independence

How to enforce a classifier to be fair? Multiple options:

• Pre-processing: modify training set to remove potential biases
+ broadly applicable: needs only the raw data, afterwards any classifier can be trained by anyone
– needs information which bias is present and how to remove it

• Feature extraction: extract features in which no information about A remains
+ broadly applicable: needs only the raw data, resulting features can be used in many ways
– overhead, classifier quality can suffer if more information than necessary is discarded

• At training time: work the fairness constraint into the training step
+ most flexible/powerful, full control over what is learned and how
– not always applicable, full control over the learning process is needed

• Post-processing: adjust outputs of a learned classifier to fulfill fairness
+ efficient, applicable for pretrained classifiers
– needs protected attribute at prediciton time, classifier quality might suffer
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Achieving Fairness: Independence

Example 1: training with independence constraints

Empirical Risk Minimization with Fairness Constraints:

min
θ
L(θ) with L(θ) =

n∑
i=1

ℓ(y, fθ(xi))︸ ︷︷ ︸
training loss

+ F (θ)︸ ︷︷ ︸
unfairness
penalizer

with a fairness penalizer that encourages equal average predictions among groups, e.g.

F (θ) =
∑

a,b∈A

( 1
|Sa|

∑
(x,y)∈Sa

fθ(x) − 1
|Sb|

∑
(x,y)∈Sb

fθ(x)
)2

where Sa = {(x, y) ∈ S : xA = a} for any a ∈ A.
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Achieving Fairness: Independence

Example 2: independence by postprocessing

Group-specific threshold selection
Adjust the acceptance threshold for each group to achieve equal acceptance rate:

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

Group A

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

Group B

original confidence scores per group

Note: to know which threshold to apply, we need to know the sensitive attribute A!
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Group-specific threshold selection
Adjust the acceptance threshold for each group to achieve equal acceptance rate:

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

A: threshold 0, accepted 826/10000 = 8.3%

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

B: threshold 0, accepted 176/5000 = 3.5%

with equal thresholds, independence is violated

Note: to know which threshold to apply, we need to know the sensitive attribute A!
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Example 2: independence by postprocessing

Group-specific threshold selection
Adjust the acceptance threshold for each group to achieve equal acceptance rate:
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200
300
400
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800

A: threshold 0, accepted 826/10000 = 8.3%

6 5 4 3 2 1 0 1 2
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200
300
400
500
600
700
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B: threshold -0.41, accepted 412/5000 = 8.2%

lower threshold for group B achieves independence, but overall acceptance rate now too high

Note: to know which threshold to apply, we need to know the sensitive attribute A!
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Achieving Fairness: Independence

Example 2: independence by postprocessing

Group-specific threshold selection
Adjust the acceptance threshold for each group to achieve equal acceptance rate:

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

A: threshold 0.12, accepted 667/10000 = 6.7%

6 5 4 3 2 1 0 1 2
0

100
200
300
400
500
600
700
800

A: threshold -0.30, accepted 333/5000 = 6.7%

lower threshold for group B, higher threshold for group A

Note: to know which threshold to apply, we need to know the sensitive attribute A!
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Formal Fairness Criteria: Independence – Problems

Problem 1) Independence can prevent making perfect decisions.
• Imagine you were able to build the "perfect classifier": R = Y .
• Independence will disallow this, unless Y ⊥ A.

Problem 2) Independence does not guarantee equal treatment.

Imagine a decision rule for gradschool recruiting:
• for candidates with A = a, hire the best p percent
• for candidates with A = b, hire a random subset of p percent

(not necessarily out of malicousness, could just be incompetence or lack of data)
This fulfills independence (same acceptance rates), but is not particularly fair.

Even worse if one considers potential negative long-term effects.
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Formal Fairness Criteria: Independence – Problems

Problem 3) It does not always reflect what we consider "fair" – it’s too strong.

For example: paper acceptance should be fair with respect to the authors’ origin.
• fair decision rule: accept the best p% of papers from each continent → independence

Problems:
• what, if papers from different continents have different quality on average?

– enforcing independence means we might have to some bad papers from one continent over some
good papers from another continent → is that fair?

• what, if one continent decides to submit many additional papers (e.g. random gibberish)
– enforcing independence means we’ll have to accept more papers from that continent

Problem 4) It does not always reflect what we consider "fair" – it’s too weak.
• in politics, when women run for office they win approximately equally often as men
→ independence is fulfilled
• yet, only 8% of world leaders (and only 2% of presidents) are female
• independence is insufficient to increase the fraction of women in politics
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Formal Fairness Criteria: Separation

Definition (Separation)
The response variable R fulfills separation with respect to the sensitive attribute A and true
outcome Y , if R ⊥ A |Y .

This is like independence, but separately for Y = 0 and Y = 1, i.e. for all a, b ∈ A.

Pr{R = 1 | Y = 1, A = a} = Pr{R = 1 | Y = 1, A = b} true positive rate (TPR)
Pr{R = 1 | Y = 0, A = a} = Pr{R = 1 | Y = 0, A = b} false positive rate (FPR)

Separation enforces that all groups have the same TPR and FPR.

Example:
• If a man and a women are equally qualified, they have the same chance to get an offer.

Note: independence and separation are often mutually exclusive (unless Y ⊥ A.)

Separation is also called equalized odds. If applied only to the TPR (not the FPR), it’s called
equality of opportunity.
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Formal Fairness Criteria: Separation – Properties

Property 1) Separation allows making perfect decisions.
• The "perfect" classifier: R = Y has TPR = 1.0 and FPR = 0.0 for all groups.

Property 2) In some situations, separation is "more fair" than independence

Example: paper acceptance should be fair with respect to the authors’ origin
• decision rule fulfilling separation:

– identify all submissions that meet the quality criteria (Y = 1)
– of these, accept p% of these papers from each continent (TPR=p)
– reject all others (FPR=0)

• quality determines the chance of acceptance, not the author origin
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Formal Fairness Criteria: Independence – Problems

Problem 1) It can be hard to achieve in practice (see next slide).

Problem 2) It’s prone to dataset bias.
• to measure separation one needs information about Y (e.g. true quality)
• if historic values of Y are biased, the "separated" classifier can as well be

Problem 3) It does not always reflect what we think is "fair".

Example task: select 10 astronauts for flying to Mars
• identify all suitable candidates (Y = 1):

– BSc in engineering, physics, computer science, or math
– at least 3 years professional flight test experience or 1000 hours as aircraft pilot
– 20/20 vision, blood pressure not exceeding 140/90
– between 157cm and 190cm tall

assume, e.g., that the resulting set has 90% men and 10% women
• from each group, pick the same percentage → 9 men, 1 women

Source: https://www.nasa.gov/centers/johnson/pdf/606877main_FS-2011-11-057-JSC-astro_trng.pdf
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Achieving Fairness: Separation

Separation by group-specific thresholds
Can we achieve separation by post-processing the scores without retraining?

• ROC curve: FPR/TPR for all possible thresholds
• per-groups thresholds → FPR/TPR adjustable per group

Problem:
• equal FPR and TPR between groups only where curves

intersect → might no nowhere
• typically not the desired operating points

Solution 1:
• additional randomization allows reaching any point in

shaded area → sacrifice accuracy for higher fairness
Solution 2:
• only ask for identical TPR → "equality of opportunity"
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Summary – Fairness

Intersection of Machine Learning/Statistics, Psychology, Social Science, . . .
• Psychology etc.: what do people consider fair in which situation?
• ML/Stats: many different (usually mutually exclusive) formal definition of fairness

Popular Approaches
• "fairness through unawareness" does not work for ML!
• independence = "demographic parity": same acceptance rate for each subgroup.
• separation = "equalized odds": same TPR and FPR for each subgroup.
• "equality of opportunity": same TPR for each subgroup.

Topic of Active Research
• many open questions, e.g. long-term effects, feedback loops
• dedicated conferences: FAT/ML, ACM FAccT
• more and more present at mainstream ML conferences
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