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Abstracte
Abstract

This paper investigates : data structures supporting
d-dimensional Thtersection queries dnvolving orthogonal objects
such a3 rectangles, line segments, points, etce A d-dimensional
orthogenal object i3 defined to consist of d properties, where
each property belongs to a unique dimension and denotes either an
interval or a single value.

We develope the so-called SRI-pyramid family whose members are
. .ulti-couponent trees comwposed of instances of the segment tree,
the range tree,; and the fnterval tree. This family allows us to
efficiently. attack arbitrary instances of orthogonal intersection
queries such as rectangle intersection aqueries, Line segment
intersection queries, range queries, etc.,

The new results obtained in this paper are first, 4 general

aitack on a great wvarijety of different searching problems, end




second, the development of dynamic relatfves of the well known
segment tree and interval tree which Llead together with the
dynamic relative of the range tree to dynamic sulti-component
trees supporting arbitrary orthogonal intersection aqueries.
Although we emphasize the new dynamic solutionsy, a bulk of the
presented static data structures are desecribed for the first t!.n.

too.
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Technical University Graz,
Steyrergasse 17,

A-B01C Graz, Austria.

1= Intreduction.

This paper offers a general approsch to sulti-dimensfonal

intersection problems involving orthogonal objects. A
d-aiacusinnal geometric object is called orthogonal f 4t consfsts

.f g properties, where each property belongs to a unigue dimension
and fs efther an interval or » single value. The orthogonal object
stands for the Cartesian product of its properties. Two orthogonal
objects A and B are said to intersect if they have at least one
point in common.

Examples of orthogonal objects are rectilinearly oriented
d-dimensional rectangles (for short d-recs), Line segments, points
in d-space, and others.

Applications of solutions to such problems can be found in

areas like Computer Graphics, batabases, VLSI, etc.

The various problems involving objects of the above kind can be
formulated in two fundsmentally different manners (as is true of
many standard problems in computational geocaetry):

. (1) 6iven 2 set of equal typed objects and a (Cquery-)
subject which {is another kind of object, a searching
nrobie- asks for all objects that intersect the subject o

€2) Given a set of equal typed ocbjects, an all pairs problem

asks for all patrs of intersecting objects.
Scmetimes, one does not desire all intersecting objects or pairs

but rather just the number of themy, or one even only wants to know

3

L D B B O T i s S ST



it any fintersect at all. The structur;s described in this paper
support the original folumsulation of the problems, f.e. they serve
to detect all intersecting elements. Nevertheless, the structures
may be slightly modifiea to be fit for determining the number of

jntersecting elements or even to decide 1f there exists an

intersection or nots .

This paper will mainly deal with the sesrching probles _varfant
of the various intersection problems. Hoacvc;{'th deuolﬁpod data
structures are well applicable to the all pairs problems.

There are a nusber of preliminary results concerning special
cases of orthogonal intersection queries. Above all, the range

searching problem caused much interest in the last few yearse. This

problem involves » set of points in d-space @s objects and sgkg
for all points that Lie fn & query d-rec (which 1s squivalent to
asking fer alL points thet intersect the d=rect). The t#lloulng
five papers that deal with range searching heve some relevance for
our further discussion: Bentley, Maurer [2), Bentley (1), Lueker

€12, 13), and Willard [27). Recently, the inverse range searching

probles (with d-recs as objects and a point in d-space a.

subject), the rectangle intersection searching problem (inéolving
d-recs for objects and subjects), and the 2-dimensional Line

segment dintersection searching problem (with, @.ge.y» horizontal

Line segments as objects and a vertical one as subject) have been

fnvestigated. The vrespective results can be found in Vaishnavi

£211, Sin, wood (18, 19), Edelsbrunner [6], and Vaishnavi, waod

f231.

L

Searching problems are settled by initdally building up » data
structure accommodating the given ebjects. The strﬁ:turo has to be
carefully doiigaeq that 1t allows for & query to be answered as
fast as possible and by si-9ttaneously requiring as Little space

as possible.

. in static environments, the cost functions for query time,

#pscey ond preprocessing time needed to set up the structure,
describe the behaviour of the solution.

In dynsmic environments, one desires to dintermix update
comaands and queries arbitrarily. Thus, the structure hes to be
designed flexible enough to allow for efficient insertion of new
objects and deletion of old objects. oOf coursey the design of
dynamic dats ‘structures 13 much more difficult, sine; the fost
query time has to be saintained by simultaneously requiring as

Little space, ihatrt. and delete time as possible.

There are two funda-cnt'lly different approaches for dynamizing

static structures solving decomposable searching problems. (For a

Idefinition of “decomposable” consult for instance Bentley, Saxe

31.)

The first drna‘ixation epproach maintains & system of dnstances
of the static structure solving the particular problem which
1mplies an {increase in query time, due to the necessity of
searching each instance, and an improvement of the update time,

since a. single wupdate command couses the change of only 2 geall




part of the system. The reader nh; desires more detailed
inforsation 1is referred to Bentley, Sane C[3), willard [28],
Overmars, van Leeuwen [171), and van Leeuwen, Maurer [8) that deal
with the so called Llogarithmic block method, and to Maurers
Ottmann [14], van Leeuwen, Woad (10), and Edelsbrunner (5] that
describe the 30 called equal block method.

The second approach works with tree structures and repuce.
optimal trees used in static environments by balanced triel. In
multi-dimensional circunstances much care has te be taifn to
e@mploy the best suited belanced tree scheme., The interested reader
fs referred to Willard (25, 26, 273, Lueker €12y 13)0 and
Edelsbrunner (6] where enamples of this approach are glvene Qur
paper esploys the second approach for the dynamization of a few
additianal static fi-dimensionsl date structuress namely the
segment tree and the Interval tree, and a8 whole family of

-ulti-dtuniipnal trees, the so called SRI-pyramids.

The paper 1s organfzed as follows: First, the basic data
structures._namely the segment tree, the range tree, and the
interval tree are recalled and dynamic versions of the segment and
the interval tree are develaped. Second, Scction 3 shu;s ho
static and dynamic aulti-component trees composed of the above
types support the wvarious f{ntérsection searching problems.
Finally, Section &4 demonstrates some applications yielding new

Fesults for a number of special orthogonal fntersection problenms.

2. Nes Dymanis Tree Structwres.

-

1s this section we will provide s fey mew reswles 3 The design
of dyapxic data sirscinies supperting switi-gicensienal search img
srobless. Iaftiallip, recesmt results camcerming the dpaeede ramge
tree developed by Witlare [25, 24, 271 are revieved. Them, tte

.fuu.u; tws subsectisas will apaly the same dymamizacics

apprepsh te the segeest tree and the interval tree (cadles 1he
rectangle tree fa the erigimal paper ef Edelshrunmer tua.

fast of owr resslis cemcermimg the dymasic bebawbswr of data
sgroctures nill be glves i aversge comglenity. hn wpoate ds
wém ewt {a swersge time 468) $f & seoeesce £ ot ppdace -
consaags i3 empcuted fa JCLECH) time im the warst ease, adese C
cpnsiscs eof |Cl wpdats commands amd ¥ demetes the maosisal Susder
of abfects mwer stered to the lmitially gty oats sTrectaere.

Bauewar, a bulh @f the reswlts carry ewver te@ worit=case conglensty

Per updete cenmanmd @we ta 2 clever refimempat el dolsacimg
algarithms developed by Billarm [2§5, 26].

Retere discussimg Willard®s dymsamic remge tree ae briefly

.wotu the static shape of the ramge tree erigieally datreduces by

Beatiey [11.
The i-teld romge tree ts fust an eptimal, serted, himary tree
stering wvalwes Ci.e. T-dimemsional peimts) im itg leaves. The

d-feld remge tree comsists of o T-fald remge tree starimg the d-th

coordimates of d-dimemifonal peimts. Ia agditisn, ecach btmmer moee




v s associated with the (d-1)-fold range tree occommodating all

the points uhose d=th :oardinltes are stored in loavcs desccndlno
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from v.

R 5 % ; S
It 4s well knoun that the d fo(d ranoe tree rcpresentinn n
[ : M Y

o-diaensional pointa requires otnlng '1n0nlogn) preprocessing and
d-1 4
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answered in o(log net) time uhen t points are found tc tie ln thl
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next we recall willard's: approach dJor::dynsmdzing the' above
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statfc structure.

The eptimal bihary trees’ are ‘réplaced by *trees  of bounded
balance, {introduced' by WNievergelt; Reingold [16] and improved by
wittard €25, 263 ‘FPeom an'gccounting ‘argument” it con" ‘be -derived
that the new sterwsture supports dynamic range searching with- the
same bounds for searching and for space as the “atotie trees, but
with o‘lOGGH) update time on the average. ~(The particulap

argumentation uitl aaain be used and dclcrlbed in the following
85 S S ] v

tuo subsections.) . ) _ )

A further {mprovement {3 obt:iln;d -br .-“‘;--u-' r;fin;nént';i th’
above procedure to assure O(log n) updatc ti-o per co--and in fht
wOFst case. It 1;;:ld y;.;fn;io;;d that thls Irciint.ent I(U;Ltard
called the out;;lin;-‘pLAGQGUr; a super-s-tree -loorith-l can be

N

enplored to iaprove the subsequent results conctrhinq the segneht

S vn ke T

tree to worst-case co-nlanity. too. lhe resutts for the interval

tree, however, can be improved to worst=case complexity only by

increasing the update time by a factor O(logn).

We feel it fmportant to indicate that the dynamic versions of
the segment tree and the interval tree are net only relevant to
our results concerning orthogonal dntersection queries, For

.nsunco. Edelsbrunner, Waurer (7] described data structures based
en the segment, resp. interval tree, that support general point

locating and may gain by our dynamfc tree structurese

201« The Dynamic Segment Tree.

This sectfon s devoted to the dynamization of the segment tres
whose 3atatic shape caused much attentfon in the last few years.
For example, it proved useful in circunstances involving
orthogonal objects such as recs or Line segments parallel to one

coordinate anis.

Before dynamizing this useful static data structure we give a

succinct description of what we call the static segment tree. for

'.norc detailed exhibition consule €9« van Leecuwen, Wood [103.

Let us assume that there is given a set M of n fntervals on the
only cecordinate aiis. Each interval I of M {3 specified by a2 Lleft
end lI and & right end fye and I stands for all points in between
Ly and r; inclusive the two ends. The intervals may intersect or

enclose one another in an arbitrary manner, but for the tize being

we do not allow two equal ends. This agreement will sfmplify the




subsequent discussien and, in this qar.;ntona{fr the clearness of
our presentation.

Let E be the sorted list of all Left and right ends. Since E
comprises exactly 2n different valuc?. E induces » partitioning ot
the coordinate-axis into Zn+1 atomiec intervals, henceforth termed
fragments. Notige that the leftmost and the rightmost fragment
exntents to ~m y Fesps *o o The segment tree 7 accomodating the se
# of intervals consists of an optimsl tree structure, whose every
leat s {in one-to-one correspondence with o fragmnenty, more
precisely, the i-th leat from left corresponds with the d{-th
fragment from Left, for all 1 from 1 to 2n*le Each inner node v
of T is associated with & standard interval, termed segment, which
s the set-theoretical unfon of the fragments associated with th§
leaves aescending from ve In additfon, each node v ts assigned a
two-wady Linear List, called v°s node List, housing all those
fntervals of W that cover the associated segment but do not cover

the one of vw’s father,

N

Figure 2-1. depicts the segment tree for the Interals As[0,53,
L4

D=£2.9_J. and “t:r?)o
{}

Figure 2«1. The segment tree for three intervalss

The segment tree for n intervals requires O(nlogn) space and
can be built in Olnlogn) time. The space requirements are due to

the fect that each fnterval belongs to 0(logn) node Llists. The

.onstructiou of the tree is carried out fn two phases: First, the

optimal tree with 2n+1 (eaves is builty and second, the n
fntervals c}e inserted into the particular node Llists.

The significance of the segment tree s due to the fact that it
allows for a 1=dimensional fnverse range query to be answered fn
O0(logn®t) time, when t dntervals contain the query value. The

query for o value s carried out by descending the segment tree

11
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from the root te the leaf that :or?espo?ds with the fragment that
contains the value. The intervals stored in the node Lists of the
visited nodes are the desired ones. WNote that none of the
intervals found is detected more than once, since the node Lists

associated with ancestors of » fised Leaf are throughout disjoint.

After having introduced the notfon of a static segment tree, u.
will focus on a dynamic versfon of the tree that is based on trees
of bounded balance, introduced by Nievergelt, Reingold (1], and
on a clever refinement of these trees, recently developed by
Willard C25, 263,

In the svaquelo, we will describe the mechanism for balanging the
segnent tree before discussing the update strategies used for
inserting and deleoting {Intervals, Finally, we will give oan

analysis of the average dynemic behaviour.

The main jdea behind our dynamfzation of the segment tree is
the same as behind the stendard dynsmization of sisple binary
trees: e do not 1imsist on the optimel balance but on a more
relaved ones

Each node v of the segment tree T ts assigned an lauccr.
termed ::25513. which denotes the number of Lesves descending from
¥vs  Further, we call bev):srankCud)/rank(w) the balance of v,
uwhereby w denotes the left son of ve The segment tree T is called
g-balanced #f the balance of each of its inner nodes Lies in the
fas1=-a) range, for an a in €(0,1/2].

Our balancea segment tree will be a-balanced for a fined a in

12

(0.1-J:1::)k1. where k 18 a fised resl greater than 2. "It cem be
shown that one of four types of restructurings suffice toliorcc 8
node v back into the desired range when fts balence has .ioved
ocutside of [G,1~2l. These restructurings are the well known single
and double rotations. It has to be noted that these resirﬁcturings

will be eftective only if the rank of the rebalanced node is big

‘nnunh. Modes with small ranks can be treated by completely

rebuflding their subtrees.

_tt)_Sinqle left rotation (SLR).

13




(49

/o)
AN

Figure 2-2. The four types of restructurings.

ASSume that the fnner node v has moved out of balance, f.e.

Biw) §s efther Lless than @ or greater than f=00s Assume further

that the rank of v is bip enoughs 1eee ranklv) 15 greater tlll.

1102._
In arder to force b(v) back into the La,t-al ranges one of the
tour restructurings above has to be chosen as follows:
€1) rank(v) §s less than a. it 1is now clear that a Lleft i
Fotation must be performed.

€1.1) rank(u) 15 at most (1=-kad/(i-a), where u denctes

14

the right son of w. Consequently, the left
subtree of w ia su;iiciontlr small to permit the
SLR applied to ve

(1.2) ronk(u) is grester than (1=ka)/(1=0), hence, the
OLR must be perfarmed.

(2) The case when rank(v) s greater thamn 1-0 splits again in

. twe subcases.

(2:1) rank(uw) 43 at least (1-kaj)/(1-a), where
denotes the Left son of v. Hence, the SAR has to
be carried out.

- (2:2) pank(w) 49 lesa than (1=k@2/¢1-02, then the pRR

will work,

It 48 rather Llengthy angd boring to sclcul;to the various
{nequalisias in prder te verfiy that she application af ons Al the
four restructurings in the above manner indeead forces the balsnce
of w baek {into the desired ranges. This work s Left to the
interested reader, Note that & rotation forcing the balance of v

back inte La,1~a) does not affect the balance of any other node.

. It should be clear that the spplication of & restructuring of
.tho above type makes it necessary to Feconstruct the node Lists
for a few nodes lﬁvolvod. This sspect will be exsmined for the SLR
and OLl~onlr. singe the SRR and DRR are just the afrror iungis of
the SLR end DLR.

Let us consider the SLR first and Let Vo di and ul' denote the

nodes depicted in ligure 2=2.(1). In addition, let tl' 12, and t3

15
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denote the roots of T,, 12. end T, before the SLR is carried out,

and let t “y t,%y and t,” denote the roots of Tyo Tyo and T, after
having performed the SLR. From trivial reflections one can derive
that w o t,» t,s and t; have to be replaced by the new nodes w, °)
t,%¢ 8,79 and t,° which are associated with nev naede Lists that
sust be constructed when rrltructur}ns v’s subtree. (We tal

about new nodes {§f the corresponding node Lists must be
reconstructed. In practice, one will not replace the nédc: but

enly the node Lists snd the segments ¢ necessary.)

Neat, we present a rather detailed table laying open how the
new node Lists have to reflect the spplication of the SLR to node
vy see Flgure 2-2,(1)s (The nev node Lists are displayed by using
set notations freely.) -

Firsto the nodes wyy ;0 t,0 and t; have to be replace by

LPRCI P tz’} and ©,7, respectively. For convenience, let

NLCu) denote the node List of nade x and wmean the set of

intervals stored in {it. Then, the new node Lists can be

described as follows:
NL(-I‘) = NLttll n ldt.(tzh ) .
ALlt, ") = NLCE ) = mLlt,d, '
Nt(tz‘) L NLIHI) u (NL(tzl - lL(tl)). and

Nt(ts'l s NLl(w,) U NL(t33.

1

For the eahibition of the new node Lists to be constructed when'
applying the DLR to node v, we will talk about Vo M3e Muy tgy tge

tge and t,  as well as about ¥y W T 1% 57 1%, and tio° fn

16

asccordance to Figure 2-2.(3) and to the definition of primed
t-nodes used above.

Again, the nodes Mas Mo t?. tgr tge and t,o have to be
reploced by the new nodes u3‘.H". t?'. ts’. tg‘. and ‘10"
and the associated node (fsts must reflect the following
equalities: 1 ;

. """’3 ) = Nt(t?l 1] (NL(UI‘) u NL(IBJ).

NL(u"l = lL(ual u (Nthol n NLCe, D),

10
-

uttt? )= NL(t,J = (NLGe ) U sLtu‘))f

NL(ta') = HL(nJ) u tﬂL(u4) = NLCR,)) U (uL(tB} = NLit,)),

Kt(tg'i = "L(U" v luL(tgl - "L(tlo))' and

NLCE %) ® NLCe, ) = NLGtg).

It has to be mentioned that the construction of the various new
node Llists can be carried out in time proportional to the number
of intervals involved. However, in some circumstances, one may
wish to arrange the node Lists not Just as unsorted Linked tist
but in some other fashion, e=ges as interval tree or anything else.
The follawing 2nalysis will accommodate this stightly more general

qot'lon by assuming that such a node List :olprising m elements

dllows for updates to be carried out in f(e) time on the average.

After having déuonstrlted the performance of restructuringss we
are ready t; present the update strategies and to #nalyze the tiame
requirements for carrying out a sequence of update commands.

Here, ghc nrocedure'that inserts an interval {s described 1in

appropriste detail whereas the procedure that deletes an interval

17
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uill be skimmed only.

Let T be an o-balsnced segment tree. Let n Sntervals be stored
in T and assume that no tweo onds'orn the same. Nenci. T comprises
2n%1 leaves end the leftmost and the rightmost Leaf is associated

with an infinite fragment. Two steps have to be performed in order

to insert an interval I {nto T. .

3tep 13 vescend T apd look for the leaf | associated with the
fragnent f that contains the left end iy of §o Change L into
an inner node and sssign two new leaves Ly and L, as left
and right som of Lo ( L; correspondens top that part of
that lies to the Left of L;» L, correspondens to the part
right of ll-l
Asceno 7 and adjust the ranks of the nodes visitede.
Rebalance all nodes whose balances move outside fayi-a},
Repeat the above actions for the right end ri of 1.
3122 2: 1Insert 1 into the various node Lists starting at the
root of T.

Let v denote the current node whose segment s

considered. 1If 1 covers the segment of v then I aust. be .

added to v°s node listy resp. v must be inserted inte the
structure representing v°s node Liste On the other hand, ¢
1 does not cover the segment of v, the sons of v whose
segments intersect | have to be tensidered in the same

Bannher.

18

The strategy for deleting en intervsl resesbles the one
displayed above. The only dift:renees are that two Leaves have to
be w@erged which can be sccomplished by removing one and replacing
the other by the new leaf, and that I has to be deleted from the
appropriate node Llists. A dictionary that associates with ecach

interval fts aph'arancea in 'the various node Lists enables fasg

.eluion for the case that the node lists are arranged as unsorted

tvo~way Lliste. This dictionary can be maintained without

deterioreting the time bounds for insertion and deletion.

It can be readily seen that all actions except the ones
eaployed for constructing new node lists coan be carried out in
0Clogn) time on the sverage. In what follows,s the average time

needed for building the new node Lists will be analyzed,

Lesma 1: Let v be an.inncr noede of an a-balanced segment tree
T and Llet r be the rank of v. Then the number of intervals

in v’s node List $a upper bounded by r{l1-a)/a.

Proof: Let f denote v-s faiher and w v”s brother. Note that the
fnequal ity pair responsible for the balance of v

a € r/rankif) ¢ 1-a
can be refa}aulated as

a/ii=a) § rank(wd/r ¢ t1-a)/o.
Consequently, the nusber of leaves descending from 4 is at most
equal to r{i=-al)/a.

Weloge Llet v denote the teft son of fo Each interval 4n vs

i9
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node List must not appear in the node Iiit of we Hence, if the a
leftmost fernd none more) leaves descending from v are containod in
an fnterval I in v”s node List, ® must be an integer at least
equal te 0 and less then rank(w). From our assusption that no two

equal ends enist, we can derive that pach {interval 4n v°s node

list correspondens to 2 unique me Thus, the nusber of fntervals in.

the node List of v is at most equal to the nusber of Lleaves
descending from v”s brother which in turn i3 at most r(i-0)/a,

€3

01 coursey our argument helds only for sets of intervals
mgeting our restrictive assumptions that no two ends ceincides If
this is mpt true, things can be handled as folloust

Assume first that two fntervals I and J share the gase
right ends This fact causes two modificatfons in the asbove
discussion. First, the update procedures must be desfigned
to detect such cases and treat them appropriately. Second,

it timplies that 1 and J correspond to the same m n the

proot of Lesma 1. Both difficulties may be eliminated by

assigning ranxs different from 1 to the leaves in question. .

for our cese this would mean that the (eat in correspond;nce-
uith the fragement {emediately to the left of the shared
right end is assigned the rank 2, ihc case that I has a
left end equal to the right end of J can be treated by
adding 1/2 to the ranks of the (eaves inmediately to the

left and right,

20

Lemma 2: The time required to carry out a single ar double
rotation fncluding the sonl;ruction of new node Listz {s
proportional with a factor f(n) to the decrease in leaf
depth caused by the rotetion. (The leaf depth of tree 7 i3
defined as the sum of the distances of atl leaves froe the

roots The distance of a leaf L from the root of T 45 equal

. te the nusber of inner nodes visited when descending te L.}

Proof: Let us examipe the case of perforaing the SLR. The other

tases are very similare and are left to the reader,

Figure 2-3. The SLR applied to v.

This type of restructuring is carried out when the nuaber ot
leaves in 11 (denoted by ITlli is less then arankiv) and yhen li3|
s at least (k=1 arank(y).

The depth of each Leaf in T, increases by 1 and the depth of

1
each leaf in 13 decreases by 1. Hence, the decrease in total Lleaf
depth s at Least (k-2) o rank(v) and thus proportional to rank{v).

(Note that k 48 chosen greater then 2 and therefore the above

21
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tactor (k=2)a 1s positive.)

The performance of the SLR forcing the balance of & node v into
la,1-a] takes 0(f(ndrank(v)) time, since the only time costing
action 1is the construction of the node lists for w” and the roots
of Tl’ 72. and 13. From Lemms 1 we know that there will be at most

0trank(v)) intervals in the node Lists $n question. .
[ #]

Thearem 1: The above algorithm performs & sequence € of fnsert
ana delete commands in OC[CIfCndlogN) time, where IC|
denctes the length of € (f.e. the nusber of update commands
in C) and where N is the manimal number of stored intervals,

while emecuting C.

froof: we assume to start with the emoty segment trees From the
definition of N we can derive that the tree never exeeds the
height 0Clughde This implies that all actions except for the
Construction of new necde Lists cam be performed in OtliCilogh)
times
Poreaver, since the increase in leaf depth caused by the IC|
updates 4s a.t most 0(|Clloghk) the building of new node List .can b.
carried gut in 0CICIf(n)logh) time. "
. 2
As concluding _re-uri of this subsectfon devoted to the
dynamization of th? segment tree, we note that the strategy for!

updating say be refined to worst-case compleaity. This refinement

22
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consists of an almost streightforuard spplication of Willard®s
,

super-B-tree algoritha, The only modificetions that have ta be
considered are the growing number of anticipated nodes (now each
node is assfgned 20 anticipated nodes) and that a single wupdate
causes changes along to root-leaf ways in the tree.
Thus, we postulate that the segment tree can be dynamized such
.ut its height is bounded by O0Clegn) and each update command can
be carried out in 0Cf(n)Llogn) worst-case time. Notice that we have
to presuse that an updete #n an instance of 2 node List can now be

performed in #(n) worst-case time,

2.2%" Yhe Dynamic Interval Tree.

Recently, Sditsbrunnor €6) introduced & new data structure
Supporting rectangle intersection searching. This structure which
he colled the d-fold rectangle tree 43 based on a ternary tree
Structure (the 1=fold rectangle tree) which ‘we will call the
interval tree. In this paper we uill describe a slightly modified
versfon of the fnterval tree that Lleads to a better dynamic

.ructurc than developed by Edelsbrunner 6.

A was dénc for. the segment and the range tree we gives first
ef ally & succinct description of the static shape of the interval
tree. It 1is a ternary tree structure supporting interval
intersection searching in Otlogn+t) time, where n intervals are

stored and t of them intersect the query fintervals The optimal
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query time 1{1s achieved ailultanéouslr with the optimal space
requirements (0(n) space is needed) by augmenting fnner nodes with
tingers (i.e. pofnters to leaves) and arranging the Lleaves in a

tuo=way linear List.

Let W be the given set of n intervals where each interval 1 s

specified by its Lleft end ; and its right end rre for the t‘il.

being assume that there are no two intervals with the same left
end, Let L be the sorted array of the left ends of all intervals.
The interval tree T storing the_intervals of M consfsts of two

parts: the primary structure depending on Ly, and the secondary

$tructure depending on the prisary structure _and on M. The
primary structure 9{s an optimal, sorted, binary tree ato;inn the
values of L in its leaves. Every inner node is wassigned a value
that Lies between the greatest value of any node in fts Lefs
subtree and the smallest value of any node in 1ts right subtree.
Each node v of the primary structure 4s essocjated with a middle
subtree accommodating all intervals fn n that contain the wvalue
assigned to v and that do not contain any value essigned to en
ancestor of w, The aiddle_aubtree representipg 2 set of intervals
is an optimel, sorted, binary tree housing the ends of th
intervals in fits Leaves.

For convenience, each node of the ﬁri-ary structure is called »
primary node, the totality of amiddle subtrees 48 termed the

secondary structure, and each node of » middle subtree is also
termed sttondafz. -
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In additfon te the primary and Secondary structure we need a 30
'

called auniliary information comprising two kinds of pafinters:

First, the totality of secondary leaves is arranged as two-ubdy
Linear List. A Leaf I.l sppears to the left of another Leaf i, im
the two=way Llist i} either L, belongs to a middle subtree whose
primary node is assigned a smaller value than the one of lz’a
.ddlo subtree, or i, and l.2 belong to the seme middle subtree and
l1 fs associated with a lower end than L, Seconds, each primary
node and each secondary root (i.e. & middle son of a primary node)
is augmented with twe fingers, f.eo pointers to the leftmost and

the rightmost secondary leaf in its subtree, respectively.,
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L = (0,1,2,4,7)

&
]

Figure 2-6. An fnterval tree sccomodating five intervelss

The spate requirements are upper bounded by 0(n), since there
are endctly 2n-1 primary nodes and each intervel {is stored onl
once in only one middle subtree, tonsequentiy, there are il most
0ln) secendary nodes. It §s clear that only 0(n) auxiliary
pointers have to be established, hth:o. the interval tree needs
only 0Cn) space. It cam be built up in Olnlogn) time by a more or

i

less obwious preprocessing algorithm and an interval intersection’

Query cam be answered in 0(logn¢t) time by euploiting the pointer
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(10,3),£1,5),12,8),04,6],[7,9]) . ®

mechanise supported by the aunflisry finformation. ' For @ more
’,

detafled description see Edelsbrunner [63.

Nows we are ready for the discussion of an analogous
dynamfzation as wndertaken 1in Section 2.1 That s, the primary

structure (originally an cptimal, binary tree) s replaced by an

.-haumed binary tree as introduced by Nievergelt, Reingold [161,

improved by Willard (25, 261, and reviewed in Section 2.1, The
primary structure is called a-balanced if the balance
b{v)erank{w)/rankfv) of any primary node v is in (G,1-a), whereby
W denotes v s left son. In addition, each middle subtree 1s
replaced b§ an arbitrary balanced tree scheme, 5-9. agatn an
a-belanced binary trees The suxilisry information is defined as

for the static interval trees

Mext we present the update procedures which witl be analyzed fin
sequence.

Let us consider the case of inserting an interval I {nto an
a-balanced finterval }roc't storing n intervals at the moment. The

algorithm that inserts I fnto T performs this task in tuo steps as

.ollou:

Step 1: Perform-a binary search fn the primery structure of T
in order to detect the position where the Left end of 1 has
to be stored. Let L denote the new leaf representing 1°s
left end.

Ascend the primary structure from L to the root and
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adjust the particular ranks. For each node v whose balance
soves outside the ([a,1-a) range perform one of the four
restructing depictoc in Figure 2-2. A single rotation
requires the buil&ing of two new middle subtrees, a double
rotstion the buflding of three new middle subtrees.
Step 2: Pescend T from the root until the first node v is
found whose value Lies inside of I. Insert the left and .

right end of I fnto the middle subtree of v

Some core has to be teken for correctly adjusting the auniliary
fntforaation serving for quick searching. First, the Lleaves
rcpres?nting the Lleft and right end of 1 have to be fntcoratod
into the two-way List comprising the totality of secondary leaves
and second, some fingers assoclated with primary neodes and
secondary roots have to be adjusted. Since only the fingers of
ancestors of the tuo new secondary leaves may need a change, this
task can be done by two walks from the new secondary Leaves to the
roct of T,

What concerns our first problesmy we distinguish two cases: 1f
the wmiddle subtree into which I was inserted had not been empty
then the integration into the two-way List is no probles ot al.l.
On the other hand, assuse that the niddlg subtree had been empty
and now accomodates I only. The actyal task 4s to degect thl.
predecessor and sugcessor of the Leaves representing 1°3 ends in
the two-way liste This c;n be accomplished by ascending the treel

from the two new leaves and enplofiting the fingers assigned to the
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prisery nodes on the path or to sons of primary nodes on the path.
,

The rather Lengthy examfnation of all the different cases is left

to the interested readers

it can be vreadily seemn that all actions encept for the
rebuilding of middle subtrees can be perforued in 0Clogn) time ana
hat these actions guarantee that the height of the tree never
dnceed: an upper bound of O(logn) which feplies that at any time o
query can be snswered in O(logntt) time, where ¢t denotes the
number of intersecting intervals found. The follewing lemmas are
established to assure that the time required for rebuilding new
aiddle subtrees is bounded by O0ClogN) on the average, where N is
the manimal number of intervals in the tree while executing a

_sequence C of update commands.’

Lemma 3: Assume that ‘ll and 12 denote the middle subtrees that
have to be changed into 13 and T‘. because 2 single rotation
is applied to ﬁode ve 1f tl and ‘I'2 contain B, and a, leaves

respectively this iask can be performed in 0(110-2) time.

Proof: Welege Let '1 denote the middle subtree of node v (to
.hlch the single rotation is applied) and let 12 denote the middle
subtree of the particular son w of ve Then §t i3 clesar that LB
nust contaip all those intervals stored in T, that do mot comtain
the value sssociated with w. Similariy, t‘ Bust cgontain all

intervals of T2 and the remaining intervals ot‘ll.

by carefully maintaining the sorted order of the lLeft ang right
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ends of the intervals involved the task of constructing T and T

tan be done in ot-lO-Z) timeeo

1
Lemma 4: The number of leaves in the middle subtree sssociated
with the prinarf node v is upper bounded by the rank of vy
fees the nuaber of primary leaves descending from v. .

Proef: Let o dlnotp:th. ancestor closest to v whose left son is
efither v or another ancestor of v. Similarly, let 8, denote the
ancestor closest to :v uhose ripht son is efther v or another
ancestor of vo Note thet the number of prisary Leaves whese
values Lie obetween the ones of a, ond a, i3 exactly eﬁqal to
rank(y), Note also that an interval I may potentially be 4n v°s
-{dalt subtree only {7 fts Left end {s between the values sssigned
to a, and 9, GSinee the left ends of Intervals cerrespond
an.-tn*on; with primary .leavtl. the number of intervals in v°s

eicdle subtree i3 upper bounded by rankiv),
(&

Nowy we are ablc.to establish an analogous assertion to Lemma 2

that rélun the decrease in leaf depth due to a rutru&turln.

with the tise required for building the new middle subtrees.

Leama 53 The time required to carry out a single or double
rotetion including the construction of the new afddle |
subtrees s 'propﬁrtional to the decresse 1in Leaf depth

taused by the rotations.
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The proof is similar to the one of Lemma 2 and omitted,
’

Theorem 2: There exists an slgorithm that executed a sequence
€ of finsert and delete commands 1{n an fnterval tree in
0Cjcllogh) time, where ¢ consists of Icl update commands and
where N 4s equal to the maximal nusber of intervals ever

. present in the tree, while processing C.

The proof follows {mmedistely from Lemma 5 analogous the

srgumentation presented in the proof of Theorem L

It hes to be mentioned that the method af constfusting Aw
middle subtrees by deriving them directly from the old ones is not
improveable by Willard”s super=B=tree algorithm. However, there
enists a strategy that Lleads to worst-case bounds per wupdate
comsand: Let v be an unbalanced fdnner node that has to be
rebalanced by a rotation. At most three new middle subtrees have
to be constructed and this s done by succesively inserting the
fntervals dnvolved, . If Willard”s super=B-tree algorithe is
employed to supervise the rebalancings and the constructions of
the new middle subtrees a worst-case update time ot 0(logzn) can

.t guaranteed.

He do not know ‘it uilogzn) vorst-case update time is the best
cne can do. Raybe 8 slight modification of the super-8-tree
strategy will work even in 0(logn) time. Ory perhaps, there exists
8 refinement of the method presented above that yields a 0(logn)

update time in the worst case.

31




The reason that we do not consider sygmented fnterval trees

(i.e. each inner mode v s associated with an additional structure
sccomocdating alllintcrvala stored in secondary Lleaves descending
from v} 4s sieply that there is no need of sugmented interval
trees as will be seen in the next section. The main reason s that

8 query fin an sugmented interval tree {oplies otlonzn) separate

queries in augmented structures. As will be shown later we can ﬁ.

better by employing the segaent and the range trge instead.
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3. Sltl-?yralids.

In 2- and highir-dinensionnl circuastances onc often 15 not
satisfied with 1~component trees Like the 1-fold segment tree, the
i=fold range tree, or the interval tree. The d-dimensional range
searching problem, for instance, may be well solved with the

=fold range tree which is a d=component tree $n our termainology.

(A d-component tree is a 1-component tree whose every node is

assoclated with a (d=1)-component tree.) Anather expople is the
2=dimenstonal orthogonal Line segment Jntersection seprching
probles recently investigated by Vafshnavi, Wood £233. They
dcuiiopcd'tht 2-component segment=range tree for this - specitic
problem.

For convenience, we uillbabbrcviato the three T-component trees
that will build the multi-component trees, for short calied
pyramids, by their fnitial Uletterss Thus, the 3-component
scun!nt-range;intcrval tree will be written as SRI-tree.
Additionally, we ag}et upon wusing customary formal Language

notation for expressing the various tree names. Eo.gs the d-fold

.gnent tree is thus designated by sd-tru'.

Our first afm fs to explain by means of an example which
objects may be stored in a A-tree and what kind of subjects can be
used for posing queries, where A denotes a fined word in (S,r,1)",
For our purpose, & equal to SRI will do.

Remember that an S~tree stores intervals and can be wused to
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detect all those intervals containing a certain value. An Retree

stores values and supports the detection of these values thet Lie
in a certain intervals Finally, an I-tree stores intervals and
helps to find all those intervals that d{ntersect onother query
interval. Notice thet the tasks supported by the S=tree and the
R-tree are special cases of the one supported by the I=tree.
Thus, we derive that the euemplary SRI-tree requires objut'
"consisting of two intervals and a value. Let the intervals stored
tn  the S-tree be the z-intervals of the objects, let the values
stored in the R-tree componant be their y=values, and Llet the
intervals stored in the I-tree component be their x=fntervals.
Hence, the SRI-tree may be used to acoommodate 2-re¢s 1in S~space
whose ecges ere parallel to thi‘l- end z=coardinate oxes. Let M
be 2 set of such objects. The SRl-tree accommodates M by stering
the z-intervals of the cbjects im an Setree, srranging each node
List a8 Retree storing the y=values of the objoétl orfginally 1in
the node Llist, and asscciating with each inmer node v of each
R-tree an I-tree ?to;inp the s=intervals of oble:t‘ whose y=values
correspond with Leaves descending from v.

A subject for posing a query in the SRI-tree of the above H'
Bust consist of & z-value, a y=interval, and an n-interval. Thus,
® query subject is nothing else than .8 2-rec in 3-space whose
icgcs are paraliel to the x~ and y=coordinate axes, respectively.

A éu;ry asks for all stored objects that intersect the subject.,
The desired objects can be found by descending the first-component

S-tree with the z-value of the subjeets For each visited node the

3s

associated R=-tree has to be searched with the y=intervals of the
’,

subject. Finally, the I-trees associated with appropriate nodes of

the {nvestigated R-trees have to be examined with the subject”s

i=intervale

It should be clear that the family of pyramids whose components
.onsist of S=;, R=, and I-trees (we witl term it the SRI-pyramid
—

family) 4s well suited to support the various intersection queries

involving orthogonal objects and subjects,

The following lemmas will show that we need not the whole
%
variety cf (s.n.l}+-trees but may confine to S R I-trees and

-
$§ R =trees only.

Lemma 63 Let A be an arbitrary word in {s.u.l)‘. Assume that
the ;ettor S appesrs s times in A, R appears r times, and I
appears | times, for non-negative integer 8, ry, ond 1.

We claim that the intersection searching problem
supported by the A<~tree can be solved as well by the

ssarl‘-tfe.o

.roof: kot be an arbitrary object eligible for being stored in
& A-tree. - Then, ¢ must have s*r+f properties, more precisely, e
aust consist of sei intervals to be stored in the S$S=- and I-tree
components, and of r values to be stored in the R=tree components.

The word S®R*IY can be viewed as » perautation of A, In order

to store e fn an S°R¥Il-tree, the properties of e have to be

permuted in the same way. Also the properties of the guery
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subjects have to be persuted as above, however, the sequence of

the properifes to be tested for intersection doci not aind at all.
(@)

Mote that the orfginal A-tree accommodating n objects requires
0tnlog® ™ 1n) space if S s the final Letter of 4, and
0tntog®*** ") space  otherwise. The  5®a%Il-tree requires
0tnlog®***1n) space only #f rei 48 equal to D. Hences the new tru.
requires at sost 8s wuch space as the old one = fn o few cases
even less. ' I i

Note also that the query time needed for searching {n a A=tree
runs up to 0¢10g® " % nee) 41 1 45 uniike the final Letter of 4.
In  the other case, fees 1 & onds with I, 0¢Log® "3 " 0ee) ¢ime
suffices for answering @ query. The l'l‘l‘-trto allows for & guery
to be answered fn 0Cog® "2  nee) time 41 § 05 ot Least 1.

Consequently, the new tree saves query time in many cases = in the

other cases it remaing the same 85 for the A~treee

Lessa 7: Let 4 bs gaval to S°RTI' where g» Py and 1 denote
non-negative intoacrq and § §is no Less than 1.
The dntersection gearching probles supported by the ‘
A=tree can be solved by a pair comprising the

s3*Ma%1i lotree and the $%RT* 1 Y otree a8 well.

Proaf: An  I-tree s designgd to suppprt intepval intersecsion
searching. The same problem cao be settled by @ pair composed ot

an S5~tree and pn R-trge &3 fpllows:
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Let M be the set of intervals. An element e. of M i3 specified

3
by 1ti left end lj and its right end Fyo for j running iroq 1 to
ne. Let catllo.roj designate the query intervale The {intersection
query may be enswered by detecting allL Left ends of fntervals én ®
that Lie in & and all intervals in M that contafin the Left end L
at LA The two tasks can te solved by establishing an S-tree for
LL intervals in B and an R-tree for all left ends of intervals in
Me This méthod ior solving dnterval 1intersection querfes is
described in more detait by Six, Wood [18, 19].
The above substitution mey be carried out for multi~component
structures as welle An I-tree component is Ireplaced by a paire
coa;isting of an S-tree and an A=-tree component which yields a

pair of pyramids as stated in the theorem.

€3

0f course, one can save nominal space by stering the identical
8 S=tree components only once and augmenting the e=th component

S=tree tuice, with an SR*1L"1ctree and an [EhES [ iak JACROON

Note that the transforsation forauleted in Leama 7 fmplies, tor

. no less than 2, only a nominal increase in space. On the other

' hand, the - query time is improved by a factor Otlogn) due to the
replaceaent of an'l-tree.

Since the query time s improved only if 1 is at least 2 (the

same is true for the only nominal increase in space), the above

transtormation is advantageous only i-1 times. Hence, we will use

tupels of SRl-pyramids whose names end with the only I rather than
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SRI-pyramids fnvolving more than one I—t}ot component .

Even the sd-:rte may be replaced by the sd-ll-tre. supporting
d-dimensional . inverse range searching with the same
tiae-compleaity for answering @ query but with o factor 0Clogn)
tess space. However, the S$%-tree dominates the ¥ ickres o
respect to the wupdate time in worst-case complenitys Another

disadvantage ot I-trees will become obvious fn this section whe

e discuss improvements for static SRI=-pyramids.

In dynaafc environments, one wants to execute an arbitrary
sequence of update commands and queries. Therefore, the components
of 2 dynamic SRI-pyramid are supplied by the dynamic relatives of
the §- and I-tree a3 introduced in the previous sections, and by
the dynamic relative of the R-tres, as developed by WwWillard (25,
26, 271,

Theoren 3: ta) tet T be a dynamfc s'&rl-trce. uith

non-negative integers s and re If T accommodates n eligible

B+Y

objects then it requires Olnlog n) space, allows for an

appropriate intersection query to be answered in

+r4
6Cog®* "™ need) time, and supports updating fn 0CLog® !y .

BEEEI S Nl {5 $he-wokat cases

time on the average, or 0flog
shere N denotes the manimal nuaber of objects stored in T,
while processing the sequence of update commands.

b} Let U be a dynamic $°R -tree representing n eligibte
objects, where s and ¢ denote non-negative fntegers and s+r

s4r=1

is at least 1. Then U requires Oinlog n} space if r is
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at least 1, and 0(nlog®n) othcfﬁise- An fntersection query
in U can be answered fn 0Clog®**net) time, and o single
update requires 0(Log®*TN) time on the average, ar

0¢Log®*"

n) time 4in the worst case. The alternative update
time depends on the procedure used which {3 nmuech asore

difficult for the worst=case complexity.

Proofs When we subsequantly talk sbout S=, R=y or I=trees, we
will always leaﬁ the drhd-i: versions sufficiently described 4n
Section 2.

Note that, for s no less than 1, T is nothing else than an
S-tree whose every node v is augmented with an ss'iﬂrl-troe that
represents v“3 node list. A query can be answered by descending
the first-component S=tree and further investigating the
$*"!’¥1-trees of the nodes visited. Hence, we may conclude that
the query time 1in T amounts O0Clogn) times the query time in an
s"tkrl-tret that represents n objects. From repeating the above
step s8~1 times we .derive that the query time amounts O(Logsn)
times the one rcqpircd for ;nsuering a query in an er-trec.

Similarly, we may calculate the Llatter query time being

Qlogrni times the one needed 'In_an I-tree. Since an I-tree allows

for the set of ~intersecting intervals to be tocated in OClogn)
timey, we finally obtain otlog°+r+ln*ti a3 upper bound for a query
in T.

Notice that the query time in U as well as jn T fer the case of

s equal to Oy has already been derived in the above explanation.
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Using simitar dnductive argumentations one can deduct the

asserted bounds for space and update time, too. i
€l

In the next section, some applications of the dynamic
SRi-pyramids will be demonstated, such s rectangle intersection
relate

searching, inverse range searching, and 8 few other

proplems, Howgver, before applying the developed repults we
recall isprovements of certain static SRI-pyremids due to & Layer

technique originally fdntroduced by Willard (27], and Llater

employeda by Vaishnavi [21), and Vaishnawi, Wood [231.

Theorem 4: The static sz-trce. lz—treo. and SR=tree can be
improved to allow for queries to be answered in

Oflogn) time,
without affecting the asymptotic bounds for preprocessing

and spaces

The particular {dmproved trees will be desfgnated by ;E-trce.
;E-trge. and SR-tree. It should be noted that Theorem & implies
an iaproeveaent of the static A=tree 4 & is a word that ends with
52. lz. or SR. ’

¥e do onot 1intend to give a proof of the above theorems The

interested reader s referred to Willard [27] for » discussion of

the ;7-tree. te Vaishnavi [21] where the ;I-treo is considered,

and to Vaishnavi, Wood [23] where the SR-tree is improved to the

SR=tree.,
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S0 fary we have considcrcf intervals and values as properties
of objects and hove examined the cases that 4n esch disension
either the obfects or the subjects or even all of them have an
inforuol as propertye What remains 1is the cese that 4n any
dimension the properties of the objects and the subjects are
single values.

We call it the trivial case, since intersections

nly appear {f there are obfects with exactly the same value as
the subject.

This case can be handled by employing 2 simple binary tree
storing the values in its nodes (or maybe in its leaves only) ana
sugmenting each node (or each Leaf) with a structure representing
thck} objects that share the value of the node Cor the leat),

The problem of searching objects with a specified value fs
ctustomary called the exact match searching problem and there exist
quite pleasant data structures supporting it.

Assume that the trivisl case appears in k dimensions, then we
are confronted with a k-dimensional exact match query and a

{d=k)=dimensional noh—triviat QUEFrY. The so0 callied P~trees
introduced by Mehlhorn [15) all;u us to locate those objects with
.ﬁc k desired values in O0(logn+k) time 1in the HOFSt case. An
update can be carried out in 0(logn+k) time.
Consequently, tﬁ! tamily of DSRI-pyrarids (i.e. aulti-component
trees composed of instances of the bD-, S-, R=y and I-tree) 4s well
sufted to solve orthogonal intersection queries, even when trivial

cases are involved.
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As concluding remarks of this section

we recall thctJ;hﬂ
developed family of SRI-pyramids constitutes a powerful 1nstruﬁtnt

to attack intersection searching probleass involving crhitrary

orthogonal ebjects in d-space. That these pyramids can be used ?n
dynamigc environments a3 well as ¢n static ones is due to;!ﬂg
dynamizatfon results presented in Section 2. §t has to be stated .
that the dynamizations are the best known today and that

some fndication of their asymptotic optimality, ejycept

‘worst-case ugdate time of the I-trea.
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4. FApplications of the Above Results.

This section will demonstrate some applications of static and
dynamic SRI-pyramids to problems that caused much attention in the
last few years.

At first, we show how members of the SRI-pyramid family improve

‘.C ent

inverse range searching, and Line segment intersection

results concerning rectangle fdntersection scarehing,

searching.

Then, a few words will be said about all pairs problems (Like the

oLl intersecting rectangles problem considered by Bentley, Woad

L4y, vaishnavi C203, Vaishnavi, Kiegel, wWood [22), Six, Wood [18,

1?]. and Edelsbrunner L63) that are solved by eoploying the Line

sweeping technique and off-Line dynamic relatives of SRI-pyramid

Structures.

4¢la  Rectangle Intersection Searching.

The d-dinenlional. rectangle fntersection searching problem

involves a set N of d-recs that must be stored such that a query

.I:Ing for all d-recs that intersect a query d-rec can be answered
efficiently.s

This probles has been investigated by Edelsbunner (6] who

introduced the ld-trees and by Sin, Wood [18, 1§] who implicitly

developed the ad-tupel of possible (S.R}d-trctsf for instance, the

2-dimensional problea s solved by a 4-tipel comprising the

Sz-troc. the SR-tree, the RS-tree, and the az-trec.
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Subsequently, we will combine both n;tuod: and thus obtatn new
static and dynsmfic structures better then all preliminery ones.
Note that the d-dimensional rectangle intersection searching
probles invalves objects and subjects with d intcrvqls-
Consequently, this probles can be solved by establishing the
1%=tree tor the objects. .
We transform thcl ld-tro. utilizing Lemms 7 to a 26-'-tuplo
consisting of all possivte {5,833 ! j-trees. Next, gach of the

4= tupte consisting of s Setree

trees belonging te the 2
tomponents and r B-tree components (for nen=-negative i{integers s

and r whereby the sum 8% equals d-1) is transformed to the

s'ﬂrl-trcc by appropriately permutating the particular properties
af the objects, see Lemma 6.

Let us consfaer the outcoming structure for ¢ equal to 3 wmore
¢losely. WMith the above sepproach, this probles is solved by
establishing four SRI-pyramids, namely

the szl-ttcc.
two instances of the SRI-tree, and

the lzl-troe.

Theorem 5: The d-dimensional rectangle intersection surtinlu .
problem involving n d=recs can be solved b{ @ dynamfc dats
structure wuith .

Otlogdnft) query time,
Q(tugdﬂl update time on the average, and

otntegd 'y space,
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where N denotes the meximal number of d-recs stored ' in the
structure, while processing the updates, and where t

designates the number of d-recs intersecting the subjects

Note that the wupdete time may be fmproved to worst-case
complexity by either incqeasing the update time or the required
.pue by a tfactor O{logn). (The latter result is obtained if the
I=-tree component is replaced by an S-tree and an R-tree

component,)

It §s trivial to derive the complexities from combining the
$®R"I-trees approach with the results stated in Theorem 3, hence,
x 3
we onft the proof,

In static environments, one can fmprove the query time by

sl-u(tantouslr'dcter!oratlpg the space.

Yheorem é: The d-dimensfonal rectangle intersection searching
problem can be solved by a static deta structure with

d-1

‘0CLog n*t}‘qutrr time,

O(nloidnl preprocesslng, and
. o(ntoadn) space,
where n and t denote the same quantities as in Theoreas 5,

and d is no less than 2.

Proot: The ssserted complexities can be obtained by replacing the
I-tree component by an S= and an R-tch component yielding

$°RT-trees, with s+r equal to d. The Last two components (either
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Sz-. Sh=, ir lz-trtos) are then réplocic by the static ;’-. 53-.
and ;z-trcil. sentioned im Theorem 4. The time and space baunds

are now obvigus.
e

It should be noted that the Layered trees constitute the best
statie structures hnown today for 2= and hi.hor-dlnnnou.

spaces. Howevar, the l+tree combines optimal queey tiae and space

requirements for the 1~dimensional case.
b0 nverse Range archinge

The d-dimengfonal inverse ecange searching nroblli ssks for all
d-recs of a set M that intersect a d~dimensianal query point. This
problen  has reqently been {nvestigeted by lu_lolll'uﬂ'ﬂﬂ whe
called this ;caréhjng problea the point enclosure prdblul§_bcclusg
8 d=rec intersects » point if and only 17 it encloses the peint,

Vaishnavi employed 8%-trees to solve the d-dimensfonal problea
and he improved these trees by developing the ;!-troo {see Theores
4> and replacing s%-trees by $9"252-trees. We may contribute tb

static  structures supporting the d-dimensionat probicu b

d~1

mentioning that the § I=-tree solves the problem with query time

a factor 0Clogn) worse than the $9-2352

=tree but with a factor
0llogn) less space.
Vaishnavi was not able to design efficient dynamic dato:

Structures fqr-this problem. ve will remedy this sityation by
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- d
employing either the dynamic sa I;-tree or the dynamfe § =tree.
,

Theorem Tz The d-dimensional inverse range searching problem

can be solved by a dynamiec structure with
u(loadnft) query time,
otlogdul update thc on the average, and

. ’ O(hlogd"‘n) space,

or by another structure with
o(lauant) query time,
otloednl worst-case update time, and
o(nlugdn) spacey

vhere ny Ny and t denote the quantities as used aboves

We will dispense with a proef of this theorem, since all bounds
are ocbviously derived from the previous discussion of

SRI-pyramids.

4.3, Line Segments Intersection Searching.

From the various other problems supported by Structures of the

.I—pytuld tamily, we briefly wmention the 2-'dilensiorul Line -

segment intersection searching problem, recently consfidered by
Vaishnavi, Wood [53].

This problem fnvolves a set of Line segments parallel toy @eQoyp

the a-ccordinate axis. A query asks for all horizontal Line

segments intersecting a vertical one. Vaishnavi, Wood deve loped

the SR-tree to solve the static problea and, thereafter,

&7
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considered sowe dynamizations. ﬁoucv;r. the dynamic SR~tree
developed in the previous sections s better than their dynemic
structures by solving the problem with

otlegzn+t! query time,

Dtlogzn) update time in the worst case, and .

0i{nlogn) space.

bo4s ALL Pairs Problems.

AllL  intersecting pairs probless ask for all paitrs of
intersecting objects of 2 set M. For » greet deal of such problems
the pairs can efficiently be detected br'utilizino the Line (resp.
(ﬂ"’?ﬂil.ﬂt‘oﬂ.l hyperplane) sweeping technigues It has becoae
customary to associate appropriste offe-line dynamic gtructures
with the hyperplane.

An gotf-line dynamic structure i3 built up after enguining the
opjects that will be inserted into it in future, Such pn off-ling
dynamic structure fnitially is a skeletal structure representing
no cbject at alle Mhile sweeping the hyperplene from Lleft to
right, certain objects are inserted inte or deleted from t'
structure without changing the shkgletal. The skeletsl supports a
relatively sieple mechanisme for inserting or dtttt;n' objectse The
updates need not be gccompanied by restructringss singe the
skeletal {itself wmafntaing the balange of thg structure that
assures the fast query tise.

The reason for utilizing off-Line dynamic structures was the

&8

lack of comparably efficient ﬂ?—line dynamic structures. The - mafn
disadvantage of off=line dynawmic structures is the requiremsent of
nearly as much time and space in situations when they represent
only & few objects as in situations when they store almost the
whole scf of objectss.

The on-line dynamic sStructures developed 1in the previous
sections combine both advantages, they achieve the same efficiency
as the off-line structures fn respect to query and update time
when they represent almost the whole set of ebjectss and they do
not require -ofe time and space as necessary in sftuations when

they have to handle only » few objects.

He will single out the d-dimensional all intersecting
rectangles problem which asks for all intersecting pairs of ']
given set of n d=recs.,

Our approach 1is similar to the ones undertaken by $ix, Wood
L18, 19) and Edelsbruynner [6J. The d-dimensional space 1s swept by
o (d=1l-dimensional . hyperplane L normal to the x-coordinate axis
from left to right. Associated with L s the Edhzﬁtuple of dynamic

.'er-treu. where s4r is equal to d=2, see Section 3.

The probles is solved by sweeping L from left to right and
performing ‘soqo ‘actions at each moment L passes on x-value of a
d=rec. Inftially, the assogiated structure T s expty. When L
passes the Lleft end of an obfect e, a query 15 performed to detect
all objects stored in T that intersect e, and the projection of e

onto L s fnserted 4nto T. If L passes the right end of an object

49

ﬁ“.



¢, the projection of e is deleted from 7.

This algoritha solves the problem for n d=rees in o(olosd-lafti
time and 0¢nlegd72n) space, wherby t denotes the nuaber of
intersecting pafrs. Note that this solution fwhich was suggested
by de Hood) dosinates the prelisinary ones even {n unfnvourablq

distributions of the d-rees. L .

Certain distributions eof the objects may imply that at any
@oment only & few oﬁjocts are stored fn T. For fnstance, if the

. fumber of objects stored in T h;vor engeds O(logn) the n queries,
n fnsertions, and n delctioﬁa can be perforeed in o(nlto.logn)d-l)

time and T requires no more than OKthu(logloan)d.z) space,

The replacement of off=Ling drnuic'uructuru by on=line ones
.®may lead to cimilar improvements in a number of _rolatcc problems
investigated by Vitanyi, Wood (243, van Leeuwen, Wood [9], Lipski,

Preparata [11] and others.
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