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1. Introduction.

Finding all intersecting pairs of a set of objects in the
plane (or in higher dime;sions} is an important problem in the
study of algorithmic geometry. The significance of solutions
for this problem stems, firstly, from their applicability to
more complicated geometric tasks involving the above as a
subproblem, and secondly, from the tendency of applying them

to related but non-geometric issues in Computer Science.

In the last two years, a series of papers appeared focussing
on the intersection of 'orthogonal' objects. Edelsbrunner [2]
and McCreight [5] independently solved the problem involving
n axis-parallel rectangles in the plane in time O(nlogn+t)
and space O(n), where t intersecting pairs are reported. All -
intersecting pairs of a set of d-dimensional axis-parallel
boxes can be reported in time O(nlogd-1n+tj and space O(nlogdﬁzn},
consult Edelsbrunner [3] and Edelsbrhnner, Maurer [4].

In this paper, we consider more general gecometric objects,
so-called regions. A practical algorithm based on the idea of
covering arbitrary regions by axis-parallel rectangles, resp.
axis-paralle® d-dimensional boxes, is investigated. It is shown &
to be more efficient even in.the worst case than thought before,
provided the set of regions satisfies a weak condition: The
regions must not be 'too thin' and of 'too diverse' size.




2. Intersecting Regions in the Plane.

A region in the plane is a subset of the plane, such that
there exist (i) a largest non-empty axis-parallel square
entirely contained in the region, (ii) a smallest bounded
axis-parallel square covering the region, and (iii) an
algorithm which determines in constant time the smallest
covering axis-parallef rectangle for the region. In addition,
we demand that whether two given regions intersect or not can
be decided in constant time. ‘

Let r(A) and R(A) denote the radii of the above mentioned
squares. (The radius of a sqﬁare is one half of the length of
one side.) Note that r(A) is strictly positive and that R(&)
is well defined, i.e. R(A) is a finite real.

The problem can now be precisely formulated: Let S be a
set of n regions in the plane and let r(S), resp. R(S), denote
the minimum of r(A), resp. the maximum of R(A), over all
regions A in 5. We confine attention to sets 5 for which the
ratiop'R(A)/r(A) is bounded above by a constant. The task is
to report all intersecting pairs of regions in S.

We suggest the following simple solution which is of
practical and of theoretical interest as will be demcnstrated
later:

Algorithm: )
Initially, compute for each region its smallest covering

rectangle. (All occurring rectangles and sguares are assumed

to be axis-parallel. For simplification, this will not be noted
anymore.) Then use one of the algorithms mentioned zkove to
determine all intersecting pairs of rectangles. Test for each
intersecting pair whether the associated regions intersect.

If they do then report the pair.

Let t denote the number of intersecting pairs of regions
in S8 and let t' denote the number of intersecting pairs of the
covering rectangles. From straightforward observations, one
can derive that the above algorithm runs in time O(nlogn+t')

and requires O(n) space.
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In whot now follows, t' will be shown to be proportional
to t, unless t' is very small, i.e. t' is at most linear in n.
(The basic idea of the proof originates from Bentley, Stanat,
Williams [1] who investigated algorithms to report all 'near
neighbor pairs' of a éiven set of points.)

Theorem: Let S be a set of n regions as described in the
formulation of the problem above. Then t' = 8(t) + 0(n).

Proof: Associate with each region A of S a point p(A) in its
interior, such that the square with radius r(S) centered at
p(a) is-entirely contained in A. Note that the square with
radius 2R(S) centered at p(A) entirely covers A, and that
2R(S)/r(8) is equal to a constant C independent of S.

We will consider t1, the number of intersections among the
small squares centered at the points p(a), for all A in 5, and
t2, the number of intersections among the large squares centered
at the points p(A). Obviously, 1;.I <ts<t! o< t2' The proof
would be finished, could we show that t2 is proportional to t1,
unless t, is at most linear in n. T

2
Consider an axis-parallel grid which imposes a decomposition

of the plane into disjoint squares with radii x(S) which we

henceforth call cells. Each cell 24 is associated1with |zil,
the number of points p(A) that lie in it. Hence, 3 %;Iziltlzil—1)
is a lower bound for t1.

Since 2R(S)/r(S) is equal to C, two regions A and B may
intersect only if their associated points pfA) and p(B) lie in
cells 'not too far' from each other. For each cell‘zi we define
its neighborhood Ni as the set of cells Zj which intersect the
square with radius 4R(S)+ r(S) centered at the center of Zi.
Note that Ni contains exactly (2] cC ]+1}2 cells including Zi

itself. The following calculation yields an upper bound for t2:
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This implies that t, is proporticnal to Ty unless t, is

2
at most linear in n which concludes the proof.

- An immediate consequence of the theorem with regard to the
complexity of our algorithm is formulated in a corollar.

,Corollar: Let S be a set of n regions in the plane such that
the ratio R(S)/r(S) is bounded above by a constant. Then all
t intersecting pairs of regions can be reported in time
O(nlogn+t) and space O(n).

3. Discussion.

The near neighbor problem asks for all pairs of points of a

given finite set no more than a fixed distance apart. Using the
Euclidean metric as distance function, this problem c¢an be '
solved by finding all intersecting pairs of a finite set of
equalsized circles. Thus, our result implies that all t
Euclidean 'near neighbor pairs' of a set of n points can be
reported in time O(nlogn+t) even in the worst case. In addition,
our algorithm does not rely on the Euclidean metric. The same
result can be obtained for any metric for which the following
conditions hold: (i) The distance between-two points can be
computed in constant time, (ii) there exists a non-empty sguare
which is entirely contained in the union circle defined by the
metric at hand, and (iii) there exists a bounded square
containing the union circle of the metric.

It seems worthwhile to mention that our algorithm works with
sets of regions with considerably weakened restrictions as well.
We need not insist on the possibility to determine the smallest
covering rectangle of a region in constant time. Instead, all
smallest covering rectangles must be computable in time O(nlogn}.
. Although the replacement of the regions by their smallest
I covering rectangle minimizes the number of explicit intersection
tests, the proof of the above theorem implies that larger
rectangles work with the same asymptotical complexity.
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Last not least, it has to be stated that the above
observations are not restricted to two dimensions. From
straightforward generalizations one can derive analogous
algorithms that work in three and more dimensions based on
preliminary results of Edelsbrunner [3] and Edelsbrunner,
Maurer [4]. '
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