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ABSTRACT

The segment tree is a data structure for storing and maintaining a set of
intervals on the real line. It has been used for an efficient algorithmic ap-
proach in a variety of geometric problems including the problem of deter-
mining intersections among axis-parallel rectangles, computing the measure
of a set of axis-parallel rectangles, and locating a point in a planar subdi-
vision.

A segment tree for n intervals requires ©(n) space in the best case and
O(n log n) space in the worst case. It is shown that segment trees require
O(n log n) space even in the expected case. Additionally, the worst-case
upper bound on the space requirement of segment trees is improved over
the previously known bound. Surprisingly, the space requirements in the
expected and in the worst case differ only little.
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1. INTRODUCTION AND PRELIMINARIES

In 1977 Bentley [1] developed the segment tree as a tool in an efficient
algorithm to compute the area of a set of axis-parallel rectangles in the
plane (see also van Leeuwen and Wood [13]). The algorithm employed
the plane-sweep technique and used the segment tree for accommodating
the projections (intervals) of the rectangles on the sweep-line.

Since then, several problems dealing with axis-parallel rectangles in the
plane were efficiently solved with the aid of the segment tree or some of
its variants. It was exploited for the detection of intersections among axis-
parallel rectangles by Bentley and Wood [2] and Six and Wood [9]. Lipski
and Preparata [6] used the segment tree for the computation of the contour
of a set of axis-parallel rectangles in the plane, and Vitanyi and Woo
[14] designed an algorithm that computes the perimeter of such a set with
the aid of the segment tree.

For the point location searching problem (i.e., given a planar subdi-
vision, determine the region a given point is in), the segment tree turned
out to be of considerable value as well. Preparata [8] and Edelsbrunner
and Maurer [4] developed related modifications of the segment tree that
help solve this problem.

A striking drawback of the segment tree is the superlinear space com-
plexity. To accommodate n intervals, the segment tree requires O(n log n)
space in the worst case and O(n) space in the best. It has been conjectured
that the space complexity of segment trees will “‘tend’’ toward linear
behavior. Our aim is to destroy illusions of this kind by the thorough
calculation of the expected-case space complexity. In addition to this, we
will derive a new upper bound, which improves over the best previously
known bound, on the space required in the worst case.

We will briefly review how a segment tree is used to store intervals on
the real line. Let (I;)), i = 1, ..., n, be a collection of intervals I; =
la;:, b;] on the real line. We restrict our attention to the case of pair-
wise disjoint end points. Consequently, the 2n end points partition tL
line into 2n — 1 (atomic) segments, disregarding the two infinite parts,
see Figure 1.

The segment tree for the n intervals is a minimal-height binary tree with
2n — 1 leaves corresponding in a natural way to the 2n — 1 segments.
Each inner node v corresponds to the union of all the segments corre-
sponding to the leaves that descend from v. This union of atomic segments
is called the segment of v.

Additionally, each node v is assigned a linear list, called its node list,
containing all intervals in (/;) that cover the segment of v but do not cover
the segment of the father of v. Figure 2 shows the segment tree with the
node lists for the intervals depicted in Figure 1.
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Figure 1. Atomic segments induced by four intervals.

Note that the segment tree for a collection of intervals is not uniquely
defined since the skeletal minimal-height binary tree is, in general, not
unique.

We introduce a so-called idealized segment tree, which provides the
framework supporting mathematical calculations. Our results for ideal-
ized segment trees carry immediately over to certain special kinds of
minimal-height segment trees. Although not proved, we believe that our
results on the space complexity hold for all choices of minimal-height
segment trees. The skeleton of the idealized segment tree is a concep-
tionally infinite binary tree B, with all its leaves at the same level (see
Figure 3). With each set of n intervals, a collection V of nodes of the
skeleton is associated as follows: the 2n — 1 leftmost leaves are in V,
and, additionally, each node whose two sons are in V is also in V. It is

Figure 2. The segment tree for four intervals.
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Figure 3. The idealized segment tree.
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clear that the nodes in V are exactly the nodes of a collection of per-
fect subtrees at the far left end of B. Note that V has fewer nodes than
the segment tree would need. The nodes in V are augmented with the
node lists containing the intervals of the set. This gives the idealized
segment tree.

The space needed by a segment tree splits into a portion for the nodes
of the tree and a portion for the entries in the node lists. An obvious
argument shows that a single interval is stored in at most 2logn + 1
node lists, where ‘‘log’’ stands for the binary logarithm and n denotes the
number of intervals involved. (These conventions hold throughout this
article.) Let S denote the number of entries in the node lists, thenn = §
= 2n log n + n. Observe that the node lists dominate the space require-
ment. By the space complexity of a segment tree, we will therefore mean
the number of entries in its node lists. The subsequent sections analyze
the space complexity of the segment tree in the expected case and in the
worst case,

2. EXPECTED-CASE SPACE REQUIREMENTS

Let (I),i = 1, ..., n, be a collection of intervals, I; = [a;, b:], on the
real line. We restrict our attention to sets of intervals with pairwise distinct
end points. We list the end points in increasing order as eo, €, . . .,
ean—1. We say that an interval has rank r, where r is a positive integer
not greater than n, if there exist exactly r — 1 intervals with smaller left
end points. The normalized sequence of (I;) is obtained by ranking the
actual intervals, i.e., for each left and right end point in the sorted se-
quence we take the rank of the interval they belong to instead. Intuitively,
an interval now corresponds to a ‘‘row of leaves.”” Note that two sets of
intervals that lead to the same normalized sequence give rise to the same
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node lists up to isomorphism. In the sequel, only normalized sequences
and the corresponding idealized segment trees, simply termed ‘‘segment
trees,” are considered.

Let F be an arbitrary normalized sequence for n intervals. The number

of entries in the node lists of the corresponding segment tree is denoted
by S(F).

Definition 1. The arithmetical mean of S(F), over all normalized se-
quences F for n intervals, is called the expected-case space complexity,
for short E,, of the segment tree.

The number of distinct normalized sequences for n intervals is of ob-
-ous relevance for the analysis of the expected-case space complexity.

LemMA 1. There exist exactly (2n)!/(n!2") distinct normalized se-
quences representing respective n intervals.

PrROOF BY INDUCTION. Trivially, the assertion is true for n equal to 1.
To obtain the number forn + | intervals, take any sequence for 1 intervals
and insert a new interval as follows: the left end point of the new interval
is placed in front of the first old end point, and the new right end point
is inserted anywhere except in front of the new left end point. (The ranks
are, of course, simultaneously updated.) Hence, there are 2n + 1 pos-
sibilities to insert a new interval.

Note that this strategy (i.e., fixing the position of the new left end point)
guarantees that each possible normalized sequence for n + 1 intervals is
obtained exactly once as all (2n)Y(n!2") normalized sequences for n in-
tervals are taken. Hence, there are (2n + D2r)(n12) =
(2rn + 2)V[(n + D127+ distinct normalized sequences for n + 1 inter-
vals, which completes the argument. [

Before proceeding to the calculation of the expected-case space com-
plexity E,, let us evaluate E, by explicitly examining all normalized se-
quences for two intervals. As a result of Lemma 1, we know that there
are three distinct normalized sequences, namely, (1, 1, 2, 2), (1, 2, 1, 2),
and (1, 2, 2, 1) (see Figure 4),

Two of the three sequences cause three entries and one only two entries.
Consequently, E, = 8/3.

Let P(n) denote the set of all normalized sequences for n intervals. By
Lemma 1, P(n) consists of (2n)!/(n!2") sequences. The intervals in a nor-
malized sequence are given as pairs of positions. For instance, the first
interval in (1, 2, 1, 2) is given by the positions 0 and 2, which translates
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Figure 4. Possible segment trees for two intervals.

to the observation that it covers the segments of the two leftmost leaves
of the segment tree.

LEMMA 2. There are n(2n — 1) distinct intervals in the normalized
sequences of P(n), and each of these intervals occurs exactly
@2n — DW(n — D12"7") times.

Proor. Note first that a normalized sequence for n intervals consists
of 2n integers. Consequently, there are n(2n — 1) distinct pairs of posi-
tions, each one defining exactly one interval.

That each interval occurs exactly 2n — 2)!/[(n — 1)!12"'] times is
readily shown by the following argument: take a fixed interval and note
that the number of variations of the remaining 2n — 2 integers (which
equals the number of normalized sequences for n — 1 intervals) equals
the number of normalized sequences that contain the chosen interval.
This completes the argument. O

The expected-case space complexity is now analyzed by calculating the
sum of the entries that are caused by the n(2n — 1) distinct intervals. Let
f(i) denote the number of entries that are caused by the intervals with
right end point at position i. Clearly,

2n—1

E, = [2n — DY(n — DR*HUCwY12ZD] D f@)
i=1

l 2n—1
-1 2 10

Our next aim is to express f(i) in the binary notation of i. The following
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technical result will simplify the forthcoming demonstration. Let ones
(i) denote the number of I’s in the binary notation of the nonnegative
integer i.

OseRVATION 1. Let k be an arbitrary positive integer. Then
21

>, ones (i) = k2*~!

Let iy . . . i1ip denote the binary notation of i, with k(i) = [log i] and
therefore ix;, = 1, and i;in {0, 1} forj = 0, . . . , k(i) — 1.

LeMMA 3. Let i be an arbitrary positive integer, then

k() k(i) m=1
F =S imm2™ + D+ S 2" S i
m=0 m=1 J=0

(Any sum that starts with an index greater than the maximal index is
assumed to be equal to 0.)

Proor. The equation is obtained by partitioning the entries caused by
the intervals according to the binary notation of i. The intervals with their
right end points at position i may cause entries in the node lists of the
following set, V, of nodes: the i leftmost leaves are in V and each node
whose two sons are in V is also in V. (Figure 5 shows the intervals with
their right end points at position 10.) For each m, with 0 = m = k(i) and
i,, = 1, V contains the nodes of a minimal-height binary tree B, with 2™
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Figure 5. Intervals relevant for f(10).
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leaves. The leaves of B are the (J + I)st, (J + 2)nd, ..., (J + 2™)th
leftmost leaves, for

k(i)
I= §
J=m+1
Consider now the intervals with their end points at the positions J, J + 1,
,J + 2™ — 1. As a result of Observation 1, their contributions to
the node lists of B amounts to m2™~' + 1. These cotributions are taken
into account in the first sum of the assertion. Each of the 2 considered
intervals contributes exactly one entry to the node lists of each minimal-
height binary tree to the right of B, i.e., to the ones that correspond to
the 1’s among the m rightmost digits of the binary notation of i. Thu
each one of those intervals causes additional 2725 i; entries. These con-
tributions are taken into account in the second sum of the assertion. which
completes the argument. [
Using Lemma 3, we are able to state an exact formula for the expected-
case space complexity.
k(i) m—1

1 2n—1 k(i)
Bowgr 3 [2 (M2 £ 1) S pp2m p> :;]

i=1 m=0 m=1

2n—1 2n—1
S [2(m2’"“+1) i 22"’ S zng]
( = 1) i=1 i=1 j=0
with L = [log(2n — 1)]. For each i, with [log i] < L, the appropriate
number of leading zeros is concatenated to i’s binary notation.
For the evaluation of the preceding formula, a few technical results are
required.

OBSERVATION 2.  Let N denote a positive integer with binary notation
Ny . . . Ni\No, and let m be an arbitrary but fixed integer with0 = m =<
M. Then

= =1
S i = 2 N2-' + N,, ENE’

J=m+1 =0

OBSERVATION 3. Let N, M, and m be as in Observation 2. Then

-1 m—1 m—1
» i 3 = mam 2 N2Y—m-! + N, 2 N;j2-!
i=0 Jj=0 J=m+1 Jj=

m—2 m=—1

+Nn X NY 3 N

f=0 k=j+1



On Expected- and Worst-Case Segment Trees 117

OBSERVATION 4. For any positive integer N
N

> 2= (N—- 12V 42
i=0
Choosing N = 2n, M = [log N], and denoting the binary notation of
n by Nas . .. NiNo, our formula for E,, can be rewritten as follows:
1
E,=— m2m-1 + 1 N2~!
(2” [ 2 ( ); §+i
L m—1 M
+ 3 (m2ml4+1) 2 N.N/2 + 2 i e NY-m-1
m=0 Jj=0 m=1 j=m+1

~

m=1 m—2 m-—1
33 2NA{,;?‘+22"’2 b NNNsz]

m=1 J= m=1 J=0 k=j+1

Note the similarity of the first and the third sum. We are going to combine
those two sums, change the order of summation of the first and the fifth

sum, and omit disappearing terms.
I

En=Gn T D) Z NG = 229" + (j + 2271]
L m-—1 L m=1
+ 2 2 N Nj(m2™~ ' + )2 + 2 2 NNj2mj¥ -1
m=1 j=0 m=2 j=1

L m—1k-1
+ 3 ¥ 3 NmeNJ‘Z’”Zf}

m=2 k=1 j=0
The final exact formula is obtained by resubstituting N to 2n. Note that
Ni=ni_y,fori=1,..., M, where n;_, denotes the ith rightmost digit
in the binary notation of n. Also note that Ny = 0.

TuEOREM 1. Let n be any positive integer and let p = [log n] and L
= [log (2n —1)]. Then

1 £ ; :
. i——— e 2i+1 ;
12 Rl s {2 nl(G = D2¥H! + (j + 3)2]

J=0
L—=1 m-=1
+ > E Nanil(m + 127 + 11277
m=1 j=
L—1 m—1
4 2 nam 2741 + 1)2]
m=1 j=

L-=1 m-1k~-1
+ 2 E E nmnknjzm+12;+l}

m=2 k=1 j=
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Proor. The proof has been given earlier. O

For special values of n, the exact expected-case space complexity of
the segment tree for n intervals is now readily derived. For instance, set
n = 27, for some nonnegative integer p. Then

E,=[(p— 12+ (p +3nl/2n - 1)
[2n*logn — 2n + nlogn + 3nl/2n — 1)

=nlogn—n+logn+1+(ogn+ 1)/2n - 1)

In what now follows, E, will be shown to differ from » log n by at most
a linear term.

THEOREM 2.  For any positive integer n, E, = nlogn + O(n).

Proor. To simplify the exposition, the linear and sublinear terms are
removed from the formula given in Theorem 1, i.e.,

I P
= — n '22j+ 1
E Zn ‘g() nJ'J

L—-1 j-1
+ > nn, j22m+!

J=1 m=0
L-2 L-1
+ 2> 3 n,,,njjzfzm*-‘] + O(n)
J=0 m=j+1

Excluding the case n = 27, which has been treated as an example
earlier, we have p = L — 1 and therefore

L—-1

g
E, = L > n (jlz*‘“ + 3 n, Yt

2n = m=0

L—1
+ 3 n,,,fzfzm“) + 0(n)

m=j+1
{ L1 L1
== D mi2 Y ny2m + 0n)
J=1 m=0
L~1 L-1
=S +0m=L-13 n¥+ 0
i=1 i=1

Il

nlogn + O(n)

This completes the argument. O
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3. WORST-CASE SPACE REQUIREMENTS

As the known worst-case bounds for the space complexity (which are
mentioned in Section 1) are rather crude, this section is devoted to the
thorough analysis of the space requirements of the segment tree in the
worst case and in the best case.

Definition 2. The maximum [resp, the minimum of §(F)] for F, a nor-
malized sequence of n intervals, is called the worst-case [resp. the best-
case] space complexity (for short W, [resp B, ]) of the segment tree.

OBSERVATION 5. For positive integers n, B, = n

For instance, n nonintersecting intervals cause only n entries in the
node lists of the segment tree. Because each interval causes at least one
entry, this is also minimal.

The analysis of the worst-case space complexity W, turns out to be
much harder. We know that W,, is greater than E, and consequently that
W, = nlogn + cn, for some real constant c. In the sequel, an upper
bound of the same order of magnitude will be demonstrated. To this end
some facts about the number of 1’s in the binary notation of nonnegative
integers are needed.

LEmMA 4. Let m be an arbitrary nonnegative integer. Then
2"'

E max{ones(f), OHES(Z’" et f)} ] mzm_'l 3 e(mlf22m)
i=0

The proof of this lemma is given in the Appendix.

To simplify the discussion, a few more notations are quite helpful. A

rfect binary tree is a minimal-height binary tree with k := 27 leaves, for
some nonnegative integer i. The segments of the leaves of a perfect binary
tree are determined by & + 1 end points which we sort as e, ey, . . . ,
ex. Each end point e; has assigned a right-interval, which extends from
eo to ¢;, and a left-interval, which extends from e; to e;. A left—right
sequence of a perfect binary tree is a collection of left- and right-intervals,
where each end point, ¢;, contributes exactly one of its two intervals to
the collection.

LemMA 5. Let T be a perfect binary tree with 2™ leaves, for some
nonnegative integer m. The space required by the intervals in a left—right
sequence of T is at most equal to m2™~' + O(m"22™).
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Proor. Note first that the right-interval of the end point ¢;, for 0 < j
= 2™, causes exactly ones(j) entries in T. Similarly, e;’s left-interval
causes ones(2™ — j) entries. The space required by a left-right sequence
of T is therefore at most equal to

zm

> max{ones(i), ones(2” — i)}

i=0
As a result of Lemma 4, this sum equals m2"~! + ©(m'22™), which
completes the argument. [J

Now, we are prepared to present the main result of this section.
THEOREM 3.  For any positive integern, W,, = n log n + O(n log'? n).

ProoF. Recall that the relevant part of the idealized segment tree
that accommodates n intervals consists of several perfect binary trees,
each one corresponding to a 1 in the binary notation of N := 25 — 1, see
Figure 6.

Consider an interval /, stored in the idealized segment tree. I’s left end
point, /(]), is said to belong to the relevant perfect binary tree T, which
contains a leaf whose segment’s left end point is the same as /(). Anal-
ogously, I's right end point, r(I), belongs to the relevant perfect binary
tree U, which contains a leaf whose segment’s right end point is (7).

The left-interval, L(I), of I extends from I() to the rightmost end point
of any segment in T. The right-interval, R(I), of I extends from the left-
most end point of any segment in U to r(I). If there is a gap between L(1)
and R(1), i.e., the right end point of L(]) lies to the left of R(I)’s left end
point, then the middle-interval, M(I ), equals the interval in between these
two end points, see Figure 7.

Let (I.),i = 1,..., n, be a set of intervals with pairwise distinct end

]

Figure 6. Relevant part for eight intervals.
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Figure 7. Left-, right-, and middle-intervals.

points. The space required by ([;) is no more than the space required by
the collection of left-, right-, and middle-intervals of the intervals in ([;).
Note that the middle intervals require only linear space altogether. Con-
sequently, the assertion of the theorem holds if the left- and right-intervals
need at most n log n + O(n log'? n) space.

However, the collection of left- and right-intervals needs no more space
than the worst left-right sequences of the relevant perfect trees. By
Lemma 5, these sequences require ZM, [N;i2-' + 0(i"?2")] space,
where Nas . . . N3Ny is the binary notation of N. This sum, in turn,
can be rewritten as n log n + O(n log'?n), which completes the argu-
ment. []

4. DISCUSSION

-he main result of this article states that a segment tree accommodating
nintervals has n log n + o(n log n) entries in its node lists in the expected
as well as in the worst case, where log n denotes the binary logarithm of
n. Although n intervals may require as little as linear space in the best
case, the result shows that ‘‘almost all’’ sets of intervals are very close
to the worst case.

As a consequence, the segment tree does by no means ‘tend’ to linear
behavior as far as its space requirements are concerned. This shows for
instance that the space requirements of Preparata’s point location method
[8] cannot be improved if the segment tree is maintained as the basis of
the search data structure,

By virtue of the kind of results presented, we consider our article to
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be related to the one of Monier [7]. His calculations can be interpreted
as a thorough analysis of the multi-dimensional range tree, a structure in
some sense dual to the segment tree.

A number of questions and open problems are raised by our investi-
gations. They ask for more accurate examination of well known data
structures.

1. The space requirements of multi-dimensional segment trees as de-
scribed by Six and Wood [10], Edelsbrunner [3], and Edelsbrunner
and Maurer [5] remain to be calculated in a more detailed manner.

2. The space occupied by balanced segment trees as introduced in
Edelsbrunner [3] is of interest in dynamic environments, but re-
mains to be analyzed.

3. Vaishnavi [11] and Vaishnavi and Wood [12] developed certain
kinds of layered segment trees. As one distinction to original seg-
ment trees, an interval is additionally stored in the node lists of
nodes whose segments have a nonempty intersection with the in-
terval and with its complement. The space required by layered
segment trees is closely related to the time needed to build up
original segment trees.

4. The average search time in the modified segment tree of Edels-
brunner and Maurer [4] is of interest due to the simplicity of the
structure compared to other structures supporting the point loca-
tion searching problem in the plane. We conjecture that it is pro-
portional to log® n but with a small constant involved.

APPENDIX

Here we present a detailed proof of Lemma 4. Let us first repeat the
assertion.

LEMMA 4. Let m be an arbitrary nonnegative integer. Then

2"!
> max{ones(i), ones2™ — )} = m2™~' + O(m'22™)

i=0

Proor. The sum in Lemma 4 is evaluated by considering the absolute
differences | ones(i) — ones(2™ — i) |. Because for nonnegative real num-
bers x and y, max{x, y} = (x + y + | x — y|)/2, and X.2”, [ones(i) +
ones(2™ — i)] = m2™ + 2, the assertion of Lemma 4 holds if and only
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if
2’"
g(m) := 3 | ones(i) — ones(2” — i)| = O(m"?2™)
i=0
We have
2m=1
g(lm) =2 > | ones(i) — ones(2™ — i) |
i=0
2m—1
=2 3 |ones(i) — ones2™ — i)| + 2
i=1
Tow, for 1 =i < 2™"! ones(2™ — i) = ones(2” ! — {) + 1, conse-
quently | ones(i) — ones(2™ — i) | = | ones(i) — ones(2™~' — i) | + d;,
where d; = 1 if and only if ones(i) < ones(2”~! — i), and d; = —1 oth-

erwise. Therefore
am=1

2 > (lones(i) — onesR™ "' — )| +d) +2

i=1

I

g(m)

2m—1

2m—]
2 > |ones(i) —onesQ™ ' -)|+2 3 d;
=1

i=0

2m—1

28m — 1) + 2 > d;

i=1

Il

Let m be no less than 2. For the evaluation of the sum of the d;, fori =
1,...,2™" ' we define for each nonnegative integer k, I, = {i| 1 =i
= 2™~ 1 and i is a multiple of 2* but not of 2* '}, cx = Z;in 1 di. Obviously
Cm-1 = —land ¢,,,—>» = 1, so that

2m=1 m—3
2 d; = E Cg
t=1 k=0
Now, for i in Ii, with k ranging from 0 to m — 3, ones(2™ ' — i) = m

— k — ones(i). Consequently, we have for all i in I;, d; = 1 if and only
if ones(i) = [(m — k)/2]. Note that for all i in I, the suffix of length k& +
1 of the binary notation of i is of the form 10*. Hence, there are exactly

(m Ef l_ 2 numbers i in [, such that ones(/) = L. As an immediate

consequence

[(m — K)/2] m—k—1
m—k—2) (m—k—Z)
Cp = E - E
L=1 ( L L=[(m—k)y2]+1 £
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Transformation of L in the preceding formula yields

[(m — k—2)/2] mi—k—2
-k-2 k-2
o= 2 (") 2.0

L=0 L =[(m—k)2]

Since (:) = (r i S), we conclude that ¢, = 0if m — k is odd, and ¢

(m — k — 2)/2]
and even, one readily sees that

am—1 [mi2]—1
2L
s -E

i=1 L=1

- ([ ok = 8 ) for even m — k. Making a case analysis for m odd

and therefore

[m/2] -1

sy =2sm-n+2 3 (%)
L=1

L

this one easily derives g(m) = 2g(m — 1) + ©(2"/m"?). Since X7, i~ 2
= O(m'?), the recursive equation finally yields

g(m) = ©(m'?2™)

as was to be shown. This completes the argument. [J

Application of Stirling’s formula shows that (ZL) = O(2*%/L'?) and from
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