
Intern. J. Computer Math., 1983, Vol. 13, pp. 209-219
0320-71 608311 304-0209 $1 8.5010
0 Gordon and Breach Science Publishers Inc., 1983
Printed In Great Britain

A New Approach to Rectangle
l ntersections
Part I

HERBERT EDELSBRUNNER
Institute for Information Processing, Technical University of Graz,
Schiesstattgasse 4a, A -80 10 Graz, Austria

(Received September 1982)

Rectangle intersections involving rectilinearly-oriented (hyper-) rectangles in
d-dimensional real space are examined from two points of view. First, a data structure
is developed which is efficient in time and space and allows us to report all
d-dimensional rectangles stored which intersect a d-dimensional query rectangle.
Second, in Part 11, a slightly modified version of this new data structure is applied to
report all intersecting pairs of rectangles of a given set. This approach yields a
solution which is optimal in time and space for planar rectangles and reasonable in
higher dimensions.

KEY WORDS: Computational geometry, rectilinearly-oriented rectangle,
intersection, searching problem, data structure, concrete complexity.

CATEGORIES AND SUBJECT DESCRIPTORS: E.l [Data]: Data structures-
trees; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical algorithms and problems-geometrical problems and
computation, sorting and searching; H.3.3 [Information Storage and
Retrieval]: Information search and retrieval-search process.

1. INTRODUCTION

The young branch of computer science called computational
geometry deals with the computational complexity of geometric
problems. This paper investigates such a problem which has
applications in areas like VLSI design and computer graphics. We

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

210 H. EDELSBRUNNER

refer to Bentley and Wood [2] for details concerned with these
applications.

We first introduce a few definitions which help us to classify the
area of computational geometry. An important class of problems, the
so-called searching problems, receive their motivation from the
theory of databases: A searching problem P involves a set S of objects
and answers queries which depend on S and on a query object q.
Thus, P can be viewed as a function which maps S and q into some
answer P(S, q). Note that three types of data, namely objects, query
objects, and answers are involved.

A typical example is the so-called range searching problem which
involves a set S of points in d dimensions. It maps S together with a
query range q which is the Cartesian product of d intervals one on
each coordinate-axis, into the set of points in S which are contained
in q. The range searching problem is important to our discussion in
Section 2.

The particular searching problem which is investigated in this
paper is the so-called rectangle intersection searching problem. It is
studied in the d-dimensional real space, for d z 1. A d-dimensional
rectilinearly-oriented rectangle (for short d-rectangle) is the Cartesian
product of d closed intervals one on each coordinate-axis. Two
d-rectangles are said to intersect if they have at least one point in
common. The (d-dimensional) rectangle intersection searching problem
involves a set S of d-rectangles as objects and maps S together with
a query d-rectangle q into the set of d-rectangles in S which intersect
4.

The usual way to treat a searching problem on a computer is to
store the set S of objects in some data structure which allows us to
answer queries efficiently. An everyday example is to sort a set of n
numbers which allows us to decide in O(1ogn) time by binary search
whether or not a later specified query number is in the set. To
answer a query of the range searching problem or the rectangle
intersection searching problem means to report the points or
rectangles which are in the desired set.

In certain applications, however, one has to solve so-called single-
shot problems. That is, a solution of an instance of the problem is
computed once and nothing has to be saved in the computer in
order to answer later specified queries. Some single-shot problems
are directly related to searching problems. We identify two classes of

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

RECTANGLE INTERSECTIONS-I 21 1

such problems which relate to searching problems whose objects are
of the same type as their query objects.

The all-elements problem of a searching problem P maps a set S of
objects into the set of answers P(S-{q) , q), q in S. Intuitively, an all-
elements problem answers a query for each object in the set. The all-
elements problem of the rectangle intersection searching problem
involving a set S of rectangles is solved by reporting for each
rectangle q in S those rectangles in S which intersect it.

Since the intersection relation is symmetric (i.e. a rectangle r
intersects another rectangle s if and only if s intersects r) we might
not be interested in the intersecting rectangles for each rectangle in S
but rather in all pairs of intersecting rectangles. More general, we
define the all-pairs problem of a searching problem P which maps a
set S of objects into the set of pairs (p, q), p and q in S, such that p is
in P(S-{q) , q) and q is in P(S-{p) , p). In particular, Part I1 of this
paper examines the all-pairs problem of the rectangle intersection
searching problem which we call the all intersecting rectangles
problem.

The current paper consists of two parts. Section 2 of Part I
examines the possibility to solve the rectangle intersection searching
problem by means of solutions for the well-known range searching
problem. Then Section 3 of Part I improves the thus obtained results
by the design of a new data structure for rectangles. This solution is
optimal for the one-dimensional case and reasonable in higher
dimensions. Part I1 applies the data structure developed in Section 3
to the all intersecting rectangles problem. The solution obtained is
optimal in the two-dimensional case where it improves previous
results, and it is reasonable in three and higher dimensions.

The development described in this paper took place in 1980 and
was previously reported in Edelsbrunner [3, 41. Since then several
rediscoveries and improvements occurred. McCreight [8]
independently obtained a data structure for intervals which is very
similar to the 1-fold rectangle tree presented in Section 3.1. His so-
called tile tree has the disadvantage that the worst-case bounds of
our tree are not guaranteed. Lee and Wong [7] independently
discovered the correspondence between rectangle intersection
searching and range searching which is presented in Section 2.
Finally, Six and Wood [lo] as well as Edelsbrunner [5] improved
our results for d 2 2 dimensions.

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

212 H. EDELSBRUNNER

2. RANGE SEARCHING FOR FINDJNG RECTANGLE
INTERSECTIONS

The rectangle intersection searching problem is shown to be solvable
by data structures originally designed for the range searching
problem. This result follows from a transformation of d-rectangles
into 2d-dimensional points.

LEMMA 2.1. A rectangle intersection query involving a set S of
d-rectangles and a query d-rectangle q can be answered by (1) mapping
S into an equal-sized set S' of points in 2d dimensions, (2) mapping q
into a range q' in 2d dimensions, (3) solving the range query for S' and
q' and (4) interpreting the answer for the range query as the answer for
the rectangle intersection query for S and q.

Proof Let us first examine the rectangle intersection problem in
one dimension. Each 1-rectangle is a closed interval. An interval
i = [i,, i,] is fully determined by two values, namely the left endpoint
i, and right endpoint i,. Thus, we may interpret this pair of values
(i,, i,) as a point in two dimensions. Let S' be the set of two-
dimensional points such that i1=(i1, i,) is in St if and only if
i = [i,, i,] is in S. We proceed by mapping the query interval
q=[ql, q,] into the range q' which is the Cartesian product of the
intervals (-inf, q,] on the first and [q,, inf) on the second
coordinate-axis, where inf stands for the infinite value. Now the
range query for S' and the query range q' is answered. As can be
readily seen, each point of S' in q' is the image of an interval in S
which intersects q which completes the argument for the one-
dimensional case.

Note that two d-rectangles intersect if and only if their intervals
on the jth coordinate-axis intersect, for 1 s j s d . This fact allows the
generalization to d 2 2 dimensions to be accomplished. Let S be a set
of d-rectangles and let S' denote the set of points in 2d dimensions
such that the point r '= (r,, r , , . . . , r,,) is in S' if and only if the
d-rectangle r which is determined by the intervals
[r,,r,], . . . , [r,,-,, r,,] is in S. The query d-rectangle q determined by
the intervals [q,, q,], . . . , [q,,- ,, q,,] is mapped into the
2d-dimensional range q' determined by the unbounded intervals
(- inf, q2], [q,, inf), (- inf, q,], . . . , [q,, - ,, inf). We find all rectangles

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

RECTANGLE INTERSECTIONS-I 213

which intersect q by solving the range query for S' and the query
range q'. This completes the argument.

These considerations give us a first glimpse of the complexity of
the rectangle intersection searching problem, since the range
searching problem is well studied and efficient solutions are known.

COROLLARY 2.2. For the rectangle intersection searching problem
involving a set S oj'n d-rectangles there exists a data structure which
requires O (n 1 0 g ~ ~ ' n) space and O (n l ~ g ~ ~ - ' n) time for construction
such that O(10g~~-l n+t) time suffices to report the t d-rectangles in S
which intersect u query d-rectangle.

The bounds are achieved by the range tree which is described in
Bentley [l] and improved in Willard [I I].

As the range searching problem is already well studied we do not
attempt to improve the complexity of range searching in order to
improve the bounds for the rectangle intersection searching problem.
But there are two facts which lead us to hope that a specially
designed data structure for the latter problem will be better. These
facts are:

i) The d-rectangles are mapped only into a subset of the
2d-dimensional space, that is to {(x,, x2, . . . , x2J

5.x2j, 1 Z,jS(/;.
ii) The range in 2d dimensions obtained by mapping the query

d-rectangle is not an arbitrary range. Each one of its
intervals is unbounded in one direction and the finite vertex of
the range is a point in {(x,, xz , . . . , x,,)~x,~-, 2.xZj, 1 z j s d } .

In Section 3 we exploit these facts in the design of a new data
structure for d-rectangle., the so-called d-fold rectangle tree.

3. A N E W DATA STRUCTURE FOR d-RECTANGLES

We first consider the 1-fold rectangle tree which stores 1-rectangles,
that is, intervals on a line. Then Section 3.2 generalizes the results to
two and higher dimensions.

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

214 H. EDELSBRUNNER

3.1. The I -fold rectangle tree

Let S denote a set of n intervals and let el , . . . , e,, be the sorted list
of left and right endpoints of these intervals. For convenience, we
assume that no two endpoints are the same. Sets of intervals with
potentially coinciding endpoints can be treated by the same method
trivially modified. The root r of the I-fold rectangle tree for S
contalns

i) a value, u(r)=(e,+e,+ ,)/2, that partitions the list into two
parts each comprising exactly n endpoints, and

ii) three pointers to its sons left(r), middle(r), and right(r).

Let S, and S, denote the set of intervals in S which lie completely
to the left and right of v(r), respectively. S , denotes the set of
remaining intervals, that is, those intervals which contain v(r). Left (r)
is the root of the 1-fold rectangle tree for the intervals in S , and
right(r) is the root of the 1-fold rectangle tree for the intervals in S,.
middle(r) is the root of a minimal height binary tree which stores the
endpoints of the intervals in S , in its leaves. We call this tree the
middle subtree of r. The endpoints in this tree are stored in increasing
order and the leaves of the middle subtree are organized as a
doubly-chained list which reflects the same ordering. Additionally,
the root of the middle subtree contains pointers to the leftmost and
rightmost leaves in the middle subtree, respectively, see Figure 3.1.

In a more informal manner we say that the 1-fold rectangle tree is
binary tree (termed the primary structure) each node of which is
associated with a third tree (the middle subtree) which stores a
subset of the given intervals. The totality of middle subtrees is
termed the secondary structure. We call a node belonging to the
primary structure a primury node, and a node belonging to the
secondary structure a .src.ondurjs node.

We leave to the interested reader the task to derive a detailed
algorithm which constructs a 1-fold rectangle tree. Such an
algorithm follows almost immediately from the definition of the tree.
In the sequel, the search algorithm is described which detects for a
given 1-fold rectangle tree T and a query interval y all intervals in T
which intersect q.

The intersecting intervals are determined by descending the
primary structure of T and performing certain actions at each

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

RECTANGLE INTERSECTIONS-I

FIGURE 3.1. The I-fold rectangle tree for five intervals.

primary node visited. Let p denote the current primary node. Two
substantially different cases are distinguished:

Case 1. There is no ancestor of p which has its value inside of q.

Case 1.1. The value of p is outside of q. W.1.o.g. we assume that q
is to the left of v(p). Then the middle subtree of p is examined, that
is, the leaves are traversed from left to right and each interval whose
left endpoint is encountered is reported until the first endpoint to the
right of q is reached. In addition, the left son of p is visited
recursively.

Case 1.2. The value of p is contained in q. Note that q is the first
node visited with this property. Then all intervals stored in the
middle subtree of p are reported and both sons of p are visited
recursively.

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

216 H. EDFLSBRUNNER

Case 2. There exists an ancestor of p which has its value in q.
Let a(p) denote the first ancestor on the way from p to the root with
this property. W.1.o.g. we assume that p is in the right subtree of u(p).

Case 2.1. The value of p lies to the right of q. Then the middle
subtree of p is examined as in Case 1.1 and the left son of p is visited
recursively.

Case 2.2. The value of p lies in q. Then all intervals stored in the
middle and the left subtree of p are reported and the right son of p is
visited recursively.

THEOREM 3.1. For the one-dimensional rectangle intersection
searching problem involving a set S of n intervals there exists a data
structure which requires O(n) space and (nlogn) time for construction
such that O(logn+t) time suffices to report the t intervals which
intersect a query interval.

Proof We show the assertion by analyzing the time and space
requirements of the 1-fold rectangle tree for S.

In order to answer a query at most O(1ogn) primary nodes of the
tree are visited. For each such node either the associated middle
subtree is examined or all intervals stored in at most two of its
subtrees are reported. Since the time needed for each such activity is
proportional to the number of intervals detected, O(log n + t) time
suffices to answer a query where t intervals are reported.

The 1-fold rectangle tree for n intervals can be constructed in
O(n1ogn) time by a recursive procedure which follows the definition
of the tree: O(n) time is required for each level of the primary
structure and O(nlog n) time suffices to construct the various middle
subtrees.

The space required by the primary structure is clearly O(n), and
since each interval is stored exactly once in the secondary structure,
the total space is O(n). This completes the argument.

3.2. The d-fold rectangle tree

This section extends the methods presented to d dimensions. The so-
called d-fold rectangle tree to be described is a straightforward

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

RECTANGLE INTERSECTIONS-I 217

generalization of the 1-fold rectangle tree and is used to
accommodate d-rectangles.

Let S denote a set of d-rectangles, for d 22 . The d-fold rectangle
tree for S consists of a 1-fold rectangle tree which stores the dth
intervals of the d-rectangles in S. No doubly-chained organization of
the leaves and no additional pointers for the secondary roots are
required this time. This tree is referred to as the dth component tree.
For each node p of this tree, we define set(p) as the set of
d-rectangles which have at least one of their endpoints stored in the
subtree of p. Then p is assigned the (d- 1)-fold rectangle tree which
stores the (d - 1)-rectangles which are the orthogonal projections
onto the first d - 1 coordinates of the d-rectangles in set (p).

The algorithms for creating a d-fold rectangle tree and searching
in it are very similar to the algorithms for the 1-fold rectangle tree.
In order to adapt the construction algorithm we have to add the
recursive mechanism that associates (d - 1)-fold trees to the nodes of
the dth component tree. The modifications necessary for the search
algorithm are:

i) The command of reporting all intervals stored in some subtree
T' is replaced by the command to investigate the appropriate
lower dimensional subtree.

ii) The examination of a middle subtree which is done by
traversing the leaves exploiting the doubly-chained
organization is replaced by the determination of O(1og n)
disjoint subtrees of this middle subtree whose leaves are
exactly the leaves which would be encountered during the
traversal. For each of these subtrees the lower dimensional
subtree associated with its root is investigated.

THEOREM 3.2. For the d-dimensional rectangle intersection searching
problem involving a set of n d-rectangles there exists a data structure
which requires O(nlogd-' n) space and O(nlogd n) time for construction
such that O(10g~~- ' n + t) time suflces to report the t rectangles which
intersect a query rectangle.

Proof The asserted bounds are shown to be correct for the d-fold
rectangle tree T for S.

A query in T visits O(1ogn) primary nodes of the dth component
tree of 7: For each of these nodes either at most two (d - 1)-fold trees

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

2 18 H. EDELSBRUNNER

associated with its .sons or O(1ogn) (d - 1)-fold trees associated with
nodes in the middle subtree are investigated. Let Q(n, d) denote the
query time for T not regarding the time required to report the
intervals determined. Then the observation above implies Q(n, d)
= 0(log2 n)Q(n, d - 1). Since Q(n, 1) = O(log n), see Theorem 3.1, we
have Q(n, d) = O(10g~~ - n) as desired.

Each d-rectangle in S has its endpoints in the subtrees of at most
O(1og n) nodes of the dth component tree of ?: Thus, the (d- 1)-fold
trees associated with the nodes of the dth component tree store
O(n log n) (d - 1)-rectangles, altogether. Let P(n, d) denote the time
required to construct T Then

P(n, d) = O(n log n) + P(O(n log n), d - 1)

and since P(n, 1) = O(n log n) we have P(n, d) = O(n logd n). Let S(n, d)
denote the space required by T By the above observation, we have

S(n, d) = O(n) + S(O(n log n), d - 1)

and since S(n, 1) = O(n), we conclude S(n, d) = O(n logd- n) as asserted.
This completes the argument.

The investigation of algorithms which determine intersections on
d-rectangles is continued in Part I1 of this paper. There, the data
structure developed in this section is used for reporting all
intersecting pairs of a set of d-rectangles.

References
[I] J. L. Bentley, Decomposable searching problems, In$ Proc. Lett. 8, 1979, 244-

251.
[2] J. L. Bentley and D. Wood, An optimal worst case algorithm for reporting

intersections on rectangles, IEEE Tr. on Comp. C-29, 1980, 571-577.
[3] H. Edelsbrunner, Dynamic rectangle intersection searching, Report F47, Inst. for

- - Inf. Proc. Techn. Univ. of Graz, Austria, 1980.
[4] H. Edelsbrunner, A time- and space-optimal solution of the planar all

intersecting rectangles problem, Report F50, Inst. for Inf. Proc., Techn. Univ. of
Graz, Austria, 1980.

[5] H. Edelsbrunner, Dynamic data structures for orthogonal intersection queries,
Report F59, Inst. for Inf. Proc., Techn. Univ. of Graz, Austria, 1980.

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

RECTANGLE INTERSECTIONS-I 219

[6] M. L. Fredman, A lower bound on the complexity of orthogonal range queries,
J. of the ACM 28, 1981, 696705.

[7] D. T. Lee and C. K. Wong, Finding intersections of rectangles by range search,
J. of Algorithms 2, 1981, 337-347.

[8] E. M. McCreight, Efficient algorithms for enumerating intersecting intervals and
rectangles, Report CSL-80-9, XEROX Parc, Palo Alto, Cal., 1980.

[9] H.-W. Six and D. Wood, The rectangle intersection problem revisited, BIT 20,
1980,426-433.

[lo] H.-W. Six and D. Wood, Counting and reporting intersections of d-ranges,
IEEE Tr. on Comp. C-31, 1982, 181-187.

[11] D. E. Willard, New data structures for orthogonal queries, Report TR-22-78,
Aiken Comp. Lab., Harvard Univ., Cambr., Mass., 1978.

D
ow

nl
oa

de
d

by
 [N

ew
 Y

or
k

U
ni

ve
rs

ity
] a

t 2
0:

50
 1

3
Ja

nu
ar

y
20

15

