
Inrern. J. Computer Math., 1983, Vol. 13, pp. 221-229
0020-7160/83/1304-0221 S18.50/0
8 Gordon and Breach Science Publishers Inc.. 1983
Printed in Great Britain

A New Approach to Rectangle
l ntersections
Part II

HERBERT EDELSBRUNNER
Institute for Information Processing, Technical University of Graz,
Schiesstattgasse 4a, A-801 0 Graz, Austria

(Received September 1982)

The study begun in Part I is completed by providing an algorithm which reports all
intersecting pairs of a set of rectangles in d dimensions. This approach yields a
solution which is optimal in time and space for planar rectangles and reasonable in
higher dimensions.

KEY WORDS: Computational geometry, rectilinearly-oriented rectangle,
intersection, searching problem, data structure, concrete complexity.

CATEGORIES AND SUBJECT DESCRIPTORS: E.1. [Data]: Data structures-
trees; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical algorithms and problems-geometrical problems and
computation, sorting and searching; H.3.3 [Information Storage and
Retrieval]: Information search and retrieval-search process.

4. THE ALL INTERSECTING RECTANGLES PROBLEM
This section applies the d-fold rectangle tree developed in Section 3
to the all intersecting rectangles problem in d+ 1 dimensions. This
problem involves a set S of (d+ 1)-rectangles and requires the
determination of all intersecting pairs in S. To this end, a modified
version of the d-fold rectangle tree is developed. This so-called offline

22 1

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

222 H . EDELSBRUNNER

dynamic d-fold rectangle tree in conjunction with the plane sweep
technique which is described, e.g. in Bentley and Wood [2] leads to
efficient solutions for this problem.

4.1. The offline dynamic d-fold rectangle tree

A data structure storing a set of objects is called dynamic if it
supports at little cost insertions and deletions of objects. We call a
data structure offline dynamic if only insertions and deletions of
objects from some prespecified and usually small set are allowed.
Using the d-fold rectangle tree as the underlying data structure, we
derive an offline dynamic data structure which stores d-rectangles
and permits us to answer d-dimensional rectangle intersection
queries efficiently. Intuitively, this data structure for a set S of
d-rectangles consists of a skeleton which determines the way how a
subset of S is stored. The actually stored subset is indicated by
additional information with which the skeleton is augmented. Let us
discuss the one-dimensional case first.

The skeleton of the offline dynamic l-jold rectangle tree T for a set
S of intervals is the I-fold rectangle tree for S without the doubly-
chained organization of the secondary leaves and without the
auxiliary pointers of the secondary roots. Yet, this skeleton stores
none of the intervals in S. The intervals which are stored in T are
indicated by various additional pointers the totality of which we
term the auxiliary structure of 7: The flexibility of T is due to the
flexibility of its auxiliary structure while the rigidity of its skeleton
guarantees that the structure remains well balanced.

We call a leaf of T active if it stores an endpoint of an interval
which is actually present in the tree. The auxiliary structure
organizes the active leaves in a doubly-chained list. The order in
which the active leaves occur in this list is the same as in 7: In
addition, the auxiliary structure equips each inner node p of T with
two pointers leftfinger@) and rightfinger(p). The former points to
technique employed in Bentley and Wood [2] which reduces the
the latter points to the rightmost active leaf in this subtree (if i t
exists). The auxiliary structure is constructed, destroyed, and
adjusted while insertions and deletions of intervals are performed.
The following actions are taken in order to insert an interval i from
S into T:

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

RECTANGLE INTERSECTIONS-I1 223

i) The middle subtree is determined which is ready to store the
two endpoints of i.

ii) The leaves of this subtree which store the endpoints of i are
active now and therefore are included in the doubly-chained
list of active leaves. To this end, the active leaves in between
which they have to be inserted are determined exploiting the
leftfinger and rightfinger pointers.

iii) The leftfinger and rightfinger pointers of the ancestors of the
two new active leaves are adjusted or created.

A deletion is analogous, hence we omit its detailed description.
Obviously, each of the three tasks can be accomplished in O(1ogn)
time,.

LEMMA 4.1. Let S denote a set of n intervals. There exists a data
structure which requires O(n) space and O(n log n) time for construction
such that insertions and deletions of intervals from S can be performed
in O(1og n) time and O(1og n+ t) time sufJices to report the t intervals
currently in the data structure which intersect a query interval.

Proof We will show that the asserted bounds are correct for the
offline dynamic 1-fold rectangle tree T for S. The space for the
skeleton of T is clearly O(n) since this structure requires less space
than the original 1-fold rectangle tree for S, see Theorem 3.1. The
space required for the auxiliary structure is also O(n) since each node
of the skeleton is equipped with at most two additional pointers.
The time for construction which is the time required to build up the
skeleton of T is also clear from Theorem 3.1. The method of
obtaining O(1ogn) time for an insertion and deletion is sketched
above. In order to answer an intersection query, an almost identical
algorithm as the one outlined for ordinary 1-fold rectangle trees can
be used. It is readily seen that this algorithm works in O(logn+ t)
time which completes the argument.

The generalization to d z 2 dimensions is straightforward and
analogous to the generalization leading to the d-fold rectangle tree,
see Section 3.2. The auxiliary information is only necessary for the
first coinponent trees. We omit further details and state without
proof:

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

224 H. EDELSBRUNNER

LEMMA 4.2. Let S be a set of n d-rectangles. Then there exists a
data structure which requires O(n logd - n) space and O(n logd n) time
for construction such that an insertion and deletion of a d-rectangle
from S can be accomplished in O(logdn) time and O(10g~~-l n+ t) time
sufJices to report the t d-rectangles currently stored which intersect a
query d-rectangle.

4.2. Computing all intersecting pairs

Let S = {r,, r,, . . . , r,} denote a set of n d-rectangles. Using the offline
dynamic d-fold rectangle tree described in Section 4.1, we are able to
give a naive algorithm for the d-dimensional all intersecting
rectangles problem. The task is reduced to a sequence of insertions
and intersection queries.

Algorithm NAIVE METHOD:
First, the skeleton of the offline dynamic d-fold rectangle tree T is

constructed which is ready to represent any subset of S.
Then, for j running from 1 to n, the d-rectangles stored in T which

intersect rj are determined and rj is inserted into ?:

Due to Lemma 4.2, Algorithm NAIVE METHOD finds the t
intersecting pairs of S in O(n log2d- n + t) time and O(n logd- ' n)
space. Another more sophisticated approach is the plane sweep
technique employed in Bentley and Wood [2] which reduces the
d-dimensional task to a sequence of O(n) (d-1)-dimensional
intersection queries, insertions, and deletions involving only
projections of rectangles in S. This method is now described for two
dimensions and then sketched for higher dimensions.

Let S denote a set of n 2-rectangles in the sequel called rectangles.
Figure 4.1 displays a set of six rectangles which we use as a running
example. Now imagine a vertical line L sweeping from left to right
through the rectangles, see Figure 4.1.

At any instant of time L divides the set S of rectangles into three
- - disjoint subsets: The set of dead rectangles that lie completely to the

left of L, the set of active rectangles that are cut by L, and the set of
sleeping rectangles that lie completely to the right of L. In the
example depicted in Figure 4.1, A is the only dead rectangle, B and
C are active, and D, E and F are sleeping.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

RECTANGLE INTERSECTIONS-I1

- *
2 4 6 8 12 14 16 18 20 2.2 24

FIGURE 4.1. L sweeping through six rectangles.

While L sweeps from left to right, the three subsets of S change
following the rules below:

1) Initially, the sets of dead and active rectangles are empty and
all rectangles are sleeping.

2) When L reaches the left border of a rectangle then this
rectangle becomes active.

3) When L reaches the right border of a rectangle then this
rectangle becomes dead.

4) At the end of L's sweep, the sets of active and sleeping
rectangles are empty and all rectangles are dead.

Let us first give an informal description of the algorithm that
detects the intersecting pairs by use of the plane sweep technique.
The three subsets of S change only at critical x-values, that is, when
L meets the left or right border of a rectangle in S. The 2n critical

- - x-values are stored in ascending order in an array and the plane
sweep is carried out by scanning this array from left to right. At
each critical x-value, certain actions are performed such as activating
a rectangle, disactivating a rectangle, or searching for active
rectangles which intersect a rectangle which is to become active.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

226 H. EDELSBRUNNER

Since the set of active rectangles plays an important role in our
algorithm, we store the set in some data structure which allows us to
perform insertions, deletions, and searching efficiently.

The formal description of the algorithm follows: Let x,, . . . , x,,
denote the critical x-values such that xi 5 xj for i<j. In degenerate
cases, some of the critical x-values may coincide. In these cases, the
values indicating left borders come before those indicating right
borders. If critical values coincide and are of the same type then
their order is immaterial.

Algorithm PLANE SWEEP:
First, the skeleton of the offline dynamic 1-fold rectangle tree T

for the y-intervals of the rectangles in S is constructed.
Then, for j running from 1 to 212, the following actions are taken:

Case I x j indicates that L meets the left border of a rectangle r
in S. Then a query with the y-interval of r as query object is carried
out in 7: This gives all active rectangles which intersect r. In
addition, the y-interval of r is inserted into T.

Case 2 xj indicates that L meets the right border of a rectangle
r. Then the y-interval of r is deleted from T.

Before analyzing the algorithm, let us consider a snap-shot of the
data structure used for the set of rectangles depicted in Figure 4.1. L
intersects the rectangles C and D which is reflected by the auxiliary
structure whose pointers are denoted by dotted lines, see Figure 4.2.
Note that only the four leaves of the middle subtree associated with
the root of the tree are active.

LEMMA 4.3. Algorithm PLANE SWEEP reports each pair of
intersecting rectangles exactly once and only reports such pairs.

Proof First, we show that each intersecting pair is reported
exadly once. An intersecting pair (r, s) can be detected when r -

becomes active or when s becomes active. W.1.o.g. we assume that r
becomes active before s. Hence, the y-interval of s is not stored in T
when r becomes active which implies that (r, s) is not detected at this
time. Since r and s intersect by assumption, r must be active when s

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

RECTANGLE INTERSECTIONS-I1

FIGURE 4.2. T storing two intervals.

becomes active. Since the y-intervals of r and s intersect the pair (r, s)
is detected when s becomes active.

Assume now that a non-intersecting pair (r, s) is reported by the
algorithm. Since r and s do not intersect, at least one of two cases
occurs: (1) The x-intervals of r and s do not intersect, or (2) the y-
intervals of r and s do not intersect. In the former case there is no
point in time when both r and s are active, in the latter case the
searches in T with the y-intervals of r and s do not report the pair
(r, s). This completes the argument by contradiction.

THEOREM 4.4. There exists an algorithm which reports the t
intersecting pairs of a set S of n rectangles in O(nlogn+t) time and
O(n) space.

Proof We show that the assertion is correct for Algorithm
PLANE SWEEP. Lemma 4.3 guarantees that the algorithm reports
exactly the t intersecting pairs. The skeleton of the offline dynamic 1-
fold rectangle tree T requires O(n) space and O(n1ogn) time for
construction, see Lemma 4.1. Each one of the insertions, deletions,
and intersection queries can be carried out in O(1ogn) time not
regarding the time for reporting intersections. Since 3n such
operations are performed we conclude that O(n log n) time suffices for
all these activities. The space remains O(n) since the auxiliary
structure constructed while intervals are inserted into T requires qn)
space, see Lemma 4.1. This completes the argument.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

228 H. EDELSBRUNNER

The plane sweep technique can easily be extended to three and
higher dimensions as done in Six and Wood [lo]. The d-dimensional
space is swept from left to right by a (d- 1)-dimensional hyperplane
H perpendicular to the x-axis. Thus, the intersecting pairs of a set S
of d-rectangles are detected by (1) constructing the skeleton of the
offline dynamic (d-1)-fold rectangle tree for the orthogonal
projections onto H of the d-rectangles in S, and (2) performing O(n)
insertions, deletions, and intersection queries involving (&I)-
rectangles. This finally implies:

THEOREM 4.5. There exists an algorithm which reports the t
intersecting pairs of' a set S of' n d-rectangles in O(n log2d-3 n _t t) time
and O(n l o g d 2 n) space.

5. CONCLUSIONS

The contributions of this paper are threefold: (I) The close
relationship between rectangle intersection searching in d and range
searching in 2d dimensions is described which gives us a nice
intuition of how rectangles can intersect. (2) A new data structure for
d-dimensional rectangles is introduced which is efficient in time and
in space. In particular, the solution provided for the one-dimensional
rectangle intersection searching problem is optimal in both respects.
In addition, an ofline dynamic version of this data structure is
developed which supports insertions and deletions of d-dimensional
rectangles from some prespecified set. (3) This offline dynamic
version of the new data structure is used to determine all intersecting
pairs of a set of n rectangles. The solution obtained is optimal in two
dimensions where O(nlogn+ t) time and O(n) space suffice to report
the t intersecting pairs.

We briefly compare these results with earlier ones. The two-
dimensional all intersecting rectangles problem was studied in
Bentley and Wood [2] and in Six and Wood [9]. Their algorithms
achieve the same time bound as ours but they require O(n log n) space
for the task. The problem in three and higher dimensions was
considered in Six and Wood [lo]. Their method dominates ours in
time but requires more space, that is, they need O(n l o g d ' n+ t) time
and O(nlogdl n) space to report the t intersecting pairs. Since the
study presented in this paper took place new results have been

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

RECTANGLE INTERSECTIONS-I1 229

obtained by McCreight [8], Lee and Wong [7] , and Edelsbrunner
[5] which is mentioned in Section 1 of this paper.

Let us finally give a few questions and open problems which come
from our investigations. (1) The analysis of the d-fold rectangle tree
as presented in Section 3.2 is best possible in the worst case.
Nevertheless, we feel that it is terribly pessimistic in the expected
case. (2) No other than trivial lower bounds are known for the
various rectangle intersection problems presented in this paper.
Recent results due to Fredman [6] seem to be a first step towards
an appropriate understanding of these issues.

References

[l] J. L. Bentley, Decomposable searching problems, Inf: Proc. Lett. 8, 1979, 244-
251.

[2] J. L. Bentley and D. Wood, An optimal worst case algorithm for reporting
intersections on rectangles, IEEE Tr. on Comp. C-29, 1980. 571-577.

[3] H. Edelsbrunner, Dynamic rectangle intersection searching. Report F47. Inst. for
Inf. Proc. Techn. Univ. of Graz, Austria, 1980.

[4] H. Edelsbrunner, A time- and space-optimal solution of the planar all
intersecting rectangles problem, Report F50, Inst. for Inf. Proc., Techn. Univ. of
Graz, Austria, 1980.

[5] H. Edelsbrunner, Dynamic data structures for orthogonal intersection queries,
Report F59, Inst. for Inf. Proc., Techn. Univ. of Graz, Austria, 1980.

[6] M. L. Fredman, A lower bound on the complexity of orthogonal range queries,
.I . of the ACM 28, 1981, 696-705.

L7] D. T. Lee and C. K. Wong, Finding intersections of rectangles by range search,
J. of Algorithms 2, 1981, 337-347.

[8] E. M. McCreight, Efficient algorithms for enumerating intersecting intervals and
rectangles, Report CSL-80-9, XEROX Parc, Palo Alto, Cal., 1980.

[9] H.-W. Six and D. Wood, The rectangle intersection problem revisited, BIT 20,
1980, 426-433.

[lo] H.-W. Six and D. Wood, Counting and reporting intersections of d-ranges,
l E E E Tr. on Comp. C31, 1982, 181-187.

[l l] D. E. Willard, New data structures for orthogonal queries, Report TR-22-78.
Aiken Comp. Lab., Harvard Univ., Cambr., Mass., 1978.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 2
0:

03
 2

7
N

ov
em

be
r 2

01
4

