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Abstract: Whenever n objects are characterized by a matrix of pairwise dis-
similarities, they may be clustered by any of a number of sequential,
agglomerative, hierarchical, nonoverlapping (SAHN) clustering methods.
These SAHN clustering methods are defined by a paradigmatic algorithm that
usually requires 0(x*) time, in the worst case, to cluster the objects. An
improved algorithm (Anderberg 1973), while still requiring 0(n®) worst-case
time, can reasonably be expected to exhibit 0(n?) expected behavior. By
contrast, we describe a SAHN clustering algorithm that requires 0(n? log n)
time in the worst case. When SAHN clustering methods exhibit reasonable
space distortion properties, further improvements are possible. We adapt a
SAHN clustering algorithm, based on the efficient construction of nearest
neighbor chains, to obtain a reasonably general SAHN clustering algorithm
that requires in the worst case 0(n?) time and space.

Whenever n objects are characterized by k-tuples of real numbers, they
may be clustered by any of a family of centroid SAHN clustering methods.
These methods are based on a geometric model in which clusters are
represented by points in k-dimensional real space and points being
agglomerated are replaced by a single (centroid) point. For this model, we
have solved a class of special packing problems involving point-symmetric
convex objects and have exploited it to design an efficient centroid clustering
algorithm. Specifically, we describe a centroid SAHN clustering algorithm
that requires 0(»2) time, in the worst case, for fixed k and for a family of
dissimilarity measures including the Manhattan, Euclidean, Chebychev and
all other Minkowski metrics.
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1. Introduction

Agglomerative hierarchical clustering methods occupy a prominent
position in the science of classification, and for this reason most standard
references devote considerable space to their explication and evaluation
(Anderberg 1973; Cormack 1971; Everitt 1980; Hartigan 1975; Sneath and
Sokal 1973). We follow Sneath and Sokal (1973, pp.202-209, 216) in sum-
marizing generic characteristics of the clustering methods we wish to investi-
gate. They are agglomerative methods: starting with a set of n objects to be
clustered, they group these objects into successively fewer than n sets, arriv-
ing eventually at a single set containing all » objects. They are hierarchical
nonoverlapping methods that specify a sequence Py ,..., P, of partitions of
the objects in which Py is the disjoint partition, P, is the conjoint partition,
and P; is a refinement (in the usual sense) of P; for all 0 < i < j < w.
They are sequential methods since the same algorithm is used iteratively to
generate P,y from P; for all 0 < /i < w. They are pair-group methods: at
each iteration exactly two clusters are agglomerated into a single cluster.
Pair-group methods are ill-defined in a technical sense if they fail to describe
completely the criterion to select clusters for agglomeration when ties exist.
Sneath and Sokal (1973) use the acronym SAHN to designate clustering
methods that are sequential, agglomerative, hierarchical and nonoverlapping.

SAHN clustering methods require for their operation a quantitative
specification of dissimilarity between each pair of objects in the set of
objects being clustered. This information is usually provided in one of two
forms. In the first, which Anderberg (1973, p.134) calls the stored matrix
approach, a nonnegative real-valued matrix D=[d(x,y)] is provided in
which d(x,y) is a quantitative measure of dissimilarity between objects x
and y. In the second, which Anderberg (1973, p.145) calls the stored data
approach, each object x is described by a k-tuple x=(xi, ..., x.) of real
numbers, x; being the score pertaining to the i-th variable or character, and
a computational rule is specified to calculate from two k-tuples the dissimi-
larity between the corresponding objects. The Minkowski metrics are fami-
liar examples of such rules, where for fixed p = 1 and for any objects x and
y’

1

& »
Lp(xuy)= 2 |x:'_yf ip
=1

This family includes the L; or Manhattan metric, the L, or Euclidean metric,
and in the limit the L. or Chebychev metric for which
Lo(x,y)=max{ |x,—y |:1< i<k}
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TABLE 1
Paradigmatic SAHN Clustering Algorithm

: Time
Algorithm Complexity
begin
for m = n downto 2 do

begin

1. Search dissimilarity matrix D for a closest 0(m?)
pair (i,j) of clusters.

2. Replace clusters i and j by an agglomerated 0(1)
cluster h.

3. Update D to reflect deletion of i and j and 0(m)

to exhibit revised dissimilarities between
h and all remaining clusters.

end
Output the hierarchy of agglomerated clusters.

end

NOTE: Initially each of the n objects to be clustered is in a
cluster by itself. In step 1 of each loop iteration, the dis-
similarity matrix D has a row and a column for each of the m re-
maining clusters. The number of clusters decreases by one for
steps 2 and 3. When step 3 completes, the revised matrix D has a
row and a column for each of the (m-1) remaining clusters.

Many SAHN clustering methods can be defined algorithmically simply
by providing a precise specification of step 3 in the paradigmatic algorithm
shown in Table 1. Johnson (1967), Wishart (1969), Anderberg (1973,
p.133) and others use this approach to define SAHN clustering methods; but
the idea is not without disadvantages. Jardine and Sibson (1971, p.42) warn
against confusing clustering algorithms with clustering methods. Rohlf
(1982) describes cases in which proposals for new clustering methods simply
turn out to be new algorithms for the single linkage SAHN clustering
method.
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Lance and Williams (1966, 1967) define the class of combinatorial
SAHN clustering methods by specifying a generalized recurrence formula to
perform the updating required by step 3 in Table 1. Suppose clusters iand j
are being replaced by the agglomerated cluster & Lance and Williams pro-
pose that the revised dissimilarity between h and any other cluster k be
defined by the recurrence

d(h,k) = a;d(i,k)+a;d(j,k)+Bd(i,)+y | dli,k)—d(j,k) | (1)

where parameter values «;, «;, B and y characterize the particular combina-
torial clustering method. Table 2 exhibits these parameter values for eight
well-known combinatorial SAHN clustering methods. This formulation of
combinatorial clustering methods has stimulated research in several direc-
tions. Milligan (1979) and Batagelj (1981) derive conditions on parameter
values that are necessary and sufficient for a combinatorial clustering
method to have its partitions generated at monotonically increasing dissimi-
larity values. Hubert and Schultz (1975) and DuBien and Warde (1979)
classify combinatorial clustering methods by the type and degree of object
space distortion (Lance and Williams 1967) caused by the corresponding
combinatorial algorithm.

In order to evaluate time and space complexities of clustering algo-
rithms, we measure problem size by the number » of objects to be
clustered, and we describe an algorithm’s time complexity (respectively,
expected time complexity) by a function f(n) expressing, for each n, the larg-
est (respectively, average) amount of time the algorithm needs to solve any
problem instance of size n. Space complexity is defined analogously. In
describing the asymptotic behavior of such positive valued functions, we say
that f£(n) is 0(g(n)) whenever there exists a positive constant ¢ such that
f(n) € c-g(n) for all large positive n; f(n) is Q(g(n)) if g(n) is
0(f(n)). For further information concerning the analysis of algorithm com-
plexity, the reader can consult the classic textbook by Aho, Hopcroft and
Ullman (1974) or the fine survey by Weide (1977).

For combinatorial SAHN clustering methods, the Table 1 algorithm is
specified in enough detail to enable us to estimate its time and space com-
plexities. Let m denote the number of clusters remaining at each execution
of the loop. In any reasonable implementation of this algorithm, step 1

searches ‘g'] matrix entries and therefore requires 0(m?) time. Since step 1

dominates each loop execution, it follows that both expected and worst-case
time complexities for this algorithm are 0(n®). We adopt the convention
that an algorithm’s input cannot be destroyed; consequently the space com-
plexity for any reasonable implementation of this combinatorial SAHN algo-
rithm is both Q (n?) and 0(n?).
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TABLE 2
Parameter Values for Combinatorial SAHN Clustering Methods

Clustering Method o o, B b ¢

Single linkage 1/2 1/2 0 -1/2
(Nearest neighbor)

Complete linkage

(Furthest neighbor) 172 1/2 0 1/2

P S CERT
n;n; n;#ng

Weighted Average

(WPGMA) 1/2 1/2 0 0

Unweighted Centroid e n =nsn; o

(UPGMC) n1+nj n +n3 (n_i+nj)2

Weighted Centroid

(WPGMC) 1/2 1/2 -1/4 0

Minimum Variance el neeRy Ny :

(Ward) ngFn npHmEn gy

Flexible

(Lance and Williams) ‘I-TB ]EB g<l 0

NOTE: n, is the number of objects in cluster 1.

Anderberg (1973, pp.135-136) modifies the design of the Table 1 com-
binatorial SAHN algorithm in order to improve its expected behavior (see
also Hartigan 1975, pp.216-218). The basic idea is to improve the expected
time complexity of step 1 (the execution bottleneck) by retaining informa-
tion from one iteration to the next. Anderberg introduces an n-tuple
P= (Py,...,P,) of indices that identify for each cluster ia nearest neigh-
boring cluster P;: in an iteration where D has a row and column for each of
m remaining clusters, each P, for 1 < i < m satisfies the condition that
d(i,P;) = min{d(i,j) : 1 < j < m,i # j}. Table 3 exhibits Anderberg’s
modified algorithm. At each iteration, P simplifies the step 1 search for a
closest pair (i,/) of clusters; but now whenever P, = i or P, = j, step 4
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TABLE 3
Combinatorial SAHN Clustering Algorithm (Anderberg, 1973)

" Time
Algorithm Complexity
begin
0. Initialize n-tuple P to identify a nearest
neighbour of each cluster.
for m = n downto 2 do
begin
I Search D with P to identify a closest 0(m)
pair (i,j) of clusters,
L Replace clusters i and j by an agglom- 0(1)
erated cluster h.
3 Update D to reflect deletion of i and j 0(m)
and to exhibit revised dissimilarities
between h and all remaining clusters.
4, Update P to reflect deletion of i and j 0(m?)

and inclusion of h.
end

Output the hierarchy of agglomerated clusters.

end

must update P, by a process requiring 0(m) time. Since at each iteration
the number of such updates lies between zero and (m—2), the time com-
plexity of the Table 3 algorithm is both Q (n?) and 0(#®). If, as Anderberg
speculates, step 4 averages a constant number of updates per iteration, then
the Table 3 combinatorial SAHN algorithm exhibits 0(n?) expected time
complexity.

The Table 1 combinatorial SAHN algorithm can be altered to improve
its worst-case behavior. In section 2 we describe a new algorithm that
makes extensive use of priority queues to identify cluster nearest neighbors.
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The time complexity for this algorithm is 0(n? log n); consequently its time
complexity is asymptotically superior to those for the combinatorial SAHN
algorithms of Tables 1 and 3. Further improvements are possible for com-
binatorial SAHN clustering methods that exhibit reasonable degrees of
object space distortion (Lance and Williams 1967). In section 2 we adapt an
algorithm based on nearest neighbor chains (Benzécri 1982; Juan 1982;
Murtagh 1983) to obtain a reasonably general combinatorial SAHN cluster-
ing algorithm with 0(»?) time and space complexities.

Further improvements in the complexities of SAHN clustering methods
lie in either (or both) of two general categories: they exploit characteristics
of particular clustering methods; or they exploit characteristics of data
descriptions of the objects being clustered. Sibson (1973) describes a single
linkage SAHN algorithm based on the efficient extension of a hierarchical
clustering of m objects to one of (m+1) objects; the algorithm requires
0(n?) time and 0(n) space. Defays (1977) uses this approach to obtain a
complete linkage SAHN algorithm with the same asymptotic behavior.
Gower and Ross (1969) establish that single linkage SAHN algorithms can
be based on algorithms to construct minimum spanning trees (as in Ross
1969). Rohif (1973) uses this approach to obtain a single linkage SAHN
algorithm requiring 0(n?) time and 0(n) space. The single linkage SAHN
clustering method has, of course, been studied extensively; Rohlf (1982)
gives an illuminating classification and evaluation of eleven different algo-
rithms for this clustering method.

Considerable attention has been given to the interpretation of objects in
the stored data approach as points in a k-dimensional real space. Murtagh
(1983) gives a fine presentation of SAHN clustering algorithms based on
this approach. Rohlf (1978) attempts to avoid completely the computation
of interpoint dissimilarities that are irrelevant to the agglomeration process;
his single linkage SAHN algorithm exhibits 0(n log log n) expected time
complexity for favorable data sets. Rohlf (1977) extends this approach to
obtain unweighted and weighted centroid SAHN algorithms with similar
asymptotic behavior. For points in two-dimensional real space, there exist
efficient single-linkage SAHN algorithms based on minimum spanning tree
construction: algorithms requiring 0(n log n) time and 0(n) space are
described by Shamos and Hoey (1975) if the Euclidean metric is used to
measure interpoint dissimilarity, and by Hwang (1979) if the Chebychev
metric is used. Murtagh (1983) describes a minimum variance SAHN algo-
rithm (Ward 1963) based on the efficient construction of nearest neighbor
chains; the algorithm requires 0(n?) time and 0(#n) space. This approach
also can be used to provide 0(n?) approximation algorithms for the
unweighted and weighted centroid SAHN clustering methods.

Anderberg (1973, p.146) describes a variation of the Table 3 algorithm
that applies when objects in the stored data approach are treated as points in
a k-dimensional real space, and when a centroid strategy is used in which
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TABLE 4
Centroid SAHN Clustering Algorithm (Anderberg, 1973).

; Time
Algorithm Complexity
begin
0. Initialize the n-tuple P to identify a
nearest neighbor of each cluster.
for m = n downto 2 do
begin
1y Use P to identify a closest pair 0(km)
(i,3) of clusters.
2. Replace clusters i and j by an 0(k)
agglomerated cluster h.
Fi Update P to reflect deletion of 0(a km)
i and j and inclusion of h.
end
Output the hierarchy of agglomerated
clusters.
end

NOTE: Each object or cluster, including the agglomerated cluster
h, is represented by a point in a k-dimensional space. The con-
stant o« is an upper bound on the maximum number of updates
required of elements in P, Section 4 describes the assumptions
being made for this model of centroid SAHN clustering methods.

points being agglomerated are replaced by a single point. Table 4 exhibits
Anderberg’s centroid algorithm. When £k is fixed, step 3 becomes the exe-
cution bottleneck, and a straightforward analysis establishes that the Table 4
algorithm has 0(»®) time complexity. However, in a related development,
we solve in section 3 a class of special geometric packing problems involving
point-symmetric convex objects. In section 4 we exploit these results to
establish general conditions under which the Table 4 centroid SAHN algo-
rithm requires 0(n?) time and 0(n) space. In particular, the unweighted and
weighted centroid SAHN clustering methods have algorithms requiring
0(n?) time and 0(n) space when they use any of a family of dissimilarity
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measures including the Manhattan, Euclidean, Chebychev and all other
Minkowski metrics.

2. A Combinatorial SAHN Clustering Algorithm

In the Table 3 combinatorial SAHN algorithm, step 4 is an execution
bottleneck: it requires 0(m) cluster nearest neighbor updates, and each
requires 0(m) time. Two strategies are available to improve the algorithm’s
time complexity: obtain an improved bound on the required number of
nearest neighbor updates (an approach used in section 4 for centroid SAHN
clustering methods); or obtain an improved bound on the time required for
each update (the approach used here). A straightforward update implemen-
tation searches 0(m) intercluster dissimilarities to find a nearest neighbor in
0(m) time. However, if intercluster dissimilarities are maintained in a prior-
ity queue, a standard priority queue operation finds a nearest neighbor in
just 0( log m) time. The algorithm we propose is based on this observation.

A priority queue is a data structure for a finite set of elements. Associ-
ated with each element is a label selected (in our case) from the nonnega-
tive real numbers. The elements in a priority queue are available in an
order determined by their labels. Priority queues are manipulated with three
operations. INSERT(a,b,Q) associates label b with element a and adds a to
priority queue Q. DELETE(a,Q) removes element a from priority queue Q.
MIN(Q) identifies an element with least label in priority queue Q. A prior-
ity queue of m elements can be implemented as a heap data structure requir-
ing O(m) time for its initialization; each subsequent MIN requires O(1)
time, while subsequent INSERT and DELETE operations each require
O(log m) time. For details the reader can consult Aho, Hopcroft and Ull-
man (1974, pp.87-92, 148-152) or any standard data structure text.

Table 5 exhibits a combinatorial SAHN clustering algorithm in which a
priority queue is associated with each cluster. These priority queues are
manipulated in steps 0, 1 and 4. Since each of the n priority queues in step
0 requires O(#n) initialization time, step 0 requires 0(»?) time. Consider the
iteration where m clusters remain. Step 1 is accomplished by m MIN’s and
so requires 0(m) time. Step 4 requires two DELETE’s and one INSERT to
update each of 0(m) priority queues in 0( log m) time; it also requires 0(m)
time to initialize a priority queue for the agglomerated cluster. Since step 4
is an execution bottleneck requiring 0(m log m) time, the entire algorithm
has 0(n?log n) time complexity. Since each of the n priority queues
requires 0(n) space, the algorithm has 0(n?) space complexity.

The combinatorial SAHN clustering algorithm in Table 5 is valuable
because it is insensitive to distortions of the object space that occur for
methods defined by particular values of «;, j» B and y. Further improve-
ments in time complexity are possible for combinatorial SAHN clustering
methods that satisfy a special requirement. A clustering method is said to
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TABLE 5 .
Combinatorial SAHN Clustering Algorithm Based on Priority Queues.

Time

ATgorithm Complexity

begin
0. Construct for each cluster a priority queue
of its (n-1) neighbors ordered by inter-
cluster dissimilarity.
for m = n downto 2 do
begin
T Interrogate the m priority queues to 0(m)
identify a closest pair (i,j) of
clusters,

2. Replace clusters i and j by an agglom- 0(1)
erated cluster h.

3. Update D to reflect deletion of i and 0(m)
J and to exhibit revised dissimilar-
ities between h and all remaining
clusters.

4, Update the priority queues to reflect 0(m log m)
deletion of i and j and inclusion of h.

end
Output the hierarchy of agglomerated clusters.

end

satisfy the reducibility property (Bruynooghe 1978) if, when clusters i and j
are agglomerated to obtain cluster h, d(h,k) = min{d(i,k),d(j,k)} for
every other cluster k. Murtagh (1983) describes a stored data SAHN clus-
tering algorithm (see also Benzécri (1982) and Juan (1982)) requiring that
the clustering method satisfy the reducibility property and that intercluster
distances be computable in constant time. The algorithm is based on an
efficient construction of chains of nearest neighboring clusters; it requires
0(n? time and O(n) space. When combinatorial SAHN clustering methods
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satisfy the reducibility property, Murtagh’s algorithm can easily be adapted
to them by modifying it to maintain, using equation (1), a matrix of inter-
cluster distances. This modification of Murtagh’s algorithm requires 0(#n?)
time and space; its time complexity is superior to those of algorithms
presently available for the group average (UPGMA), weighted average
(WPGMA) and flexible combinatorial SAHN clustering methods.

3. Packing Problems in k Dimensions

This section is devoted to the development of geometric preliminaries
which are exploited in section 4 in the design of efficient centroid SAHN
clustering algorithms. In particular, a class of special packing problems
involving point-symmetric convex objects is considered.

Let (R*,d) denote the k -dimensional real space together with the dis-
similarity function 4 : R*XR* — R§. We require that

(G1) d(x,y) = d(0,y—x) with O the origin of R¥;
(G2) d(x,\y) = A-d(x,y) for any nonnegative real number A:

(G3) the unit ball B(0,1) = {x : d(0,x) < 1} is
symmetric at 0, convex and with proper volume.

Recall that a set B in R* is convex if for any points x and y in B, the line
segment connecting x and y is contained in B; B has proper volume if it con-
tains a ball B(x,e) for some positive real e. Conditions (G1) and (G2) are
required to move and to change the size of point configurations in (R*,d).
With respect to (G3), observe that B(0,1) is symmetric at 0 if and only if d
is symmetric (i.e., d(x,y) = d(y,x) ), while B(0,1) is convex if and only if
d satisfies the triangle inequality (i.e., d(x,z) < d(x,y) + d(y,z) ). The
requirement that B(0,1) have proper volume avoids degenerate and unin-
teresting cases. Well-known examples of dissimilarity functions satisfying
(G1) - (G3) include the Manhattan, Euclidean, Chebychev and all other
Minkowski metrics.

Centroid SAHN clustering algorithms use finite sets of points in
(R¥,d) and identify pairs of points which are close in a sense peculiar to the
algorithm involved. Consider algorithms that store for each point a closest
point. During algorithm execution, points are deleted and points are
inserted into the set. These insertions and deletions make necessary the
adjustment of closest points. We now establish a geometric result which
shows that efficient adjustment is possible.

Let P denote a finite set of sufficiently many points in (R*,d). A point
x in P is called a nearest neighbor of y in P if d(y,x) < d(y,z) for all
z#y in P. We call 4p(x) = {yeP : x is a nearest neighbor of y} the
attracted set of x in Pand | Ap(x) | (i.e., the cardinality of the attracted set)
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the attractive power of x in P. The remainder of this section concerns how
large the attractive power of a point in P can be. It seems intuitively plausi-
ble that the attractive power of a point has an upper bound which depends
on k and which is independent of the cardinality of P. This fact will be
made concrete and an optimal upper bound, following from geometric pack-
ing results, will be established.

Let P, = {x} |J 4p(x) denote the subset of P including with x its
attracted points. Without loss of generality let d(x,y) = 1 for y in P, that
maximizes the distance to x. Define x' = 0 and z' = (z—x)/d(x,z) for each
zin P, — {x}.

Lemma 3.1 d(u',v) > 1 for any points u and v in P, —{x}.

Proof Assume d(u’,v’)<1 for some particular points u and v in P, — {x}.
If dix,u) =d(x,v) then d(u,v) = d(',v)-d(x,v)<d(x,v), a contradic-
tion of the assumption that # and v are in P, — {x} = Ap(x). Hence,
assume without loss of generality that d(x,u)<d(x,v). Define
u"=x+ (u—x)-d(x,v)/d(x,u); see also Figure 1. Then
d(x,u") = d(x,v) and thus d(u",v)=d(u',v")-d(x,v)<d(x,v). But then
by convexity of B(v,d(v,x)) it follows that d(u,v)<d(v,x), a contradic-
tion. @

Theorem 3.2 Let P denote a set of points in (R¥,d) such that
P={x} U 4p(x). Then there exists a set Q in (R¥,d) such that

@ 0=} U 400), and d(y,u)=1 for any u in Ay (y);
Gi) |Ql=|P|;
Gi)) d(u,v) = 1 for any two points u and v in Q—{y}.

Proof. We construct Q from P. Define x' = 0 and z' = (z—x)/d(x,z) for
each z in P — {x}. Now define QO = {#': ueP}. Lemma 3.1 implies condi-
tion (iii) for y = x’, and by construction d(y,u’) = 1 for any u' in O — {y};
thus condition (i) holds. Condition (ii) is true as no two points in Q are
identical. @

Thus, for developing an upper bound on the attractive power of a point
we can restrict ourselves to sets Q satisfying the conditions of Theorem 3.2.
For each point « in Q let B(u) = B(u,1/2) be called the ball of u. Clearly,
no two balls overlap but some may touch; in fact B(y) touches each of the
other balls of points in 0. Observe that the balls are translates of each
other and, in particular, that each ball is a translate of B(y). Observe also
that for each set Q there is such a configuration of balls, and for each such
configuration of balls the set Q of centers satisfies the conditions of
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Figure 1: Illustration, in the Euclidean Plane, Relevant to the Proof of Lemma 3.1.

Theorem 3.2. Thus the problem of finding an upper bound on the attractive
power of a point in (R¥,d) is equivalent to finding the maximum number of
nonoverlapping translates of B(y) such that each of them touches B(y).
The latter number is well-known in discrete geometry as the Hadwiger
number H(B(y)) of B(y).

Hadwiger and Debrunner (1955) first mentioned the problem of finding
(bounds for) Hadwiger numbers. Since then an extensive literature has
been devoted to the problem. We will cite those results having the most
important implications for the attractive power of points.

Proposition 3.3 (Hadwiger 1957; Groemer 1961; Griinbaum 1961). Let B
denote a convex body with proper volume in R*. Then H(B) < 3%—1, and
H(B) = 3*~1 ifand only if B is a parallelotope.
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Corollary 3.4 Let P denote a finite set of points in (R*,d). Then
| 4p(x) | < 3*=1 for any point x in P, and the upper bound is achieved if and
only if B(x,1/2) is a parallelotope.

In fact, the balls are parallelotopes for the Chebychev metric.

Little is known about exact Hadwiger numbers for £>2 except for the
parallelotope. Even for spheres (induced by the Euclidean metric) exact
values are known only for k = 2, 3, 8 and 24 where the Hadwiger numbers
are 6, 12, 240 and 196560; consult Florian (1980) who also provides a sur-
vey of Hadwiger numbers and the related Newton numbers. Coxeter (1963)
also gives an account of Hadwiger numbers for spheres.

4. A Centroid SAHN Clustering Algorithm

The centroid SAHN clustering algorithm in Table 4 is based on two
assumptions that permit the clustering problem to be modeled in a k-
dimensional real space R* with dissimilarity function d : R*XRk — R{ .

(A1) Each of the n objects to be clustered is characterized by a k-tuple
of real values and is represented as a point in R*.

(A2) Clustering is effected by a centroid strategy in which points being
agglomerated are replaced by a single point representing the
agglomerated cluster.

Two other assumptions enable us to estimate the algorithm’s time complex-
ity.

(A3) Computation of the agglomerated cluster requires 0(k) time.
(A4) Computation of d(x,y) requires 0(k) time for any points x and y
in R,

Step 0 is accomplished in 0(kn?) time by computing 0(n?) dissimilarities.
Consider the iteration when m points remain. Step 1 is accomplished in
0(km) time by computing 0(m) dissimilarities. Step 2 clearly requires 0(k)
time to replace points i and j by the agglomerated point 4. Step 3 requires
several types of updates of P. The dissimilarities between h and the
remaining points must be calculated in order to initialize P, and to update
P, whenever h becomes the new nearest neighbor of any point x. These
updates require O(km) time. Now let @ denote the maximum number of
points in R¥ that have either i or j as a nearest neighbor. Each point
counted by x represents a possible update of P that can be accomplished in
O(km) time by computing O(m) dissimilarities. Since step 3 is dominated
by updates of this latter type, it requires O(akm) time. Since step 3 is an
execution bottleneck at each iteration, the complete algorithm has 0(a kn?)
time complexity.
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Three final assumptions about 4 enable us to bound « in terms of k.
Lemma 4.1 [fd satisfies (G1) - (G3), thena < 2 (3%=2).
Proof Immediate from Corollary 3.4, @

It follows from Lemma 4.1 that when (A1) - (A4), (G1) - (G3) hold
and when k is fixed by the design of the clustering experiment, the Table 4
centroid SAHN clustering algorithm has 0(n?) time complexity and 0(n)
space complexity.

5. Conclusion

We have described efficient algorithms for two important classes of
SAHN clustering methods. For problems using the stored matrix approach,
we describe in section 2 a general combinatorial SAHN clustering algorithm
with 0(n? log n) time complexity and 0(n?) space complexity, and a reason-
ably general combinatorial SAHN clustering algorithm with 0(#%) time and
space complexities. To our knowledge, this latter algorithm exhibits a time
complexity superior to that of any algorithm previously proposed for the
group average (UPGMA), weighted average (WPGMA) and flexible (Lance
and Williams 1967) combinatorial SAHN clustering methods. For problems
using the stored data approach and any of a large family of dissimilarity
measures, we describe in section 4 a general centroid SAHN clustering algo-
rithm with 0(n?) time complexity and 0(n) space complexity. Centroid
methods such as unweighted centroid (UPGMC) and weighted centroid
(WPGMC) now join single linkage, complete linkage and minimum variance
(Ward 1963) in the list of SAHN clustering methods with algorithms requir-
ing 0(»?) time and 0(n) space.

Three research topics are suggested by this paper.

Our results in section 4 suggest that further improvements to centroid
SAHN clustering methods may be possible using the stored data approach.
For example, it is of interest to know whether algorithms exist that run in
asymptotically less than 0(»?) time when each object is specified by two real
numbers. Methods from computational geometry (a field in computer sci-
ence concerned with algorithmic aspects of geometric problems) are prob-
ably relevant; Edelsbrunner and van Leeuwen (1983) give an extensive
bibliography in this field.

It is desirable to understand properties of clusters and classifications
generated by SAHN clustering methods. Such properties may be of particu-
lar interest if clusters and intercluster dissimilarities have geometric interpre-
tations. For example, in two dimensions Shamos and Hoey (1975) exploit
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Figure 2: Packing Euclidean Balls Around Two Touching Balls in Three Dimensions.

methods of computational geometry and the well-known relationship
between minimum spanning trees and single linkage SAHN classifications to
obtain an 0(n log n) single linkage SAHN clustering algorithm.

Our results in sections 3 and 4 suggest a purely geometric packing prob-
lem in real space. Let B be a point-symmetric convex body with proper
volume in R¥, and let B’ be a translate of B that touches B. Give bounds
for the maximum number « of nonoverlapping translates of B that touch at
least one of B and B’ but do not overlap either. Lemma 4.1 gives an easy
upper bound that follows from the Hadwiger number of B. It is rather easy
to see that @« = 2 for B an interval in R!, and that « = 8 for B a disk in R2
We conjecture that a = 18 for B a Euclidean ball in R®; Figure 2 depicts in
three dimensions a configuration of centers of twenty balls that realize this
bound.
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