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ABSTRACT: Computational geometry, considered a subfield of computer

science, 1is concerned with the computational aspects of geometric
problems. The increasing activity in this rather young field made it
split into several reasonably independent subareas. This paper pre-
sents several key-problems of the classical part of computational
geometry which exhibit strong interrelations. A unified view of the
problems is stressed, and the general ideas behind the methods that
solve them are worked out. .

INTRODUCTION

How can the field of computational geometry be defined and what are
the characteristics of key-problems and key-methods in this area?
Without attempting to answer these hardly defined questions, we be-
lieve that, from the present point of view, computatiénal geometry
can be described as the discipline that is concerned with the compu-
tational aspects of geometrical questions. So far, the overwhelming
majority of problems dealt with in the field are low-dimensional,
that is, defined in the plane or in three dimensions. We also be-
lieve, that key-problems and key-methods in the area are those that
posses mathematical beauty and simplicity coupled with computational
efficiency and broad influence.




Although few earlier publications exist, computaticnal geometry was
properly started by the doctoral thesis of Shamos [Sh]l. He came up
with the first and most influencing classification into problems

around convex hulls, closest-point problems, and intersection prob-
lems. A period of flourishing activity on these issues, on rectangle
problems, and on dynamization of data structures followed. Today, we
are convinced to recognize three mainstreams, however classified
according to a different type of criterium: (i) The investigation of
underlying mathematical principles, (ii) considerable effort to work
out implementation details which have been neglected in the early
days, and (iii) a constant challenge of the field by renewing acti-
vity on the borderline between computational geometry and more prac-
tical areas of computer science such as pattern recognition, cluster
analysis, computer graphics, linear programming, robotics, VLSI de-
sign, database theory, computer-aided design, and others.

The primary goal of this paper is to present a small collection of
problems and methods of computational geometry that are considered
central by the author. Part I exhibits problems that are related to
each other in various ways. We believe that these relationships allow
for a reascnably consistent treatment. Part II discusses the general
methods that are exploited to efficiently solve the problems of Part
I. Finally, conclusions are offered.

I. EKEY-PROBLEMS

Eight problems from computational geometry are defined, discussed,
and briefly treated. Four of these problems have a strong geometrical
flavour as they require the construction of geometric structures: or-
der-1 Voronoi diagrams, higher-order Voronoi diagrams, convex hulls,
and arrangements. The beauty of the other four problems (post-office
problem, point location search, linear programming, and halfplanar
range search) stems from a mathematically clear and computationally
efficient solution. Throughout, emphasis is laid on an intuitively

appealing presentation of the problems and their interrelations.
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1. The post-office problem.
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2. (order-1) Voronoi diagrams.

For any two points s and t of S, let H(s,t) be the closed halfspace
of points at least asg close to s as to t. Vis)={qlg in H(s,t), t#s in

S} is called the Voronoi Polygon of s. Being the intersection of n-1

halfplanes, V(s) is a convex polygon with at most n-1 edges. The

Figure 1: Order-1 Voronoi diagram.
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totality of Voronoi polygons for all sites in § makes up the (or-

der-1) Voronoi diagram 1-VOD(S) of S. Recall the equivalence of this

definition to the one give in Section 1. 1-VOD(S) consists of re-
gions, edges, and vertices (see Figure 1). Following from Euler's
theorem on plane graphs, 1-VOD(S) has at most 3n-6 edges and 2n-4
vertices, for n>3.

(Order-1) Voronoi diagrams are known in mathematics since [V]. Opti-
mal algorithms for construction are given in [ShH] and [Br]. Borrow-
ing from [Br] and [EOS], we propose the construction via the follow-
ing geometric transform: Embed E2 in the xy-plane of E3 and asso-
clate each site s=(sy,xy) with the halfspace h(s): 2228y X+2syy=
(sx2+sy2}. (The plane bounding h(s) is tangent to the paraboloid P:
z=x2+y2 and touches P at the vertical projection of s onto P.)
1-voD(S) can now be obtained by vertical projection of f) Sh{s) on-

s in
to the xy-plane.

3. Point location search.

Let G be a subdivision induced by a plane graph with m edges. G
consists of regions, edges, and vertices. The point location search

problem requires storing G in a data structure that supports effi-
cient answering of the following kind of queries: For a guery peint g
find the region (or edge or vertex) of G that contains q. An obvious
application of such a data structure is to solve the post-office
problem using the Voronoi diagram of the sites. Few of the numerous
other applications can be found in [K] and [EGS].

The first optimal solution (that requires O(m) space and O(logm) que-
ry time) unfortunately without any practical significance was pub-
lished in [LT]. Simpler yet optimal data structures well attractive
for practical use were later suggested in [K] and [EGS]. Lack of
space prevents us from describing the latter two substantially dif-
ferent approaches.
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4. Higher-order Voronoi diagrams.

Such as the order-1 Voronoi diagram serves for nearest neighbour
search, there is a generalization of the diagram to solve k-nearest
neighbour search for fixed positive integer k: For a query point gq
report the k sites closest to g. For TcS, we call V(T)={qlq in
H(t,s), t in T and s in S-T} the Voronoi polygon of T. The totality
of non-empty Voronoi polygons of subsets T of S with ITl=k is called
the order-k Voronoi diagram k-VoD(s) of S. Figure 2 shows the order-3

Voronoi diagram for the point-set of Figure 1. Where space permits
the regions are labelled with the three nearest sites. The three
nearest neighbours of the query point g as depicted are a, b, and c.

{2,d ¢} /.e {d,e g}

Figure 2: Order-3 Voronoi diagram.

To the best knowledge of the author, order-k Voronoi diagrams are
invented by [ShH]. [L] shows that k-VOD(S) consists of O(k(n-k))
regions, edges, and vertices, and also gives an Osznlogn) time
algorithm to construct it. A different and intuitively more appealing
method derives from using the geometric transform also outlined in
Section 2: For each site s-(sx,sy), the plane p(s): z=2sxx+2syy-
(sx?+sy2) touches the parapoloid P:z=x2+y2 in the vertical projection
of s onto P. For each edge e in the arrangement A of planes obtained,
we let a(e) denote the number of planes strictly above e. The
vertical projection onto the xy-plane of the skeleton of edges e with
a(e)=k-1 yields the order-k Voronoi diagram ([E0S]).

5. Convex hulls.

For 8 a set of n points in E9, the smallest convex body that con-




tains S is called the convex hull CH(S) of s ([G]). In E2, CH(S) is a

bounded and convex polygon with at most n edges, in E3 it is a con-
vex polytope with at most n vertices, 3n-6 edges, and 2n-4 faces, for
n>3. Several worst-case optimal (that is O(nlogn) time) algorithms
are known in E2 ([Gr], [PH], and others), while the divide-and-con-
quer approach described in [PH] yields the only O(nlogn) time method

in E3. on a rather coarse level, it reads as follows:

If Isl=1 then CH(S)=p with s={p]}
else DIVIDE: Let Sy contain the n/2 leftmost points of §
and let Sg=S-Sj,.
RECURSION: Compute CH(Sp) and CH(SR) .
MERGE: Derive CH(S) from CH(Sy) and CH(Sg) by
"wrapping paper" around both polytopes.

Besides being an interesting problem for itself, constructing convex
hulls can be exploited to compute intersections of halfspaces as e.g.
required in Section 2 to build order-1 Voronoi diagrams: Each half-
space h:z>ax+by+c is transformed into the dual vertical ray r(h) ex-
tending downwards from the point top(h)=(a/2,b/2,-c). Computing the
lower half of the convex hull of all points top(h) is equivalent to
constructing the forbidden space FS for the planes that intersect all
rays r(h). Since these planes correspond to the points in the inter-
section of the halfspaces h, FS is dual to the required intersection
of halfspaces. As a consequence, the O(nlogn) time algorithm for con-
vex hulls implies an O(nlogn) time algorithm for FS and for order-1l
Voronoi diagrams. Figure 3 illustrates the dual transform and the

correspondence between FS and the intersection of halfplanes in EZ2.
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6. Linear programming.

The linear programming problem involves a set H of n linear con-
straints in E9 and asks for finding the point m that maximizes a

linear target function while satisfying all constraints in H. If 4 is
considered to be a constant then O(n) time algorithms exist ([M]).
For our presentation, we assume that d=2, all halfplanes in H are
bounded below by a non-vertical line, and m is required to minimize

the y-coordinate. Then the strategy of [M] is roughly as follows:

If |H|<3 then use a trivial algorithm

else organize the halfplanes in pairs, and find the median
x-coordinate x* of the thus defined n/2 apices.
Examining the slope of f(x)=min{yl(x,y) in h, h in H}
at x* allows us to decide whether m is to the left
of, on, or to the right of x=x". Based on this de-
cision, m=(x",f(x*)) or n/4 of the halfplanes of H
can be eliminated. In the latter case, the process is
repeated recursively.

Although linear time is needed to carry out one level of the recur-

sion, the geometric regression of |H| guarantees O(n) overall run-
time.

Dualizing two-dimensional linear programming allows us to solve the
following problem in O{(n) time: For a set S of points in E2 ang a
vertical line v, find the line 1 that has all points of S above or on
it such that 1Nv has maximal y-coordinate. Obviously 1 defines the
lower edge of CH(S) that intersects v (see Figure 3). Building on
these observations, [KS] developed an O(nlogV) time algorithm for
constructing CH(S) if V is the number of its vertices.

7. Arrangements of hyperplanes.

If H denotes a set of n hyperplanes in EY, then we call the cell
complex A(H) induced by H the arrangement of H. Classical results in
combinatorial geometry (see [G]) give exact upper bounds on the num-
ber of k-dimensional faces of A{(H), for O<k<d, which are in 0(nd),
Thus, 2(nd) is a lower bound for the explicit construction of A(H),
that is, of the incidence lattice that provides each k-face with
pointers to the incident (k-1)-faces and (k+l)-faces. This lower




bound matches the upper bound O(nd) which is achieved in [E0S] fol-
lowing an incremental strategy to build A(H), H={h;,h,,...hy}:

For i=1 to n do
construct A({h;,...h;}) by inserting h; into
A( {hl' i 'hi-l} i3

To insert a hyperplane h into an arrangement A of i hyperplanes needs
only to check and update those faces of A that are incident with a
face intersecting h. Figure 4 depicts an arrangement in E2 with the
solid edges to be checked at the insertion of a new line h shown as
broken line.

Figure 4: Two-dimensional arrangement.

As the number of such faces is in 0(id9-l) ([E0S]), h can be in-
serted in 0(i9-1) time implying the 0(nd) time bound for the sketched
construction of A(H).

Arrangements in E3 can be used to construct order-1 and higher-order
Voronoi diagrams, convex hulls in E3 (which is, however, quite a
detour), and other structures. It also proves useful as a thinking

paradigm for problems on finite sets of points.

8. Halfplanar range search.

Given a set S of n points in Ez, a halfplanar range query specifies a
halfplane h and asks for the number N(h) of points of S in h. The
halfplanar range search problem requires storing S§ in a data struc-

ture that supports halfplanar range queries. The most efficient 0O(n)
space solution (give in [EW]) builds on the following geometric fact:
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Let b be a bisecting line of §, that is, 2ls*l<Is| and
2ls71)<Isl, for s* (s=) the set of points strictly above
(below) b. Then there exists a conjugate line ¢, that is, c¢
bisects st ang s-.

Recursively dividing two sets separated by a line using a conjugate
line defines a tree that stores S in 0(n) space. Since the boundary
of a query halfplane intersects at most three of four sectors defined
by two crossing 1lines, the query time in this tree is governed by
Q(n)=Q(n/2)+Q(q/4]+0(1]=0{n5'595) (see [EW]).

The connection of this data structure to the material in Section 7 is
provided by the requirement to find conjugate lines. By duality, con-
jugate lines that contain at least two points correspond to particu-
lar vertices in the two-dimensional arrangement dual to S. At the
time, the most efficient strategy to find conjugate lines is given in
[CSY] running in O(nlog2n) time.

II. KEY-METHODS

Several rather general ideas and methods are used to solve the prob-
lems presented in Part I. It is the geal of this part to explicate
these paradigms in a reasonably general way. The first two paradigms

(locus approach and geometric transformation) are rather general

ideas that turn ocut to be useful in approaching a large number of
computational problems. Different in nature and closer to actually
writing programs are the divide-and-conquer paradigm, the elimination
method, and the incremental approach treated in the final three
sections.

9. Locus approach.

The locus approach is the idea of subdividing some space into domains

of constant answer ([02]). A necessary assumption is therefore that
the answer depends on a peint in the same space: in other cases a
geometric transform might be used to obtain this situation. This
principle is responsible for the close relationship between nearest
and k-nearest neighbour search and Voronoi diagrams (see Sections 1,
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2, and 4). The importance of the locus approach can also be recog-
nized by its independent development in other areas: e.g. [LP] calls
the same principle the configuration approach to motion and location
planning. The significance of the locus approach implies the impor-
tance of the point location search problem (see Section 3), since
locating a point is the obvious operation one needs to perform in a

subdivided space.

18. Geometric transformation.

Geometric construction gains surprisingly often from transforming the
problem into some space and problem different from the originally
given ones. The advantages that a suitable geometric transformation
can provide are:

1. additional insight into the problem which might be well-ob-

scured in the original setting, and

2. the possibility to use one program to solve several problems.
The transformations that turn out to be useful a good number of times
are the dual transform and the inversion used to embed a d-dimensio-
nal problem in E2*1l, For both types of transformation, various
different formulas exist that realize the desired properties. The
motivation for using the particular dual mapping described in Sec-
tions 5 and 6 is based on its independence from the origin (as oppo-
sed to the classical formula [G]) and the fact that it is an involu-
tion (unlike the mapping most often used in computational geometry
[Br]). Similar reasons lead is to use the particular embedding of

two-dimensional problems in E3 outlined in Sections 2, 4 and 7.

11. Divide-and-conquer.

The divide-and-conquer paradigm is applicable to problems that are,

in some little understood sense, decomposable. If the principle ap-
plies then it implies a fairly large part of the algorithm's struc-
ture. We provide a loose outline of this invariant structure. S de-
notes a set of data and ¢ a positive constant which can often be
chosen equal to one.

If Isl<c then solve the problem using a trivial algorithm
else DIVIDE: Split S into two roughly equally large sets
S; and 8,.

Section 5 pros
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RECURSION: Sclve the problem recursively for Sy and
Ss.

MERGE: Combine the solutions for S; and S5 to
compute the solution for 8.

Section 5 provides an example of this classical paradigm ([AHU]).

12. Elimination.

Equally concrete as the divide-and-conquer paradigm is the elimina-

tion method that implies the following kind of algorithms:

If |sl<c then solve the problem using a trivial algorithm
else ELIMINATE: Find a constant proportion of S that is
irrelevant and eliminate it.
RECURSION: Solve the problem recursively for the re-
duced set S.

This method is applicable to problems whose solution is determined by
at most c of the data-items, the other items being irrelevant or re-
dundant. An example is provided. in Section 6 where redundant or for
the target function not significant constraints are eliminated. The
key-step in the algorithm is the elimination part. To achieve effi-
ciency in this step, computing some kind of a median [AHU] turns out
to be extremely useful. The geometric regression of |S| implies
overall efficiency.

13. Incremental approach.

Geometric properties of certain problems favour a rather straightfor-
ward method called the incremental approach. Recently, it was shown

to lead to optimal algorithms for constructing convex hulls in EQ (if
d is even, [s]) and for constructing arrangements of hyperplanes in
Ed ([E0S]). Let S={d;,...d,) be a set of data and let C(S) denote the
structure to be constructeq. The incremental approach suggests the
following strategy:

For i=1 to n do

construct C({dy,...d;}) by inserting d; into
C({dl....di_l}}.

A

A U
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So the insertion of an item into an already existing structure is the
crucial step which determines the efficiency of the algorithm. An

example for this approach is given in Section 7.

DISCUSSION

Eight interrelated central problems from computational geometry are
discussed, and the general ideas that lead to efficient solutions for
these problems are explicated. By no means we claim any exhaustive
treatment of computational geometry. In fact, large classes of prob-
lems like rectangle problems [E] or hidden line problems [Sch], and
several design techniques like the plane-sweep technique [NP] or
dynamization methods for static data structures [0l1], are not men-
tioned. Qur primary goal thus remains to offer an introduction to an

appealing part of where geometry and algorithms meet.
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