1

1 giormation Processing Letters 23 (1986) 289-293
vorth-Holland

3 December 1986

HALFPLANAR RANGE SEARCH IN LINEAR SPACE AND On*%%) QUERY TIME

Herbert EDELSBRUNNER and Emo WELZL

Institute for Information Processing (I1G), Technical University of Graz and Austrian Computer Society, Schiesstatigasse 4a,

A-8010 Graz, Austria

Communicated by L. Boasson
Received August 1985
Revised January 1986

Let S denote a set of n points in the Euclidean plane. A halfplanar range query specifies a halfplane h and requires the
determination of the number of points in S which are contained in h. A new data structure is described which stores S in O(n)

space and allows us 1o answer a halfplanar range query in O(n'8! *¥3)~1) time in the worst case, thus improving the best
result known before. The structure can be built in O(n log n) time.

Keywords: Computational geometry, range search

+ 1. Introduction

Let S denote a set of n points in the Euclidean
plane. A range search problem requires to store S
in a computer such that the number of points in S
which are contained in a later specified region of

- the plane (called a range) can be determined

. efficiently. Usually, range search problems are
classified by the kind of ranges which are speci-

- fied. The classical orthogonal range search problem
which prepares S for axis-parallel rectangles as
ranges is already mentioned in [8].

We consider halfplanes as ranges, thus investi-
gating the halfplanar range search problem. A new
data structure, called the conjugation tree which
will be introduced in Section 2, stores S in O(n)
space such that O(n®%%) time suffices to de-
termine the number of points in S which lie in a
query halfplane h. The application of the data
structure is not restricted to computing the num-
ber of points in h. More generally, it can be used
to compute the sum of values in some semigroup
which are associated with the points contained
in h.

The data structure also supports range queries

for polygonal areas as query ranges. The query
time remains the same if

(1) two values in the semigroup can be added
in constant time, and

(2) the polygonal range is bounded by at most
some constant number of edges.
In addition, the conjugation tree supports report-
ing the points in a halfplane or in a polygonal
range bounded by at most a constant number of
edges. The time required is O(n®%% + t) where t is
the number of points to be reported. For reporting
the points in a halfplane, this result is outper-
formed by an O(log n + t) query time and O(n)
space data structure due to Chazelle et al. [2]
(which, however, cannot be used for enumeration
and polygonal ranges within this time bounds).

The best data structure for the halfplanar range
search problem known before which requires only
O(n) space is the polygon tree of Willard [12]. It
stores n points in O(n) space and answers a range
query of that kind in O(n””") time. Thus, the
conjugation tree is more efficient. Both trees are
generalizations of the quad tree of Finkel and
Bentley [5] and the kd-tree of Bentley [1] which
were designed for orthogonal range queries. There

0020-0190,/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 289

Volume 23, Number 6

exist data structures which are better than the
conjugation tree as far as query time is concerned
(see [3]). These data structures, however, require
Q(n?) space for n points. It is also worthwhile to
note that better results than the ones for the
conjugation tree exist if only estimates of the
number of points in a query halfplane are asked
for. Data structures for these problems which
achieve O(log n) query time and even sublinear
space (depending on the required accuracy of the
answer) are presented in [4]. For lower bounds on
the halfplanar range search problem we refer to
Fredman [6]. Unfortunately, it is not clear at this
point how relevant Fredman’s findings are for the
material presented in this paper.

The organization of the paper is as follows:
Section 2 describes the conjugation tree, analyzes
the amount of time required to answer a halfplanar
range query, and addresses a method for con-
structing the conjugation tree. Finally, Section 3
discusses some extensions and related problems.

2. The conjugation tree

This section introduces a new data structure,
the so-called conjugation tree. The conjugation
tree can be viewed as a binary tree which stores
the points of a finite set in linear lists associated
with its nodes. Preceding its detailed description,
some geometric facts and notions are presented
which are considered to be necessary for this
purpose.

Intuitively, for a given point-set S and a line L,
which divides S into two nearly equal-sized sub-
sets, lines L' are examined such that the four
(infinite) regions defined by L and L’ contain
nearly equal-sized subsets of S (see Fig. 1).

Fig. 1. Bisecting line L with conjugate L.

290

INFORMATION PROCESSING LETTERS

3 Deﬁember l% ! \{01

Let S denote a set of n points in the Euclig,
plane. For a directed line L we let left(L), On&&“ ‘
and right(L) denote the number of poins inl l
strictly to the left, on, and strictly to the 4 t i
L, respectively. L is said to bisect S if lef(L) @;’* |
and right(L) < in. : ! l Ve

L induces the partition of S into S, (L), Sau(LL
Signi(L) with the obvious definitions. Note
Soa(L) cannot be empty if n is odd; in this
the bisecting line is unique if its slope (and direg,
tion) are given,

Let now L be a line which bisects S. We
another line L' a conjugate of L (for S) i v
bisects S, (L) and Sdsm(L) (see Fig. 1). The i
portant question of whether there is always,
conjugate of a bisecting line is answered affirm, l

tively, e.g., by Willard [12], =
We now come back to the conjugation tr.
designed for the halfplanar range search prob,
Let S denote a set of n points in the Euclideg ar

plane. Let L denote a line which bisects S and |g
L’ denote a conjugate of L. Unless S is empty, the bl
conjugation tree for S (and L) is the tree

(i) with root w which stores L, S|, and 5
linear array, on(w), which ‘stores S (L) in sorted | T
order,

(ii) the conjugation tree with root left(w) for 2
Sien(L) and L as the left subtree of w, and g
(iii) the conjugation tree with root right(w) for | ¢
Ssgni(L) and L’ as the right subtree of w. el

Fig. 2 depicts the conjugation tree for a set of | ¢
points as well as the dissection of the plane in- I
duced by the lines. L

Obviously, the conjugation tree for a set of ' E
points is not unique since neither the first separat- ! C
ing line nor the conjugate lines are unique (evenif |
those inducing the same partition are considered |
to be the same).

We find it important to give here some
meaningful comparisons between the conjugation
tree and related data structures, the most famous
of which is the quad tree. The most important
properties of the conjugation tree, when compared
with the quad tree as defined in [5], for point-sets
are:
(i) the lines used by the conjugation tree to ‘
separate the point-set are not necessarily axis | i
parallel, and |

3

points in the Eygy;

L we let left(L), olg San
number of poingg i(LL
1 strictly to the

» bisect S if left(L) < of

in
of Sinto S, (L), §
. definitions. Note%tflz')'
"n is odd; in thig c:asat
: if its slope (and direcl

hich bisects S. We cal]
e of L (for S) if L
-) (see Fig. 1). The ip,.
‘her there is always ,
ae i1s answered affirmg,.

0 ' conjugation tree
r range search problem
points in the Euclideap
which bisects S and et
. Unless S is empty, the
L) is the tree
1 stores L, |S|, and 3
‘stores S, (L) in sorted

'¢ with root left(w) for
ubtree of w, and

e with root right(w) for
t subtree of w.

gation tree for a set of
sction of the plane in-

ion tree for a set of
cither the first separat-
nes are unique (even if
irt” "~n are considered

to give here some
etween the conjugation
tures, the most famous
:. The most important
n tree, when compared
ed in [5], for point-sets

he conjugation tree to
© not necessarily axis-

De%mber 1986

| Jume 23, Number 6
"%

INFORMATION PROCESSING LETTERS

3 December 1986

fig 2. A conjugation tree for thirteen points.

(i) the partition of two point-sets just sep-
yrated is not carried out independently.

Property (ii) makes the conjugation tree resem-
ble the quad tree as it is used for storing digital
pictures (see, €.g., [11]). The conjugation tree shares

: property (i) with the polygon tree of Willard [12].

This data structure stores n planar points in O(n)
space and allows us to answer a halfplanar range
query in O(n®"”) time. In what follows, the conju-
gation tree is shown to be better than the polygon

. wee as far as efficiency is concerned. The gain in
. efficiency is essentially due to property (i) which

is not shared by the polygon tree.

Lemma 2.1. Let S denote a set of n points in the
Euclidean plane stored in a conjugation tree. Then
(820 +V3)=1) time suffices to determine the num-
ber of points in S which are contained in a query
halfplane.

" Proof. The assertion is verified by exhibiting and

analyzing an algorithm which determines the
number of points in S contained in a query half-
plane h. There is no essential difference in the
search strategy for h closed or open.

Let v be an arbitrary node of the conjugation
tree T for S. We associate with v its range ran(v)

. such that the points in the subtree with root v are

in ran(v). If v is the root of T, then ran(v) is the

whole plane. Otherwise, let v be the left (right) son

of its father f. Then ran(v) is the intersection of
ran(f) with the open halfplane to the left (right) of
the directed line stored in f. We let g denote the
line which bounds h and are now ready to present
the search algorithm which accumulates the result
in a global variable COUNT.

Algorithm HALFPLANE QUERY. The search starts
at the root w of T and with COUNT = 0. Note that
the intersection of g and ran(w) is exactly g. Let v
denote the current node in T and let int(v) be the
intersection of g and ran(v). This line, ray, or line
segment can be obtained by intersecting int(f), for
v the left (right) son of f, with the open halfplane
to the left (right) of the line stored in f. We
distinguish two cases.

Case 1: int(v) is empty. Then ran(v) is either
contained in h or has no intersection with h. In
the former case, all points in the subtree of v are
contained in h, thus, the number stored in v is
added to a global variable COUNT. In the latter
case, no action is taken.

Case 2: int(v) is not empty. We first increase
CoUNT by the number of points of on(v) that
belong to h. Then the two sons of v are visited
recursively (if they exist).

For the analysis of Algorithm HALFPLANE
QUERY we need the following crucial observation:
Let v denote an arbitrary node of T. Then the

291

Volume 23, Number 6

range of at least one of the grandsons of v is either
totally contained in h or has no intersection with
h. Thus, if Q(n) denotes the time required by the
algorithm to search in a conjugation tree storing n
points, then

Q(n) =Q(4n) + Q(4n) + O(log n).

From the similarity of this recursive equation with
the definition of the Fibonacci numbers we derive

Q(n) = O(n'os20 +v'§)-1)’

where log,(1 + V5) — 1 is about 0.695. (See [7] for
an analysis of the Fibonacci numbers and for a
derivation of the following analytic description of
the krh Fibonacci number.) Let F,=0, F, =1,
and F,=F,_, +F,__, for k> 2. Then

Fo=[(10+V5) - (30 -V5))| /5
= o((31 +v5))).

The result for Q(n) will now be verified. For the
time being, we restrict our attention to numbers
n=2% k a nonnegative integer. We rewrite the
relations on Q(n) as follows:

Q(2") <Q(2*"") +Q(2*?) + ¢,k (=)

and

Q(2°) <¢,, (=)

and prove

Q(2%) < (3¢, +¢,)25820+V5) -1 _ ¢ (k 4 3),
(sese)

Obviously, (*#» #) holds for k=0 because of
(* =). Inequality (* » ») also holds for k> 1 by
an inductive argument which uses (*) and the
fact that

k-1 4 2&k~-2 2"’,
if z=log,(1+5)-1.

Clearly, Q(n) < Q(2/'¢:21), which completes the
argument. O

Lemma 2.1 can be extended into various direc-
tions two of which are now addressed.

292

INFORMATION PROCESSING LETTERS

3 Decempe, 19 l \m]uﬂ‘e 2

Let M be some mapping which associateg cag
point p of the plane with a value M(p) i %0,
commutative semigroup H. We assume thy; My [Letu
can be computed in constant time from p anq thy s of
two numbers in H can be added in constan; time | oint-s€
Then the conjugation tree allows us to compmehi I Etrucwr'
O(n’®%) time the sum of M(p), for all p of 3 givey which al
set of n points which are contained in a Query | efficient
halfplane h. This result is obtained by assigning 1, IJOims i
each node v the sum of the values of all Poing | o 206
stored in the subtree with root v. Notice thy | ontain
taking the set of positive integers together with the | (ree car
operation “+” for H and defining M(p) =1 leads | ron tre
to computing the number as considered in Lemm; | ture fO
2.1. The conjugation tree also supports reporting l namely
the points in h. If t points of S belong to h, they | allows
O(n®*® + t) time is required for this activity, Th, { o(n®""

l}-Diw

gion

bound is achieved via Algorithm HaLrpraNn Unf
QUERY adapted to the case of reporting, that i Jdy st
instead of adding some number to COUNT, g | of new
points stored in the respective subtree are re. | fore. »
ported. dynam

More general than halfplanes, the conjugatiog | methoc
tree permits arbitrary polygonal areas as query | insertic
ranges. An analysis as presented in [12] shows tha l prohib
the time required for answering a query is sl | metho
O(n®%%) if the polygonal area is bounded by a Fin.
most some constant number of edges, and if 3 | impro
search strategy analogous to the one of Algorithm | range -
HALFPLANE QUERY is applied. data s

For a complete analysis of the conjugation tree,
we still have to analyze the space and time re. l

quirements for constructing it. While it is trivial | Ackno
that O(n) space suffices for the ultimate structure
storing n points, an algorithm that constructs the We

tree in O(n log n) time is not obvious. Neverthe- | the tir
less, such an algorithm follows from a result of ‘
Megiddo [9]: For two sets of a total of n points in l

the Euclidean plane, a line that bisects both sets |

can be found in O{(n) time if both sets can be |
separated by another line. This yields our main l

result.

Theorem 2.2. Let S be a set of n points in the
Euclidean plane. There exists a data structure which
stores S in O(n) space and can be constructed in
O(n log n) time, such that polygonal range queries
can be answered in O(n8:(+V5)-1y 40]

3 December 1935

ich associates eacy,
ilue M(p) in some
- assume that M(p
ne from p and tha,
d in constant time
S us to compute jp
forall p of a given
tained in a qQuery
1ed by assigning ¢,
alues of all poingg
ot v. Notice thay
s together with the
ing M(p) =1 leads
1sidered in Lemmj,
supports reporting
belong to h, thep
- this activity. The
ithm HALFPLANE
rep. .ng, that is,
er to Counr, al|
¢ subtree are re.

s, the conjugation
al areas as que

in [12] shows that
g a query is still
is bounded by at
f edges, and if a
one of Algorithm

: conjugation tree,
'ace and time re-
While it is trivial
dtimate structure
at constructs the
wvious. Neverthe-
from a result of
tal a points in
bisects both sets
both sets can be
vields our main

''n points in the
ta structure which
be constructed in
nal range queries
1) time.

!

‘-\. slume 23, Number 6
'k Discussion and extensions

Let us first give a review of the main contribu-
jons of this paper: A new data structure for
' oint-sets in the plane is introduced. This data
qucture, called conjugation tree, is a binary tree
;-hjch allows us to answer halfplanar range queries
sgficiemly. More specifically, it stores a set S of n
ints in O(n) space and allows us to determine in
o(n”®”) time the number of points in S which are
contained in a query halfplane (or polygon). The
'ree can be built in O(n log n) time. The conjuga-
jon tree improves the best O(n) space data struc-
wre for halfplanar range search known before,
pamely the polygon tree of Willard [12] which
adlows us to answer a halfplanar range query in
o(n®7") time. '
Unfortunately, the conjugation tree is inher-
cntly static, that is, it does not support insertions
of new points or deletions of stored points. There-
fore, we refer to [10] for general methods which
'dynamize static data structures. That is, these
methods modify static data structures such that
* insertions and deletions can be carried out without
prohibitive effort. Many of their dynamization
] methods apply to the conjugation tree.
| Finally, we pose as an open problem either an
| improvement of the conjugation tree for halfplanar
range queries, or a proof that, with O(n) space, no
| data structure can do better.

¥

* Acknowledgment

We thank W. Bucher for help in the analysis of
the time complexity of the query algorithm.

INFORMATION PROCESSING LETTERS

3 December 1986

References

[1] J.L. Bentley, Multidimensional binary search trees used
for associative searching, Comm. ACM 18 (1975) 509-515.

[2] B. Chazelle, L. Guibas and D.T. Lee, The power of
geometric duality, in: Proc. 24th Symp. on Foundations of
Computer Science (1983) 217-225,

[3] H. Edelsbrunner, D.G. Kirkpatrick and H.A. Maurer,
Polygonal intersection searching, Inform. Process. Lett. 14
(1982) 74-79.

[4] H. Edelsbrunner and E. Welzl, Constructing belts in two-
dimensional arrangements with applications, SIAM J.
Comput. 15 (1986) 271-284.

[5] R.E. Finkel and J.L. Bentley, Quad trees—a data struc-
ture for retrieval on composite keys, Acta Informatica 4
(1974) 1-9.

[6] M.L. Fredman, The inherent complexity of dynamic data
structures which accommodate range queries, in: Proc.
21st Ann. IEEE Symp. on Foundations of Computer
Science (1980) 191-199.

[7] D.E. Knuth, Fundamental Algorithms: The Art of Com-
puter Programming I (Addison-Wesley, Reading, MA,
1973) Chap. 1.

[8] D.E. Knuth, Sorting and Searching: The Art of Computer
Programming III (Addison-Wesley, Reading, MA, 1973)
Chap. 6.

[9] N. Megiddo, Partitioning with two lines in the plane, J.
Algorithms, to appear.

[10] M.H. Overmars and J. van Leeuwen, Worst-case optimal
insertion and deletion methods for decomposable search-
ing problems, Inform. Process. Lett. 12 (1982) 168-173.

(11} H. Samet, Neighbor finding techniques for images repre-
sented by quadtrees, Comput. Graphics and Image Pro-
cess. 18 (1982) 37-57.

[12] D.E. Willard, Polygon retrieval, SIAM J. Comput. 11

(1982) 149-165.

293

L M A ..‘} o Kl _l
4y O
¥ g bt el } : " A¥ k
r v gz ¥ g
X ey, " - '
i 0™ s & i - .
el i
iy) 3 ' al g e
I iy 1 rf-‘u §]
i
o » 1%} 1] . ' v LR Y1 ik
e) B v .
0 v il
¥ @ L Tl . . i
' e et i * " i
In K
e s SLRE T g
i maett S 1 &« T . [
wl . SR BT
“y LY Drwpld o~ b rigd e 1
LRLL S oM g ! oo ey
B N LAt b
M L v e l-_ o ¥ oA o
e L T I [pair e
.I
R g w Filal Iy I J8°8 .
= o s AT
N, i . » gyt Lf WLy
43 AT " : I
A ¥ i - Wy
nt o= g PNV T
i - i,'.f. N ood i
. s Ml ad
e i = T ~
T

L
P ol 11 s ™ ie=pi L U]
Ve N Ia
B L] b . da g
[)
: i L i . . iy
i) rF i ¥k N v N
- AT . Sigs . 3 I'
oL LTI I .
kg is 0l %
b e 5
1S LRI RN .
et N i
fowd I | Ve il i
Y. ¥ ESITy ind I .
1 WAL W . i . ¥
i B. ¥l 5 oueh 4 o i,
. -1
- sk, . ‘ A
L TR e T i i . ‘ P ‘) X
) e tity 1IWID; W e T W
e dmed' et B # | AL R .
. u i Yo ah . fo
r Wit paic i 2 l §
wenlifom nim ppes 0 g g 8 (T
G eegd g ' “:
DI . ¢ s . ¢ :
Ty = PRLL Y (O ¢ H
anl ill =i . e ¥ bR
Uy B TR Wil - - " = -
. P , .-
L
(LT N I B LM Wy y :
fmyti L 1Y . , ;
. ™
- .)iais
R
- L]
§ ¥
[

