Rectangular Point Location in d Dimensions with Applications

H. EDELSBRUNNER,* G. HARING* anp D. HILBERTY

Rectangle location search in d dimensions is finding the d-dimensional axis-parallel box of a non-overlapping collection
C that contains a query point. A new data structure is proposed that requires optimal space and O(log® |C|) time for a
search. The significance of this data structure in practical applications is substantiated by empirical examinations of its

behaviour.
Received January 1984

1. INTRODUCTION

Given a plane graph G that subdivides some domain of
the real plane, the point location problem asks for
identification of the region that contains a query point.
By virtue of a number of applications, point location is
one of the best-examined problems in computational
geometry.

The first algorithm that solves a special case in
optimal — that is O(log#n) — time is given by Dobkin and
Lipton.® In this case G consists of n straight edges. The
0(n?) space requirements were improved by Preparata®®
to O(nlogn) and by Lee and Preparata’® to 0(n) while
sacrificing the optimal query time. Since Kirkpatrick!®
and Edelsbrunner, Guibas and Stolfi,’* algorithms with
optimal 0(#n) space and optimal O(logn) query time exist.
Generalisations of this special case to curved edges are
considered by Edelsbrunner and Maurer,!® who give a
space-optimal solution. In fact, the space- and time-
optimal algorithm of Ref. 11 applies to curved edges also
settling, in some sense, the issue.

This paper extends the notion of point location to three
and higher dimensions while restricting itself to Cartesian
products of intervals as regions. The planar case of this
version is also studied by Lipski and Preparata,’” who
applied the suboptimal algorithms of Ref. 20. We take a
different approach and modify the algorithm of Ref. 10
to obtain a 0(r) space and 0(log®n) query-time solution
for m rectangles in the plane. Although suboptimal, we
believe that its simple implementation makes it the proper
choice in practical applications. Without accepting much
complication, thissolutionisextended tod > 3dimensions
where 0(n) space and 0(log® n) query time are required for
n regions.

The organisation of the paper is as follows. Section 2
introduces the new data structure along with a worst-case
analysis of its behaviour. In Section 3 the results of
empirical investigations are presented. They support the
accuracy of the theoretical analysis as well as the
usefulness of the data structure in practice. Section 4
examines Sections 2 and 3 from a practical viewpoint:
Applications of the algorithm in analytic models of
computer systems are discussed. Finally, Section 5
reviews the results obtained.

2. THE d-DIMENSIONAL SKEWER TREE

This section gives a thorough description of the problem
considered and the data structure proposed for its

* Institutes for Information Processing, Technical University of
Graz, SchieBstattgasse 4a, A-8010 Graz/Austria. (Address for
correspondence.)

T Institute for Applied Mathematics, Technical University of Graz,
Steyrergasse 17, A-8010 Graz/Austria.

solution. The concepts are explained for arbitrary
positive dimensions and a running example illustrates the
concept for the planar case.

We use the term interval to denote intervals that are
closed to the left and open to the right. A rectangle in d
dimensions (for some particular positive integer d) is the
Cartesian product of d intervals, one on each coordinate
axis.

Partially closed rectangles as described above can easily
be used to define a rectangular subdivision of a rectangular
domain, that is, no two rectangles of the subdivision
intersect and the union of the rectangles is the domain.

The rectangle location search problem in d dimensions
can now be stated as follows. Given a set of
non-intersecting rectangles in d-dimensions, determine
for a specified query point the rectangle in which it is
contained.

The set of rectangles is stored in some data structure
which allows us to answer queries efficiently. Thus a
solution consists of a data structure for the set of
rectangles, an algorithm that constructs the data
structure, and an algorithm that determines for a query
point the rectangle in which it is located. Such a solution
is measured in terms of the amount of storage required
by the data structure (called the space), the amount of
time required for the construction of the data structure
(called the preprocessing time), and the amount of time
required to answer a query (called query time).

Let now S denote a set of n non-intersecting rectangles
in d dimensions. Each rectangle is given as a 2d-tuple of
real values definingits corner points. E.g. r = (rL, 7L, ..., r%,
r?) means that r is the Cartesian product of the intervals
[, rh), ..., [r%, rd). Figure 2.1 depicts a set of 13 rectangles
in the plane. They are chosen to define a subdivision of
a rectangular domain.

We now present a description of the so-called skewer
tree for the set S of rectangles in J dimensions. The

X2
3
N s e SR SRR, | A SR
B \[D |[F |
5__,) I===== || | I ——— 1.
! IE ||VH | L I
4 4 I 1 ¥ Il I
|| T L e e et [i
| C i| 1 I ;
3T : e T
; | 1 | M
1T e = i
, A |G | K | i
—t—t——t——t—+—1— x3
1 2 3 4 5 6 7 8 9 10

Figure 2.1. Rectangular subdivision in the plane.

76 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

RECTANGULAR POINT LOCATION

algorithms for constructing the skewer tree and for
answering a rectangle location query follow.

The skewer tree (of any dimension) for an empty set
of rectangles is the empty tree. The one-dimensional
skewer tree for a set of non-intersecting intervals on a line
is the sorted list of the intervals (in sequential storage).

If d>1 then we rename the endpoints of the
rectangles’ dth intervals as e, e, ...,e,, such that
e, =eifi<j Let m=(e,+e,,,)/2, and let S, contain
the rectangles in § which le to the left of the
(d—1)-dimensional hyperplane x; =m. Similarly, S,
contains the rectangles in S which lie to the right of this
hyperplane. Let S, contain all rectangles of S that
intersect the hyperplane. Since each rectangle of S,
intersects x,; = m, the projections of any two rectangles
in S, on to x; =0 do not intersect. The root R of the
d-dimensional skewer tree for S contains the value m which
defines the dividing hyperplane. Its left subtree is the
d-dimensional skewer tree for §, and its right subtree is
the d-dimensional skewer tree for S,. The middle subtree
for R is the (d— 1)-dimensional skewer tree for the ortho-
gonal projection on to x; = 0 of the rectangles in S,.

Figure 2.2 shows the two-dimensional skewer tree for
the 13 rectangles depicted in Figure 2.1. The upper-case
letters A, B, ..., M stand for the pointers to the respective
rectangles stored. A node of a skewer tree contains an
integer which defines the dimensionality of the tree rooted
at this node, a real value which determines the
hyperplane, and three pointers to the left, middle, and
right subtree. A one dimensional skewer tree stores one
pointer per element.

]
I
|
I
A GK E.H

Figure 2.2. Two-dimensional skewer tree for 13 rectangles.

Lemma 2.1

The skewer tree for » non-intersecting rectangles in d
dimensions requires 0(n) space.

Proof

Note first that each rectangle is stored exactly once in a
one-dimensional skewer tree. Thus the space needed for
those lists is 0(z). Each node of a k-dimensional skewer
tree, for 2 < k = d, which has no left or no right son has
a non-empty (k—l)-dimensional skewer tree for its
middle subtree. Since at least half of the nodes of a binary
tree have no left or right son, we conclude that the space
needed for the nodes with dimensionality &k is at most
proportional to the number of non-empty (k—1)-
dimensional skewer trees involved. As all (k—1)-
dimensional trees are disjoint, that is, no rectangle is
stored in two of them, O(n) space suffices for the nodes
with dimensionality k, which completes the argument.

Lemma 2.2

The skewer tree for n non-intersecting rectangles in d
dimensions requires 0(n logn) time for its construction.

Proof

Since the algorithm for constructing the d-dimensional
skewer tree works very much along the lines of the
definition of the skewer tree given above, we omit its
description. For the determination of the skewing
hyperplanes and the splitting of the current set into three
disjoint subsets, S, S, and S, so defined, we employ a
median algorithm which requires 0(x#) time for the de-
termination of the median among n values (see e.g. Ref. 2).

Let v denote an arbitrary inner node of the skewer tree.
Let n, denote the number of rectangles stored in the
subtree rooted at v. Those n, rectangles are placed in 0(»,,)
time into three disjoint sets §), S, and S, satisfying
|8y |+ [+1S;| =n and |S,|<n/2 and |S,| < n/2.
We define the level of a node as the distance of this node
from the root of the skewer tree.

Each rectangle in the whole set is in at most one subtree
rooted at a node with level 1. Hence the construction of
all nodes with level I costs 0(n) time. Since a path from
the root to a one-dimensional skewer tree contains at
most d— 1 pointers to a middle subtree, the height of the
skewer tree is O(logn+d). Thus, considering d as a
constant, 0(n logn) time suffices for the construction of
the inner nodes of a skewer tree. 0(n log n) time suffices
also for the construction of the one-dimensional skewer
trees which completes the argument.

Lemma 2.3

A rectangle location query in a skewer tree for n
non-intersecting rectangles in 4 dimensions can be
answered in time 0(log?n) in the worst case.

Proof

The algorithm answers a d-dimensional rectangle
location query by answering 0(log ») (d— 1)-dimensional
queries. More specifically, it works as follows.

The algorithm starts at the root of the tree which
discriminates w.r.t, the dth coordinate.

Let v denote the current node which discriminates w.r.t.
the kth coordinate, where 2 £ k £ d. The value stored in
v is denoted by val (v) and defines the (k— 1)-dimensional
hyperplane x;, = val(z).

Step 1

A (k—1)-dimensional query (considering the k—1 first
coordinates of the query point only) is carried out in the
middle subtree of v. This query yields a rectangle r (if any)
whose projection on to the k— 1 first coordinates contains
the projection of the query point.

Step 2

Three cases, depending on the relative position of r and
the query point p = (p!, ..., p%), are distinguished.

Case 1

r contains g or r does not exist and p* = val (v). In this
case the solution is found.

Case 2

p¥ lies to the left of the kth interval of r, or if r does not
exist, p* < val (v). Then the procedure is repeated with the
left son of v as the current node (if it exists).

Case 3

p¥ lies to the right of the kth interval of r, or if r does not
exist, p* > val (v). Then the procedure is repeated with the
right son of » as the current node (if it exists).

For the sake of completeness we note that a
one-dimensional rectangle location query is answered
simply by binary search. Let Q,(n) denote the time
required for answering a A-dimensional rectangle
location query in a skewer tree that accommodates n
k-dimensional rectangles. Then Q,(n) = O(logr). For
higher dimensions we have Q4(n) = 0(logn) Q4_,(n) =
0(log? n) (as the tree has height O(log n)), which completes
the argument.

We have now obtained the main result of this section,
namely a solution for the d-dimensional rectangle
location search problem.

Theorem 2.4

For a set of n non-intersecting rectangles in d dimensions
there exists a data structure that requires 0(n) space and
0(n log n) time for its construction such that O(log?) time
sufficies to answer a rectangle location guery. The as-
sertion is an immediate consequence of Lemmas 2.1, 2.2
and 2.3.

In Section 3, it is argued and substantiated that the
constants involved in the time and space requirements for
the skewer tree are rather small. This fact and the
conceptual simplicity of the structure make the skewer
tree an interesting possibility in practical environments.
It is worthwhile to note that the query time of the skewer
tree can be improved to O(log?~'#) in the worst case by
application of the techniques described in Kirkpatrick®
or, more recently, in Edelsbrunner, Guibas and Stolfi:*
each two-dimensional middle subtree is replaced by an
instance of the structure in Ref. 15 or Ref. 11. This
improvement, however, sacrifices the conceptual simpli-
city of the structure and is, therefore, omitted in this
study.

3. EXPERIMENTAL INVESTIGATIONS

This section describes experimental experiences in
implementing the algorithms outlined in Section 2. We
are particularly interested in examining the query time of
the rectangle location search algorithm. Our intention is
to test the algorithm on ‘random subdivisions’ of a given
rectangular domain.

The generation of such a random subdivision is not
straightforward. Therefore, we first give the methods used
to generate the rectangular subdivisions for our
experimental investigations. One objective criterion a
random subdivision has to fulfil is the uniform
distribution of the areas of the subdividing rectangles in
a given interval.

A subdivision is generated by successively adding
randomly selected rectangles to a set L of rectangles, until
the whole domain is covered (subdivided). Each rectangle

which is added to L starts at a so-called starting point.
P is a set which contains the possible starting points.
For a rectangle r = (r}, rL, ..., %, 1) its starting point is
defined by (r},...,r¢). If we examine a rectangular
subdivision in two dimensions as in Fig. 2.1, we see that
the lower left corner (the starting point) of each rectangle
is the upper left or lower right corner of another rectangle
which already belongs to L. The only exception is the
rectangle in the lower left corner of the domain. Generally
if we look at a new rectangle r = (#1, 1}, ..., %, r4) which
is added to L, the d points, adjacent to the starting point
of this rectangle (rl,r2,....78), (/L& 2,rH) .. (1L, ...,
ré1, r¢) are possible starting points for other rectangles
of our subdivision, unless they lie on the boundary of the
domain. Therefore the procedure for the generation of
arandom subdivision of a given domain has the following
general structure. It starts with P containing only the
lower left corner of the domain and L empty.

Basic algorithm
S, While P not empty do

S, Choose randomly a point pe P and remove it
§; If a new rectangle can start at p then
S, Choose a random rectangle with p as starting
point;
S, If it stretches out of the domain or
intersects a rectangle in L then
S, modify it
end if
S5 Add the new rectangle (rl,rl,...,r%, 2) to L
and add its 4 corners (ra, ke)
(?‘1,?‘2, i e rd) rl's-” _I,P‘g)tOP
end if
end while

Sg Stop — L is a subdivision of the domain.

We should add some remarks to this basic algorithm.

(1) An advantage of this algorithm is that every
possible subdivision can be generated this way.

(2) Step S, of the algorithm is a simple test if p lics
inside the domain and outside each rectangle in L.

(3) If the free space is not sufficient for a new rectangle
in step S; at least one of the edges has to be shortened.
If possible the other edge is lengthened to avoid getting
toomany smallrectangles. Fortunately for twodimensions
the free space is always a rectangle as in Fig. 3.1(q). The
situation in Fig. 3.1(b) is not possible, because the
starting point of r cannot occur in P.

(4) To avoid having a new rectangle slightly smaller than
the free space and therefore being forced to fill the

- b

I
I i l

it
@

(a) (b)

F'gure 3.1. Free space for a new rectangle (a) in the plane; (b)
in higher dimensions only.

78 THE COMPUTER JOURNAL, VOL. 29, NO. I, 1986

RECTANGULAR POINT LOCATION

remaining gaps with small and elongated rectangles, it is
necessary to modify the algorithm to guarantee a minimal
edge-length of the rectangles. For this purpose it is
necessary to alter the rectangles in L in several cases. We
skip the details of this modification.

(5) In the case d > 2 the difficulties arise where a
rectangle is too big and has to be modified. Look at Fig.
3.1(b). It is now interpreted as a plane through the
starting point p parallel to two of the coordinate axes. The
lower left corner of the rectangle r is only the projection
of its starting-point, the point itself not lying in this plane.
So we cannot exclude this case any longer. The approach
mentioned in Remark (3) would be too expensive for
more than two dimensions. Therefore to trim a new
rectangle with edge-lengths e?,...,e? the following
simpler method is used (f7,...,f¢ denote the adjusted
edge-lengths).

Fori=1toddo
T, Determine m', the maximal edge-length in x;-
direction of a rectangle with edges /7, ...,/ 1.

T, f*=min (e, mf)

This loop replaces the steps §; and S, of the basic
algorithm. The first two steps are illustrated in Fig. 3.2.

Xy ==

Figure 3.2. Modification of a rectangle — first two steps of the
d-dimensional case. — — —, Initial, O, modified rectangle.

As can be seen from Fig. 3.3, the results for
two-dimensional subdivisions obtained by this algorithm
do not differ from those obtained by the previous one. So
we believe that the results are representative for higher
dimensions too, and this justifies the simplification of our
algorithm to solve the problems in higher than two
dimensions.

Now we are ready to present some experimental results
for the query time of the rectangle location search
algorithm. We decide to use the number of comparisons
between coordinate values as measure for the query time.

Thus we use the following test procedure:

R, fori=1 to nsub do

(a) generate a subdivision with a given set of
parameters

(b) build the skewer tree for this subdivision and
determine the values
n: number of rectangles
k: number of nodes in the skewer tree
Craxs Cav,: maximum and average number of
comparisons to find the rectangle

R, compute the average values of n, k, Cp,, and C,,,.
for further evaluation.

The number of subdivisions nsub was limited by our
computer resources. It varied between 5 and 100
depending on the number of rectangles in a subdivision.

To determine C,, we adopt the assumption that the
query points are uniformly distributed over the whole
domain. For an exact evaluation, the rectangular
subdivisionisrefined torectangles of invariant search-path
in the skewer tree. Then one point out of each rectangle
is examined and the number of comparisons is weighted
with the measure of the rectangle. Obviously, one of the
chosen points gives rise to the maximum number of
comparisons which yields C, .

Numerous computations for two, three and four
dimensions have been performed while varying the shape
of the domain and the way of choosing the random
rectangles. For two dimensions we compared both
algorithms to adjust a rectangle as described above. The
results concerning the number of comparisons are
presented in Figs 3.3, 3.4 and 3.5. As suggested by the
theory, the results are depicted against log? n. The linear
behaviour of C,,, and C,, is well supported, the
deviations due to various parameter combinations being
very small,

C A&
as
60"" “P‘: .
— }c\ .
i Cmax 08&.
o
& A
a yo l‘ "": i
204+ @ % o845
Q o C 1
I Lo *
1 1 1 1 1 1
1]] 1] |
10 20 50 100 200 500

Figure 3.3. C-values for two dimensions against log? n. A, Special
algorithm for two dimensions; O, general algorithm.

(o
o0
- B
o0
a
o o
80 + %P
cmax 5 2
o
1§ o, %
o o
o :
—_— =] Q
40 OCbocl 4 : . Q
o f g 8 o ::SD% Co, ©
+4 oo ! gd"b 0.7 P
o0
1 I i I 1
A T T T T
10 20 50 100 200 500 n

Figure 3.4. C-values for three dimensions against log® .

oo

150 + g
o
T)
Coax o & &
o
100 + g
(a3
S0
i % “a
& o
PUE . g 4 Bl
2 o
@ - gz O o
3] o C
Al o ° g %0 av
)
1 1 | T
T T T T
20 50 100 200 400 n

Figure 3.5. C-values for four dimensions against log* n.

The following regression lines belonging to Figs 3.3-3.5
have been computed using common logarithms:

d=2: Cpu=T7+75l0g *n
Cav. =5+32l0g*n

d=3: Cpae =21 +4.8l0gn
C,, =13+1.5log’n

d=4: C,,, =42+2.4log'n
C,o. =22+0.72l0g'n

The following are straightforward empirical observations
concerning the skewer tree as described above.

The number of nodes in the trees varies considerably.
However, we are not able to conclude anything about its
behaviour. The most influencing factor in this context is
the relation between the edge-lengths of the domain. If
the differences of the edge-lengths are large, by far the best
results are obtained if they are ordered according to their
values, the edge in x'-direction being the longest and that
in x%-direction the shortest. The query times are slightly
better in this case, too.

In conclusion we might say that the query time
(expressed by the number of comparisons) for this
algorithm is rather low even for small values of n. The
query algorithm is not complicated —if programmed
efficiently (without recursion) it should be interesting for
practical applications.

4, AN APPLICATION-ANALYTIC MODEL
OF COMPUTER SYSTEMS

One application area for the above-mentioned algorithm
is the field of analytic models of computer systems.” Such
models are important in capacity management for the
performance prediction of a computer system under
changed workload and/or with modified configuration.®
Usually an analytic model of a computer system
represents this system by a queueing network, composed
of different service centres. All relevant system features
and workload characteristics are mapped into the
parameters of such a model.**-2> One assumes that the
behaviour of the system is produced by an underlying
Markov process. An important class of queueing

80 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

networks 1s that for which the steady-state probability of
the Markov process has product form

1 K

G RS
P(S,,.... Sg) is the probability of a feasible network state
(S, ..., Sx) inqueueing network with K service centres.
G is a normalizing constant, and Py(S;) is a factor
reflecting the probability that the service centre i isin state
S;. The question whether or not a network has product
form solution can be decided on the nature of the
queueing discipline and the service time distribution at the
service centres of the network.?

Many realistic computer systems violate the assump-
tions for product form solution. If, in addition, the
number of states is too big, and therefore a direct
solution is intractable, simulation or approximation
techniques must be used.?” The most important approxi-
mation approach is the technique of aggregation
(decomposition) based on Norton’s theorem for electrical
circuits.* With this technique a subnet of the total
queueing network is replaced by a single service centre,
a so-called composite queue with identical steady-state
probability. One assumes that the composite queue
behaves identically in the interaction with the rest of the
network as the replaced subnetwork does (Fig. 4.1).

P(Sy, s S) =

Composite
Sub- queue
network

(@) Original queneing network (b) Transformed queueing

network
Figure 4.1. Principle of aggregation.

The composite queue with R different classes of jobs
is defined by an R-dimensional, positive matrix H, the
so-called rate matrix. The states of the composite queue
in isolation are R-tuples (my,...,ng), where n, is the
number of class r jobs in the composite service centre. For
the further evaluation of the model,® 2! the rate at which
class » jobs are served in the state S = (n,,...,ng) is of
interest, recognising that each class of jobs is receiving
service simultaneously.?

Hny,..on—1, ..., n5)
H(S)

This aggregation technique is exact for product form
networks. But furthermore, it can be used for many
approximations where a heuristic approach is given (e.g.
Ref. 5). It can be used for parametric analysis* where the
parameters in the subnet are fixed, whereas those in the
rest of the network are varied. Another important
application is hierarchical modelling, where we have
several levels of models with different degrees of
accuracy, and the results of one level are used as queue
characteristics in the model at the next higher level. This
technique is often used to represent 1/O-subsystems
adequately.*? The above-mentioned approach is also very

uA(S) =

RECTANGULAR POINT LOCATION

important for networks with passive resources, like
central memory or peripheral processors, where the job
flow through a subnetwork is limited by the availability
of physical resources.?* Very often parts of the system are
not tractable analytically. Therefore, simulation or
measurement techniques must be used to evaluate the rate
function of a composite queue in an analytical
model - leading to hybrid modelling techniques.® Further
practical situations where approximation techniques must
be used are multiple resource possession, blocking,
parallelism between central and peripheral servers,
distributions and queueing disciplines violating product
form solution, state-dependent routeing, etc. (for further
details see Refs 1, 6 and 13).

In all these situations, multidimensional rate functions
of different structure in different regions of the
R-dimensional domain are used to characterise the
composite queue. The dimension d of the domain in
the rectangle location search problem corresponds to the
number of job classes R in the queueing network. The
domain itself is defined by the range of the number of jobs
in each job class. Usually this extends from zero to the
maximum number of jobs N, in each job class r.
Therefore, the domain is given by (0,...,0) and
(M4, ..., Ng). The coordinate values are integers, namely
the number of jobs in a specified job class. The rate
functions themselves can be obtained either by analytic
evaluation, simulation experiments, or general consider-
ations and error-bound techniques as used in Refs 9, 18
and 28, where rational motivations can be used for
analytic forms of the rate functions. The rectangular
subdivision of the domain corresponds to regions in the

REFERENCES

1. J. R. Agre, Approximate Solutions to Queueing Networks
with State-dependent Parameters. Air Force Office of
Scientific Research, Techn. Rep. TR-1092 (1981),

2. A.V. Aho, J. E. Hopcroft and J. D. Ullmann, Data Struc-
tures and Algorithms. Addison-Wesley, New York (1983).

3. 8. C. Bruell and G. Balbo, Computational Algorithms for
Closed Queueing Networks. Elsevier North-Holland, New
York (1980).

4. K. M. Chandy, U. Herzogand L. Woo, Parametricanalysis
of queueing networks. IBM Journal of Research and
Development 19 (1) pp. 36-42 (Jan. 1975).

5. K. M. Chandy, U. Herzog and L. Woo, Approximate
analysis of general queueing networks. IBM Journal of
Research and Development 19 (1) pp. 4349 (Jan. 1975).

6. K. M. Chandy and C. H. Sauer, Approximate methods for
analyzing queueing network models of computing systems,
ACM Computer Survey 10 (3) 281-317 (1978).

7. P.J. Denning and J. P. Buzen, The operational analysis of
queueing network models, ACM Computer Survey 10 (3)
225-261 (1978).

8. D. P. DobkinandR. J. Lipton, Multidimensional searching
problems. SIAM Journal of Computing 5 (1976), 181-186.

5. D. L. Eager and K. C. Sevcik, Performance bound hier-
archies for queueing networks, Proc. SIGMETRICS Conf.
ACM. Performance Evaluation Review 11 (4) 213-214
(1982).

10. H. Edelsbrunner and H. A. Maurer, A space-optimal
solution of general region location. Theoretical Computer
Science 16 (1981), 329-336.

11. H. Edelsbrunner, L. J. Guibas and J. Stolfi, Optimal point
location in monotone subdivision (submitted for
publication).

domain where the rate function is of a different kind or
wasevaluated using different techniques. In the evaluation
of the total network this rate function must be used
repeatedly,? *'delivering the rate for different subnetwork,
populations (ny,...,np). The rectangle location search
problem is to find for a given subnetwork population
(ny,...,np) the corresponding rate function and to
reference its value or evaluate the function in sequence.
This search problem can be efficiently solved by the
above-explained skewer-tree algorithm.

5. DISCUSSION

A new data structure, the so-called skewer tree, is
introduced to solve the rectangle location search problem
in d dimensions efficiently: find the axis-parallel box (or
d-dimensional rectangle) of a non-overlapping collection
that contains a query point. While extending the classical
notion of point location from computational geometry to
three and higher dimensions, the type of region is more
restrictive. For a collection of »n rectangles in d
dimensions, the skewer tree takes 0(n) space and 0(log? n)
time.

Empirical experiments support this theoretical analysis
and also indicate that the constants involved are rather
small. This together with the conceptual simplicity of the
skewer tree makes us believe that it is the proper choice
to solve rectangle location search in practice. The
existence of this problem in practice is also supported by
discussing applications in analytic modelling of computer
systems,

12. G. Haring and H. Schelch, On modelling RPS-disc systems
(to appear in Computer Systems Science and Engineering).

13. P. Heidelberger and K. S. Trivedi, Queueing Network
models for Parallel Processing with Asynchronous Tasks.
IBM Research Report 9102 (1981).

14. M. G. Kienzle, Measurements of computer systems for
queueing network models, University of Toronto Technical
Report CSRG-86 (1977).

15. D. G. Kirkpatrick, Optimal search in planar subdivisions.
SIAM Journal of Computing 12 28-35, (1983).

I6. D.T. Lee and F. P, Preparata, Location of a point in a
planar subdivision and its applications. SIAM Journal of
Computing 6 596-606, (1977).

17. W. Lipski, Jr and F. P. Preparata, Segments, rectangles,
contours. Journal of Algorithms 2 63-76, (1981).

18. L. Lipsky, C.-M. H. Lieu, A. Tehranipour and A. van de
Liefvoort, On the asymptotic behavior of time-sharing
systems. Comm. ACM, 25, (10} 707-714, (1982).

19. T. L. Lo, Computer capacity planning using queueing
network models. Proceedings, Performance *80 Conference,
Toronto pp. 145-152, (May 1980).

20. F. P. Preparata, A new approach to planar point location.
STAM Journal on Computing 10 542-545, (1981).

21. M. Reiser, Mean-value analysis and convolution method
for queue-dependent servers in closed queueing networks,
Performance Evaluation 1 7-81, (1981).

22. C. A. Rose, A measurement procedure for queueing models
of computer systems, ACM Computer Survey 10 (3),
263-280 (Sept. 1978).

23. C. H. Sauer and K. M. Chandy, Computer Systems Perfor-
mance Modeling. Prentice-Hall, Englewood Cliffs (1981).

24. C. Sauer, Approximate solution of queueing networks with

simnultaneous resource possession. IBM Journal of Research 27. J. Zahorjan, The Approximate Solution of Large Queueing

and Development 25 (6) 894-903 (Nov. 1981). Network Models. University of Toronto Technical Report
25. H. D. Schwetman, Hybrid simulation models of computer CSRG-122 (1980).

systems. Communications of the ACM, 21 (9) 718-723 (Sept. 28. J. Zahorjan, K. C. Sevcik, D. L. Eager and B.I. Galler,

1978). Balanced job bound analysis of queueing networks.
26. K. 8. Trivedi, Probability and Statistics with Reliability, Communications of the ACM, 25 (2) 134-141 (Feb. 1982).

Queueing, and Computer Science Applications. Prentice-Hall,

Englewood Cliffs (1982).

82 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

