How often can you see yourself in a convex

configuration of mirrors ?

by H. Edelsbrunner!, and
J.W. Jaromezyk?

Abstract: An edge € of a convex polygon in the Euclidean plane reflects a
point p if the unique line through p which is normal to e intersects ¢. We
prove that for every convex polygon /' there is a point ¢ reflected by at least
three edges of /P . We also show that for every integer n >3 there is a convex
polygon Q such that no point ¢ is reflected by more than four edges of Q.

This upper bound can be improved to three if n <6 or il ¢ is restricted to lie
inside of Q.

1. Introduction

Let P be a convex polygon in the Euclidean plane E?;
P is called an n-gon if it is bounded by n edges and vertices. We assume
that all edges are relatively open, that is, they do not contain their endpoints.

An edge e of P issaid to reflect a point p if the line through p, which is
normal to e, meets e. Now, we define

P ,p)=card{e | ¢ an edge of P which reflects P},
AP )=max{¥(P ,q) | ¢ a point in £?}, and
An)=min{y(P )| P an n-gon in E?}.

If all edges of P are mirrors, then p "sees itself” in (P ,p) edges of P ; here
we do not consider multiple reflections and we assume that edges are tran-

sparent for reflections of other edges. We now state the main result of this
paper.

Theorem 1: +(n)=3, if n <6, and 3<(n)<4, if nx7.

The upper bound can be improved if the points are
restricted to lie inside of P .
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We therefore define

op )=max{(p ,9)1q2point in p }, and
5(n)-—=min{5(Q) | Q an n-gon in E?%),

The bounds that we derive for &n) are tight.
Theorem 2: &(n )=3, for all integers n >3,

The organization of thjs paper is as follows: Section 2
demonstrates the lower bounds of Theorems 1 and 2, and it demonstrates that
the lower bound is tight for §(n) and all values of n, and for 4(n) if n<s.
Section 3 constructs n-gons, for every value of n, which show the upper bound
of Theorem 1. Finally, Section 4 discusses the consequences of Theorem 1 to a
problem which comes up in proving lower bounds on the computational com-
plexity of some geometric problems. In addition, it briefly addresses the prob-
lem of computing (2 ) and &P ) if polygon P is given.

2. Lower bounds

This section gives a proof of the lower bound of Theorem 2;
the lower bound of Theorem 1 then follows automatically. We also demon-
strate that this lower bound is tight for §(n) and all values of n, and for «(n)
if n<6. We begin with a useful characterization of when an edge reflects a

Let e be an edge of a convex polygon in E2 and define
ref(e)={peE?| ¢ reflects P}

Evidently, ref (€) is the union of all lines which intersect ¢ and are normal to
¢; 5o ref () is an open slab bounded by the two normals of ¢ through the end-
points of e (see Fig, 3). In terms of slabs, the lower bound of Theorem 2
asserts that every convex polygon contains a point p contained in at least

three slabs ref (e) defined by the edges e of P . We now prove this lower
bound.

Lemma 2.1: &(n)>3, for every integer n >3.

Proof: Let £ be an n-gon in E? and let (v0s15..,05 ;) be the sequence of
its vertices in counterclockwise order. We choose the indices such that v; and
Yi4+1 are the endpoints of edge ¢;, for 0<i<n—1 and the indices taken modulo
n. We will show that, for each pair of consecutive edges e; and e;;, there is
another edge e; such that there is a point y that is reflected by all three
edges. This implies the assertion. In our construction of point y, we make use
of the fact that a point z in P is reflected by the edge which minimizes the
distance from z. To construct y, let b;,; be the angular bisector at vertex
Yi+1, that is, b; ., is the line through v;,; which intersects P and bisects the
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Figure 1. Construction of point y.

angle between ¢; and €;+1 (see Fig. 1). Initially, let point z coincide with Vi1
Next, we move point z continuously on b;,, into £ . Notice that e; and

are equidistant from z as long as it belongs to ref (¢;)Nref (€41), and that €;
and e;,; are the two edges which are closest to z at the beginning or the
translation of point z. Let now y be the point z at the time when it becomes
equidistant to e;, e;,; and another edge e;. This happens not later than when
7 hits the first of the angular bisectors at v; and vy, (see Fig. 1). Since €y

€+, and €; are also closest to point y, y is reflected by all three edges.
a

€it+1

By the proof of Lemma 2.1, for each pair of consecutive
edges there is a third edge such that all three reflects a common point. It
seems interesting to compare this to the following result.

Theorem 2.2: If every'three edges of a convex polygon P reflect a

common point then there is a point reflected by all edges of P.

Proof: The premise of the assertion implies that ever
defined for the edges e of P, have a non-
virtue of Helly's theorem on convex sets in
slabs have a non-empty intersection. O

y three slabs ref (e),
empty common intersection. By

E?, and since slabs are convex, all

The remainder of this secti
that the lower bound of Lemma 2.1 is best
selves to points in the interior o
tricted case if n <8.

on gives examples which show
possible if, first, we restrict our-
f convex polygons, and second, in the unres-

Lemma 2.3: §(n)<3, for all integers n >3.

Proof: We give a construction of an n-gon P, with §(P )=3. Let €30 be 2

sufficiently small real number. The vertices of P, given from left to right,
are sufficiently close to the points

(0=€),(1,+€),(2,€), (3, +€), v (n—1,(~1)"¢),

such that 2 is convex (see Fig. 2). If ¢ is small enough, then a point p is
reflected by three edges only if the z)-coordinate of p is sufficiently close to an
integer between 1 and n-2; oth

- 9 erwise, p is reflected by two edges.
D 2
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Next, we demonstrate An)<3 if n <6 by showing appropri-
ate n-gons, for 4<n<6 (see Fig. 3). For each edge, we indicate the
corresponding slab, and, for each sufficiently large region of the arrangement
of slabs, we indicate the number of edges which reflect any point in this
region. Notice the similarity between the shown quadrilateral and hexagon.
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|

Figure 2. Construction for n=8.
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(b) A pentagon P with (P )=3.
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(c) A hexagon P with y(P )=3.

Figure 3. Polygons which show that Lemma 2.1 is tight if n<6.
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3. An Upper Bound

This section demonstrates the upper bound of Theorem 1,
that is, it establishes the existence of an n-gon, for every value of n >3, such
that every point of the Plane is reflected by at most four edges. To construct
an n-gon, for fixed value of n, we add the edges one at a time in counterclock-

wise order such that no point is reflected by more than three of the first n—1
edges. First, we introduce some notation.

We let e; denote the (i+1)" edge of construction, and we
write v; and v, for the vertices of ¢; such that v; precedes v, in the coun-
terclockwise order. The positive angle between the positive z,-axis and the
translation if e; such that v; coincides with the origin is denoted by o.
Furthermore, we abbreviate ref (e;) to ref;, and we let s; and f; be the lines
through v; and v;,,, respectively, that bound ref; (see Fig. 4). When we add
edge ¢, to the chain of edges (€0s€1s-.s€;), We use the arrangement of slabs
refo,ref 1,...,7ef; to guide our choice of angle and length of ¢;,,. Angle Qi1
will be chosen in [0,7), such that @i+1>; and such that edge e;,, reflects only
points reflected by at most two edges of €0:€;---,€;, DO matter how long e,
will be; the length of €;+1, Will be chosen such that an appropriate angle exists
for edge e, . '

Define H;={so,s,...,5;,f 0,f 1-..,/;}, and let (H;) be the
dissection of E? created by the set of lines H;: the regions of (H;) are the

Figure 4. Construction of first four edges.
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connected components of E2 reduced by all lines in H;. Evidently, two points
p and ¢ are reflected by the same edges, and therefore by the same number of
edges, if p and ¢ belong to the same region of (H;). For each region r of (H;),
we let cou(r) be the numbers of edges that reflect any point in r; it follows
that cou(r) is the number of slabs ref;, 0< 7 <1, which cover region r. Fig. 4
indicates cov(r), for each region r which is covered by at least one slab.

Lemma 3.1: A region r in (H;) has cov(r)>2 only if r is bounded.

Proof: If cov(r)>2 then r is subset of the intersection of two slabs ref ;.
Since 0< % <;<...<q;<m, no two slabs are parallel which implies that the
intersection of any two slabs is bounded. O

We now describe the construction of an n-gon P with
P )<4. For convenience, we impose a direction on the lines s; and f ; such
that v; is the first point of the polygon to be constructed that is hit by s;, and
Uj+1 18 the first such point hit by f ; (see Fig. 4).

Construction:

Initial step: Choose edges €o and e; such that o;=0 and <oy <.
General step: Construct edges e, through e,_, as follows:
for i:=1 to n-3 do

Step 1: Choose a;,,>0; such that line 8;4+1 intersects the
same regions of (H;_;) as line f,.

Step 2: Choose the length of edge €;+1 big enough such
that the intersection of any two lines bounding slabs
ref o through ref; lies to the left of line /

endfor.
Final step: Add the segment that connects vertices Vp_; and v, as
edge e,_; to the polygon.

i+1°

Fig. 4 shows the construction up to line s;. To prove the
correctness of the construction, we show that

(i) all regions r of (H;-1) which have cov(r)>2 lie strictly to
the left of line s;,,, and

(ii) all regions r of (H;) which have cov(r)>2 lie strictly to the
left of line f;,,.

Assume inductively that (i) and (ii) are true for s; and f,. Since line [: goes
through no vertex of (H;-;) (see Step 2), there exists an angle @41 such that
(¢) is true for line 8;+1° choose s;,, close enough to fi- By Lemma 3.1, all
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regions of (H;) which are covered by at least two slabs are bounded. Tt fol-
lows that edge e;.; can be chosen long enough such that (ii) is true for line
fi+1- This proves (i) and (ii) and shows that no region of (H,_,) is covered by
more than three slabs ref;, 0<j<n-2. As a consequence, no region r of
(Ha-1) has cov(r)>4. This in turn implies that no point in the plane is

reflected by more than four of the constructed edges. The upper bound of
Theorem 1 follows.

4. Discussion and Conclusions

We proved that every convex polygon in the plane has three
edges which reflect a common point, and that there are convex polygons with
n edges, for every value of n, such that no point of the plane is reflected by
more than four edges. In formal notation, this is equivalent to 3<v(n)<4.
Furthermore, we showed that three is also an upper bound on the numbers of
reflecting edges if n < 6 or if only points in the interior of the polygon are con-
sidered. This leaves the evaluation of the correct value of (n), for n>7, as
an open problem.

., Some algorithmic problems which are related to the investi-
gations of this paper are

() given a convex n-gon P , decide whether there is a point
reflected by all edges of P, and

(ii) compute the largest integer £ such that there is a point
reflected by & edges of P .

As we have seen in Section 2, problem (i) can be solved by deciding whether or
not the n slabs defined by the n edges of

P have an empty common intersection. This problem can be answered in
O(n) time even if the slabs are not given in sorted order [PSh, Chapter 7]. To
solve problem (ii), we examine all regions of the arrangement of slabs defined
by the edges. The sweep algorithm of [EG] can be applied to finish this task
in O(n?) time and O(n) storage. -

The remainder of this section relates the results of Theorems
1 and 2 to a rotation problem that came up in the investigations of lower
bounds for geometric problems [B,J].

For a convex polygon P, a point p, and an angle a, let p(P ,p,q)
denote the number of connected components of the symmetric differ-

ence between £ and its image under rotationlaround p through an
angle a.
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Define p(P ,p)=limp(# ,p,a), p(P )=max{p(P ,q)! ¢ & point in E?},
and p(n)=min{p(Q)! Q an n-gon in %,

If >0 is sufficiently small then an edge e intersects its image under a rota-

tion around a point p if and only if e reflects p. Together with Theorem 1,
this implies the following result.

Theorem 4.1: p(n)=3, for n <6, and 3<p(n)<4, for n>7.
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