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A set of m planes dissects E* into cells, facets, edges and vertices. Letting deg(c) be the
number of facets that bound a cell ¢, we give exact and asymptotic bounds on the maximum of
Yeincdeg(c), if Cis a family of cells of the arrangement with fixed cardinality.

1. Introduction

A finite set H of planes in three-dimensional Euclidean space E° induces a cell
complex called the arrangement A(H) of H. While the two-dimensional analogue’
has received a great deal of attention in the mathematical literature (see [12] for
an excellent collection of results obtained until 1972) less is known about
combinatorial properties of arrangements in three dimensions. We refer to [10]
and [11] for discussions of arrangements in E* and in higher dimensions>.

In E?, A(H) consists of four kinds of faces called vertices, edges, facets, and
cells. Upper bounds on the number of faces in an arrangement are well-known
(see [3], [10], [1], etc.): if |H|=n then A(H) consists of at most (%) vertices,
3(3) + (5) edges, 3(3) +2(5) +n facets, and (%) + (3) + n + 1 cells. These bounds
are tight if and only if A(H) is simple, that is, if any three planes of H intersect in
a point, and no four do so.

Let the degree of a cell ¢, denoted deg(c), be the number of facets incident
with ¢. For a collection C of cells in A(H), we define ac(H) = X.incdeg(c). Thus
each facet is counted once for each cell it bounds. Then a (H)=
max{ac(H) | |C| =k}, and finally a,(n)=max{a,(H)||H|=n}. This paper is
devoted to giving upper and lower bounds on a,(n); the same problem in E? it
tackled in [13], [4], [8]. By Euler’s theorem for polytopes in three dimensions,’

* Research reported in the paper was conducted while the second author was visiting the Technical
University of Graz. Support provided by the Technical University for this visit is gratefully
acknowledged.

! An arrangements in E? is a dissection induced by a finite set of lines.

?In general, a finite set of hyperplanes in E* defines an arrangement.

3 Euler’s theorem reads: V — E + F =2, with V, E, and F the number of vertices, edges, and facets
of c.
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each cell ¢ is bounded by at most 2 deg(c) — 4 vertices and at most 3 deg(c) — 6
edges. Thus 2a,(n) — 4k and 3a,(n) — 6k give the maximum number of vertices
and edges of a collection of k cells in an arrangement of n planes (again, provided
an edge or vertex is counted once for each cell it bounds).

Part of the motivation for considering bounds on a,(n) stems from several
problems in computational geometry that require storing parts of arrangements.
Examples are the construction of transversals for line segments ([6]) and order-k
Voronoi diagrams ([7]). If k cells of an n-plane arrangement are stored, then the
maximal amount of storage needed is proportional to a,(n).

From a mathematical point of view it is interesting to note that all results given
in this paper also hold for arrangements of pseudoplanes. (A pseudoplane is a
surface in E° homeomorphic to E? and the arrangement of any three of them is
isomorphic to a simple arrangement of three planes.) Therefore, a.(n) also
reflects properties of rank-3 oriented matroids ([2]), and, by correspondence to
arrangements of planes, of configurations of points in E> and zonotopes in E*
(sD-

The organization of this paper is as follows: Section 2 gives exact bounds on
ay(n) for very small and very large k, Sections 3 and 4 present asymptotic lower
and upper bounds for general k, and finally Section 5 discusses the results
obtained and gives open problems.

2. Exact bounds for Extreme k

We start with small collections of cells. Throughout, n and k are assumed such
that a,(n) is well-defined.

Fact 2.1. a;(n)=n.

Fact 2.1 says that a single cell ¢ is bounded by at most n facets, which is
immediate since the convexity of ¢ forbids a plane to support more than one of ¢’s
facets.

Corollary 2.2. a,(n) < kn.
The upper bound of Corollary 2.2 is tight for very small k.
Theorem 2.3. a;(n) = kn, for k <5.

Proof. The assertion is verified in two steps: We first construct a set H of five
planes with as(H) = 25. This proves the theorem for n <5. Then we demonstrate
the existence of five cells in A(H) such that:
(i) each has degree five, and
(ii) for every n>35, there are t =n — 5 planes that can be added to H such that
the degree of each of these cells is increased to n.
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Corridor for the edges of
for an (n-4)-slab G

L hy

Fig. 1. 5-plane arrangement.

Choose H = {hy, hy, hs, hs, hy} such that h, is the xy-plane and h; to h,
intersect h, as shown in Fig. 1. Next choose the angles between h, and A;
(i=1,...,4) such that each plane touches each of cells ¢,, ¢, ¢3, ¢4, and cs
below h, as depicted, that is, each plane supports a facet of each ¢, to cs:
deg(cs) =5 in any case, and slanting h,, h, and h; as indicated guarantees
deg(c,) =S5, fori=1,..., 3.

To extend A(H), we call an arrangement A(G) a |G|-slab if all planes in G are
normal to a common plane h(G), and there is an unbounded cell ¢(G) in A(G)
with deg(c(G)) =|G|. Figure 2 depicts a 7-slab with the planes normal to the
drawing plane. There are |G| — 1 (unbounded), edges in the boundary of ¢(G),
and for every positive real £ and positive integer m there is an m-slab G with any
two edges at most ¢ units of length apart. Furthermore, this can be achieved for

clG) P
Fig. 2. A 7-slab.
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the minimal angle at an edge in ¢(G) at least a, for every a<180° (see Fig. 2).
We replace h, in H by an (n — 4)-slab G such that:
(i) the edges of ¢(G) fit into a corridor immediately below A, (as indicated in
Fig. 1);

(i1) ¢(G) is below h,, and

(iii) ¢(G) intersects each facet of ¢, to ¢s (except for those supported by k).
Taking c¢; as the intersection of ¢; and ¢(G) yields deg(c/)=n, for
i=1,...,5 0O

The authors have not been able to calculate the exact value of as(n), but they
venture

Conjecture 2.4. aq(n) <6n, for n sufficiently large.

Now we turn our attention to extremely large collections of cells, that is, k
equal to or insignificantly smaller than (3) + () + n + 1, the maximal number of
cells in an arrangement of n planes.

Fact 2.5. If k= (3) + (3) + n + 1, then a,(n) =2(3(%) + 2(%3) + n).

This is obvious, since when every cell is in C, each facet is counted exactly

twice. We can extend this result as follows. Let t(H) be the number of cells ¢ in

A(H) with deg(c) =3, and define t(n) = max{t(H) | |H|=n and A(H) simple}.
Then we note

Fact 2.6. a,(n)=3@)+ @) —n—3+3k, for k=) + (@) +n+1—t(n).

Fact 2.6 follows immediately from Fact 2.5 by subtracting 3((3) + (3) +n +1 —
k) facets, i.e., three facets for each cell of degree 3 that can be omitted.

3. Asymptotic lower bounds

The first result of this section assures that the upper bound of Corollary 2.2 has
an at least asymptotically matching lower bound for k = O(n).*

Theorem 3.1. a,(n) = Q(kn), for k = O(n).

Proof. Let m, = |3n] and let A(G,) be an m;,-slab as defined in Section 2, with
planes in G, normal to the plane h(G,). Choose G, to contain m, =n — m, planes

* A function g(n) is O(f(n)) if there exist ¢ >0 and n, such that g(n) = cf(n) whenever n >n,. g(n)
is Q(f(n)) if f(n) is O(g(n)). g(n) is O(f(n)) if it is both O(f(n)) and Q(f(n)).
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all parallel to h(G,) and thus normal to the planes in G,. Obviously, A(G, U G,)
contains m; — 1 cells with degree m, + 2 each. Taking k of these cells proves the
assertion for k <m,— 1. Augmenting the m, — 1 cells with any k — m, + 1 other
cells establishes the assertion for k >m,—1. O

We immediately derive also

Corollary 3.2. a;(n) = Q(n®), for k = Q(n).

This lower bound is the best result obtained by the authors for k = O(n*?). In
fact they venture

Conjecture 3.3. a,(n) = O(n®), for k = O(n*?).
Next, we give a non-trivial lower bound by extending a construction of [8].

Theorem 3.4. a,(n)= Q(k*n).

Proof. Ignoring uninteresting cases, we can assume 12n <k <n®/64, n =8, and
define m = |in| and I = |(k/12n)"| <im. Now let P = {(a, b, ¢)| 1<a<m and
1<b, c<I}, aset of points in E* with integer coordinates. For any plane h in E?,
call |P N A| the contribution of h, denoted contr(k). We show that there is a set H
of at most 2m planes such that:
(i) each point p in P is a vertex in A(H), and

(ii) Ejing contr(h) = Q(I**m3),
This result implies the assertion by the following argument:

(1) Replace each point p of P by a ball b(p) with center p and radius .

(2) Replace each plane h in H by two planes 4’ and k" parallel to h such that
h" and k" touch b(p) on different sides if & contains p.

(3) Choosing £ small enough, a point p in P contained in i planes gives rise to a
cell containing b(p) with degree 2i. Hence, summing up the degrees of b(p), for
all p in P yields Q(I**m>7) = Q(k*°n).

We continue with the construction of H. To make the points of P vertices of
A(H), Gi={x=a,y=b,z=c|lsasm,1<b,c<l}cH. |G|=m+2l Let
h(i, j, r, s) be the plane (parallel to the x-axis) passing through (1, i, j), (m, i, j),
and (1,i+r,j+s). To complete H we let H=G,UG, with G, =
{h(i,j,r,s)[1<isr, 1<j<|dl], 1<sr=<cym/l)*®, where c, is a suitable
positive constant to be specified later, and 1<s<r, where r, s are relatively
prime}. All planes in G, are distinct, and

colmi)V3

|Go|=31] 3 r®(r), with d(r)=|{s:1<s<randr, s are relatively prime}|.
r=1
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Since L., rd(r) = O(N?) (see [9]), we derive |G,| = @(m) while |G,|<m — 21,
for suitable ¢,. Notice that our calculation is not incorrect if » >/; in this case the
corresponding planes are not defined, the calculated contribution of each such
plane is no more than m, and it is easy to find substituting planes with at least this
contribution. Hence |H| < 2m.

The contribution of A(i, j, r, s) is at least m(l/2r). The overall contribution of
G, is therefore at least

colmin? co(m/Di3

|41] Zjl (m%)r@(r)am[%ﬂz b @(r)ze(zﬂm5f3),

r=1

since £, @(r) = O(N?)([9]). O

4. Asymptotic upper bounds
Note that by Corollary 2.2 we have
Fact 4.1. a,(n) = O(kn).

By Theorem 3.1, this upper bound is asymptotically tight for kK = O(n). For
k = Q(n), a better upper bound can be derived from the following result of [7].

Lemma 4.2. Let H be a set of n hyperplanes in E¢, and C(H) be the set of cells in
A(H). Then ECinC(H) degz(c‘) = Q(Hd).

In particular for d =3, Lemma 4.2 asserts ¥, cqn deg’(c) = O(n°).
Theorem 4.3. a,(n) = O(k'*n*?).

Proof. Let C be a collection of cells in A(H) with |[H|=n, |Cl=k and
ac(H)=ay(n). By Lemma 4.2, ¥ ,cdeg*(c)< X incu deg’(c) = O(n%). To
maximize Y, deg(c), this constraint forces all cells to have about equal degree,
that is, deg(c)=O((rn’/k)"?), for all ¢ in C. The assertion follows
immediately. O

Defining a{”(n) to denote the maximal number of (d —1)-faces in an
arrangement of n hyperplanes in E¢, Theorem 4.3 can obviously be generalized
to

ai®(n) = O(k"*n*?).

For d =2, this bound is demonstrated in [8] using a different argument.
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Fig. 3. Asymptotic results on a,(n).

5. Discussion

Exact and asymptotic upper and lower bounds on the maximal number a,(n) of
facets that bound k cells in an arrangement of n planes in E° are demonstrated.
Figure 3 displays the asymptotic results using the logarithms base n of k and of
ai(n). The shaded area makes the gap in our asymptotic results obvious. The
authors are inclined to believe that the lower bounds of Corollary 3.2 and
Theorem 3.4 are tight. In particular, they invite the reader to prove or disprove
Conjecture 3.3.

To extend the exact results of Theorem 2.3 and Fact 2.6 is another challenge.
To this end a resolution of Conjecture 2.4 and bounds on #(n) (defined in Section
2) would be an important first step. The analysis of 7-plane arrangements given in
[14] may be of some help here, although this work is restricted to projective
space.
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