JOURNAL OF ALGORITHMS B, 348-361 (1987)

Space Searching for Intersecting Objects*
Davip P. DoBkin'

Department of Computer Science, Princeton University, Princeton, New Jersey 08544
AND

HERBERT EDELSBRUNNER#

Institutes for Information Processing, Technical University of Graz,
Schiessstatigasse 4a, A-8010 Graz, Austria

Received May 30, 1985

Determining or counting geometric objects that intersect another geometric query
object is at the core of algorithmic problems in a number of applied areas of
computer science. This article presents a family of space-efficient data structures
that realize sublinear query time for points, line segments, lines and polygons in the
plane, and points, line segments, planes, and polyhedra in three dimensions. ® 1957
Academic Press, Inc.

1. INTRODUCTION

A fundamental problem in geometric complexity concerns the detecting,
counting, and /or reporting of intersections among members of a collection
of objects. We consider here instances of this problem where a set of objects
1s to be preprocessed for multiple queries against objects from a different
set. This problem is considered as a searching problem specified by two
domains. The first is the search domain defining the sets of objects to be
searched (e.g., line segments in the plane, halfspaces, . ..). Next, the query
domain defines those objects which are to be tested against this set for
intersection.

*This work was performed while the first author was visiting at the Technical University of
Graz during May and June 1983.

Research of this author was supported in part by the National Science Foundation under
Grant MCS83-03926 and DCR85-05517.

*Research of this author was supported by the Austrian Fonds zur Foerderung der
wissenschaftlichen Forschung. Present address: Department of Computer Science, University
of Illinois, Urbana, Illinois 61801.

348
0196-6774/87 $3.00

Copyright © 1987 by Academic Press, Inc,
All rights of reproduction in any form reserved.

R

SPACE SEARCHING FOR INTERSECTING OBJECTS 349

Given the specification of search and query domains, our goal is an
algorithm for quickly preprocessing elements of the search domain to allow
for efficient processing of queries involving elements of the query domain.
Here, a query asks for a report of either the number (the counting problem)
or names (the reporting problem) of objects intersected. Efficient processing
is defined as a preprocessing algorithm requiring low-degree polynomial
time which creates a search structure requiring linear space and answering
queries in sublinear time.

In all cases, there are algorithms requiring no preprocessing which have
linear search time and algorithms with logarithmic search time which
require nonlinear storage for their search structure [EKM]. Only for the
case handled by range-searching trees are better results known. Here the
search domain consists of points of Euclidean space E¢, d = 2, 3; the query
domain consists of individual halfplanes or halfspaces or simplices formed
as intersections of d + 1 or fewer halfspaces; and a query asks how many
(or which) points lie in the query simplex. This problem has been widely
studied [EW, W, Y, YDE] in the past. We extend the space-cutting trees
generated in range-searching algorithms to a class of recursive space-cutting
trees. From these trees there evolve algorithms which apply to broader and
more interesting search and query domains. Qur domains allow line seg-
ments, polygons, tetrahedra, and other objects as we make precise below.

The best known results involving space-cutting trees are search al-
gorithms using a polynomial amount of time in preprocessing and requiring
linear space and O(n“?) search time in E“. Our results build upon the
existence of these algorithms and we use a(2) and a(3) throughout to
represent the current best values of these constants. At present, a(2) = 0.695
and a(3) = 0.8999 [EW, YDE].

The results of this paper are summarized by the following theorem:

THEOREM. Let S represent a search domain, Q a query domain, and qa
query type. For a subset of S of size n and any real € > 0, there is a linear
space search structure constructible from polynomial-time preprocessing, which
allows queries of type q to be answered in time T(n) for the following cases (I
always denotes the number of objects reported):

(a) S = triangles in E*, Q = points in E?, g = how many (resp. which)
triangles of S does a point intersect, T(n) = O(n*®) (resp. O(n®@*¢ + I)).

(b) S = segments and lines in E*, Q = segments in E*, q = how many
(resp. which) segments/lines does a segment intersect, T(n) = O(n®@*¢)
(resp. O(n*@*¢ + I)).

(¢) S = polygons of m or fewer sides in E2, Q = polygons of m or fewer
sides in E*, g = how many (resp. which) polygons intersect a query polygon,
T(n) = O(n“®~¢) (resp. O(n*@*¢ + Iy).

350 DOBKIN AND EDELSBRUNNER

(d) S = tetrahedra in E>, Q = points of E3, q = how many (resp.
which) tetrahedra contain a query point, T(n) = O(n°®) (resp. O(n*d+¢ +
).

(e) S = planes in E, Q = line segments in E*, q = how many (resp.
which) planes intersect a query segment, T(n) = O(n®®) (resp. O(n®® +
I)).

(f) S = segments in E>, Q = planes in E>, g = how many (resp. which)
segments intersect a query plane, T(n) = O(n*®) (resp. O(n“®** + I)).

These results are achieved by introducing search trees which are composed
of the trees used for range searching.

We begin by summarizing the range searching trees (and known results)
we will be using. Next, we describe our methods for combining range
searching trees to extend these methods. The former is done in the next
section and the latter in Section 3. Finally, we show how these results can

be applied to the intersection problems described in our main theorem
above.

2. SPACE-CUTTING TREES

Let P be a finite multiset of points in E9 d=1,2,3; and & be a
directed hyperplane (i.e., the normal to h gives a positive and negative
sense). If ™ and h~ represent the open halfspaces on the positive and
negative sides of h, then P(h*), P(h™), and P(h) are the subsets of P in
h*, h~, and h. We define a d-dimensional space-cutting tree as follows:

The root of T contains a hyperplane # and its three children are
space-cutting trees for the sets P(h*), P(h™), and P(h), if these
sets are nonempty. The first two of these are d-dimensional and
the third is (d — 1)-dimensional. 4 is chosen so that|P(k7)| < a|P|
and |P(h7)| < (1 — a)|P|, for fixed a with 0 < a < 1 (we will use
a = 1/2 here).

A node, v, of T is termed k-dimensional if the path from the root to v
contains d-k branches to middle sons (i.e., to P(h) sets). We define the
domain of v, denoted by dom(v), as the intersection of regions on the path
from the root to v; that is, the domain of the root is the whole space. If v is
a son of w and h is the hyperplane stored at w, then dom(v) is defined as
dom(w) N A~, dom(w) N h, or dom(w) N h*, depending on whether v is
the left, middle, or right son of w.

Using these trees, the standard query is a simplex query where we wish to
determine how many of a preprocessed set of points lie in a simplex s.

SPACE SEARCHING FOR INTERSECTING OBJECTS 351

Here, the following search strategy arises:
Let v be the current node. (Initially, v is the root of T.)

Case 1. If s contains dom(v) report all points in the subtree.

Case 2. If s and dom(v) do not intersect return without any further
action.

Case 3. If s intersects dom(v) but does not contain it, visit the sons of
v recursively.

We will be concerned here with the space-cutting trees which arise from
known range searching algorithms in 1, 2, and 3 dimensions. These trees
admit linear storage, (low-degree) polynomial preprocessing, and sublinear
query time. For 1-dimensional range-searching algorithms, we use binary
search algorithms with running times of O(log n). These are called b-trees
in what follows (not to be confused with the B-trees of [BM]). For
2-dimensional range searching, space-cutting trees arising from conjugation
trees [EW] of query time O(n®@) are used (currently, a(2) = 0.695). These
are called c-frees. Three-dimensional range searching relies on the space-
cutting trees of [Co, DE] which we call d-trees. These trees have query time
O(n°®) (currently, a(3) = 0.8999). In the appendix we argue that d-trees
indeed support simplex queries within the same complexity as halfspace
queries.

3. RECURSIVE SPACE-CUTTING TREES

We are now ready to introduce recursive space-cutting trees. To form
these trees, we combine space-cutting trees by decomposing the underlying
Euclidean search space as we show below. Before proceeding, we define
terms necessary to our derivation.

Let P be a finite set of points in E¢ and let d = d, + d,, d;, > 1, and
d, > 0. If we let F) (resp. F,) denote the flat spanned by the first 4, (resp.
last d,) coordinate axes, then, P(F,) will denote the orthogonal projection
of P onto F, for i = 1,2. We consider P(F,) and P(F,) as multisets. That
is, even if two points have the same projection in F,, they are considered to
be different in P(F}), for i = 1,2. Finally, an internal node of a tree is said
to be on level m, if the path from the root to the node has m — 1 branches
(i.e., involves m — 1 decisions).

Let T) be a d,-dimensional space-cutting tree of P(F,) and let T, be a
d,-dimensional recursive space-cutting tree. Then, a d-dimensional k-sparse
recursive space-cutting tree T of P (k > 0) is defined as follows (if d, > 0,

352 DOBKIN AND EDELSBRUNNER

otherwise T' = T)):

For each i > 0 and each node v on level ik, let P, be the subset of
P such that the subtree with root v stores P,(F,). Then T consists
of T, with each node v on level ik (i =1,2,...,depth(T})/k),
augmented with an instance of T, storing P, (F,).

Let T, (resp. T,) accommodate the range query for query simplex s,
(resp. query range s,). s, is either a d,-dimensional simplex or the
Cartesian product of lower dimensional simplices. Then T can be used to
answer the range query for the Cartesian product s of s, and s,. The search
strategy for s searches T, with s, using the standard search strategy
outlined in Section 2. Let v be a node visited during this search. If dom(v)
is contained in s; (Case 1 in the standard search strategy) then two cases
are distinguished: If v is on level ik, for some integer i, then the associated
instance of T, is searched recursively with s,. Otherwise, then at most three
sons of v are visited recursively until a level ik is reached.

The time and space requirements for T, a d-dimensional k-sparse recursive
space-cutting tree T of P are given by:

LEMMA. Let the storage and query time required by Ty, T,, T be S,(n),
Sy(n), S(n) and Q,(n), Qa(n), Q(n). Then S(n) = (clog n/k)S,(n) +
Si(n), for some positive constant c¢y. And, Q(n) = Q,(n) +

(371Qy(n/(3“ 1) log n.

Proof. The space result follows because the depth of 7; is O(log n) and
an instance of T, occurs only on every kth of those levels. Also, the space
required by T; is at most linear. For the query time, we can assume that all
three subtrees of a node are of equal size. This assumption is valid since
Q,(n) is at most linear.

In what follows, we choose k to make S(#) linear while not significantly
increasing Q(n). For example, the choice k = elog,n for some &> 0
always works.

Recursive space-cutting trees are denoted by words over the alphabet
b, ¢, d with choices of sparsity made to optimize query time while guaran-
teeing linear space. We demonstrate this by the following examples:

ExAMPLE 1. A b*tree T can be used to store a set of P of n points in
E?. By definition, T is a b-tree T, storing the points with respect to their
x,-coordinates. The nodes v on distinguished levels of T, are augmented
with b-trees storing P, with respect to x,-coordinates. The kind of queries
supported by T involve axis-parallel rectangles (that is, Cartesian products
of two one-dimensional simplices) as query range. Let k be the sparsity of
T, that is, only the nodes on levels ik, for positive integers i, are augmented.

SPACE SEARCHING FOR INTERSECTING OBJECTS 353

X3

—al

4

S|

F1G. 1. Query range for a cb-tree. The c-tree discriminates w.r.t. the x, x,-plane, the b-tree
discriminates w.r.t. the x; coordinates,

Then T requires O(nlogn/k) space. The query time satisfies Q(n) =
Q(n/2) + 3*"'0(log(n/3%°1)).

It is worthwhile to note that, for k = 1, T is essentially a two-dimen-
sional range tree as developed in [B)]. Then 7 requires O(n log n) space and
realizes O(log?n) query time. In [B] a technique is described that constructs
T in O(nlogn) time. Here we use linear space and O(n®) query time for
any positive .

EXAMPLE 2. A cb-tree T stores a set P of n points in E>. Let k be the
sparsity of T. Then T is a c-tree T; with each node on level ik, for positive
integers i, augmented with a b-tree. T requires O(n log n/k) space. The
range queries supported by T involve cylindric query ranges that are the
Cartesian product of two-dimensional and one-dimensional simplices in
the x,x,-plane and x,-axis, respectively (see Fig. 1).

The time required to answer such a range query satisfies Q(n) = O(n*®)
+ 3*710(log(n/3%"1)). Now, Q(n) = 0(n*®) provided
3*-10(log(n/3%1)) = O(n“@ /log n). Choosing k as above yields linear.
space and O(n“®) query time.

More generally, we state

THEOREM. Let T be a u-tree of P, withuin {b,c,d,}”. Letu = aw, with
ain {b,c,d} and win {b,c, d,}*. For every positive real number & there
exists a choice of sparsity such that T needs O(n) space and Q(n) query time
with

() Q(n)=0(n*)if a=band w in {b}™,
(i) Q(n) = O(n*@)if a=c and w in {b}*,
(iii) Q(n) = O(n*@*¢)if a=c and w in {b}*{c}{b, c}*,
(iv) Q(n) = 0(n°?)if a=d and w in {b, c}*, and
(V) Q(n) = O(n*@**)if a=d and w in {b, c}*{d }{b,c,d}*.

354 DOBKIN AND EDELSBRUNNER
4. APPLYING RECURSIVE SPACE-CUTTING TREES

This section describes applications of the recursive space-cutting trees
developed above to intersection search problems. These problems involve
points, lines, rays, line segments, and simple polygons in E? or E*, and
planes and convex polyhedra in E3. Basically, our approach consists of the
three steps:

(1) Let S be the search domain and Q the query domain. Each object
in S and each query object in Q is decomposed into simpler parts. Thus §
is written as §,S, --- S, and Q as 0,0, -+ Q,. The query on § involving
query object ¢ is done by querying S; by the projection of g onto Q, and
combining the partial answers obtained.

(2) A transform M is established that maps S, into E¢ for ap-
propriate d, and Q, into R¥ where R? is the space of ranges in E%. M is
chosen so that a query object g in Q, intersects a in S, if and only if the
point M(a) belongs to the range M(a).

(3) M(S,) is stored in one or several space-cutting trees that permit
range queries with query ranges out of M(Q,).

If the intersecting objects are to be reported, Step (1) of our approach is
to represent a (query) object as the union of simpler (query) objects. If the
intersections are to be counted, we take advantage of the ability to subtract
numbers by using more involved representations involving (set) differences
of (query) objects. Here, we must apply the restriction that the subtracted
(query) object must be contained in the (query) object from which it is
subtracted.

The most common transformation we use in step (2) is the dual trans-
form. Let h be the nonvertical hyperplane satisfying x, = h;x,
+ -+ +hy_1x4.1 + hy, and let p be the point (p;,. .., p;) of E Then,
the dual of & is the point D(h) = (h,,..., h,;) and the dual of p is the
hyperplane D(p) satisfying x, = —p;x; —-+- —p,_1x,_, + p,. The use-
fulness of the dual transform D for algorithmic aims ([Br, Ch, EKM]) stems
from the observation:

Fact. A point p is above, on, or below a hyperplane 4 if and only if
the point D(h) is below, on, or above the hyperplane D(p), respectively.

We are now ready to prove our main theorem.

Case a. “The point in triangles problem.” We begin by observing that
any triangle can be decomposed into two triangles each having a vertical
edge. The common edge is assigned to the left subtriangle to make the
original triangle the disjoint union of the two smaller triangles. Note that in
the degenerate case where the triangle has a vertical edge, the left triangle

SPACE SEARCHING FOR INTERSECTING OBJECTS 355

may be the degenerate triangle of one edge or the right triangle may be
empty.

Without loss of generality, we can now consider the subproblem where
each triangle in the set, L, of left triangles is to the left of its vertical edge.
Such a triangle u is the intersection of three halfplanes:

Xy = ay%; + a,,
Xy Z a3zxy + ay,

X, < as.
A point p = (p,, p,) in the plane is contained in this triangle if and only if

a4, < —pya; + p,,
ag= —paz + p,,

This suggests defining the function M (of Step (2)) as: M(u) =
(ay, a5, a3, a,, as), with M(p) the Cartesian product of x, < —p,x, + p,
in the x,, x,-plane, x, > —pyx; + p, in the x;x-plane, and x5 > p, on
the x;-axis. Then, p is in u if and only if M(u) is in M(p). The “point in
triangles” problem is then solved by storing M(L) in a c?b-tree.

To solve the corresponding counting problem, each triangle is written as
the sum and difference of 4 (possibly degenerate) triangles such that each
triangle has one vertical and one horizontal edge. Disjointedness is again
guaranteed by assigning common edges appropriately. We then perform 4
problems, each on a subset of triangles of common orientation. If a positive
(resp. negative) triangle contains p, the count is incremented (resp. decre-
mented).

Each of the four subproblems in this case corresponds to a triangle given
by a horizontal line, a vertical line, and a diagonal line. Each triangle can be
mapped into a point of E* consisting actually of the Cartesian product of
E?* with E! and E. The final result is a cb>tree.

Case b. “The segment intersecting segments problem.” Let s and ¢ be
two segments and let k(s) and k() be their supporting lines. Then, s and ¢
intersect if and only if A(s) and ¢ intersect and h(t) and s intersect. So,
solutions to the “segment intersecting lines” and “line intersecting seg-
ments” problems, would solve the “segment intersecting segments” prob-
lem. We consider here a solution to the first of these problems.

Let h:x, = h;x, + h, be a line and s be a query segment of endpoints
I(s) = (81, 5,) and r(s) = (53, 54) (assume w.lo.g. that s; # s;). Then, s
intersects & if and only if /(s) and r(s) lie on different sides of 4. That is,

sy<hs;+h, and s;>h;s3+h,

356 DOBKIN AND EDELSBRUNNER

or

S, = hys; +h, and S, < hysy+ hy.

We let M be the dual mapping that transforms the line % into the point
M(h) = (hy, h,), and the segment s into the double wedge M{(s) whose
points (x,, x,) satisfy

x2 = _Slxl #+ 32 and x2 = —33x1 + 54
or
X, < —s;x;, +5, and Xy = — 83X, + 5.

By definition of M, s intersects & if and only if M(4) is contained in M(s).
The double wedge M(s) can easily be partitioned into two wedges (a wedge
is a simplex in E?) which suggests storing the set of M(s) in a c-tree. There
results a c-tree for solving the “segment intersecting lines problem.”

The “line intersecting segments problem” is solved in a similar manner
resulting in a c’-tree. These solutions can then be combined to yield a
¢3-tree for solving the reporting problem and a ¢2b-tree for solving the
counting problem for “segment intersecting segments.”

Case ¢. “The polygon intersecting polygons problem.” We assume that
all polygons are m sided, closed, bounded, and simple. We assume without
loss of generality that no polygonal edges or chords are vertical or horizon-
tal.

Intersection includes both area and boundary intersections of polygons.
This leads to the following straightforward observation: If g is a polygon of
§ and q a query polygon of Q and p(g) and p(q) are arbitrary points of g
and g, respectively, then g and ¢ intersect if and only if (i) g contains
p(q), (i) p(g) is contained in g, or (iii) there are two edges, one of g and
one of g, that intersect.

We begin with the reporting case, treating the three cases in sequence.
We will come back to the issue of multiple reporting later:

(1) To determine the polygons of S that contain p(g), we first
decompose each polygon of S into m-2 disjoint triangles and form the set
S’ of all such triangles. Next we answer a “point in triangles” query for
p(q), as in Case a.

(ii) All polygons g of S contained in g are found by storing the points
p(g) in a c-tree, decomposing g into triangles, (i.e., simplices), and answer-
ing simplex range queries for each of these simplices.

(i) Edge intersections are determined by “the segments intersecting
segments” method (Case b).

SPACE SEARCHING FOR INTERSECTING OBJECTS 357

Since cases (i), (ii), and (iii) are not exclusive, the sketched solution leads to
multiple reporting of intersecting polygons. However, each polygon is
reported at most a constant, that is, at most m? + 2, number of times.
Using a bitvector that has a component c(g) for each polygon g in S,
multiple reporting can be eliminated as follows:

Prior to a query, ¢(g) = 0, for each polygon g in S. When a polygon g is
found to intersect g then two cases are distinguished:

Case 1. ¢(g) =0, then ¢(g) is set to 1 and g is put onto a stack.
Case 2. ¢(g) = 1, then no action is taken at all.

After searching the space-cutting trees, we remove all polygons g from
the stack, report g, and set ¢(g) back to 0.

Since these actions can be implemented in a time proportional to the
number of polygons to be reported, this solves the reporting problem.

Since cases (i), (i), and (iii) are not mutually exclusive, the described
solution does not permit efficient counting of intersecting polygons. For
this problem it is crucial to perform the various queries dependently. One
possibility is to store S in a ch%c(c2b)™-tree. (The initial ch>tree is for case
(1), the c-tree layer following solves case (ii), and the (m c2b-tree layers are
responsible for detecting edge intersection (case (iii)). It would be advanta-
geous to reorder the attributes so that S can be stored in a ¢2”*2p™* 2 tree.
This would increase the practicality of the theoretical result (O(n) space
and O(n“@**) query time).

Case d. “The point in tetrahedra problem.” A solution similar to that
given for Case a handles this case. Here we decompose a tetrahedron into
(at most) 4 disjoint tetrahedra each having two faces normal to the
x;x,-plane. Figure 2 illustrates the two cases which may occur. These cases

358 DOBKIN AND EDELSBRUNNER

depend upon whether the orthogonal projection of 7 onto the x,x,-plane is
a triangle or a quadrilateral.

From here, it is easy to write a tetrahedron as the union and difference of
at most eight tetrahedra having 2 faces normal to the x,x,-plane and one
face normal to the x,x;-plane.

Repeating the techniques of Case a, we map the tetrahedron into E°,
where dc’-trees can be applied to yield the desired result. If tetrahedra are
to be reported, then the final decomposition cannot be performed which
means that a d %’ tree is required.

Case e. *“The segment intersecting planes problem.” The algorithm here
is completely analogous to the “segment intersecting lines” problem. A
plane intersects a segment if and only if the two endpoints of the segment
are on opposite sides of the plane.

We use the dual transform to map the plane into a point and the
segments into wedges. The result is a problem solvable by a d-tree.

Case f. “The plane intersecting segments problem.” Let S be a set of n
segments of £°. Each segment of S can be mapped into E€ and then stored
in a d*tree to report those segments which intersect a query plane.

If intersections are to be counted, each segment can be written as the

difference of two rays. The rays can then be mapped into E° and stored in
dc-trees.

5. EXTENSIONS AND CONCLUSIONS

The contributions of this paper are two-fold: a family of space-efficient
data structures (so-called recursive space-cutting trees) is developed, and
various intersection search problems in E? and E? are solved making use
of members of this family. The recursive space-cutting trees are presented
along with the applications to clarify the application of recursive space-cut-
ting trees. We invite the reader to apply the results and methods presented
here to an even wider class of problems.

Particular problems which we leave open in E? include the following:

1. The “line intersecting lines problem,” where a set of lines is to be
preprocessed so that all intersections with a new line can be quickly
reported /counted.

2. The “polyhedron intersecting polyhedra problem,” where a set of
polyhedra are preprocessed so that all intersections with a new query
polyhedron can be quickly reported /counted.

SPACE SEARCHING FOR INTERSECTING OBJECTS 359

These problems along with those solved in this paper are likely to lead to
more efficient solutions to some practical problems which arise in computer
graphics. For example, the problems of windowing, haloing, hidden line,
and hidden surface elimination have at their core geometric problems such
as those considered here.

It is possible to dynamize the data structures which we present here. That
is, to modify them so that queries, insertions, and deletions of objects can
be performed efficiently. Let T be some recursive space-cutting tree requir-
ing O(n) space, O(f(n)) query time, with f(n) = Q(n?) for some a > 0,
and O(g(n)) time for construction, with g(n) = Q(n'*?) for some b > 0.
We can derive a data structure T’ with

O(n) space,
O(f(n)) query time, and
O(g(n)/n) time for performing an insertion or deletion.

T’ is basically a system of “disjoint” instances of T a la Bentley [B].

If the recursive space-cutting tree T to be dynamized is a w-tree, for w in
{b,c}" then f(n)=n® or n“@*¢ for any & > 0, and g(n) = n**[M].
Thus, T" realizes O(n“@) (resp. O(n“®*¢)) query time and O(n*) insertion
and deletion time. The sketched method does not yield reasonable time-
bounds if w is in {b,c}*{d}{b,c,d}* as no algorithm is known that
constructs a d-tree for n points efficiently.

Finally, there is the challenging problem of finding space-cutting trees
that are more efficient than the current best c- and the d-trees. A range
searching tree in E* was recently discovered by Cole [Co]; obvious exten-
sions of this work follow.

APPENDIX—ANALYSIS OF QUERY TIME IN ¢- AND d- TREES

In this Appendix we justify the assumption that a d-tree allows for
answering a three-dimensional simplex query in O(n“® + I) time. While
this result is not difficult, it has been used here and we are unaware of any
previous proof. Our proof uses the following

Fact. If f(v) be any function growing no faster than ¢ n® /log n for
some positive ¢ (i.e., f(v) = O(n*®/logn). Then, in searching d-trees
when our search object is a simplex,

Y f(v) = 0(n*®).

v a node visited

360 DOBKIN AND EDELSBRUNNER

To prove this, we note that each node, v, in our tree is represented by a
hyperplane h(v), defining 2 halfspaces h*(v) and h~(v), a point p(v)
which lies in dom(v), and a number #(v) representing the number of
points in dom(v).

A query is represented by a polyhedron which is initially a simplex, g,
and shrinks in volume as it is intersected with halfspaces encountered in our
search. For our algorithms, this polyhedron can be represented by 4
polygons which represent its intersections with the 4 (cross-sectional) faces
of g. These polygons are labeled P; (i =1,2,3,4). For a typical poly-
hedron, P, the search at v proceeds as follows:

if all P, are empty then

if p(v) lies in the interior of g

then add #(v) to the count

else (p(v) is not in ¢) do nothing.
else for each non-empty P;, we form the 3 sons of P, by intersecting P,
with A~ (v), h*(v) and A(v).

In the first two cases, the results are 2 polygons having between them 4
vertices more than P, had. In the third case, the result is an interval (to
be searched by a c-tree). These polygons (and interval) can be con-
structed in | P,| time where |P| is the number of vertices of P,.

Having created these 2 polygons, our algorithm now proceeds as

S1. Visit leftson(v) with P, N h~(v)
S2. Visit rightson(v) with P, N h*(v)
$3. Visit middleson(v) with P, N h(v)

Note that a node creates only 6 new vertices (4 on polygons, 2 on an
interval) in time O(|P|) and each new vertex is only used in 1 place. So,
f(v) < log n (since each vertex follows only 1 path) and the lemma holds.

Note added in proof. Since this paper was submitted, range searching trees in E“ have been
found for all d (Yao and Yao, “Proceedings 17th Ann. ACM Symp. Theor. Comput.” and
Haussler-Welzl, Discrete and Computational Geometry, to appear).

REFERENCES

[BM] R. BAYER AND E. M. McCREIGHT, Organization and maintenance of large ordered
indices, Acta Inform. 1 (1972), 173-189.

[B] J. L. BENTLEY, Decomposable searching problems. Inform. Process. Letr. 8 (1979),
244-251.

[Br] K. Q. BROWN, “Geometric Transforms for Fast Geometric Algorithms,” Rep. CMU-
C8-80-101, Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, 1980.

SPACE SEARCHING FOR INTERSECTING OBJECTS 361

[Ch] B. M. CHazELLE, “Reporting and Counting Arbitrary Planar Intersections.” Rep.
C5-83-16, Dept. of Computer Science, Brown University, Providence, RI, 1983,

[Co] R. CoLk, private communication.

[EKM] H. EDELSBRUNNER, D. G. KIRKPATRICK, AND H. A. MAURER, Polygonal intersection
searching, Inform. Process. Letr. 14 (1982), 74-79.

[EW] H. EDELSBRUNNER, aND E. WELZL, “Halfplanar Range Search in Linear Space and
O(n"***) Query Time,” Rep. F111, Inst. Inform. Proc., Techn. Univ. Graz. Austria.
1983,

(M] N. MEGGIDO. Partitioning with lines in the plane, J. Algorithms, in press.

[W] D. E. WILLARD, Polygon retrieval, STAM J. Compur. 11 (1982). 149-165.

[Y] F. F. Ya0, A 3-space partition and its applications, in “Proceedings. 15th Ann. ACM
Symp. Theor. Comput..” (1983), pp. 258-263.

[YDE] F.F. Yao, D. P. DoBKIN, AND H. EDELSBRUNNER, to appear.

