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The visibility graph of a finite set of line segments in the plane connects two endpoints u and v if and only if the straight
line connection between u and v does not cross any line segment of the set. This article proves that 5n — 4 is a lower bound on
the number of edges in the visibility graph of n nonintersecting line segments in the plane. This bound is tight.
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1. Introduction and definitions

Visibility graphs of sets of line segments in the
plane have a number of applications in computa-
tional geometry. For example, the shortest path
between two points in the Euclidean plane that
does not cross any of a set of n line segments can
be found in O(n log n + k) time after constructing
the visibility graph of the line segments (see [4,6,3]),
where k is the number of edges of the visibility
graph. Other applications of visibility graphs can
be found in [1].

Now we formally define the notion of a visibil-
ity graph of a finite set of line segments in the
plane. A line segment ab is the convex hull of two
different points a and b which are called the
endpoints of ab. We say that two line segments s
and t in the plane cross if their symmetric dif-
ference

(sut)—(snt)

consists of four connected components. Let S be a
set of n nonintersecting line segments in the plane
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and let V be the set of 2n endpoints. Two points u
and v are visible from each other if uv, which is a
line segment not necessarily in S, does not cross
any of the line segments in S. The graph Gg=
(V, E), with vertex set V and an edge {u, v} in E if
u and v are visible from each other, is called the
visibility graph of S.

Notice that {u, v} is an edge of Gg if u and v
are endpoints of the same line segment in S. Fig. 1
shows two sets of respectively four line segments
and the corresponding visibility graphs.

It is shown in [1,7] that the visibility graph of n
line segments can be constructed in O(n?) time
and O(n?) storage. This result has been improved
in [2] to.O(n?) time and O(k) storage, where k 1s
the number of edges of the visibility graph. The
time complexity of these algorithms is optimal in
the worst case if all edges of the visibility graph
have to be constructed explicitly. The construction
of an implicit representation of a visibility graph
may be possible in O(n log n) time since there are
only 2°°en different visibility graphs for n line
segments in the plane [5]. A still unreached goal
that is less ambitious than an O(n log n) time
algorithm is an algorithm whose time complexity
is sensitive to the output size, that is, it takes less
than Q(n?) time if the number of edges of the
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Fig. 1. Visibility graphs of two sets of line segments. (a) Dense
visibility graph. (b) Sparse visibility graph.

visibility graph is subquadratic.

In this context, it is interesting to ask for the
smallest and the largest number of edges of a
visibility graph of n line segments. The upper
bound is trivially

2n
( > ) =2n*—-n
and it is achieved if and only if the convex hull of
V is a convex polygon with 2n edges such that
every other edge is a line segment in S (see Fig.
1(a)). In this article we prove that

Sn—4

is a tight lower bound on the number of edges of a
visibility graph with 2n vertices. This bound is
achieved if the convex hull of V is a convex
polygon with 2n edges such that only two of the
edges coincide with line segments in S (see Fig.

1(b)).
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2. The lower bound

To simplify the forthcoming discussion, we note
that we can assume without loss of generality that
no three endpoints of the line segments in S are
collinear; otherwise, we slightly perturb the end-
points so that no additional edges are introduced.
To prove the main result, we first show two -geo-
metric lemmas.

2.1. Lemma. If two points u and v are adjacent
vertices of the convex hull of V, then {u, v} is an
edge of the visibility graph.

Proof. All points of V lie on one side of the line
through u and v. As a consequence, no line seg-
ment in S can cross the line segment uv. Thus, u
and v are visible from each other. O

2.2. Lemma. If S contains at least two line seg-
ments, then each vertex of Gg is incident upon at
least three edges.

Proof. Let u be a vertex of Gg and let v be the
unique other vertex such that u and v are end-
points of a common line segment s in S. By
definition of Gg, {u, v} is an edge of G¢. Now, let
p be a point in the relative interior of another line
segment t in S such that u and p are visible from
each other (see Fig. 2). Let x and y be the end-
points of t and consider the triangles A,, whose
vertices are u, p, and x, and A, with vertices u, p,
and y. If A, contains no points of V, then u and x
are visible from each other. Otherwise, let w, be
the point of V in A, such that the angle between
line segments up and uw, is smallest. Clearly, u
and w, are visible from each other. By the same
token, {u, y} is an edge of Gg or there is a point

Fig. 2. Ilustration of the proof of Lemma 2.2.
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w, of Vin Ay such that {u, w, } is an edge of Gq.
Thus, u is incident upon at least three edges of Gg.
a

Now we are ready to prove the main result of
this article.

2.3. Theorem. The visibility graph of a set of n
nonintersecting line segments in the plane contains
at least 5n — 4 edges.

Proof. Let S be a set of n nonintersecting line
segments in the plane and let V be the set of 2n
endpoints. Whenever there are two edges {u, v}
and {x, y} in Gg such that uv and xy cross, then
we remove one of the two edges. By repeated
application of this operation, we obtain a planar
graph T. The embedding of T in the plane that
represents each edge {u, v} by the line segment uv
is a triangulation of the convex hull of V. Let f,,
f,, and f, denote the number of vertices, edges,
and faces of T, respectively. Trivially, we have

fy=2n,

and f, is at most equal to the number of edges of
Gg. By Euler’s relation, we also have

f—f =12,

Now, each face is bounded by exactly three edges
except for the unbounded face which is bounded
by b > 3 edges and vertices. Thus,

12t ~b) =f,~ 1
and, therefore,

fo—f,+2f, —ib=1

v

a b

Fig. 3. The convex hull of V has at least n+1 vertices.
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or, equivalently,
f,=6n—b—3.

Next, we distinguish two cases: b<nandb>n+
1. If b < n, then we have

f, = 5n —4,

which implies that Gg has at least 5n — 4 edges.
Otherwise, that is, if b>n+ 1, there is at least
one line segment uv in S such that both u and v
are vertices of the convex hull of V (see Fig. 3).
The remainder of the argument is inductive, that
is, we assume that the visibility graph for any
m < n nonintersecting line segments in the plane
has at least 5m —4 edges. This assumption is
trivially true for m = 1. Assume first that uv coin-
cides with an edge of the convex hull of V (see
Fig. 3(a)). Line segment uv does not cross any line
segment xy, with x and y any two points in V. It
follows that no new visible pair of endpoints is
created when we remove uv from S. By Lemma
2.2, u and v are incident upon at least five edges
of Gg. Thus, Gg has at least five edges more than
Gs_ (uy)- Finally, Gg_(,,, has at least

5(n-1)-4

edges, by induction hypothesis, which implies that
Gg has at least

5n—4

edges. Next, we assume that uv does not coincide
with an edge of a convex hull of V (see Fig. 3(b)).
Let A C S be the set of line segments on one side
of the line through u and v and define B=S— A
— {uv}. There is no edge {x, y} in Gg with x an
endpoint of a line segment in A and y an endpoint
of a line segment in B, since line seg-
ments xy and uv would cross otherwise, Conse-
quently, each edge of Gy is an edge of G, (uy) OF
of Gpy (uv)» and {u, v} is an edge of both visibil-
ity graphs. Let n, — 1 and n, — 1 be the cardinali-
ties of A and B, respectively. We haven, +n,=n
+1 with n, <n and n, <n since both A and B
are nonempty. By induction hypothesis, G, ., ruy
and Gy, (4 together have at least

(5n,—4)+ (5n,—4)=5(n+1)—8
edges one of which is counted twice. Conse-
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quently, G4 has at least
5(n+1)-9=>5n—4
edges. O

3. Remarks

In this article, we proved that the visibility
graph of n nonintersecting line segments in the
plane has at least 5n — 4 edges. It is crucial for the
proof of this bound that an edge {u, v} is in the
visibility graph if and only if the line segment uv
does not cross any line segment of the given set.
According to another natural definition, {u, v} is
an edge of the visibility graph if uv is a line
segment of the set or if the relative interior of the
line segment uv is disjoint from any line segment
in the given set. In this case, the lower bound on
the number of edges is trivially 2n — 1, since it is
connected. This lower bound is achieved if all n
line segments lie on a common line. If we assume
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that no three endpoints are collinear, then both
definitions of visibility graphs are equivalent.
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