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Abstract: We consider the problem of obtaining sharp
(nearly quadratic) bounds for the combinatorial com-
plexity of the lower envelope (i.e. pointwise minimum) of
a collection of n bivariate (or generally multi-variate)
continuous and "simple" functions, and of designing effi-
cient algorithms for the calculation of this envelope. This
problem generalizes the well-studied univariate case
(whose analysis is based on the theory of Davenport-
Schinzel sequences), but appears to be much more diffi-
cult and still largely unsolved. It is a central problem
that arises in many areas in computational and com-
binatorial geometry, and has numerous applications
including generalized planar Voronoi diagrams, hidden
surface elimination for intersecting surfaces, purely
translational motion planning, finding common transver-
sals of polyhedra, and more. In this abstract we provide
several partial solutions and generalizations of this
problem, and apply them to the problems mentioned
above. The most significant of our results is that the
lower envelope of n triangles in three dimensions has
combinatorial complexity at most O(n®a(n)) (where
a(n) is the extremely slowly growing inverse of
Ackermann’s function), that this bound is tight in the
worst case, and thas this envelope can be calculated in
time O (na(n)).

1. INTRODUCTION; OVERVIEW OF RESULTS
In this we study the problems described in
the abstractpag:d derive upper bounds (and some
matching lower bounds) on the complexity of the
lower envelope of certain collections of bivariate func-
tions. These results solve various special but signifi-
cant cases of the generalization of the following prob-
lem, initially proposed by Davenport and Schinzel
[DS], to the case of bivariate functions: Let
f1(x), . . . .fa(x) be n continuous univariate functions,
each pair of which intersect in at most s points. Let
~ \,(n) denote the maximum number of maximal con-
nected portions of the graphs of the f;’s in such a col-
lection which compose the graph of their lowqr
envelope. It is known (cf. [DS], [At]) that A,(n) is
also equal to the maximum length of a sequence
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U= (uy,...,uy) of integers (called an (n,s) Daven-
port Schinzel sequence) which satisfies the following
conditions:

(i) 1=y = n for each i.

(ii) For each i < m we have u; # u 4.

(iif) There do not exist s+2 indices
=i <i) < ' <ipa=m such that
ull=ufg=“15-..'-a!
Hp: S8y ™ 2o = b,and a # b.

The problem of estimating A (nl) has been studied
repeatedly; see [DS], [Da], [Sz], [At], [HS], [Shi],
[Sh2], [ASS]. It is known that

)\1(!!) =n, Xz(ﬂ) =2n—1 (tmnal).

A3(n) = O(na(n)), where a(n) is the functional

inverse of Ackermann’s function, and thus grows

extremely slowly [HS].

Ny(n) = 8(n-2°() [ASS].

A2(n) = O(n-2°EEr ™), for s>2 [ASS].

Ay +1(n) = O(n-a(n)? &’ ™D), for s=2 [ASS].

Aas(n) = Qn-28CE"™) for 5>2 [ASS].

These results have found many applications to diverse
oblems in tational geometry (see [BS], [CS],
At], [Hs], [OSY], [PSS]).

All this gives relatively satisfactory information
concerning the "one-dimensional” Davenport-Schinzel
problem. However, the two-dimensional generalization
of this problem is still largely uninvestigated (with the
exception of the simple case where each f; is a plane
[PrM], and a few recent initial studies of more com-
plex cases [KLPS], [SL]; see also [Au] for the case
where each f; is a sphere), and appears to be much
harder. In this generalization one considers a collection
F={fi(xy), ...,f,(x,y)} of n continuous bivariate

ions such that any three functions intersect in at
most some fixed number s of points, and such that
each pair of functions intersect in a curve that has at
most some fixed number ¢ of singularities. The goal is
to obtain sharp upper and lower bounds on the max-
imum complexity k(F) (i.e. number of faces, edges,

and vertices) of the planar map, which can be called -

the minimization diagram of F, obtained by projecting
the pointwise minimum of these functions onto the
x—y plane. Each region of this map consists of a maxi-
mal connected set of points at which the minimum is
attained by a particular function f;, and the edges
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(resp. vertices) of this map consist of points at which
the minimum is attained simultaneously by two (resp.
three) functions. We assume here that the functions in
F are in "general position”, thereby excluding degen-
eracies at which two functions coincide on a two-
dimensional region, or three functions coincide on a
one-dimensional set, or four functions coincide at all,
etc.

The two-dimensional Davenport-Schinzel problem
arises as a central subproblem in many problems in
computational and combinatorial geometry. As an
illustration, note that almost any conceivable generali-
zation of the (nearest neighbor) Voronoi diagram in
the plane can be regarded as the minimization diagram
of a certain collection of functions, each measuring the
distance from a test point to one of the objects defin-
ing the diagram (see ]). Similarly, the boundary of
the configuration space of free positions of a moving
system with three degrees of freedom can often be
defined as the envelope of a certain collection of 2-D
surfaces, each representing contact positions with some
obstacle. In visibility problems, one often considers
some space of rays, and for each ray the object it
"sees" is the one whose intersection with the ray is
nearest to the view-point. Thus if the ray space is two
dimensional (as in the case of rays emanating in the
plane from a fixed segment, or rays emanating in 3-
space from a fixed point), analysis of the visibility
along these rays reduces to the calculation of the lower
envelope of an appropriate collection of "distance
functions” along the rays. These few examples should
suffice to illustrate the significance of the 2-D Daven-
port Schinzel problem, but more applications will be
given below.

This abstract presents several partial solutions to,
and some generalizations of this two-dimensional
Davenport-Schinzel problem. Clearly, a trivial upper
bound for k(F) is O(n®) (with a constant depending
on s and ), and our main goal is to improve that
bound. The results presented in the abstract are a
combination of re:il_zusl]ts obtained in three dlfferegé

apers . 4 . We first give an overview
gurrsgslSS]ts. %cdetaﬂsoftheproofsa:egivenin
Section 3. More details can be found in the full ver-

sions [SS], [PS], and [ES].

1.1. The single intersection and the double intersec-
tion cases [SS]

Our first result deals with a particularly favorable
case, in which we assume each pair of functions in F to
intersect in a connected simple curve which has the
additional property that each plane cross-section of the
form x = const intersects it in exactly ome point.
Furthermore, we assume that any three functions in F
intersect in at most one point. In this case we prove
that x(F) = O(n) (a bound which is about one order
of magnitude better than the "general” case - see
below). We also present an O(n log n) algorithm for
the calculation of the lower envelope of F; this algo-
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rithm is closely related to Shamos’ algorithm for the
calculation of Voronoi diagrams of points in the plane
(see [PrS]). (This result, even without the additional
condition about monotonicity of the intersection
curves, is also a consequence of the upper bound
theorem for oriented matroids [Ma], and can be
extended to higher dimensions, but the proof we
present is much simpler, and has the advantage that it
also yields an algorithm for the calculation of the
envelope.) We also discuss the case in which any three
functions intersect in at most two points, and any two
intersect in a connected simple curve. In this case,
extending recent results on properties of the intersec-
tion of planar Jordan curves, given in [KLPS], we
show that k(F) = O(n?), and that this bound is tight
in the worst case. :

1.2. The envelope of functions with favorable cross
sections [SS]

We conjecture that for s > 2 the complexity «(F)
is at most O(n\, (n)), for some s' ding on s
(and possibly also on f). That x(F) can indeed be
superquadratic is shown in an example given in [SL]; a
similar lower bound, but involving only piecewise
linear functions, is given in this abstract.

Our first main result proves this conjecture for the
special case in which the intersection curve of any pair
of the functions in F intersect every plane of the form
x = const in at most 2 points. We show that in this
case k(F) = O(n\,+2(n)), where the constant of pro-
portionality depends on s and ¢, and present an
O(nX\,+2(n) log n) time algorithm for the calculation
of the minimization diagram of F. Our analysis
proceeds by reducing this restricted case of the 2-D
problem to a collection of 1-D problems involving
lower or upper envelopes of certain subsets of the
intersection curves of pairs of the functions f;.

The extra condition assumed above is somewhat
artificial, but nevertheless covers certain applications
in which the functions f(xq,y) have relatively simple
form (as functions of y) for each fixed xo, e.g. are
linear or quadratic in y. For example, such a situation
arises in analysis of the pattern of changes in the con-
vex hull of » moving points, as is noted in one of the
applications that we present. Our result then implies
that the number of combinatorial changes in the con-
vex hull is O(n\,(n)), for some constant s depending
on the kind of motion of the points, and that these
changes can all be found in time O(n),(r) log n).
(The particular convex hull problem we discuss as an
example was also studied by Atallah [At] using a dif-
ferent technique.)

1.3. The envelope of n triangles in three dimensions
[Ps], [ES]

Our second major result, and perhaps the most
significant of our results, proves a strong form of the
above conjecture for the case in which each function in
F is piecewise linear, so that all the graphs of these
functions have altogether n faces. In this case we can




replace F by a collection of O(n) "triangle functions",
each of which has a graph that consists of a triangle (in
arbitrary position in 3-space) with three adjacent
steeply rising unbounded faces. See Fig. 1 for an illus-
tration of the envelope of triangles.

Unfortunately, the intersection curve of a pair of such
triangle functions can have cross sections of the form
x = const consisting of three points, so that the
preceding result does not apply here. Nevertheless we
show that the complexity of the lower envelogc of n
such functions is at most O(nk3(n)) = O(n®a(n)).
Moreover, using a recent result of [WS], we show that
this bound is tight in the worst case. Our analysis,
which uses a divide and conquer approach, also yields
an algorithm, based on the same t ique, for calcu-
lating this envelope in time O(n’a(n)). Because of
the particular simple form of piecewise linear func-
tions, the problem of estimating the complexity of
their envelope has been one of the major open prob-
lems in the 2-D Davenport Schinzel theory, and, as
shown below, has many applications. We also provide
generalization of this tight bound to the envelope of
multi-variate piecewise linear functions.

1.4. The complexity of a region bounded by convex
plates [PS]

Our last major result considers generalization of
the notion of lower envelope to that of the boundary
of a single connected component of the complement of
the union of n "plates” (compact convex 2-D sets) in
3-space. This useful generalization is much harder to
analyze, and so far the only known upper bound on
the complexity of such a component was the trivial
O(n*) bound. Using a combinatorial result of Erdds,
we show that the complexity of any such component is
at most O(n>~%), for some absolute positive constant
8=1/49. Although this result is weaker than the
bounds mentioned above, it applies in more general
contexts. We also present generalizations of this result
to higher dimensions.

2. APPLICATIONS

The results on the combinatorial complexity of
envelopes have many applications in computational
geometry. In this abstract we present a few of these
applications.
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2.1. Hidden Line and Surface Removal

. Imagine that we take a picture of a three-
c!lmmsaona! scene. To compute what this picture looks
like, assuming opaque objects, is commonly known as
the hidden line/surface removal problem. If the sur-
faces that bound the objects are allowed to intersect
then this application is essentially just a reformulation
of the envelope problem. The portions of the surfaces
visible from the point can be easily interpreted as the
lqwu- envelope of the distance functions from the
viewpoint to the given surfaces. Thus if the functions
in question belong to one of the families for which we
have obtained tight bounds on the envelope complex-
ity, then we obtain good bounds on the hidden
line/surface removal problem.

For example, consider the case where the scene is
modeled by » triangles in three dimensions. If the
viewpoint is at infinity, then the triangles themselves
can be thought of as the graphs of their own distance
func_:ﬁops from the point. Otherwise, we can apply a
projective transformation to map the viewpoint to
infinity and the triangles to other triangles. (To get a
valid picture though we need to map the plane at infin-
ity to a plane, using the same transformation, which
acts as a background screen.) With intersections
allowed we thus have an O(n%a(n)) time algorithm to
compute the view from a fixed point using the results
of Section 1.3. This is asymptotically optimal since
there are scenes whese images actually have combina-
torial complexity Q(n?a(n)).

In modeling a three-dimensional scene by triangles
it is more common, however, that the triangles do not
intersect except possibly at their relative boundaries.
In this case it is not difficult to show that the combina-
torial complexity of the envelope is O(n2) in the worst
case. In this case our algorithm computes the
envelope, resp. the viewed image of the triangles, in
O(n?) time and thus is optimal in the worst case (the
same complexity has been achieved also in [De],
[MK]). In fact, the non-intersection property allows
us to simplify the algorithm considerably and to gen-
eralize it to d=3 dimensions. For n (d —1)-simplices
in 4 dimensions it computes the envelope in O(n®~?)
time which again is worst-case optimal.

2.2. Translating a Polyhedron in Three Dimensions

This is an instance of the motion planning prob-
lem, in which we wish to plan a collision-free path for
an object in three dimensions in the presence of a col-
lection of obstacles which the object must avoid. In
this section we consider a scenario where the object, B,
as well as the obstacles, A,,4,,...,A,, are convex
polyhedra. The A, are pairwise disjoint (assuming
they are open sets) and stationary. B can be translated
(butnotromad)aslo:gasitavoi&theobstadu.
Thus, a free placement of B is defined by a vector (or
point) b such that B+b avoids all A,. By taking the
Minkowski difference

K, = A—B = {p=x—y :x€A,,y€B}
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we obtain a new "expanded” obstacle with the property
that B +b avoids A, if and only if b£K;. It is not diffi-
cult to see that the combinatorial complexity of K; is
O(km) if B and A, are bounded by k and n, faces
respectively. The set of free placements can thus be

represented by the complement K¢ of K = ‘Ui K;.

Notice that the connected component of K¢ which
contains the origin represents the set of free place-
ments of B that can be reached from the initial given
placement of B by a continuous translational motion.
This set is a connected component of the three-
dimensional space minus O(kn) triangles, where

n= S m. By the result in Section 1.4 its combina-

i=1

torial comflaxity is subcubic in kn (that is
O((kn)*~14%)). Little is known beyond this result
unless we make some assumptions about the obstacles.

An interesting case is obtained when the union of
the (closures of the ) A, is bounded by a polyhedral
terrain. This is a continuous (piecewise linear) surface
that intersects any vertical line in exactly one point. In
this case, the boundary of K¢, the set of free place-
ments of B, is the upper envelope of the K;. The
result in Section 1.3 now implies that its combinatorial
complexity is O(k*n?a(kn)) and that it can be con-
structed in the same amount of time. Since the boun-
dary of K¢ is again a terrain we can compute its inter-
section with any vertical line in logarithmic time (see
e.g. [E]) using two-dimensional point location tech-
niques. This implies that we can decide in logarithmic
time whether a given placement of B is free.
Furthermore, this can be used to compute in the same

time the contact point(s) when B is lowered from any

"query" free position until it touches the terrain.

2.3. Stabbing Line Segments and Polytopes

A transversal or stabbing plane of a set of (con-
nected) objects in three dimensions is a plane that
intersects each object in the set. Since a plane meets a
connected object if and only if it meets its convex hull,
we may as well assume that all objects in the set, S,
are convex. This subsection considers the complexity
of finding all transversals of S if S is a set of m
polytopes bounded by a total number of n faces. We
do not assume that the polytopes are disjoint.

Following the approach of [EMPRWW] for the
corresponding two-dimensional problem we make use
of the dual transform D that maps a point
p=(m,m,w3) to the non-vertical  plane
X3=—1rX1— X3+ and a plane z=ax +by +c into
the point (a,b,c). This transform preserves incidence
and order, in the sense that a point p lies on/above a
plane h if and only if the plane D(p) passes
through/above the point D(h). For each polytope
P;€S we can now define D(P;) as the union of all
planes D (p), p€P,. Because D is incidence preserv-
ing, a plane h intersects P, if and only if D (h)€D(P;).
The set D (P;) is determined by the set of planes that

are dual to the vertices of P,. For each vertical line,
D (P,) contains all points that lie between the topmost
and the bottommost intersection of the line with any
such plane. It follows that D (P;) can be characterized
as the set of points between two piecewise linear sur-
faces and that both surfaces can be decomposed into
O(n;) triangles if n, denotes the numbers of faces of
P;. Consequently, the set

e P)

is a representation of the set of transversals of S, and
it can be characterized as a set of points below a lower
envelope of one set of O(n) triangles and above an
upper envelope of another such set of triangles.

The results of Section 1.3 imply that the combina-
torial complexity of the two envelopes is in O (n*a(n))
and that they can be constructed in the same amount

~ of time. The same is true for the set o(S) itself, as

can be checked by straightforward adaptation of the
proof of Theorem 8 below. It is interesting to note
that, if each P; in § is a line segment, then the com-
binatorial and computational complexity reduces to
O(n?). This is because the set o(S) has combinatorial
complexity O(n) if S is a set of n line segments in the
plane (see [EMPRWW]). As a consequence, we get
the recurrence relation ¢(u)52¢(%)+0(n2) which

solves to O(n?) in the proof of Theorem 8.

2.4. Voronoi Diagrams of Point Clusters

In this section we consider certain problems in
Euclidean location theory, where the goal is to analyze
the min-max or the max-min of the distance from a
test point to groups of resources in the plane. By
squaring and removing the quadratic terms from the
distance functions, these problems can be reduced to
that of calculating the lower or upper envelope of a
collection of bivariate piecewise linear functions.
Using the results of Section 1.3, these problems can be
solved in nearly quadratic time by nvelope construc-
tions.

An interesting special case of this kind of problem
is the construction of the Voronoi diagram for a set of
point clusters in the plane. Here we measure the dis-
tance from a point to a cluster by the maximum dis-
tance to a point in the cluster. As mentioned above,
the complexity of this problem is O(na(n)) both in
terms of the number of faces and the time required to
build it, where n is the total number of points in the
clusters. If each cluster contains only one or two
points then the complexity of the diagram goes down
to O(n?) and it can be shown that this bound is tight.
A dramatic decrease in complexity happens if we

ire that the convex hulls of any two clusters are
disjoint. In this case we can show that the region of
each cluster is connected which implies that the overall
complexity of the diagram is O(n). No subquadratic
ilngoﬁthm for constructing such a diagram is currently

own.



2.5. Decision procedure for linear inequalities

Here we consider the problem of deciding quanti-
fied Boolean formulae involving inequalities between
linear functions of two variables. Assume that the
unquantified portion of such a formula f is given in
conjunctive normal form. That is, it has the form
PiApaA---Ap,, where each p; has the form
LHEOVL.QEOV O VL;,.IE'O, where each Lu is a

linear form in the two variables x,y. Letn = ﬁ n; be

=1
the total number of inequalities. Let h, denote the
pointwise maximum of Lyy, . . . ,Lj,, and let M be the
pointwise minimum of k., ... ,h,. Then it is easily
checked that the unquantified part of fis true at some
(x,y) if and only if M(x,y)=0. Thus to decide, say,
the validity of f, we can calculate (the minimization
diagram of) M, and then search over it in an appropri-
ate manner. Note that each function 4, is convex and
its graph consists of O(n,) planar faces (and can be cal-
culated in time O(m; log m;)). Thus the overall com-
binatorial complexity of M is O(n?a(n)), and it can be
computed in the same amount of time. This yields a
nearly quadratic decision procedure for such formulae.

2.6. Convex hulls of general objects

Our last application deals with calculation of con-
vex hulls of objects other than points, or of objects
that vary in time. We show that the complexity of such
hulls is equivalent to the complexity of the lower
envelope of certain "support functions”, and the above
results yield sharp bounds for this complexity in
several cases. One such application have already been
mentioned; as another application, we show that the
convex hull of n balls in 3-space has combinatorial
complexity O(n?), and this is tight in the worst case.

To see the case of balls in more detail, let
B4, ...,B, be n given balls in three dimensions. For
each B, define a function f; on the unit sphere S? so
that for each u €52, f;(u) is the distance from the ori-
gin to the plane supporting B, and having u as its
outward-directed normal. It follows easily that
M(u) = mf:xﬁ(u) gives the distance from the origin

to the plane supporting the convex hull C of
B4, ...,B, and having u as its outward-directed nor-
mal. In this set-up, calculating C becomes equivalent to
the calculation of the minimization diagram of these
support functions. For balls it is easily checked that
any two functions f; and f; intersect in a circle along
S%, and that any three functions intersect in at most
two points. Using Theorem 5, we obtain the asserted
bound. The lower bound example is given in [SS].

3. TECHNICAL DETAILS
In this section we provide more details about the
results reported in this abstract.

3.1. The single intersection case
Here we assume that the collection F of bivariate
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functions satisfies the following additional properties:
(1) For each pair f, f; of distinct functions in F
the curve vy, defined by f(x,y) = fi(x,y) is either
empty or is connected and each of its cross-sections of
the form x=x, consists of exactly one point; more-
over, the cross sections fi(xo,y), fj(x,y) intersect
transversally at that point.

(1b) Each triple £, f;, f; of distinct functions in F
intersect in at most one point.

Although these conditions are very restrictive,
they do arise in certain applications, as will be noted
below. In particular, they apply to any collection F of
linear functions (for which the foregoing results are of
course well known).

Theorem 1: If F is a collection of n bivariate functions
satisfying the above assumptions, then «(F) = O(n).
Sketch of proof: For any fixed x,, each pair of res-
tricted functions fi(xo,y) has at most one intersection,
and therefore the minimum M(x,,y) is attained by
cach function along a single interval (which may be
empty). As xo increases, the sequence of functions,
arranged in the order they attain M along the line
x=x9, can change only at critical values of x, at which
a new function appears along M(x,,y) between two
others, or the interval along which some function
attains M shrinks to a point and disappears. It can be
shown that a function can disappear from M at most
once, so that there are at most 2n critical values of x.
The theorem follows immediately from this. O

Next we describe an algorithm for calculating the
minimization diagram M*® of a collection F of func-
tions satisfying the hypotheses of the preceding
theorem. The algorithm runs in O(n log n) time
(assuming certain primitive operations on the f’s, e.g.
calculating the intersection point of a triple of them, to
take constant time). It follows from the observations
in [ESe] that our algorithm also yields another efficient
technique for calculating planar Voronoi diagrams.

We begin by sorting the functions in F according
to their values at y = +, and by eliminating func-
tions which are larger than their predecessor in this
order throughout the entire plane; call the resulting
sequence fy, ... ,fp. Partition it into a lower group
Fr={fi,....fan} and an  upper group
F, = {faz+1, - . - ,fo}, and recursively calculate the
minimization diagrams M, M$ representing the lower
envelopes M;, M, of F;, F, respectively. We represent
each such diagram by a list of triple intersections of
the functions in the corresponding group, arranged in
ascending order of their abscissae, and by a list of the
functions constituting the minimum, in order of
increasing y, for xo below the least abscissa of any tri-
ple intersection. As shown e.g. in [Co], [CG], [DSST]
this representation can be transformed in O(x log n)
time into a linear-size data structure that supports e.g.
efficient point location in M*

To "merge” the two diagrams M, M? into the
diagram M* for the entire F, we first show



Lemma 2: For each xo there exists exactly one yq at
which M;(x0,y0) = M.(x9,y0). For every y > yo we
have M(x0,y) = Mi(x0,y) < M,(x0,y) and for every
y < yo we have M(x0,y) = M,(x0,y) < Mi(x0.7)-
Proof; Omitted in this version. O

The preceding lemma shows that the separating
contour

C = {(xy) : My(x,y) = Mu(x.y)}
is an unbounded x-monotone and connected curve, and
that on the upper side (resp. lower side) of C the
minimization diagram M* coincides with M} (resp.
with Mg).

Take some x, below the smallest abscissa of any
triple intersection for either of the two groups, merge
there the two lists of the functions f; achieving the
minimum in each group separately, to obtain that list
for the entire collection, and find a "starting point” on
C, in overall linear time.

Suppose at this point we have f; = f;, for some
fi €F,, f; €F,. We then perform a vertical line
sweeping, in which we follow C along the curve
vy : fi=f;, and use a local advance procedure for find-
ing the next triple intersection along C, by examining
the intersection points of vy, with the four "neighbor-
ing" curves v;-1,1, Yii+1» ¥j-1,5» and vy ;+1, and
choosing the nearest one. As the sweep progresses,
we also collect all triple intersections within F; and
within F,, which still lie on the appropriate side of C.
At each triple intersection along C, we also insert a
new region of M* starting at that point or remove a
region just ending there. All this can be done in linear
time. More details can be found in [SS]. We thus
have

Theorem 3: The minimization diagram of a collection
F of n bivariate functions satisfying the conditions
stated at the beginning of this section can be calculated
in time O(n log n).

The following result generalizes Theorem 1 and
indicates the essentially topological nature of that
result.

Theorem 4: Let f;, i=1,..
valued continuous functions
Suppose that

(a) For each i, j between 1 and n, the set vy of points
p € E? satisfying the condition fi(p) = fi(p) is
either a closed Jordan curve or an open Jordan
curve both of whose ends approach infinity.

(b) For each fixed i, any two of the curves yy, Yu
intersect in at most one point, and each such inter-
section is transversal.

() No quadruple int=rsections satisfying f; = f; = f;
= f; for distinct ., ,, k, [ exist.

Then the complexity of the minimization diagram of

the functions f; is O(n).

_The proof of Theorem 4 is quite involved and is

omitted in this version. We note that this theorem is a

. ,n be a set of n real-
defined in the plane E2.
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special case of the upper bound theorem for oriented
matroids (see [Ma]), and that it can be extended to
arbitrary dimensions. Details can be found in the full
version [SS].

3.2. The double intersection case

Here we assume that our collection F of bivariate
functions satisfies the following additional properties
(instead of properties (1a) and (1b) in the preceding
subsection):

(2a) For each i#j the plane curve
fi(x,y) = f;(x,y) is simple and connected, and is either
a cl curve, or is unbounded in both directions, so

that it always partitions the x,y plane into two disjoint
Tegions.

(2b) For each triple i, j, k of distinct indices, the

equation fi(x,y) = f;(x,y) = fi(x,y) bas at most two
roots.

Theorem 5: Under the above assumptions, the com-
plexity of the minimization diagram of F is
k(F) = O(n?). Moreover there exist collections F
satisfying conditions (2a) and (2b), for which
k(F) = Q(n?).

Sketch of Proof: For each i=1,...,n let o, denote
the graph of z = fi(x,y). Fix such a o,, and for each
j#i let v, be the vertical projection of o; N o, onto
the xy-plane. By our assumptions each v, is either a
simple closed Jordan curve, or is a simple open curve
both of whose ends approach infinity, and furthermore
each pair v;;, v of these curves intersect in at most
two points. For each j#i define X (yy) to be the por-
tion of the plane over which f; < f;. We now adapt
and apply the results in [KLPS]. It was shown there
that for a collection of n=3 Jordan curves in the
plane, so that any two of them intersect in at most two
points, the number of such intersections along the
boundary of the union of their interiors is at most
6n—12 (a bound that is tight in the worst case). By
some rather straightforward technical modifications,
we can obtain the following generalization of the
result in [KLPS] (see [SS] for a proof).

Lemma 6: Let ¥4, ...,Ya, be a collection of n =3
curves in the plane, each of which is either a closed
Jordan curve or a simple open curve both of whose
ends approach infinity. Suppose that any two of the v,
have at most two intersections, all of which are dis-
finct, and that all such intersections are transversal.
For each v, let K(y;) be one of the two regions into
which +, divides the plane. Then the total number of
intersections between the curves vy, which lie on the
boundary of L:J K(4,) is at most 6n —6.

This lemma thus implies that the number of inter-
sections of the curves vy, which lie on the boundary of
L‘J’K(’YU) is at most 66:-1)—-6 = 6n—12. But these
Intersection points stand in a 1-1 correspondence with
the points of triple intersection of the functions fi
which lie on the intersection of o, with the graph of




the minimum M.

Repeating the above analysis for each o, and
observing that each triple intersection point ‘on M will
be counted by this process three times, it follows that
the number of such cormers is at most

%n (6n—12) =< 2n?, which completes the proof of the
first part of Theorem 5,

It is also easy to give examples of collections F of n
functions for which k(F)=(}(n?). For example, one
can take F = {fl’ % :.fru E1s -+ )gu} where

filx,y) = (x=i)?

8i(x,y) = ay+b
where the a,, b, are chosen so that each 8 appears
along the lower envelope of the functions g, and so
that each intersection of two functions g, g; that lies
on the lower envelope has z-coordinate between 0 and
V4. It is easy to see that F satisfies the conditions
assumed in this subsection, and that k(F)=Q(n?). This
completes the proof of Theorem 5. O

3.3. Functions with favorable cross sections.

Again, let F = {f(x,y), . . . ,f,(x,y)} be a collec-
tion of n bivariate functions satisfying our basic
assumptions, plus the following special properties:

(3a) For each i#j and each x4, the equation
filx0,y) = fi(x0,y) has at most two roots
rig o)=rj (ro).

(3b) Call any point at which any rjj or rj ceases
to be defined or has a discontinuity a singular point of
riy (tesp. of rjj). We assume that for each i,j the
functions rj}, r;; have at most ¢ singular points.

(3c) We assume that no four distinct functions
fis fy» fi» i become identical at any point, and that for
each triple i,j,k of distinct indices, the equations
fix,y) = fi(x,y) = fi(x,y) have at most s roots.

In what follows we take both ¢ and s to be fixed
and independent of n.

Theorem 7: Under the above assumptions, k(F) has
the bound O(n\,.,(n)), where the constant of pro-
portionality depends on s and ¢.

Proof: For each given x,, a pair of functions fi(xo,y),
fi(x0,y) are said to stand in a definite relation over a
finite or infinite interval of y if one of the relation-
ships fi>f; or f;>f; holds throughout this interval.
Plainly f; and f; stand in definite relation below
rjj (xo), above rjj(xo), and also between these two
roots, if both exist, for every xq.

We will write rif (x0) as d)g}(lg) if f[)f} below
rij (xo), otherwise we will write rj;(xo) as & (xo);
similarly, we will write rjj(xo) as & (xo) itJf,>f}
above rjj (xo), and otherwise we will write rj (xo) as
$ji (x0).

Write vy, for the solution set of fi(x,y) = f;(x,y).
Let p = [x9,y0] be a triple intersection point at which
i) = /) = fi(p) = min fi(p). Then p lies either
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on the graph of r; or that of rg, 80 fi(xg,y) and
Jg(xo,y) stand in definite relation either for y > yoq or
or y < yo. The same remark applies to the pairs
Ji, fi and f), f,, giving us three definite relations, of
which at least two must apply on the same side (above
or below) of yo. Hence two cases arise:
Case A: All three of the ordering relations just alluded
to apply on the same side of ¥o. In this case, say we
have f; > f;, fi> fi on, say y >y,. Then plainly
g,é"] (x0) = i (x0), and 1o other function ¢} can pass
oW p, since then we would have f,(p) > min f,, (p).
Thus >

$ij (x0) = ik (xo) = min ¢ (xo).

I£fi>fand f, > f, fory < y,,
exactly the si’tmc wa:yth;t 4

bif (x0) = di(xo) = max ¢ (xo).

It now follows from [At] that, for any fixed i, the
number of such triple intersections is O(A;+2(n)),
because these intersections correspond to "break-
points” along either the "top i-envelope” ¢} (x) =
u?;xfub,}' (x), or the “"bottom i-envelope"

U (x) = max ¢ (), and assumption (3c) is easily
seen to imply that any pair of functions bj, bk, or

&y, bz, intersect in at most s points. Summing over
a.lf n possible values of i, it follows immediately that
the total number of this type of triple intersections is
O(H)s,q.g(ﬂ)).

Case B: Two definite relationships between £, f, and
fe are available on one side of y,, and one other
relationship is available on the other side.

It is easy to check, by case analysis, that the only
combination of relationships which cannot be reduced
to case A above, is that in which f; < fj» fi < fi above
Yo, and (say) f; < fi below yg (or vice versa).

Since fi > f; above yo and fi(p) = min fi(p), it

follows as above that no other function ¢7; can have a
graph which passes below p, so that &fi(xe) =
miind:,,*}(xo). i.e. p lies on the graph of the top k-
envelope Y (x) = m!m ¢ (x). Similarly we find that
p lies on the graph of ¥i (x) = max i (x).

We can then bound the number of these intersec-
tions by dividing the real axis into O(\, +2(n)) subin-
tervals by all breakpoints along {7 , ¥ and all singu-
lar points of all the functions &%, &y. It is easily
checked that in any such subinterval I, ¢} and yj
intersect in at most s points. Thus, for each k, there
are at most O(sA, +2(n)) new triple intersections, and
heace O(nA, +2(n)) such intersections in total.

Theorem 7 is immediate from this. O

The above analysis can easily be converted into an
algorithm for calculating M, which runs in time
O?rlh,.,.g(n) log n), assuming that each operation
involving a specific pair or triple of the functions f;

we can prove in

_



only requires constant time. For lack of space, we omit
details of this algorithm in this abstract, and refer the
reader to [SS].

3.4. The lower envelope of piecewise linear functions

As noted earlier, it suffices to consider the case in
which each f; is a partially defined function whose
graph is an arbitrary (non-vertical) triangle in 3-space.
Let F = {f1,...,f,} be a collection of n such trian-
gles in general position in 3-space, and let g o
denote their vertical projections onto the x—y plane.
The assumption that the triangles are in general posi-
tion is made for exposition sake, and can be removed.
Let y(n) denote the maximum number of facets (two-
dimensional faces) in the minimization diagram M*
associated with the lower envelope M of any collection
F of n triangles in 3-space.

Theorem 8: (a) The number of vertices, edges, and
facets in the lower envelope of any collection of n
(non-vertical) triangles in 3-space is at most 0(n\3(n))
= O(na(n)), and this bound is tight in the worst
case.

(b) The total number of faces (of all dimensions) in
the lower envelope of any collection of n d-simplices in
R is at most O(n? ~'a(n)), and this bound is tight in
the worst case.

Sketch of Proof: We will concentrate on proving part
(a) of the theorem, and then will add a brief comment
on the proof of (b). Let F = {fy, . .. ,fa} be a collec-
tion of triangles in 3-space, and consider their x—y
projections f7, . . . ,f3. Partition this collection into
two disjoint subcollections Fq, F;, each consisting of
n/2 triangles. Let M, and M, denote the lower
envelopes of the triangles in F, and F3, respectively.
The number of facets of M, and of M, are both at
most Y(n/2) by definition.

However, the complexity of the overall lower
envclopcMmingenualbelargathmthesumof
the complexities of the "subenvelopes” M and M,.
The reason is that a facet R of one of the subenvelopes
M,cenbesp]itintosevualfmtsinuduetotheaddi-
tion of the other envelope. To overcome this diffi-
culty, consider one of these subenvelopes, say M1, and
superimpose the 3n lines containing the edges of all
the projections fF , . ._.,f3 on the map M7 to produce
a refined planar map M (see Fig. 2).

e

Fig. 2

Lemma 9: Let R be a region of M, which is contained
in the projection of some facet of M; which is part of
some triangle f. Then the portion of R over which fis
part of the overall envelope M is connected.
Proof: Let R’ be that portion of R. The 3a added lines
partition the x —y plane into a collection of openly dis-
joint convex polygonal "base cells”, so that no edge of
any of the triangles in F projects to the interior of any
of these cells. Let Q be the base cell containing R, and
let F, denote the subcollection of all triangles f; whose
projections f7 contain Q. Note that, when restricted
over Q, the upper envelope M is the same as the upper
envelope of the planes containing the triangles in Fy.
In particular, the portion R’ over which f; attains M is
convex and thus connected. O

Lemma 9 implies that the sum of the number _of
facets of M, and of the corresponding refined map M;
is an upper bound for the number of facets of M. Our
key observation is
Lemma 10: The number ¢ of regions in M, is at most
the number ¢* of regions of M} plus O(n?a(n)).
Proof: Let R be a region of M} which is split into kg
subregions by the addition of the lines I1,...,l3
containing the edges of the projections f1, . . . ,fs of
all triangles in F. Suppose that R is the projection of a
connected portion of some triangle f € Fy which

on the lower envelope M. For each 1=i=3n

let p;(R) denote the number of connected portions of
R N I, and let g(R) denote the number of intersection
points of the lines [, inside R. It is then easily checked
that kg = 1+ g¢(R) + S pi(R). (This is best seen by

i
adding the lines /; one at a time.) Hence, if we sum
these inequalities over all facets X of M{ , we obtain

t=st1*+ EQ(R) + Ep,(R) .

But dearly $ q(R) = O(n?). As to the other
R
sum, note that for each i the sum $ p(R) is just the

R

complexity of the lower envelope M restricted over
the line J,. But since each of the n/2 triangles in Fy,
when restricted over [;, becomes a straight line seg-
ment, it follows from the standard one-dimensional
Davenport-Schinzel theory (cf. [HS]) that

'%‘. Pi(R) S \3(n/2) = \3(n) = O(na(n)).

Thus, summing over all lines /;, we obtain
1s1* + 0(n?) + O(n%a(n)) = ¢* + 0(n%a(n)) .
o
Since a similar inequality applies to the map M,
we can now obtain the desired recurrence formula for
TR
U(n) = 20(n/2) + O(na(n)) .

The solution of this formula is readily seen to be
¥(n) = O(n*a(n)).




We also derive similar bounds for the number of
vertices and edges of M, and show that similar bounds
hold also for collections F not in general position.
This completes the first part of the proof of our
theorem.

The lower bound assertion in the theorem follows
from the recent result of [WS] that constructs a collec-
tion of # line segments in the, say x—z plane, whose
lower envelope consists of Q(rna(n)) subsegments. By
taking the Cartesian product of each of these segments
with a large interval on the y axis, we obtain a collec-
tion of n rectangles, to which we add n descending
sharp and narrow wedges whose lower edges are all
parallel to the x—z plane, and are all at the same
depth, so that they cut through the entire lower
envelope of the first n rectangles from above. This
yields a collection of 0("2 triangles whose lower
envelope has complexity Q(n?a(n)).

Let us next consider part (b) of Theorem 8.
Notice that in order to prove the upper bound of part
(a) of the theorem, we used a divide-and-conquer
argument (as opposed to a divide-and-conquer algo-
rithm) to get an upper bound on the number of facets.
The upper bound on the number of vertices and edges
follows by Euler’s relation. In d=4 dimensions,
Euler’s relation implies the desired upper bound of
0(n®~'a(n)) on the number of vertices and edges,
provided the same bound holds for all higher-
dimensional faces of the envelope. A straightforward
generalization of the above argument can establish this
bound only for facets, that is, (d —1)-faces. To fill the
gap we take advantage of the fact that the homogene-
ous solution of the recurrence relation for Y(n) is
much smaller than the additive term that dominates the
solution. This allows us to obtain the envelope by
merging several subenvelopes of non-disjoint sets of
simplices. Every k-face of M appears also in one of the
subenvelopes, if every (d—k)-tuple of simplices is
fully contained in at least one set. This idea eventually
leads to the desired bounds, thus completing the proof
of Theorem 8. O

Calculating the Lower Envelope

The preceding analysis easily yields an algorithm
for calculating the lower envelope of a collection F of
n triangles in 3-space. Specifically, we partition F into
two subcollections F;, F, of equal size, and calculate
recursively the lower envelope of each subcollection.
Then we take the 3n lines I, ... ,l,, in the x—y
plane containing the projections of the sides of the tri-
angles in F, and calculate the arr they form
in that plane (in time O (n?) [EOS]). For each cell Q of
the arrangement we find all triangles which appear
above Q in the lower envelope of either Fy or of F;,
and then calculate the lower envelope of the planes
containing these triangles, in time O(kq log kp),
where kg is the total number of such triangles (see
[PrM], [?‘rS], or [E]). The lower envelope M of F is
then equal to the union of all these subenvelopes,
except that some faces of M may have been split into
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several subfaces by the lines J,. For simplicity of the
algorithm we leave these faces split, and do not join
thegatogcther,cxwptfortheﬁmlenvdopeofthe
;o]ngsng:doolle;tli I;ifsodesirecl.'I'I.-u'slaste:tel:aisan:ot‘:a:n-

simply by scanning each line /, and joining
matching faces into a single facet. Here, tl:vyo facets
match iftheyareseparatedbyaoommonedgeon!;
and if they come from the same triangle. Two edges
match if they are separated by a common vertex on /;
and if they come from the same triangle edge or from
the intersection of the same pair of triangles. Since
the P i analysis implies that
S kg = O(n%a(n)), it follows that the running time
)

of the merge step of this algorithm, and also of the
entire algorithm, is at most O (n2a(n) log n).

We can improve the time complexity of the algo-
rithm to O(na(n)), if we partition F planfully into F,
and F;, rather than arbitrarily. For each triangle
define its slope as the slope of the line of intersection
between the x —z plane and the plane that contains the
triangle. When we partition F we do it such that Fy
contains the triangles with the n/2 smallest slopes, and
F, contains the triangles with the n/2 largest slopes.
The envelope restricted to the region above a cell can
now be computed in linear time from the correspond-
ing pieces of the two subenvelopes. This method is
explained in dual space in [PrS] and [E].

3.5. The boundary of a region enclosed by convex
plates

Let S = {Sy,. . .,S5,} be a collection of n (d—1)-
dimensional compact convex sets (plates) in RY. If we
delete from R? all points belonging to at least one of
these plates, then R? may split up into a number of
connected components. Let C denote such a com-
ponent.

Theorem 11: For every d=3, there exists a constant
€(@)>0 such that, given any collection
S={S1,...,8}of (d—1)-di ional convex plates
arranged in R?, the combinatorial complexity of the
bounda}:yofanysingleconnwtedoomponcmCof

RY - U, 5 is at most O(né4=@),

Assume without loss of generality that the plates
are in general position. Then any vertex of the given
component C belongs to exactly 4 plates, and using the
fact that any d plates have at most one point in com-
mon, we obtain that C has at most @ = 0(n?) ver-
tices.

On the other hand, it is easy to see that the total
combinatorial complexity of C (i.c. the number of all
i-dimensional faces over all 0si<d) is proportional to
the number of its vertices.

Hence, it is sufficient to prove
Theorem 11’ For every d=3, there exists a constant
€(d)>0 such that, given any collection

S = {§1,...,5,} of (d—1)-dimensional convex plates

_



arranged in B¢ in general positions, the number of
points belonging to d members of S and lying on the
boundary of a given component C of R? -“US is at

most O (n¢ @), (US is the shorthand for Y D)

We need some preparation. A d-uniform hyper-
graph is a set system whose members (the so-called
hyperedges) are d-element sets.

Definition: Let H = H(S) be a d-uniform hypergraph
whose vertex set is S and whose hypew;}es are those
d-tuples {SD, . . . ,5@} CS for which N SO lies on
the boundary of the given component C of R — US.

Let KO (mq,m3, . ..,m,) denote an r-uniform
hypergraph with my + ma+ : - * +m, vertices, whose
vertexsetisV, UV, U~ - UiV, |V;| =m (151'51’)
and which consists of all r-tuples containing exactly
one element from each V. f mqy = my =~ "m, =
m, then we will write K ) (m) for KO (m,m, - - - ,m).

Our proof is based on showing that for some suf-
ficiently large constant m = m(d), the hypergraph
H(S) does not contain a subhypergraph isomorphic to
K®)(m). Then we can apply the following well-known
combinatorial result of Erdos [Er].

Theorem 12 (Erdds): Let H be an r-uniform hyper-
graph on n vertices containing no subh)gplugraph iso-
morphic to K (m). Then |H [sa” ==V,

This theorem will establish our claim. For lack of
space we will sketch our approach only for d =3. In
this case we will need the following slightly stronger
version of Erdos’s theorem:

Theorem 13: Given any natural numbers r,m=2,

M=m, there exists a constant C(r,m,M)=C such that

the number of hyperedges of any r-uniform hyper-

graph on n vertices, which does not contain a

subhypergraph isomorphic to E® (m,...,mM), is

at most Cn” ~(V®)' ™" 0
Theproofofourbaundissomewha:techniml,

and some details are omitted in this version.

Lemma 14. Let 3 = {002,053} and ' =

{e1,032, . .. ,0,} be two systems of straight line seg-

ments in R? such that

(i) o, N o;#D for every 1sis<3, 1sj=¢; and

(i) all intersection points p; = oy N o; are on the

boundary of the same connected component of

RE-UZ-UZ.

Then ¢=6 and this bound cannot be improved.

Proof: Elementary and omitted here. O

Definition: Given any system II of (2-dimensional)

planes in R?, and two planes Py and P; in general

positions, we say that Py and P, are equivalent with

respect to I1 if there is a single rotation or translation

wlhichtakeshtoP;sothatduringthemotionthe
plane

(i) never passes through any point belonging to three
members of IT; e - e

(ii) is never parallel to the intersection line of any two
mem of

Lemma 15: The preceding definition yields an
equivalence relation on the family of all planes which
are in general position with respect to II, and the
number of equivalence classes is at most Il'l|”.
Proof: Omitted in this version. O

Let H (S) be our 3-uniform hypergraph as defined
above for some given (say the unbounded) component
of R* — US. We will show that HSS) cannot contain a
subhypergraph isomorphic to K®)(7,7,M) for some
integer M independent of n. In fact, we can prove the
following somewhat stronger resuit.

Lemma 16: H(S) does not contain a subhypergraph
isomorphic to K¢ (3,7,2:10° +1).

Proof: Assume, in order to obtain a contradiction, that
there are three subsystems T, T', T'' C S such that

@ |T| =3, |T'| =7, |T""| = 2-10°+1, and

(i) $ N §' NS+ and lies on the boundary of the
unbounded component of R® — US for every SE€T,
Sr GT’, SHGTH- :

Let P, P’ and P'’ denote the systems of planes
containing the plates belonging to T, T' and T,
respectively. Applying Lemma 15 with IT = P U P,
we obtain that there exist 3 plates Sy, S, §3  €T"’
such that the ing planes Py, P;, P3 are
pairwise equivalent with respect to P U P'.

Along each plane P;, its intersections with the
plates in T, T' form a pattern of segments which, by
Lemma 14, must contain an intersection point com-
pletely enclosed by a simple closed polygon p, all of
whose sides are portions of some intersection segments
with the plates in T, T’. This, and the equivalence of
the planes P;’, are easily seen to imply the existence of
a triple intersection between plates in T, T, T"
respectively, which is enclosed in a bounded com-
ponent of R®—US, a contradiction (see [PS] for more
details). O

Applying Theorem 13, we thus conclude

Theorem 17: Given any collection S = {S,, .. .,S,}
of 2-dimensional convex plates scattered in R3, the
combinatorial complexity of the boundary of any given
connectgd component of R® — US is at most

- —

orn ¥).
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