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In this paper we study the problem of polygonal separation in the plane, ie,
finding 2 convex polygon with minimum number k of sides separating two given
finite point sets (k-separator), if it exists. We show that for k = @(n), Q(n logn)isa
lower bound to the running time of any algorithm for this problem, and exhibit two
algorithms of distinctly different flavors. The first relies on an O(n log n)-time
preprocessing task, which constructs the convex hull of the internal set and a nested
star-shaped polygon determined by the external set; the k-separator is contained in
the annulus between the boundaries of these two polygons and is constructed in
additional linear time. The second algorithm adapts the prune-and-search
approach, and constructs, in each iteration, one side of the separator; its running
time is O(kn), but the separator may have one more side than the minimum.
© 1988 Academic Press, Inc.

1. INTRODUCTION

The separability of two finite sets of points in Euclidean space by means
of a suitable separator of one less dimension is an interesting problem in a
number of applications, typically in classification theory. Traditionally, the
research interest has generally remained confined to linear separability
[SW, MP, DK, D, M1] or to spherical separability [OKM ].

In this paper we wish to extend the scope of these investigations as
suggested in [BEHW]. Restricting ourselves to the Euclidean plane, we
consider the set of separators represented by convex polygons. Note that if
two finite sets of points are separated by a convex k-gon, k linear tests are
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sufficient to carry out the classification of a new sample point. We for-
malize this problem as follows:

A convex k-gon is the intersection of k but no fewer closed half-
planes, and a convex k-gon is said to Separate two points-sets if
it contains one and its interior avoids the other. This k-gon is
also referred to as a k-separator of the two sets. Given two finite
sets of points S; and S,, construct a separating convex k-gon
for the smallest possible integer k.

Note that the above definition admits that a separator contains points of
both sets on its boundary. Thus, the two sets do not have to be disjoint to
allow a separator. With this definition, linear separability becomes 1-gon
separability. The solution of this problem implicitly solves the problem of
determining k and the problem of deciding if there is a separating triangle.
For this problem we exhibit an algorithm that runs in time O(n log n); this
algorithm is optimal in the sense that for k = O(n), 2(nlog n) is shown to
be a lower bound to the running time.

For small &, it may be desirable to resort to a technique asymptotically
superior to the preceding one. We exhibit one such algorithm to obtain an
approximate solution of the given problem, which consists either of k or
k +1 edges. The approximation is the price exacted by O(kn) running time.
The method is an adaptation of the approach proposed by Dyer [D] and
Megiddo [M1] to solve linear programming; we have been unable to
formulate our problem in linear-programming terms, which suggests a
perhaps inherently new application of the Dyer-Megiddo technique, called
“prune-and-search” in [LP, PS, E].

There has been considerable interest, both in the recent past and con-
currently with our work, on related problems of planar separation. The
items characterizing these problems are the objects to be separated—either
point sets or polygons—and the desired type ot separator—either a convex
or a general simple polygon. Aggarwal et al. [ABOSY ] considered the con-
struction of a (convex) separator of two convex nested polygons, and
proposed a technique inherently different from the one illustrated in this
paper. Suri and O'Rourke [SO] presented an O(n?)-time algorithm for the
construction of a simple polygon separator of two simple nested polygons
with a total of n vertices: their result was later improved to O(n log ) time
by Wang and Chan [WC] in a research contemporaneous to ours. Their
techniques use some notions which are conceptually related to those
presented in this paper. It must be pointed out, however, that although our
approach is to transform the point-set separation problem to a problem of
polygon separation, the arising polygons are of a very special nature
affording an O(n)-time construction of the separator. Finally, we mention
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220 EDELSBRUNNER AND PREPARATA

that the construction of a minimal simple (non-convex) separator of two
planar points sets has been shown to be NP-hard by Megiddo [M2].

This paper is organized as follows. In Section 2 we present the lower-
bound argument and in Section 3 we characterize the solution. In Section 4
we exhibit the main algorithm, with running time O(nlogn). Finally
Section 5 describes the approximation algorithm based on the prune-and-
search approach. Some open problems are mentioned in Section 6.

2. Lower Bounp

The lower bound argument is based on a linear-time transformation of
sorting to “minimum polyonal separation.”

Let x,, X5, .., x,, be n real numbers that we wish to sort. We assume that
n is even; otherwise, we add an arbitrary new number and remove it from
the set after the sorting process.

The problem transformation is carried out as follows. We first construct
the set of points S, = {(x;, x2): i=1, 2, .., n} (on the parabola y = x?) and
then let S,=S,. We then construct a minimum convex separator Z of S,
and §,. Due to the definitions of S, and S,, each point of S, belongs to an
edge of 2, or conversely, each edge of 2 intersects the parabola in two
points of §,. Therefore, by traversing the boundary of # in counter-
clockwise order beginning at the leftmost intersection of 2 and the
parabola, and by computing the intersections of each edge with the
parabola, in linear time we traverse the sequence of points of S, by increas-
ing x;; i.e., we retrieve the desired sorted sequence.

Since the transformation only takes time O(n), the Q(nlogn) lower
bound for sorting becomes a lower bound for “minimum polygonal
separation,” and we have the following result.

THEOREM 2.1. The computation of the minimum polygonal separator of
two sets of points S, and S, in the plane, with card(S, U S,)=n, requires
2(n log n) operations, in the worst case.

3. CHARACTERIZATION OF THE OPTIMUM SOLUTION

The two sets of points S; and S, play asymmetric roles in the problem.
Indeed, the k-gon referred to as the separator contains one set (internal),
and the other set (external) belongs to the complement of the interior of
the separator. We assume for the time being that the internal set has been
determined. Let it be S;.

Since any separator is a convex polygon, only the vertices of the convex
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hull of S, are relevant to the construction of the separator. Therefore let
%, =conv(S,), the convex hull of S,. -

For any line not intersecting the interior of 4, we call positive the open
half-plane 4 (/) containing the interior of %,, and negative the other, 4_ (/).
Let p be an arbitrary point of S,. If we trace from p the supporting lines /,
and /, to %, each of them defines two half-planes. The intersection
h_(l,)"h_(1,) is called the remote wedge of p, denoted #/( p). We have

LEmMMA 3.1. For any pe S, and any convex separator ? of S; and S,,
W(p)nP=4.

Proof. Assume, for a contraction, that a point g in % (p) belongs to the
separator. Since % (p) is defined as an open set, we can as well assume that
g belongs to the interior of 2. Consider the straight line / passing by g and
p, and let u be the intersection of / with the interior of %,. The segment u is
contained in the interior of 2, but so is point g; since 2 is convex the
entire segment conv(uu {q}) is contained in the interior of £, and
therefore point pe S, that lies on it (see Fig. 1). This contradicts the
definition of separator. | '

We can therefore define the region &, of the plane whose interior must
have void intersection with any convex separator of S, and S,, that is

F= #(p)

PES:

F 1is referred to as the forbidden region (see Fig. 2, for an illustration). The
complement of &, denoted %,, is a (possibly unbounded) star-shaped
polygon, whose kernel [ PS, p. 18] contains %;. The nature of the boundary
of 4, deserves some discussion. The reflex vertices of %, are points of %,
and no two reflex vertices are adjacent. Edges incident to a reflex vertex are
either bounded or unbounded. In the first case, the other extreme is a con-
vex vertex of %,, the intersection of the boundary of two adjacent remote
wedges; in the second case, the other extreme is conventionally thought of

FIGURE 1
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FIGURE 2

at infinity. In both cases, the convex extreme of an edge is called a niche.
Each edge of the boundary of &, is directed towards its reflex vertex and
called an arc. This orientation partitions the set of arcs into two equal-size
subsets, called clockwise set (A_) and counterclockwise set (A, ) defined as
follows: an arc e belongs to A_ if a ray, sweeping the plane clockwise
around a pole internal to the kernel of %,, scans the points of e towards e’s
terminus. Set 4, is defined with respect to a polar ray sweeping counter-
clockwise. The members of 4_ are numbered in the order in which they
are encountered by the sweeping ray; similarly for 4, . (Note that this
definition covers both the case when an arc of %, is bounded and the one
when it is unbounded.)

For our purposes it is sufficient to consider only the counterclockwise set
A, . We extend an arc ee 4, beyond its terminus towards the interior of
the star-shaped polygon up to the furthest intersection with &, if it exists,
or to infinity otherwise. This furthest intersection is where the extension
leaves %,, for the line which contains the arc intersects %, in a connected
segment as it contains a point of the kernel of %,. Note that this intersec-
tion, if it exists, always occurs with another member of 4 . We call a thus
constructed extension of an arc an extended arc, and assign to it the same
direction as its defining arc. Figure 2 shows the extensions of all counter-
clockwise arcs of &,.

On the set of extended arcs we transfer the ordering relation of their

corresponding arcs and naturally define the following predecessor/successor
relation:

Two extended arcs e; and e, are in a predecessor/successor
relation “—” (denoted e; —e,) in either of these mutually
exclusive cases: (i) if e, has a finite terminus which lies on e,;
(i) if e, has no finite terminus, then e, has its niche at infinity,
and, letting /; be the line containing e; (j=1,2), the region
h.(l;)nh(l,) does not contain a connected component of Z.
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Let 7, and ¢, be two lines tangent to %,, and define the wedge of ¢, and
1, denoted as w(t;,1,), as the connected component of (k,(t,)N
h,(t,)) — %, that increases when line ¢, is rotated in counterclockwise direc-
tion. Note the non-symmetry of this definition. In fact, w(z,, ¢,) is the other
component such that

(Ao (t) N h (1)) —Br=w(ty, 1) Uw(iy, 1,).

The significance of the predecessor/successor relation defined for the exten-
ded arcs of 4, stems from the fact that e; — e, if and only if ,, the line
that supports e,, is the unique line / which maximizes w(/,, /) under the
constraint that it does not contain any point of S,. We now demonstrate a
crucial property of the solutions.

LEMMA 3.2. If there is a k-separator of Sy and S, with minimum k, then
there is a k-separator each edge of which is contained in an extended arc of
the counterclockwise set A, of %,.

Proof. Let 2 be a k-separator, with minimum k, having at least one
edge e not contained in an extended arc. We now construct a new
k-separator 2’ by a continuous transformation of 2.

(1) If en% =, we translate e until it touches %,. The resulting
polygon, which is contained in 2 (being the intersection of # with a hali-
plane) and contains %, by construction, is a k-separator.

(2) Let g be a point shared by e and %,. We rotate ¢ in a counter-
clockwise direction around ¢ until it is contained in an extended arc or
until it becomes aligned with an edge conv{g, q;} of %,. The resulting
polygon 2’ is obtained by removing from 2 triangle 7; and by adding to it
triangle 7, (see Fig. 3). Clearly, 4, contains no point of % in its interior,
otherwise, we would have passed an extended arc. If e belongs to no exten-
ded arc then it is aligned with the edge conv{g, q,}, and we repeat the
process with pivot in ¢,.

By applying this construction to each edge of 2 not contained in an
extended arc of %,, we obtain the desired result.

FIGURE 3
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The preceding lemma shows that the minimal separator may be sought
in the (finite) set of convex polygons embedded in the union of the exten-
ded arcs. We further reduce the set of possible candidates to the set of
“greedy separators,” obtained as follows.

If r is the number of the reflex vertices of %,, there are r counterclockwise
extended arcs. Number them ey, e,, ..., e,, in the order previously defined.
Select an extended arc, e,, as initial arc and construct the sequence

By s By WHELS e; and e, ~are a predecessor/successor pair.
(s, €5, s €;) 18 @ cycle 1f k is the smallest integer such that e, and e, inter-
sect; this cycle identifies a k-separator, whose conventional last vertex 1s the
intersection of e; and e,, and whose jth vertex is the terminus of e;, for
1<j<k—1. Due to the mechanism of the contruction, we refer to this
separator as “greedy”; clearly, there are only r=O(card(S,)) greedy
separators, and this set contains the minimal separator. By virtue of the
following property, only a subset of this set needs to be inspected. A similar
result was obtained in [SO] for non-convex separators.

LEMMA 3.3. There is an integer k such that each greedy separator has
either k or k+ 1 edges.

Proof. The predecessor/successor relation “—” on the set of extended
arcs can be viewed as a function ¢ on the indices of the (ordered) set of
extended arcs. Specifically, ¢(i) = j if and only if e, > e,.

Let e;, e;, and ey, be respectively the initial, second, and last extended
arc used in the construction of a greedy separator. Then, since e ; inter-
sects e;, we have that i<o(Y(@))<y(i), oWH)<Y(i)<i, or
Y(i) <i<@(Y(i)), depending on where we started indexing the extended
arcs. This is illustrated in Fig. 4, where a greedy separator starting at i is
shown as a path ending at ¢(y(i)). The greedy separator defines a natural
partition of the extended arcs into intervals [e, e, , .., €r_1],
Ler €415 - €_1], €tc., Where e,. is the third extended arc of the greedy
separator. It is easy to recognize that the solid pointers of two paths
corresponding to distinct greedy separators do not intersect, except
possibly at their distinations. This shows that each greedy separator must
use an extended arc in the interval [e,, e;, ,, .., €-_, ], and for that matter
in any analogous interval. The fact that the “paths” corresponding to the r
distinct greedy separators are interleaved implies that two greedy
separators with initial extended arc in [e;, e, , .., €] have numbers of
arcs differing by at most one. ||

By the same reasoning as that in the above proof, we can show that a
greedy separator using a fixed extended arc e* has the same number of
edges as the one having e* as initial arc. It follows that it is sufficient to
construct only the greedy separators whose initial extended arc is a mem-
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ber of [e;, e;,,..,e,_,] or of another interval of the greedy separator
defined by e;. If the minimum member of edges of the separator is k, by the
pigeonhole principle there is an interval with at most | n/k | members.

4. A SIMPLIFIED ALGORITHM TO CONSTRUCT A SEPARATOR

Two sets S, and S, of n, and n, points in the plane are given. Our first
task is to decide the respective roles of the two sets, ie., which of them is
the internal set. The condition to be verified is that no point of the external
set belongs to the interior of the convex hull of the internal set. Therefore,
we construct the convex hull €, of S; and test whether each point of S, is
outside the interior of €,. If the test passes, then S, and S, are respectively
internal and external. If its fails, we try again with reversed roles; if it fails
again, no convex separator exists. This initial test is carried out in time
O((n, + n,) log(n, + n,)). Without loss of generality, we assume that S, and
S, are polygon-separable and let S, be the internal set. After this initial
test, our task consists of the following subtasks:

1. Construct the forbidden region #.
2. Construct a greedy separator.

3. On the basis of the obtained greedy separator, select an interval .#
of arcs, and, for each arc e in #, construct the greedy separator having e as
its initial arc and select among these separators an optimal one.

We now consider these three subtasks in detail.

1. For each pe S, we construct #°(p). If we arrange the vertices of %,
as a linear array, the two supporting lines of a point p to €, can be
determined in time O(log n,) (see [PS]). Thus in time O(n, log n,) the set
{#(p) | peS,} is available.

Next, we define the left supporting line I(p) of a point pe % as the line
through p and tangent to %, directed from p to the contact point on the
boundary of %, such that &, lies to the right of I(p) (see Fig. 5).
Analogously, we define the right supporting line r(p) of point p. By the
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angle of a directed line we mean the angle through which the positive
x-axis must be rotated before it is parallel and equally directed as the
directed line. We order the points of S, in increasing angle of their left
supporting lines. The vertices of & are clearly a not necessarily connected
subsequence of the just constructed sequence, and are obtained by a scan
of the sequence. The initial step consists of selecting the first point pe 5.
At a generic step, we assume that the currently found subsequence is stored
in a sequential list L and let p be the current point. We consider the remote
wedge # (p) of p and scan L backwards until a point is found that lies out-
side the closure of #7(p), and eliminate all points scanned before. This
generic step is performed for each point of S, in turn. In the final step, we
perform a generic step for the first point in the constructed list. The
correctness of the method is provided by the following lemma.

LemMmA 4.1. Let p, and p, be two points in the current list, ordered by
increasing angle of their left supporting lines to €,, and let p be a new point.
Then p, is contained in W (p) only if point p, is contaned in W (p).

Proof (Refer to Fig.5). Due to the convexity of €, and to the chosen
order on the set S, the intersections u; of r(p) with lines /(p,) (j=1, 2) are
such that u, is between p and u,. Now, assume for a contradiction that
p1 €W (p) and p,¢ % (p). This implies that p, belongs to h_(r(p,)), and
P1€W (p,) since peh_(l(p,)) as noted above. This is a contradiction,
because p; belongs by hypothesis to the current list. |

It is evident that the present subtask (very akin to the Graham scan for
the convex hull) runs in time O(n, log n,) for constructing the initial order,
plus O(n,) time to actually construct .

2. & is available as the (counterclockwise) sequence of its reflex ver-
tices. (# may consist of several disjoint connected components.) From this,
we can construct in linear time the ordered sequence of the arcs in 4, and
arrange them in a linear list L,.

The next step is the construction of the extended arcs and,
simultaneously, of the predecessor/successor relation on this set. In the
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initial step we arbitrarily select an arc ee L,, and denote by / the line con-
taining e. We then scan L, starting from e; as long as the arc e’ currently
scanned forms an angle smaller than 7 with / we test for intersection of /
with e’; if an intersection is found, the extended arc associated with e’ is the
successor of the extended arc associated with e. If no arc e’ intersecting / is
found, then the extended arc associated with the first arc that forms an
angle larger or equal to © with / is the successor of the extended arc of e.

After this initial construction, we establish two pointers, one at ¢ and the
other to e'. By the construction of & distinct predecessor/successor pairs
are interleaved, so that as we step forward the predecessor pointer, the suc-
cessor pointer cannot regress and the construction is therefore complete in
linear time.

At this point, on the set A, we have a cyclic order and the relation “—”.
To construct a greedy separator we proceed as follows. Select an arbitrary
ecA,, and let e, := e. Construct a sequence e, e,, 5, ..., e, such that
e;—e;.; (i=0,1,..,5—1) and e, _, <ey<e, in the cyclic order. Then the
polygon whose vertices are the intersections between consecutive extended
arcs is a greedy separator. This construction is clearly completed in
time O(s).

3. The separator obtained above partitions the cyclic order of arcs in
A, into disjoint intervals. If k is the size of the minimum separator, then
either s=k or s=k+1; in any case, there is one of these intervals which
contains at most n,/k arcs. Let this be the set /. Finally, we perform the
greedy separator construction for each arc e e /. This subtask is completed
in time O((n,/k)(k + 1)) = O(n,). We conclude therefore with the following
result.

THEOREM 4.2. Given two finite sets S, and S, of points in the plane,
the construction of the minimum polygonal separator (or the decision that no
such separator exists) can be done in time O((n, + n,) log(n, + n,)) and this
is optimal.

5. CONSTRUCTING A NEAR-OPTIMAL SEPARATION

We have seen in Section 3 that a greedy construction which starts with
an arbitrary extended arc of %, yields either a separating k-gon or
(k + 1)-gon, for minimum k. We will show that such a greedy construction
can be performed algorithmically in O(r) time per edge of the separator,
where n=n,; + n, and n,=card(S;), for i=1, 2. In this construction, we do
not assume that %, =conv(S,;) or %,, the complement of the union of all
remote wedges, is available.
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The global construction is exactly the greedy construction outlined in
Section 3. Initially, we determine an arbitrary line /, which contains an
extended arc of %,. Recall that extended arcs are now no longer available
as a precomputed set, so we determine line /; from an arbitrary line /,
supporting %, by a so-called general step described below. Let /; contain
the first edge of the separator 2. In a general step, we are given a sequence
of lines /, I,, .., [, which contain the first j edges of £ in this sequence.
Each line /;, 1 <i<j, contains an extended arc e,,, and it is directed as &
that is, %, is to the left of /.. Furthermore, the lines are such that
m;,=¢(m,). In one general step, we determine line /,,,, which is the
unique line that contains the extended arc €4m)- The general step is
executed until /;, ; intersects e, .

Below, we describe how the (j+ 1)st line /,, , can be determined in O(n)
time. For convenience, we assume that [; is vertical and downward directed
(see Fig. 6). Let / be another directed line supporting %, such that €, is to
its left. We define the angle «(I) of / as the angle through which /, has to be
rotated before it is parallel to / and equally directed.

As in Section 3, we define w(/;, /) as the connected component of

(ho () h () -4,

whose area increases when / is rotated counterclockwise (see Fig. 6). Our
objective is to find line /;, ,, which is the line / such that w(l;, 1) 1s largest
and contains no points of S,. However, it is not enough to guarantee that
all regions w(l;, I;, ) are empty; there is also the possibility that a point of
S, belongs to the interior of the convex hull of S,. To catch these cases, we
let [J(Z;, I) be the quadrilateral defined as follows:

Let ¢ be an arbitrary but fixed point in the interior of %,;
L(/;, 1) is the quadrilateral defined by /, I, and the segments
that connect ¢ with the points where lines /; and / touch the
boundary of €.

For convenience, we let [J(/, ) include the two bounding segments but
not the pieces of its boundary that belongs to line /; or I. Note that CI(J;, /)
contains w(/;, /) which implies that w(/;, /) contains no point of S, if
a(l;, 1) does so.

In our algorithm, we assume that (J(/;, /;, ;) is bounded, which implies
that a(/;, ) <. It is rather easy to decide when this is not the case: deter-
mine the line 1:, with cx(fj) =, that is, 1:, is parallel to /; and supports %,, and
determine whether (J(/;, [;) is empty. If it is, then [, , ; is either the line with
the largest angle which separates S, and S, N h_(?:,-) or it is the line that we
get when we replace /; by [, whichever has the smaller angle. The
separating line with largest angle can be found in O(n) time using linear
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FIGURE 6

programming, or by a straightforward modification of the general step
described below.

To determine line /;, ,, we use a novel algorithmic paradigm due to
Megiddo [M1] and Dyer [D], called prune-and-search in [LP, PS, E].
The central idea of this technique is to find a constant fraction of the data
points to be redundant, and to recur for the remaining points. If this con-
stant fraction can be determined in linear time, then the time-complexity
T(n) of the whole algorithm follows the recurrence relation

T(n)=T(cn)+ O(n),

for some real number 0 < ¢ < 1. Therefore, T(n)= O(n).
The prune-and-search algorithm combines several subtasks which are

(i) Determine an angle. Select an angle « that a trial-line forms with
the reference line /;.

(i1) Test an angle. Determine whether l;+1 forms with I, an angle
smaller than, equal to, or larger than « selected in (i).

(iii) Detect redundant points. Given a trial-line, eliminate redundant
points from S, and S,.

We will discuss the subtasks in the reverse order and will then put the
pieces together to get a linear-time algorithm for finding /,, ,, if it exists.

Detect redundant points. Here we consider two cases. In the first case,
we assume that the angle of the trial-line / is smaller than the angle of i
(see Fig. 7a); in the second case, we assume the opposite (see Fig. 7b). For
convenience, we assume that no two points lie on a common vertical line; if
the x-coordinate of a point p is smaller than the one of a point g then we
say that p is to the left of q. All arguments will concern pairs of points con-
veniently joined by segments, and their angles, which are the angles of their
containing lines directed from left to right. Each pair will either have both
points in S, or both points in S,.

First, we assume «(/) <a(/;, ), and we let {p, g} be a pair of points with
angle smaller or equal to a(/). If p is to the left of g and both belong to set
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FIGURE 7

. Sy, then p is redundant since no line through p with angle larger than

a(/) is tangent to the convex hull of S,. If p and g belong to S,, then ¢ is
redundant, since ¢ is in (I(/;, I') only if p is, for every line /' through ¢ such
that a(/') > a(/) (Fig. 7a). ‘ '

Second, we assume «(!) > a(/;, ), and we let {p, g} be a pair with angle
greater than or equal to a(/). Again, let p be to the left of . By the same
reasoning as that above, we know that ¢ is redundant, if p and g belong
to Sy, and that p is redundant, if p and ¢ belong to S,. Furthermore,
all points of S, outside [JI(/,,/) are redundant, since 0O(Z;, 1) contains
U/, 14 1) (see Fig. 7b).

Test an angle. To test a given angle a, we construct the line / with
a(/) = a which supports the convex hull of S,. Obviously, this can be done
in O(n,) time. Next, we test whether or not 4(/;, ) contains points of S,
which takes O(n,) time. If this quadrilateral contains at least one point of
S, then a is too large and must be decreased; it is even possible that a point
of §, belongs to the interior of €,. Otherwise, there are two cases to con-
sider. If there is a point of S, on the edge of [I(/;, /) contained in /, then we
are finished, that is, /=1[, ,; otherwise, a is too small and must be

. increased.

Determine an angle. The angle o is used for a binary search like strategy
which narrows, step by step, the interval of possible angles. The only
problem with this approach is that the set of possible angles is not discrete.
To overcome this difficulty, we choose the angles such that, with each
tested angle, there are some points found to be redundant. The search is
now finite since we can eliminate only a finite number of points. In order to
obtain a search which takes time O(n), we choose an angle which allows us
to eliminate at least (card(S,) + card(S,) — 2)/4 points where S, and S, are
the current sets which contain the not yet eliminated points. This is done as
follows: in a first step, construct an arbitrary pairing of points of S; and
separately, of S,. Each pair determines a segment. Consider the angles for-
med by these segments with the vertical line, and find the pair with median
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angle (in time O(card(S,)+ card(S,)) using a linear time median finding
algorithm). The angle of this segment is the sought angle a.

Below, we give a more formal description of the algorithm which finds
the line [, ,, if it exists; otherwise, it reports that there is no convex
separation. Its input is the line /;, which is assumed to be vertical, and the
sets S; and S,. We also assume that there are no points to the left of /;;
otherwise, we remove points of S, that violate this condition. Note that
this does not influence the construction.

Algorithm (Find next edge).
if card(S;) =card(S,)=1 then
The line through the only point in S, and the only point in S, is
liv1- I a(l;, ;) does not belong to the interval of angles determined
during earlier iterations of the algorithm, then §; and S, are not
separable by a convex polygon such that S, is interior and S, is
exterior. Otherwise, /;, ; contains the (j+ 1)st edge of the separator
to be constructed.
else
Step 1. Determine an angle a as described above.
Step 2. Decide whether a=a(/;,,), in which case we halt,
a<oa(l;yq), ora>a(l, )
Step 3. Eliminate the redundant points of S, and S, using the

observations described above.
endif

The time-complexity of the algorithm is linear in n, +n, because Step 1
guarantees that at least one-half of the segments formed by pairs of points
have angle greater or equal to the chosen «, and that at least one-half
of the pairs have an angle less or equal to a. At least one point of each
pair in either collection is eliminated, which implies that at least
(card(S, v S,)—2)/4 points are removed. (The “—2” gets into effect when
both card(S,) and card(S,) are odd.) This implies the main result of this
section.

THEOREM 5.1. Let S; and S, be two sets with a total of n points in the
plane. If k is the smallest integer such that there is a convex k-gon that con-
tains S; and whose interior avoids S, then the above algorithm constructs a
separating k- or (k+ 1)-gon in O(kn) time. If no such separator exists then
the algorithm reports this in O(n?) time.

6. DISCUSSION

This paper presents two algorithms for constructing a convex polygon
with the fewest edges that separates two sets of a total of n points in the
plane, if it exists. The first algorithm takes O(nlogn) time, and this is
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optimal in the worst case if k=@ (n). The second algorithm takes O(kn)
time for constructing a separating convex k-gon, where k is either optimal
or one larger. These results raise a few interesting open problems:

1. Is Q(nlogn) a lower bound for the construction of a separating
convex k-gon, for smallest k, even if k is small? More specifically, is
Q(nlog n) time required to decide whether or not there exists a separating
triangle?

2. Is it possible to refine our O(kn)-time algorithm so that it finds a

separating k-gon in O(nlog k) time, with k equal to the minimum or one
larger?

3. Finally, can the presented techniques be extended to three dimen-
sions?

RECEIVED October 16, 1986; accepTED October 5, 1987
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