Geometric Structures

in Computational Geometry!

Herbert Edelsbrunner?

1 Introduction

Computational geometry is a flourishing field within computer science whose rapid growth
makes it exceedingly difficult — but all the more important — to provide a representative
overview of the area that is coherent and still gives an impression of its richness. In this
paper we attempt a uniform approach to computational geometry, but one that allows the
discussion of different issues such as underlying combinatorial extremum problems and im-
plementation issues unique to geometric programming. Due to space limitations we cannot
seriously attempt to approximate a comprehensive survey of the area — instead, we describe
a selection of fundamental problems and new results.

The central notion in our presentation is that of an arrangement defined by a collection
of geometric objects in some space. Traditionally, the term “arrangement” was mainly used
for “finite set of lines in the plane” or “planes in three dimensions”, or “hyperplanes® in
d > 4 dimensions” (see [Gru67|, [Zas75]). We will adopt a broader use of the term and
also talk about arrangements of circles and line segments in the plane, of triangles in three
dimensions, etc. In addition, we will find it convenient to use “arrangement” as a synonym
for the cell complex that is the dissection of space defined by the geometric objects* (see
citeEdelsbrunner).

Section 2 will discuss arrangements of lines, planes, and hyperplanes in appropriate
detail. Due to limitations in space, we will restrict ourselves to problems and results that

Research on this paper was supported by the National Science Foundation under grant CCR-8714565.

?Department of Computer Science, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801,
USA.

A hyperplane in d-dimensional Euclidean space is an affine subspace whose dimension is d — 1, one less
than the dimension of the embedding space.

*E.g. a set of n circles cuts the plane into at most 2(3) + 2 regions, 4(3) edges, and 2(3) vertices.

202

are relevant to later sections of this paper. In Section 3 we make an attempt to illustrate
the generality of this kind of arrangement by explicating their relationship to well-studied
geometric concepts such as point configurations and Voronoi diagrams. The relations are
realized by geometric transforms that map different geometric objects to each other.

When one implements a geometric algorithm one has to worry first about the repre-
sentation of the objects and the treatment of primitive operations. On the lowest level, a
geometric object is always represented by a conglomerate of numbers. For example, a plane
in three dimensions can be represented by a sequence (a, b, c, d) with the understanding that
the plane is the set of points (z,y, z) that satisfy

ar+by+cz+d=0.

A primitive operation takes as input a constant number of such represented objects and
computes some constant size output that depends on the input objects and their relative
position. Thus, primitive operations are inherently numerical with all the traditional prob-
lems that come with numerical computations. Section 4 will argue that the numerical parts
of many geometric algorithms are amenable to symbolic computations that can help in cop-
ing with robustness problems common to purely numerical implementations of geometric
primitives.

Section 5 will return to a higher level discussion — the subjects are arrangements de-
fined by line segments. Arrangements of line segments are more intricate structures than
arrangements of lines since the boundedness of the line segments creates non—convex and
even non-simply connected regions. Various interesting combinatorial and algorithmic re-
sults as well as applications of line segment arrangements will be addressed. A natural
generalization of line segment arrangements to three dimensions is the notion of an arrange-
ment of triangles in three-dimensional space. Combinatorial and algorithmic issues of such
arrangements are considered in Section 6.

Underlying the computational complexity of every geometric problem is what we call its
combinatorial complezity. For example, the amount of time is takes to construct the view
of a scene of (possibly intersecting) triangles® is lower bounded by the number of vertices,
edges, and regions of the view. This illustrates the importance of a combinatorial analysis
of the structure but fails to reflect the full significance of such an analysis. Section 7 argues
that the understanding of the combinatorial properties of a structure is absolutely essential
in the design of a good algorithm that constructs the structure. Indeed, this relates to the
issue of the affinity between proof and algorithm that can be traced to virtually all parts of
modern computer science.

Today, computational geometry is rich in results and broad in the collection of topics
it considers. Still, there are a number of directions that deserve more attention than they
receive today. The exploration of such directions will decide whether computational geome-
try can live up to the promise of bridging the world of theoretical computer science and the

5The view is defined as the subdivision of a plane normal to the viewing direction that is obtained by
projecting the parts of the triangles visible from the viewpoint.

203

world of applications. One of those directions is the generalization of the current methods
overwhelmingly designed for piecewise linear objects to multivariate polynomials of degree
higher than one.

2 Arrangements of Lines, Planes, and Hyperplanes

If we draw 7 lines h; in the plane we create a dissection of the plane into a finite collection
of regions bounded by edges and vertices. The vertices are the intersections of the lines, the
edges are the connected components of the lines after removing the vertices, and the regions
are the connected components of E? — U, h;, the plane minus the n lines (see Figure 1).
This dissection is called the arrangement of the h;, for 1 < i < n. More specifically, the

Figure 1: A simple arrangement of six lines decomposing the plane into 22 regions, 36 edges,
and 15 vertices.

arrangement of the h; dissects E? into at most (}) + n + 1 regions, 2(3) + n edges, and (3)
vertices. Those bounds on the number of regions, edges, and vertices are tight and realized
by all so—called “simple” arrangements: an arrangement of lines is simple if any two lines
intersect in a point and no point belongs to more than two lines.

In d > 3 dimensions, the asymptotic order of faces® in an arrangement of n. hyperplanes in
E? is ©(n?) which is therefore a lower bound on the amount of time required to construct it.
An algorithm whose time—complexity matches the lower bound constructs the arrangement
of the hyperplanes hy, hy,...,h, incrementally, that is, adds h; to the arrangement defined
by hy through h;_;.

Algorithm Line arrangement.
Construct the arrangement of hy, hs, ..., hq.
fori:=d+1tondo

add h; to the arrangement of hy,hs,...,hi-1.
endfor.

8“Face” is a generic term for the elements of an arrangement. There are faces of all dimensions 0 < k < d;
0-dimensional faces are called vertices, 1-dimensional faces are edges, and d—dimensional faces are termed cells
(or regions if d = 2).

204

In the first step, the algorithm builds the arrangement of d hyperplanes which is (combi-
natorially) unique and dual to the graph defined by the hypercube in d dimensions. This
step guarantees that the general step does not need to add a hyperplane to a vertex—free
arrangement. We refer to Section 4 for a brief account of a method that avoids all other
kinds of special cases in the construction too. Details about the data structure used to
represent the arrangement and the different cases that occur can be found in [EOS86] and
[Ede87], chapter 7.

The reason for the efficiency of the above algorithm (as mentioned, it is asymptotically
optimal) is a combinatorial property of so—called zones in arrangements. A zone in an
arrangement consists of all cells intersecting a new hyperplane (e.g. the one one that is
about to be added). We define the combinatorial complezsity of a zone as the number
of faces bounding its cells. Using a sweep argument, [EOS86] proves that a zone in an
arrangement of n hyperplanes in E¢ has combinatorial complexity O(n%~!) and thus a new
hyperplane can be added in time O(n?"?) (see also [Ede87]). This combinatorial result is all
the more remarkable when one knows about other combinatorial properties of arrangements
that contrast this benevolent behavior of zones. For example, the maximum number of
faces bounding n?! arbitrary cells in an arrangement of n hyperplanes in E? is known to

be (n?%/%) (see [Ede87], chapter 6).

3 Geometric Transforms

Perhaps the best known and also most useful geometric transform is the dual correspondence
between points and hyperplanes in E%. We illustrate this correspondence in two dimensions.
Consider the following problem defined for n points P1,P3,...,Pn in the plane:

for each p; sort the other points in angular order around D;.

For convenience, we assume that no three points are collinear and, for technical reasons,
that no two points lie on a common vertical line. The output of this problem consists of n
lists of length n — 1 each. We need 0(n?) time just to produce the lists - so is it possible
to do the entire computation in O(n?) time? This seems unlikely when one remembers that
Q)(rnlogn) is a lower bound for the amount of time needed to construct one such list. On
the other hand, there might be relations between the n lists that help us saving some time.

Consider the following transform that maps a point to a line and vice versa, that is, a
point p = (71, ;) is mapped to the line p* : y = 72— 5, and a non-vertical line £ is mapped
to a point £* so that (£*)* = £. We see that the transform is an involution by definition.
The two important properties of the transform are sneidence preservance:

p € ¢ if and only if £* € p*,

and order preservance:

205

p is vertically above £ if and only if £* is vertically above p*.

Using those two properties one can show that the order of the points around p; is essentially
the same as the sequence’ of dual lines intersecting p;. Thus, the n sorted sequences can
be derived from the arrangement of the dual lines in time O(n?). Since this arrangement
can be constructed in time O(n?) we have a quadratic algorithm for producing the n sorted
lists.

Another example that illustrates the power of geometric transforms and the fundamental
role of arrangements involves so—called Voronoi diagrams. Let s;,$s,...,5, be n points in
E?. The Voronoi diagram of the s; is a subdivision of E? into n open regions R; so that
a € R; if s; is closer to point a than any 8j, J # ¢ (see Figure 2). The Voronoi diagram of
the s; can be derived from an arrangement of n planes obtained via a lifting map from the
s;. For s; = (0;1,0;,) let

§; 12 = 20i,1% + 2052y — (07 + 0},)

be the corresponding plane. It is easy to show that if the distance of a point a = (a;, ;)
from s; is smaller than from s; then

20"‘,1051 + 26.;’2(12 s (021 i 0,?.2) > 20':"10!1 + 20’1‘,2053 = (0’;1 + 0’;2).

In words, the vertical projection of a onto the plane s; lies vertically above the vertical
projection of a onto s;. Consequently, the vertical projection onto the zy—-plane of the so—
called topmost level® of the arrangement of the s; equals the Voronoi diagram of the s;.
This is equivalent to saying that we see the Voronoi diagram of the s; if we look at the s!
from the direction of the positive z—axis.

Now, it is true that the Voronoi diagram of the s; consists only of n regions, and by
Euler’s relation for planar graphs, it contains at most 3n — 6 edges and 2n — 4 vertices, if

"In fact, we need to take the sequence of lines that are steeper than p; and the sequence of lines less steep
than p}, both sorted by their intersections with p;, and concatenate them to get the angular sequence of the
points around p;.

8A face belongs to the topmost level if it intersects a vertical line in the topmost intersection of the line
with an s7.

Figure 2: The Voronoi diagram of eleven points in the plane.

e e A e 8 A A e e

206

n > 3. Thus, it is apparently wasteful to construct a three-dimensional arrangement (whose
combinatorial complexity is ©(n?%)) just to get the Voronoi diagram. While this point is well
taken, the above shows that arrangements are richer in structure than Vorono; diagrams
and may therefore be helpful in understanding those diagrams. Indeed, the arrangement
must be of cubic combinatorial complexity since it encodes all n — 1 higher—order Voronoi
diagrams of the s;, and the total number of regions, edges, and vertices of those n — 1
diagrams is ©(n®), as expected. For details we refer to [Ede87], chapter 13.

4 Geometric Primitives

By a geometric primitive we mean a constant size computation, an elementary operation,
an atom of a geometric algorithm. Take for example the sorting problem of Section 3:

given n points p; = (m;, 72), for each p; construct the list of the other points
sorted in angular order around p;.

In order to sort the points we need to be able to perform a comparison, that is, for two
points p; and p; we need to decide which one comes first in the ordering. One way to solve
this problem is to compute for each p; the angle o; that is the positive angle between the
horizontal half-line emanating from p; towards the right and the half-line emanating from
pi that goes through p; (see Figure 3). Now, p; precedes p; if a; < ay.

The problem with the calculation of the o; is that it is very time-consuming (sure each
a; can be computed in constant time, but the constant is big) and that those computations
involve relatively large round—off errors due to the use of trigonometric functions. A way
out of this dilemma is the introduction of a primitive that takes three points (p;, p;, and
px) and decides whether they define a left-turn, a right-turn, or whether the three points
are collinear (see Figure 3). This can be done by computing the determinant of the matrix

M1 Tz 1
Ti1 Tz 1
Tkl Mez 1

Py Py
Pj Pj

Figure 3: The angular order of points around p;.

207

The determinant of this matrix is positive if p;, p;, py is a left—turn, it is negative if p;, Djs Dk
is a right-turn, and it is zero if the three points are collinear. We can now sort the points
around p; by, first, separating the points whose y—coordinates are greater than ;2 from
those whose y—coordinates are smaller than ;,, and second, sorting each set by having p;
before py. if p;, p;, Px is a left—turn.

Now that we have eliminated the need for any trigonometric function, we might have
the breath to complain about the special case that occurs when p;, pj, and p; are collinear.
How do we break this tie? This question is relatively uncritical for the sorting problem at
hands but deserves careful consideration in many other geometric computations. Here is a
general purpose technique that eliminates special cases:

replace each p; by p;(e) = (mj1 + €27, mj, + £2777),

for € > 0 a sufficiently small real number. We treat ¢ as an indeterminant and solve the
determinant problem using that ¢ is positive and arbitrarily small. The determinant of three
points is now a polynomial in . Assuming ¢ < j < k we can compute the terms in sequence
of decreasing significance (which is by increasing exponent). The first non—zero coefficient
of an e-term decides the sign of the determinant since € can be chosen small enough so that
all later terms are astronomically smaller than the first non—zero term and thus are unable
to influence the sign.

2i—1 2i—32
"Ts'.l + Ez ?I',‘_g + 52 1 ?I""’]_ ?1‘.',3 1
25—1 25—12
det | m;,+ €? 1 Tj2 + € ‘; 1 |=det| mjy m2 1 |-
22 -1 22 -2
Tey+€ Te2+ € 1 Tk Tez 1

5235—2 det WL] 1 + ezﬁ—l det Tr"lg 1 4 622_{—2 det ﬂ",l 1 " 522;'—25225—1 +
g1 1 Tee 1 TE1 1

The “perturbation” technique just outlined has the appearance of being expensive for
little gain. We disagree. The gain is that the high-level program does not have to bother
about special cases at all. The overhead is nominal since in all non—degenerate cases the
evaluation of the first three-by-three determinant suffices. In those cases, the new method is
no different from the computations carried out without perturbation. If the first determinant
is zero, then the tie is broken by computing one or more determinants of sizes at most two—
by—two. It is thus fair to say that this case is at most twice as expensive than the first case.
Details of this perturbation technique can be found in [EMSS)].

5 Arrangements of Line Segments

Constructing and reporting all intersecting pairs of a set of n line segments in the plane
is one of the most fundamental problems in computational geometry, and it has a host of
applications e.g. in computer graphics. Consider, for example, a three—dimensiona) scene

208

given by a collection of non-intersecting polytopes and the problem of computing the view
from a given eye—position. The view is a projection of the polytopes (or rather their surfaces)
onto a plane normal to the viewing direction - the difficulty in this problem is to distinguish
between parts that are visible and parts that are invisible to the eye. This is called the
hidden line/surface removal problem. Notice that the edges of the polytopes give rise to line
segments in the projection; for any intersecting pair of line segments we can decide which of
the two line segments is closer to the eye—position and which parts of the segments in the
neighborhood of the intersection point are hidden.

Due to its importance the intersecting line segments problem was among the earliest
problems studied in computational geometry (see [SH76] and [BO79)). Still, it took about 10
years to discover an optimal algorithm for the problem, that is, one that takes O(nlogn+k)
time for n line segments with k of the (7) pairs intersecting (see [CE88]). This algorithm
not only reports the intersections, it constructs the entire arrangement defined by the line
segments plus a few auxiliary vertical edges that guarantee that all regions of the arrange-
ment are convex (see Figure 4). The global structure of the algorithm that constructs the
arrangement in optimal time is incremental, that is, it adds a line segment at a time. Life is
not as easy as for complete lines though. In order to achieve optimal time, the line segments
have to be ordered into a particular sequence, and the insertion of a given line segment is
suspended at certain points in time only to be resumed later when it seems appropriate to do
so. Still, the algorithm gets by without any fancy data structures supporting its operations.

The boundedness of the line segments makes arrangements of line segments a much
richer class of subdivisions than arrangements of lines. For example, a single region in a line
arrangement is convex and bounded by at most n edges. In a line segment arrangement, a
single region is not necessarily convex and, in general, not even simply connected. The max-
imum number of edges bounding a single region is ©(na(n)), where a(n) is the extremely
slowly growing inverse of Ackermann’s function (see [PSS88]). This result is based on intri-
cate studies of so—called Davenport-Schinzel sequences (see [HS86]) and their realizability
as envelopes of line segments (see [WS88]). The currently best algorithm for constructing a
single region in an arrangement of n line segments takes O(na(n)log? n) time (see [EGS88]
which also provides a combinatorial and computational study of collections of regions in line

Figure 4: The map defined by six line segments. For convenience, the line segments are
enclosed in a rectangular box and vertical edges are extended from their endpoints.

209

segment arrangements).

Another interesting problem for n line segments is to count the number of intersecting
pairs. The currently best method uses partition tree schemes and is described in [GOS88|.

6 Envelopes and Hidden Line/Surface Removal

The hidden line/surface removal problem can also be defined for possibly intersecting poly-
topes in three dimensions. The intersections are not part of the input and have to be
computed. As a result, we can expect to get more compact input, or more complicated
output when measured in the length of the input. Let us formally define the problem.

Given a set of n possibly intersecting triangles in three dimensions, construct
the view from the direction of the positive z—axis.

The formulation of the problem is such that we can think of each triangle as a partially
defined bivariate function®, t;(z,y), and the view is the vertical projection onto the zy-
plane of the upper envelope of the n functions. Here, the upper envelope of the #; is defined
as f(z,y) = max{t;(z,y)|1 < i < n}; if all ¢; are undefined for a pair (z,y) then we set
f(z,y) = —oo (see Figure 5).

Figure 5: View of five intersecting triangles.

It might help in understanding the problem if we assume for a second that the triangles
are pairwise disjoint. In this case, the view is a subgraph of the two—-dimensional arrange-
ment of the 3n lines obtained by projecting and extending the edges of the n triangles. We
see that the combinatorial complexity of the view is thus O(n?) which is tight as can be
seen from the usual checkerboard example.

Now, intersecting triangles intersect along new lines (there are up to (3) such new lines)
and it is conceivable that these new lines create a much more complex view. Here is an
argument that the view cannot contain many more than a quadratic number of faces, more
precisely, the number of faces is O(n’a(n)).

9We assume that no triangle is contained in a plane parallel to the z—axis.

210

o Partition the set of triangles into two sets of n/2 triangles each.

e Construct the upper envelope of both sets and project them onto the zy-plane to get
the views of the two sets.

e Refine each view (which is a subdivision of the zy-plane) by projecting and extending
the 3n edges of the triangles. The effect of this step is that the arrangement of 3n lines
is superimposed onto the view and thus creates a subdivision into convex regions. The
number of regions is O(n?a(n)) since a line intersects the view in at most O(ra(n))
points (by the result on envelopes of line segments in the plane).

o Get the view of the set of n triangles by merging the two subviews. The merge
step does not increase the number of regions since the view within a region of the
arrangement is the projection of a convex polytope, and each facet corresponds to a
facet in one of the two subviews.

If R(n) is the number of regions of the view of n triangles, we thus get
R(n) = 2R(n/2) + O(n’a(n)) = O(n?a(n)).

By Euler’s relation, the number of edges and vertices is of the same order of magnitude as
the number of regions, and therefore O(n?a(n)). For further details we refer to [Ps8s].

We would like to point out a curious aspect of the above upper bound argument: it has
the structure of a divide-and—conquer algorithm, and indeed, there is an implementation of
the proof that constructs the view of n possibly intersecting triangles in time O(n?a(n)) (see
[EGS87]). We view the proof as a textbook example for the affinity between the concepts
of proof and algorithm.

7 Combinatorial Complexity

We believe that the earlier sections provide sufficient evidence to convince the reader of the
importance of a combinatorial analysis preceding the design of any algorithm. We use this
section to highlight a combinatorial problem for arrangements of circles that comes up in
the design of an algorithm that constructs some but not all regions of the arrangement.
The problem is to determine the maximum number of edges!® bounding m regions in an
arrangement of n circles. We conclude the section by pointing out the close relationship of
this problem with some classic extremum problems in combinatorial geometry.

We do the analysis in two steps. For the first step it is convenient to replace the n circles
by 2n (generalized) disks, where the two disks of a circle ¢ are the two connected components
of E* — c. The intersection of three disks is either connected or disconnected (see Figure
6). Using a planarity argument it is not difficult to show that the intersection of three disks

'%An edge in such an arrangement is a connected component of a circle after removing all points where the
circles intersect.

211

Figure 6: Sample intersections of three disks. If it is connected and bounded by four edges
then it is simply connected. If it is disconnected then it consists of two simply connected
components bounded by three edges each. If the intersection is connected but not simply
connected then the number of bounding edges is at most three.

cannot contain three pairwise disjoint connected sets each touching the boundary circle of
each disk. Let us consider the bipartite graph whose nodes are the m regions and the 2n
disks, and with an arc connecting a region R and a disk d if R C d and R touches the
boundary of d. By the above topological argument we know that this graph contains no
Ks,3. This implies that the number of arcs of the bipartite graph is at most O(mn?/3 + n).
We next use that a region touching k circles is bounded by at most 6k edges and thus obtain
O(mn®?® + n) as an upper bound on the total number of edges bounding m regions. As
a consequence, the number of bounding edges is O(n) as long as m does not exceed the
cube-root of n.

To prepare the second step of the argument, we mark each one of the m regions by a
point. We choose a random sample of f(m,n) of the n circles and decompose the cells of
the sample arrangement by drawing vertical line segments so that each cell is bounded by
two circular and two vertical edges. A probabilistic counting argument (see [Cla87], [Cla88],
[HW87], [CEG8S]) can be used to show that each one of the O(f(m,n)?) such trapezoidal
cells intersects about n/f(m,n) of the n original circles. We choose f(m,n) = m3/%/nl/5,
Thus, by our earlier result, the average number of edges bounding each marked region in
each cell is about '

A s
f(m,n) m2/5’

Ignoring a couple of interesting technical problems and we thus have a total of O(m®/®n*/5)
edges.

We remind the reader that we ignored too many details and were too generous in the
calculations to produce a serious proof. Nevertheless, the argument can be made to work
and the final result is roughly the same as the one shown above. A feature of the sketched
proof technique interesting to the combinatorialist is that it can also be used to prove an
upper bound on the total number of incidences between m points and n circles in the plane.

Now we are getting very close to some old combinatorial problems due to Erdés (see [Erd46],
[Erde0]).

Suppose that all circles have the same radius. In this case, the analysis can be tightened

212

somewhat to show that the number of incidences between m points and n circles is at most
O(m?*/*n?73). This matches the upper bound for the same problem derived in [SST84]. The
problem is interesting since the bound implies that a single distance can occur at most
O(n*/®) times between the pairs defined by a set of n points in the plane. Although we
do not get a new bound, we feel confident since the new proof is simple enough to allow
for generalizations to similar problems. Indeed, in [CEG88| we succeed to improve the best
previous upper bound on the maximum number of occurrences of a distance in a set of n
points in three dimensions. The new bound is roughly O(n%?2).

References

[BO79] J.L.Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. C—28 (1979), 643-647.

[CE88] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line seg-
ments in the plane. Manuscript, 1988.

[CEGS8S8| K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir and E. Welzl. Combi-
natorial complexity bounds for arrangements. Manuscript, 1988.

[Cla87] K. L. Clarkson. New applications of random sampling in computational geometry.
Discrete Comput. Geom. 2 (1987), 195-222.

[Clag88] K. L. Clarkson. Applications of random sampling in computational geometry, II.
In “Proc. 4th Ann. ACM Sympos. Comput. Geom. 1988, to appear.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer—Verlag, Hei-
delberg, Germany, 1987.

[EGS87] H. Edelsbrunner, L. J. Guibas, and M. Sharir. The upper envelope of piecewise
linear functions: algorithms and applications. Discrete Comput. Geom., to appear.

[EGS88] H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity of many faces in
arrangements of lines and of segments. In “Proc. 4th Ann. ACM Sympos. Comput.
Geom. 1988”, to appear.

[EM88| H. Edelsbrunner and E. P. Miicke. Simulation of Simplicity: a technique to cope
with degenerate cases in geometric algorithms. In “Proc. 4th Ann. ACM Sympos.
Comput. Geom. 1988”, to appear.

[EOS86] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines
and hyperplanes with applications. SIAM J. Comput. 15 (1986), 341-363.

[Erd46] P. Erdds. On sets of distances of n points. Amer. Math. Monthly 53 (1946),
248-250.

Erde60)]

‘Gru67|
GOS8

HSE6|
HWS7|

PS88]

PSS88]
SHT6

[SST84|

(WSs8s)

\ZasT5]

213

P. Erdds. On sets of distances of n points in Euclidean space. Magyar Tud. Akad.
Mat. Kutald Int. Kod. 5, (1960), 165-169.

B. Grinbaum. Convez Polytopes. John Wiley & Sons, London, England, 1967.

L. J. Guibas, M. H. Overmars, and M. Sharir. Intersections, connectivity, and
related problems for arrangements of line segments. In preparation.

S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of gen-
eralized path compression schemes. Combinatorica 6 (1986), 151-177.

D. Haussler and E. Welzl. e-nets and simplex range queries. Discrete Comput.
Geom. 2 (1987), 127-151.

J. Pach and M. Sharir. The upper envelope on piecewise linear functions and the
boundary of a region enclosed by convex plates: combinatorial analysis. Discrete
Comput. Geom., to appear.

R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence
of translations. Dsscrete Comput. Geom. 3 (1988), 123-136.

M. I. Shamos and D. Hoey. Geometric intersection problems. In “Proc. 17th Ann.
ACM Sympos. Found. Comput. Sci. 1976, 208-215.

J. Spencer, E. Szemerédi and W. T. Trotter, Jr. Unit distances in the Euclidean
plane. In Graph Theory and Combsinatorics, 293-303, Academic Press, London,
1984.

A. Wiernik and M. Sharir. Planar realization of nonlinear Davenport-Schinzel
sequences by segments. Discrete Comput. Geom. 3 (1988), 15-47.

Th. Zaslavsky. Facing up to Arrangements: Face-count Formulas for Partitions of
Space by Hyperplanes. Memoirs Amer. Math. Soc. 154, 1975.

-El-l-'lih _'|_.:u 11 "!IIIIJI it iz ;:'ﬂj‘.!ﬁ'ﬁ'ﬂ-! :f T ﬁqu 7 ?:‘I?II"_.I'."I_;,{} '1'_ ERET . Lgvr I 4
et 2AY Al 8 ags ."._n_l 1= rib

ey dhclinad ol el g ol B el st el Lougrs, .
hrk SITEFESOAT. & & Sielidl e IO EEl o asorevtr I (' ome tiE # Y e

T AL SN LT U P T S L S

s tl]_l,;. [T |f'.|u:.‘|‘!!v_lﬂz‘-!ﬁ 'r.,lﬂ s u!t*f—?' a0 M bes A = 1
Ly TERUL) B ol et avmindal st etne g T e

:,_ur__l'ml-' 3 I:‘II.""':i s s v -fl:‘:m‘m e mmem = AW J haa v w N
2 AN S
my? if,lt‘.': CTRRTIIT o Ll i LR IR 1 I]D{lhﬂ— i_nou:.u_]] " -'IISJ 1..?, [S T L AT

Aferrnl) dieo lm = [afemlan SAed mvianlo xevnius ‘T‘I francsl o atune ! = mnif &

N w I|’l wt. Il #) e

melts npllltﬂ:H‘ L T) |rf|'"u'. o oR2 _.f":"ﬂ'lﬂ'l;.'- '[lTlI‘ﬂ‘tf ?b‘ﬂ.‘r:,‘-ﬂrﬂ 'L« e ST |
T A e R T VLR T I ST

cAtTE i L e et ataseaNane dTINHOAT VoL (€] bog bamae® B B
R N O I L T IR O

bl At £ Bstnaah a4t avterl T W Ss. ibstsamEs B oSy oo bE]a2
] A b r® EEF WL TN T Bt et Rt al =l
L)

4ot UL el esnlingd e e sisean sanatt 40,02 0 line x v Av

St (Tt s mead NegEee) stety gaeeiger 0 UL e

L A g T . T T P e T
LTEE A e gl S el bl aarnieveH o e

B

