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Abstract. A tour J of a finite set P of points is a necklace-tour if there are disks with the points
in P as centers such that two disks intersect if and only if their centers are adjacent in . It has
been observed by Sanders that a necklace-tour is an optimal traveling salesman tour.

In this paper, we present an algorithm that either reports that no necklace-tour exists or outputs
a necklace-tour of a given set of n points in O(n*log n) time. If a tour is given, then we can test
in O(n?) time whether or not this tour is a necklace-tour, Both algorithms can be generalized to
f-factors of point sets in the plane. The complexity results rely on a combinatorial analysis of
certain intersection graphs of disks defined for finite sets of points in the plane.

1. Introduction and definitions

The traveling salesman problem is one of the most important problems in the area
of combinatorial optimization. It asks for computing a tour in a weighted graph
(that is, a cycle that visits every vertex exactly once) such that the sum of the weights
of the edges in this tour is minimal; such a tour will be called an optimal tour.

The traveling salesman problem is known to be NP-complete (see [14]) which
currently implies that no algorithm is known which finds an optimal tour in poly-
nomial time. There are generally two approaches to circumvent this difficulty: one
is the design of algorithms which compute tours that are close to optimal, the other
identifies restricted classes of the problem for which efficient solutions are possible.

In this paper, we are concerned with the traveling salesman problem for complete
undirected weighted graphs fulfilling the triangle inequality. A particular subclass
is the Euclidean traveling salesman problem in the plane where the considered graph
% is the complete distance graph of a finite set P of points in the plane: the vertices
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of % are the points in P and the weight of an edge between two vertices is the
Euclidean distance between the corresponding points. Although the Euclidean
traveling salesman problem is a restricted version of the general traveling salesman
problem, it has been shown that it is still NP-hard (see [22]). There are a few natural
classes of point sets, however, which allow for an efficient construction of optimal
tours. For example, the edges on the boundary of the convex hull of P form the
unique optimal tour of P if all points of P are extreme.

The class of point sets considered in this paper is based on the notion of the
necklace condition.

Let P be a finite point set in the plane. A tour 7 of P is a necklace-tour
if it is the intersection graph of a set S of closed disks centered at the
points in P. If P allows a necklace-tour, then we say that P satisfies
the necklace condition.

Figure 1 shows an example of a necklace-tour. Reinhold [25] and Sanders [27]
showed that the traveling salesman problem becomes easy if a necklace-tour exists
(see also [30]). In particular, the following is true.

Fig. 1. A necklace-tour.

Proposition 1.1. A necklace-tour of a finite point set P is the unique optimal tour of P.

It is easy to construct point sets that do not satisfy the necklace condition (see
Fig. 3 and the second remark after Theorem 2.5).

Remark. Note that points 1 and 2 in Fig. 1 are not adjacent in the Delaunay
triangulation of the point set shown, since every circle through points 1 and 2
encloses point 3 or point 7 (see [23] for a definition of Delaunay triangulations).
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Hence, Fig. 1 and Proposition 1.1 constitute a simple counter-example to the
conjecture that every optimal tour of a planar point set is a subgraph of the Delaunay
triangulation (see [28] for the first mention of this problem and [15] for the first
settlement of the problem; in contrast to the construction shown in Fig. 1, his
solution is based on points in rather special position). Notice that the same type of
argument can be used to show that optimal m-factors, m any positive integer, are
not always subgraphs of the Delaunay triangulation.

Although a necklace-tour of a point set solves the traveling salesman problem
for this set, no algorithm has been known that recognizes point sets which satisfy
the necklace condition and that computes a necklace tour, if it exists. This paper
offers an algorithm that checks a given tour for being a necklace-tour in O(n?) time
and O(n) space, and it presents an algorithm that tests whether a necklace-tour
exists and constructs it, if it exists, in O(n’ log n) time and O(n) space.

Although our investigations emerged from the study of tours of point sets in the
plane, some notions and results are also valid for f~factors and for general graphs
for which the triangle inequality holds. In the remainder of this section we present
some basic definitions and we give an outline of the paper.

Let ¥=(P,G) be a complete weighted graph, with set of vertices P=
{P1,P2s---, patand set of edges G. Throughout this paper, we will use corresponding
script and roman letters to denote a graph and its edge set. The length of an edge
{pi, p;} is denoted d;. All graphs that we deal with fulfill the triangle inequality
d;+ dy = dy for all p;, p;, pi in P. In particular, this implies d;=0 for all p;, p;e P.

A subgraph # of & with vertex set P is called realizable if for each point p; there
exists a real number r;, called its radius, such that

(1) {r,—+rjad,-j, if {p,,p}e F, and
rn+r<d; if{p,pj}eF

The numbers r; are said to realize %.

If 4 is the complete distance graph of a set of points P in the Euclidean plane
and the r; are all positive, then these numbers can be interpreted as radii of closed
disks centered at the points p,. In this case, & is the intersection graph of these
disks, that is, # has an edge between two points if and only if the corresponding
disks intersect. If the radii r; are positive, then we say that Z is realizable by positive
radii. We will see that some classes of realizable graphs are always realizable by
positive radii if they are at all realizable.

If f=(fi,fs,-.../u) is a sequence of integers, a subgraph # of ¥ is called an
ffactor if the degree of p; in F is f,. If fi=fo=---=f,=m, then we call ¥ an
m-factor. In particular, 1-factors are complete matchings, and 2-factors are coverings
of vertices by disjoint cycles. 2-Factors are important to us because tours are just
connected 2-factors.

The weight of a subgraph % of 4 is the sum of the weights of its edges, and an
optimal f-factor, tour, etc. of ¥ is an f-factor, tour, etc. with minimum weight. By
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a 2-factor, tour, etc. of a set of points P in the plane we always mean a 2-factor,
tour, etc. of the complete distance graph of P.

Let m be a positive integer smaller than n. For each point pe P, we let d'"'(p)
denote the distance from p to the m-nearest neighbor of point p, that is, d'™( p) is
the smallest real number & such that the cardinality of {g e P|d(p, g) = 8} is at least
m+1. The graph 9 is the graph realized by the numbers d"™( p). In 4™, every
vertex has at least degree m; therefore, the number of edges is at least 3mn. Again,
if P is a set of points in the plane, we can define D'™(p) to be the closed disk
centered at p with radius d'™(p) in which case 4'™ is the intersection graph of
these disks.

Below, we give an outline of the structure of this paper and we review the results
to be presented. There are algorithms for two kinds of problems considered in this
paper.

Problem A. Test the realizability of a given ffactor % and find radii that realize
%, if they exist.

Problem B. Check whether a graph has a realizable f-factor and find it together
with the radii that realize it, if they exist.

Section 2 gives a characterization of realizable f~factors based on the relation
between the integer programming formulation of the optimal f-~factor problem and
its linear programming relaxation: a graph has a realizable f~factor if and only if
the linear program has an integral and unique optimal solution which is then the
unique realizable f-factor. Based on this characterization, the test of existence and
the construction of a realizable f-factor (Problem B) can be reduced to the construc-
tion of optimal f-factors in bipartite graphs. The latter problem can be performed
in a simple and efficient way by network flow techniques. This is described in Section
6.

Section 5.1 describes how the realizability of a given f-factor (Problem A) can
be tested by efficiently solving the system of linear equalities (1). As a consequence
of the latter results, we derive in Section 5.3 a combinatorial characterization of
realizable f~factors which is an extension of the characterization of optimal ffactors
by means of alternating cycles.

In Section 2, we also show that a realizable m-factor of a graph is a subgraph of
%'™. This serves as a motivation to show that 4" of a set of points in the plane
has only O(mn) edges. This is done in Section 3. In Section 5.2, we put these results
together and describe how %'™ can be constructed efficiently. Thus, for m-factors
of points in the plane, the running times of the algorithms can be improved over
what is needed for non-Euclidean graphs. The running time for Problem A is O(mn®)
and for Problem B it is O(n” log m(m+log n)). The space complexity is O(mn) for
both algorithms.
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2-Factors play an important role in our algorithms. We will see in Section 2 that
realizable 2-factors are unique and optimal. Since tours are 2-factors and necklace-
tours are realizable, this shows that the necklace condition for a point set P is
satisfied if and only if the optimal 2-factor of P is realizable and is a tour. Thus,
for testing the necklace condition, we simply have to find the (unique, optimal)
realizable 2-factor, if it exists, and finally check whether it is a tour. This yields our
claimed complexity bounds of O(rflog n) time and O(n) space for testing the
necklace condition.

Finally in Section 7, we mention possible extensions and further applications of
our results, and we present computational experiments pertaining to the usefulness
of our methods in practice.

2. Properties of realizable f-factors

In Section 2.1, we state a necessary and sufficient condition for a graph to have
a realizable f-factor, and we discuss the consequences of this condition to necklace-
tours in Section 2.2, In Section 2.3, we show that a realizable m-factor is a subgraph
of 4'™, which is of interest because 4™ of n points in the plane has only O(mn)
edges. The latter result will be shown in Section 3.

2.1. Characterization of realizable f-factors

To state our characterization, we need to formulate the optimal f-factor problem
as an integer program. Let %= (P, G) be a weighted graph with P={p,, p,..., p.}-
We define a binary variable x; for each edge {p;, p;} of the graph, where x, =1 if
{pi. p;} belongs to the ffactor, and x; =0 if it does not. The ffactor problem can
now be formulated as follows:

minimize Y  x;d; (F.1)
{pipleG

(F) {subjectto Y x;=f fori=1,2,...,n (F.2)
{pnpeG

and x; € {0, 1} for{p, p}teG (F.3)

The linear programming relaxation of this problem, called the fractional f-factor
problem (FF) is obtained by replacing the constraints (F.3) by

(FF3) O0sx;=1 for{p,pleG,

for real numbers x;.

Below, we present a characterization of when a graph has a realizable ffactor
for a given vector £ Throughout this paper, we will use % to denote an f-factor and
F to denote is edge set.
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Theorem 2.1. A graph % has a realizable f-factor ¥ if and only if the fractional f-factor
problem defined by (F.1), (F.2), and (FF.3) has a unique optimal solution which is
integral. F is then the f~factor corresponding to this solution.

Proof. (i) First we prove the “only-if” part of Theorem 2.1. Let r,, r5,..., r, be
radii that realize %, that is, they fulfill (1). Then it is clear that these radii can be
made to fulfill

(1) {r,-+rj> d; if{p,p}eF, and
rnt+r<d; if{p,p}eF,
for example by adding 38 to all radii, where &=min{d;—r,—r,|{p;, p;} 2 F}>0.
Now assume that ry, ry, ..., r, fulfill (1'). If we replace the distances d; in the
objective function (F.1) by djj=d;—r;—r;, then we get

b3 xijd:j= 3 xij(d;j_?‘i_?})

Fa]

{pi.pleG {Pi.pteG
= 2  Xgdg= Y i ) Xl
{pi.pi}eG {p.piteG {pi.pileG

=y xijd,-j—i Y xn

{pi.piteG i=1{pi,pj}teG
n
= l xijdij_ Z i,
ipipite G i=1

by (F.2). Thus, the new objective function

(F.1) minimize Y x;d}
{Pth}EG
differs from the old one by an additive constant, and the optimal solutions are the
same with respect to both objective functions. But we have

dj=dy—ri—r,<0 for{p,p}teF and

Therefore, the unique optimal solution of (F.1") subject to (FF.3) is the solution
corresponding to F:

x;=1 ford;<0({p,p}eF), and

15

x;=0 fordy;>0({p;,p}eF),

and this solution also fulfills (F.2) and is thus the unique optimal solution of (F.1),
(F.2), and (FF.3).

(ii) Now, we prove the ““if”” part of Theorem 2.1. Assume that vector X is the
unique optimal solution of (F.1), (F.2), and (FF.3). The following rather technical
consideration shows that the coefficients d;; in the objective function (F.1) can be
changed slightly without destroying the optimality of X. We need this in order to
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obtain strict inequalities in (1). Since the set M of solutions of the system of linear
equations (F.2) and linear inequalities (FF.3) is bounded by the constraints (FF.3),
this set is a polytope, and it follows from the theory of linear programming that the
minimum of any linear objective function over M is attained at a vertex of the
polytope (that is, at a basic solution of the linear program). Hence, X is a vertex of
M. Since M has only finitely many vertices, we can define § to be the minimum
difference in objective function value (F.1) between % and any other vertex. If we
replace d; by

df’:{dij_af(”z if £;,=0, and
d dgj if X = 1,
we get a new objective function

(F.1") minimize Y x;dj.
{pi.pteG

Now, we have

8
Y da= R Umgles B v
ip.pileG {pi.pite G x;=0 n
n\ é
= Y x,-jd,-j—(z)—2> Y xzd;—36.
{Pi,Pj}EG n {P.,P_;}EG

Thus, (F.1") differs from (F.1) by at most 38, for all x€ M. This implies that £ is
still optimal with respect to (F.1”) among all vertices of M, and hence it is an optimal
solution of the linear program (F.1"), (F.2), and (FF.3).

It remains to find radii r; that realize the f-factor & corresponding to X. Let us
consider the dual program of (F.1"), (F.2), and (FF.3):

n
maximize } rifi— Y &
i=1 {Pi.p}eCG

subjectto —8;+r,+r,=<dj for{p,pleG,
with 8;=0 and r; arbitrary.

Here, the r; are the dual variables associated with the vertices, and the d; are
associated with the constraints x;=<1. Complementarity implies that for £ to be
optimal, there must exist values r; and §; such that the following complementary
slackness conditions hold:;

X;>0 implies r,+r,—8,=d};, and
X;<1 implies §;=0.
This means

(I l) {xAU}O lmplles P‘,—+r}2d:{;= dij: and
i X; <1 implies ?’i+?}-$d§}=d.-j—6/n2{d,-j.
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Thus, the f-factor & corresponding to X is realized by the radii r;, which are just
the dual variables of the linear program. [

Corollary 2.2. A realizable f-factor of a graph is the unique optimal f-factor.

Remark. The proof of Theorem 2.1 does not use the triangle inequality, and therefore
Theorem 2.1 and Corollary 2.2 hold for arbitrary weighted graphs.

2.2. Consequences for necklace-trous

To apply the preceding results to necklace-tours, we have to state the following
theorem which holds only for m-factors, that is, for f~factors where the degrees of
all vertices are equal to the same integer m.

Theorem 2.3. An m-factor is realizable if and only if it is realizable by positive radii.

The proof of Theorem 2.3 is rather technical and will be given in Section 4. Since
necklace-tours are tours realizable by positive radii and since tours are 2-factors,
we can apply Theorem 2.3 and Corollary 2.2 to get the following result.

Corollary 2.4. A necklace-tour of a set of points P is unique and it is the unigue optimal
2-factor of P.

Although this corollary suggests that the two-step procedure of constructing an
optimal 2-factor and then testing its realizability is a viable way to test the necklace
condition, we can exploit the realizability requirement already in the construction
of the optimal 2-factor and reduce this to an optimal 2-factor problem in a bipartite
graph. This problem is much simpler to solve than in the non-bipartite case although
the algorithm we give is of the same asymptotic complexity as the one for the
non-bipartite case (see Section 6).

2.3. Sparse supergraphs of m-factors
The following theorem is important because in Section 3 we will show that §'™
of a set of points is a sparse graph.
Theorem 2.5. A realizable m-factor # of a graph % is a subgraph of 4'™.
Proof. Let r,, 1,,..., r, be radii that realize %, According to Theorem 2.3, we can
assume that they are positive. Now, we define a new set of radii as follows:
ri:=min{r, d™(p;)}.

The graph %' realized by the r; is a subgraph of & since ri= r,. Nevertheless, every
point for which the radius has decreased has still at least m neighbors in F": if
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ri<r,then rj=d""™(p;), and d'™(p,) = d; for at least m points p;. Therefore,
ritr > ri=d"p)=>d,

for at least m points p;.
Thus, # must be equal to #'. On the other hand, &' is a subgraph of G'™ since
ri<d™(p). O

Theorem 2.5 shows that a necklace-tour must have its edges in 4%, and, by
Corollary 2.2, it is the optimal 2-factor of 4.

Remark. The example shown in Fig. 2 demonstrates that Theorem 2.5 is best possible
in the sense that a realizable 2-factor of P is not necessarily a subgraph of 4" of
P: points 1 and 2 are not adjacent in 9" but they are in the necklace-tour. Similar
examples exist for arbitrary positive integers m.

Remark. The example shown in Fig. 3 demonstrates that graph %'’ of a finite set of
points P does not always have a 2-factor because there is no cycle through point 1.

Fig. 3. A point set without realizable 2-factor.
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Notice that Theorem 2.5 now implies that there are point sets without realizable
2-factor. The above type of argument can be used to show that, for every positive
integer m, there are point sets without realizable m-factor. It is also true that an
example can be constructed such that ¥ has an optimal 2-factor which is a tour
but which is not the optimal tour of 4.

3. 4™ of a set of points in the plane is sparse

This section shows that, for each positive integer m, the graph 4™ of a set of n
points in the plane has at most (31m—1)n edges. A linear upper bound on the
number of edges of ¥'" can also be found in[1]. In the following proofs, 2(py, p», p3)
denotes the angle enclosed by the line segment connecting points p, and p, and the
line segment connecting p, and p;.

Lemma 3.1. Let S be a set of closed disks such that no disk contains the center of
another disk in S in its interior. Then any point p in the plane is contained in the interior
of at most five disks in S.

Proof. Suppose p is contained in the interior of six disks of S. Then p cannot be
the center of a disk and there are disks D; and D, in S with centers g, and ¢
respectively, such that p is in the interior of both D, and D, and the angle 2(q,, p, g>)
is less than or equal to 3w. Without loss of generality, we assume that d(p, q,)=
d(p, g,). But now d(g-, q,)<d(p, q,) which implies that g, is also in the interior
of D;—a contradiction. []

Using Lemma 3.1, we can now show the following packing result for disks in the
plane.

Lemma 3.2. Let D, be the disk with center (0,0) and with radius 1 and let S be a set
of disks which satisfies the following conditions:
(i) all disks in S intersect Dy,
(it) all disks in S have radius at least 1, and
(iii) no center of a disk in S lies in the interior of D, or any other disk in S.
Then S contains at most 30 disks.

Proof. Let g* (gq7) be the intersection of the two circles with centers (1,0) and
(2,0) and radius 1 which has positive (negative) y-coordinate, and let K be the
circle with center (0, 0) through points ¢* and g~ (see Fig. 4). We will show that
the length of the intersection of any disk in S with K is at least one-sixth of the
total length of K. This will give us then the claimed result by applying the previous
lemma.
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Fig. 4. Illustration of the proof of Lemma 3.2.

Observe first that both D,, the disk with center (1, 0) and radius 1, and D,, the
disk with center (2,0) and radius 1, contain one-sixth of K. This is because the
angle £(q", (0,0), g7) is exactly 3.

Now, consider a disk D in S with center at distance at least 2 from (0, 0). Without
loss of generality, we assume that the center of D is on the positive x-axis. Then
D contains D,, since it intersects D, by assumption, which implies that it contains
at least one-sixth of K. If the distance of the center of D from (0, 0) is between 1
and 2, including the limits, and if it lies on the positive x-axis, then D contains the
intersection of D, and K. Since no disk in S has distance smaller than 1 from (0,0),
we conclude that every disk in S intersects K in an arc of length at least one-sixth
of the total length of K.

Now, we choose six points on K which are the vertices of a regular hexagon
such that no point lies on the boundary of a disk in S. We know that each of these
points lies in at most five disks in § and every disk in § contains at least one of
these points. Consequently, |[S|=5:6=30. [

Using Lemma 3.2, we prove the main result of this section which guarantees the
sparsity of 4.

Theorem 3.3. Let P be a set of n points in the plane and let m be a positive integer
number. Then the edge set G'™ of the graph 4™ of P contains at most (31m—1)n
edges.

Proof. We claim that a smallest disk D, in S ={D""(p)|p € P} intersects at most
31m—1 disks in S, From this the theorem follows by a simple inductive argument.
Let S be the set of disks in $™ that intersect D,. We reduce S to a subset S” of
S such that no center of a disk in S” lies in the interior of D, or of any other disk
in S”. The reduction is done by the following procedure.
Step 1: Remove all disks from S that have their centers in the interior of D,. Let
S’ be the resulting set.
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Step 2: §":=§". While there is a disk in S” that contains centers of other disks
in S” in its interior, do the following: choose a largest disk D in S” that contains
the center of another disk of S” in its interior and remove all disks from S§” whose
centers belong to the interior of D.

Apparently, S" has the desired property and we conclude that |S”| = 30. It remains
to be shown that |S|=(|S"|+1)m —1. Observe first that

|S|=|S|—(m-1), (*)

since there are at most m — 1 centers of disks in S in the interior of D,.
Analogously, whenever we choose a disk D in Step 2, then we remove at most
m—1 disks from S$'™" and D will not be chosen again. Moreover, the special choice
of D guarantees that D will not be removed from §” in a later step. Consequently,
we remove at most m — 1 disks for each disk which remains in $” which implies

SU

=|s'|/m. fee]
From (*) and (*#) it follows that

|S|=|S|+m—1=m|S"

+m—1=(|s"

+1)m—-1=31m-1

which proves the theorem. [

At this point we would like to thank David Avis who brought to our attention
that improvements of Lemma 3.2 have been proven in [24] and, independently, in
[3]. Both papers show that a disk that satisfies the conditions of Lemma 3.2 intersects
at most 18 other disks which is best possible. Their proofs are considerably more
involved than the one presented to prove the constant 30. Using their result, Theorem
3.3 can be improved to (19m — 1) n. This bound is still a factor of 2 off the conjectured
tight bound which is 9n+o(n) for m=1.

4. Reduction of the system of inequalities

In this section, we show that positive radii are always sufficient to realize m-factors,
if they are realizable at all (see Theorem 2.3). This will allow us to eliminate many
of the inequalities in system (1). More specifically, we show that the following
systems of linear inequalities are equivalent with respect to their solvability. Let #
be an m-factor of 4. The two systems of inequalities are

@) {r,--}—rjad,j for {p;, pj}e F, and
ri+r<d; for{p,pj}e G = F,
and
ri+trn=d; for{p,p}eF,
(3) {rn+tr<d; for{p,p}teG—F, and
>0 forp;e P.

Notice that (2) has considerably fewer inequalities than (1) and (3) if '™ is sparse.
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Theorem 4.1. The following statements are equivalent:
(i) (1) is solvable (that is, F is realizable),
(ii) (2) is solvable, and
(iii) (3) is solvable (that is, F is realizable by positive radii).

The proof of Theorem 4.1 is going to be rather technical and involved. A shorter
and more intuitive proof would certainly be desirable.

Proof. The conclusions from (iii) to (i) and from (i) to (ii) are immediate. To
conclude from (ii) to (iii) we proceed in several steps. First, we need two technical
lemmas.

Lemma 4.2. Let r; be radii fulfilling (2) for an m-factor . If r;<0 and n=d,;=
d"™(p), then {p;, p}e F.

Proof. Assume that there are points p; with nonpositive r, r=d,;=<d'"™(p,) and
{p:, p} £ F, and let p; be the point with smallest radius r; among these. Let N be
the set of the m neighbors of p; in % We have

r+r=d; forpeN, ()

and hence r;=d; for all p;e N.

Next, we exclude the possibility that the distance between p; and p; is less than
or equal to d""’(pj} for each point p; in N. Assume we have d; =< a'f"”(pj) for all
p;€ N. Then we get

diml(pj}_’_dfm)(pir)?_ d@j"'dij'?’ di.i"
for p;, py€ N U{p;}, and hence {p;, p;} € G*™ for all p;, p,€ N u{p,}. Furthermore,

3 e Ny I T
it =di+dy=dy,

for all p;, pre Nu{p}, by the triangle inequality. This implies {p;, p;} € F since,
otherwise, this contradicts r;+ r, < d;; in (2). Consequently, every p; € N is adjacent
to every other p;e Nu{p,} and to p;. Point p; therefore has degree at least m+1
in #—a contradiction.

Thus, we proved that there is a point p; with {p,, p;}€ F and d;>d"'™(p,). The
value of d"(p;) exceeds dj, for at least m points p,, hence we have

ﬂ}kidim}(Pj){dﬁ, ()

which implies that {p;, p.} € G'™ for at least m points p,, k #j and k# i Since i
is adjacent to only m neighbors in % and one of them is p;, one of the points p,
must not be adjacent to p; in . For this point p,, we then have r;+r, <dj; from
(2), because {p;, pi}€ G'™. On the other hand, r,+r, = d;> d,, from () and (++),
which implies r, <r,=<0. In addition, it implies r;= d;, and we have d; < d'™(p,)
from (#+). Since we also have { p;, p.} £ F, the existence of point p, with radius r, <r;
(together with p;) contradicts the minimality of . [
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Lemma 4.3. If a set of values r,, i=1,2,..., n, fulfills (2), then

d™(p;) ifri>d"(p),
ri=<0 ifr;<0, and
r otherwise,

also fulfill (2).

Proof. We now have 0= r/=<d'™(p;) for all i. In the proof below, we distinguish
two cases, namely the case that an edge belongs to F and the case that it belongs
to G'™ — F. We treat the second case first.

(i) If {p:, p;} € G'™ —F, then we have r;+r,<d,. The corresponding inequality
ri+r;<dy is violated only if one variable (say, r;) is negative which implies r;=0.
In this case, r; = d; implies r, = r;=d; and d"(p;) = d;, which contradicts Lemma
4.2. Thus, we have

! r ! S )
ri<d; and ri+ri=r<d;.

(ii) This part of the proof is an extension of the proof of Theorem 2.5. If { p;, p;} € F,
then we have r,+r,= d;. The corresponding inequality ri+r;=d; is violated only
if one variable r; or r; (say, r,) is greater than d'™( p,) which implies r;=d""(p,).
We have d'™(p;) = d, for at least m points p,. Hence,

ritrizri=d"™(p)=dx and d"(p)+d"™(p)=d"™(p)=da,

which implies {p;, pi} € G"™ for at least m points p,. We have {p;, pi} € F for each
of these points, since, otherwise, r}+ ri < d;., by part (i) of this proof. But there are
only m points p, with {p;, p}€ F. Thus r{+r,=d; holds for all points p, with
{pi, pi} € F and therefore also for point p;. [

Now, we come to the conclusion of the proof of Theorem 4.1. By the preceding
lemma, we have transformed a solution of (2) into a solution fulfilling the additional
constraints 0<r,<d'™(p,). Now, for {p,p}e G'™, we get the remaining
inequalities

rtn<d™(p)+d™(p)<dy

for free. Let 8 =min{d,—r;—r;|{p;, p;} € G— G'™}>0. Then r} = r, +38 still fulfills
all inequalities and, in addition, we have r;/>0. []

5. Testing the realizability of a given f-factor

In order to check whether or not a given f-factor is realizable, we have to check
whether or not the system of linear inequalities (1) has a solution. Section 5.1 deals
with this problem. In the case of m-factors, the number of inequalities can be
reduced from (3) to O(mn) by Theorem 4.1 (see system (2)). In order to apply this
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reduction, we must know the graph %™. The construction of 4™ for a set of
points in the plane is the subject of Section 5.2. Finally, as a byproduct of the results
in Section 5.1, we prove an interesting alternating path characterization of realizable
[f-factors.

5.1. Testing the feasibility of the linear program (2) or (1)

We want to check the feasibility, that is, the existence of a solution, of a system
of inequalities of the form

(4) {’**G?a‘-}- for{p,,p}eF, and
r+r<d; for{p,p}eF,

where F is either G'™ — F or G — F depending on the case we consider. In case of
solvability, we also want to find a solution.

To test the feasibility of a sysstem of linear inequalities, several procedures have
been proposed in the literature ranging from pairwise elimination schemes for
general systems suggested by Fourier [11] (see also [8]) to polynomial algorithms
for systems in which at most two variables occur in each inequality (see [19] which
is based on a technique in [29]). In particular, Megiddo [19] gives an O(mn’ log m)
time algorithm to solve systems of m inequalities and n variables, where each
inequality contains at most two variables.

In our case, however, the special situation that all coefficients are equal to +1 or
—1 allows us to impose a directed graph structure on the problem and to utilize
this structure for a more efficient solution than the one given in [19] for the more
general case. Our technique also follows the ideas in Shostak [29].

For the sake of symmetry, we double the number of inequalities by rewriting
system (4) as follows:

i
-

i

=

;— dj; for{Pian}EE
—d; for{p, p}eF,
rn<-r+d; for{p,p}eF, and
rr<—r+d; for{p,p}eF

I
~

.
r}. o

(4)

In order to set up our directed graph, it is advantageous to introduce a new variable
7; for each r;, where F; represents —r,. We denote by V the set {r;|1=<i=n} and by
V the set {F, | 1=<i=n}. Using the new variables, we rewrite system (4') to

r<r—d; for{p,p}eF,
r,=r—d; for{p,p}eF,
r,<f,+d; for{p,p}eF, and
r<F+dj fClI'{PnPj}EF-'

(5a)

With the additional constraints

(5b) ?’,-——'—F; fOI‘?',EV,
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system (5) consisting of all constraints in (5a) and (5b) is equivalent to system (4')
and therefore to system (4).
All inequalities in (5a) are now of the form

6) x=y+ec,, withxeV,yeV,andc,, areal number, or
¥ y ¥ 1
(6) x<y+e, withxeV,yeV,and ¢, areal number.

We construct a directed graph %, with node set Vo=V U V U {s}, where s is a new
node not in VU V. For each insquality of system (5a), when it is written in the form
(6) or (6'), we have an arc from x to y with weight ¢,,. Moreover, we add arcs with
weight zero from s to every node in V u V. Following an earlier convention, we let
(G, denote the arc set of %,.

Lemma 5.1. If %, has a directed cycle of weight at most zero, then (2) has no solution.

Proof. Consider a directed path (x,, x,,..., x;), k=2, in %, that does not contain
node s. It can be easily seen that the nodes x;, 0=i= k are alternately from V and
V, that is, the inequalities corresponding to the arcs in this path are alternately of
type (6) and of type (6'). Combining the inequalities corresponding to these arcs
results in the inequality

x")<xk+c +i :+-.‘+ka—l-‘#-'

XpX| X%

Thus, if x;,= x, and the sum of the arc weights is nonpositive, then this reveals the
infeasibility of system (5a). Note that node s does not have any incoming arc which
implies that no directed cycle contains s. Since the system (5a) is weaker than (2),
this contradiction implies that (2) has no solution. [

Unless system (2) is infeasible, graph %, has no nonpositive and therefore no
negative directed cycle, by Lemma 5.1. For each node z of %,, the weight of a
minimum weight path from s to z is therefore well-defined; we let —L denote this
weight. Let (x, y) be an arc in G,. Since the minimum weight of any path from s
to y cannot be greater than the minimum weight of any path from s to x plus the
arc weight from x to y, we have —[, = — [ +¢,,, and therefore I, =1, +c,, for each
inequality x <y +¢,, or x<y+¢, in (5a).

Notice that ze Vu V is a node of graph %, and a variable in (5a) at the same
time. It therefore makes sense to set z:=L for each ze Vu V. This assignment
satisfies the system of inequalities which is obtained from (5a) by weakening each
strict inequality of type (6') to a nonstrict inequality. To obtain a solution for system
(5a), we modify the above assignment locally. This is described in the next paragraph.

Let Go be the set of arcs (x, y] with [, =1,+¢,,, and let Go be the directed graph
with node set V, and arc set Gf, Note that a cycle in Go corresponds to a cycle of
weight zero in %,. By Lemma 5.1, % has a directed cycle only if system (2) is
infeasible. Hence, we can assume that %, has only positive cycles. In this case, we
can relabel the elements z;, z5,..., 2, of VU V in such a way that (z, z z)e Cu
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implies i < j. (The ordering is a topological sort of VU V with respect to G,.) Let
& be the minimum of I, +c¢,, — I for all arcs (x, y) in Gu—éo. By definition of
(3(,, 6>0. In the following lemma we refer to this real number § and to an
enumeration of the elements of Vu V as described above.

Lemma 5.2, If %, has only positive cycles, then the assignment
i= !
=l =L+——38, 1=si=2n,
a2
satisfies (5a).
Proof. Consider an arc (z, z;) in G,. We know that I = 'Iz;"'cz,-z_,-- If i <j, then

- |
!Jz :fz +L_3<Iz-+L8+cz-z-=l; +¢p
U O 1 2n e

holds, because (i—1)8/2n <(j—1)8/2n. If i > j, then (z, z;) is not an arc of @0 and
S0 !'ZJ +c..,— I, = 8 which implies
i—1 i—1 j—i_ 8Q2n+j—i)
I+, —l=L+——8+c, —I,———8=5+—s=—"—>0.
e 2n 2R On 2n @ 2n
Hence, I’ <l +c.. . Thus all inequalities in (5a) are fulfilled (even if we strengthen
nonstrict inequalities to strict ones). [

By the preceding two lemmas, we can either detect the infeasibility of system (4)
or give a solution for system (5a). The original system (4) is equivalent to system
(5) consisting of all constraints in (5a) and (5b). Below, we show how a solution
for (5a) can be used to obtain a solution for (5). To help the notation, we write (73
and [; for the values of the assignment described above. To avoid confusion, we
note that r; is in general not the same as z;. However, for each 1=i=< n, there are
indices j and j' such that r; = z; and F, = z;-, and the values of j and j’ are determined
by the topological sort used to relabel the elements of Vu V.

Lemma 5.3. The assignment
=3l -1,) forr,eV, and
F=3(l}—1,) forFe 1%
Sfulfills (5a) and (5b).
Proof. Consider an inequality of the form r, <7, +d; in (5a). Then there is also the

inequality r,<F,+d; in (5a). Hence, we have I, <I} +d; whenever we have L=
I: +d;. Adding these inequalities, we get

I~ 1) <Yl 1) +dy
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which shows that the assignment defined in Lemma 5.3 satisfies r, <7, +d;. We
proceed analogously for inequalities of the form 7, = r; —d;; in (5a). Conditions (5b)
are trivially satisfied which completes the proof of the lemma. [

The following theorem summarizes the results of Lemmas 5.1 through 5.3.

Theorem 5.4. An f-factor is realizable (equivalently, system (1) has a solution) if and
only if 4, has only positive cycles. In this case, r;:= %(I’rl —1I3) are radii that realize F.

Using Theorem 4.1 and Lemma 4.3, we further get the following result which is
concerned with m-factors.

Theorem 5.5. An m-factor ¥ is realizable (equivalently, system (2) has a solution) if
and only if %,, defined for the edges of 4™, has only positive cycles. In this case,

ry = max{0, min{d ™ (p,), (1, ~ 1)}

are (nonnegative) radii that realize .
Finally, we address the algorithmic issues raised by the above results.

Theorem 5.6. The feasibility of a system of inequalities of the form (4) can be tested
in O(n(|F|+|F|)) time and O(|F|+|F|) space, where n is the number of variables.
If a solution exists, it can be found within the same time and space bounds.

Proof. We construct the graph %, in O(|F|+|F|) time and space from the system
(4). Apparently, %, has 2n+1 nodes and O(|F|+|F|) edges. The single source
shortest path problem for node s can be solved by the Bellman-Ford algorithm in
O(n(|F|+|F))) time and O(|F|+|E|) space (see [16]). Now, if either a negative cycle
has been detected or @0 has a cycle, then the system is not solvable; otherwise, it is.

A topological sort of G, can be performed in O(n) time and space (see [20]).
Finally, the remaining calculations following the lines of Lemmas 5.2 and 5.3 which
are necessary to obtain the realizing radii can be easily done within the required
time and space bounds. [

When we test an f-factor for realizability we have F U F = G in (4) which implies
the following result.

Corollary 5.7. An f-factor can be tested for realizability in O(n®) time and O(n?)
space, and if it is realizable, realizing radii can be found within the same time and
space bounds.
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More specifically, given a weighted graph 4 with n vertices fulfilling the triangle
inequality and an m-factor %, we can test in O(n|G"™|) time and O(|G'™|) space
(excluding the space needed to store %) whether % can be realized. If it can be
realized, then realizing radii can be found within the same bounds. If ¥ is the
complete distance graph of a set of n points in the plane, then the sparsity results
of Section 3 imply a faster algorithm than for arbitrary f-factors.

Corollary 5.8. Given the graph 4™, an m-factor for n points in the plane can be
tested for realizability in O(mn*®) time and O(mn) space, and if it is realizable, realizing
radii can be found within the same time and space bounds.

5.2. Construction of 4™ for points in the plane

By Theorem 3.3, we know that the size of 4™ of n points in the plane is O(mn).
We will take advantage of this property to design an efficient algorithm for construct-
ing 4.

Theorem 5.9. The graph 4™ of a set P of n points in the plane can be computed in
O(m’n log n) time and O(m’n) space.

Proof. In order to compute 4™ in O(m>n log n) time and O(m?n) space, we first
calculate the value d"™(p) for each point p in P. To this end, we consider the
partition of the plane, where each region is the locus of points which are closer to
some m points in P than to any other point in P. This partition is known as the
so-called mth-order Voronoi diagram of P (see [23]), and can be constructed in
O(m?n log n) time and O(m’n) space (see [17]). Next, we compute the mth-nearest
neighbor of each of the n points in P in O(mn log n) time. This is done by locating
for each point the region of the diagram it lies in (for a solution to this point location
problem, see [9]), and by determining the furthest of the m nearest points given by
the region located. Thus, in O(m’n log n) time, we can determine the real numbers
d'™(p) for all points p in P, and therefore also the set of disks S = {D™(p)|p e P}.
Next, we find all pairs {p,, p,} of points in P for which D™ (p,) n D'™( p,) # 0.
By construction of the disks D™'(p), pe P, no disk in S is contained in the interior
of another disk in S. Hence, D™ (p,)» D'"(p,) #0 if and only if the bounding
circles intersect. We thus have the problem of reporting all intersecting pairs of n
circles. Using a technique of [4], this can be done in O(n log n+klogn) time,
where k is the number of reported pairs. By Theorem 3.3, we have k = O(mn) which
implies that the overall complexity isin O(m*n log n). For all algorithms mentioned,
O(m’n) space is sufficient which concludes the proof of the theorem. [

There is a straightforward algorithm for constructing 9'™ for n points in the
plane that takes O(n”) time. The amount of space required by this trivial algorithm
is O(mn) which is better than the space complexity of the more sophisticated
algorithm described in the proof of Theorem 5.9, at least for nonconstant values of
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m. Still, the time needed by this trivial algorithm is dominated by the time com-
plexities of the other steps of our overall algorithm (see Corollary 5.8), which makes
it a desirable method because of its low space requirements. Nevertheless, Theorem
5.9 shows that the current bottle-neck of our algorithm consists of these other steps
and that a considerably faster algorithm is obtained if one succeeds to speed up
these other steps.

From Corollary 5.8, we get now the following result.

Theorem 5.10. Given an m-factor & for n points in the plane, we can decide in O(mn*)
time and O(mn) space whether ¥ is realizable. If F is realizable, then positive radii
that realize % can be constructed within the same time and space bounds.

5.3. An alternating cycle characterization of realizable f-factors

The results of Section 5.1 enable us to give a combinatorial characterization of
realizable f-factors. It extends the well-known characterization of optimal f~factors
by the non-existence of negative alternating cycles.

We begin by introducing a few definitions. A cycle of length i=2 in a graph is
a sequence of edges of the form {p,, p-}, {p2, ps}, - - -, { pi» P1}- An alternating cycle
€ with respect to a given f-factor F is a cycle of even length such that exactly every
other edge of € belongs to #. The weight w( %) of € is defined as follows:

w(%€)= ¥ di— ¥ dy.

{pi.pjleC—F {pi.pjleCnF

The following is a well-known characterization of optimal f-factors.

Theorem 5.11. An ffactor is optimal if and only if there is no alternating cycle of
negative weight that contains no edge twice (repetition of vertices is allowed ).

The theorem follows from the fact that any f-factor can be obtained from a given
f-factor F by a sequence of exchanges of edges in F with edges not in F along
pairwise disjoint alternating cycles without repeated edges (see [3, p. 147]). In the
case of 1-factors (that is, complete matchings) the theorem can be strengthened to
forbid also repetitions of vertices of alternating cycles.

Now, we adapt the characterization so that it holds for f-factors that are optimal
and realizable,

Theorem 5.12. An f-factor is realizable (and therefore optimal) if and only if there is
no alternating cycle of non-positive weight, where the cycle is allowed to contain an
edge more than once.

Proof. According to the construction in Section 5.1, every alternating cycle in %
with respect to & corresponds exactly to a cycle in %, and vice versa. Moreover,
the weight of the alternating cycle is equal to the weight of the corresponding cycle
in %,. The theorem follows now from Theorem 5.4. [
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6. Finding a realizable f~factor

By Theorem 2.1, we need only solve the fractional f-factor problem specified by
(F.1), (F.2), and (FF.3) in order to find a realizable f-factor. Extending the reduction
given in [6, 2] from the fractional f-factor problem to the assignment problem, we
can reduce the fractional f-factor problem to an n times n capacitated transportation
problem specified below. For consistency, we set d;; =00 for 1=i=n,

'8 n n
minimize Y, ¥ y;d;
i=1j=1
subjectto ¥ y;=f; forlsisn,
©) A =

Y yy=f forl<j<n, and
i=1

L O=sy;=1 forl=sij=n

This is essentially the same f-factor problem but on a bipartite graph with twice as
many vertices. The complementary slackness conditions for this problem and its
dual are as follows:

ij s

(1.2) {yij>0 implies u;+v;=dy;, and
. y;<1 implies u;+ v, <d;.

If a set of values x;, r; fulfills (F.2), (FF.3), and (I.1), a pair of primal and dual
solutions y; and u;, v; fulfilling (C) and (1.2) can be defined by setting

Vi=ypi=x; and wi=ul=r.

Conversely, from a solution fulfilling (C) and (1.2), we can compute a solution of
(F.2), (FF.3), and (1.1) as follows:

xy=3(y;+y:) and r=3(u+0v,).

Since the values y; of an optimal basic solution of (C) are integral, it is necessary
and sufficient for x; to be integral that y,; = y; for all i, j, that is, that the solution
is symmetric.

By a straightforward extension of Theorem 2.1, we now get the following result.

Theorem 6.1. A realizable f-factor exists if and only if the solution of the capacitated
transportation problem (C) is symmetric and unique.

In the cases where the realizable factor can be restricted to be contained in a
subgraph, we need only consider the arcs corresponding to the edges of this subgraph.
(There are two arcs (p;, p;) and (p;, p;) corresponding to each edge {p;, p;} of the
original subgraph.)

The remainder of this section discusses the complexity results that are obtained
by a number of different ways to solve the transportation problem.
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(A) If we use the shortest augmenting path method (see [10, 31]), we need at
mostY;_, f; flow augmentations each involving a single source shortest path compu-
tation. For each shortest path computation, we can either use Dijkstra’s original
algorithm (see [7]), or the variation with priority queues implemented as ordinary
heaps or as Fibonacci-heaps (see [12]), whichever is the simplest algorithm that
achieves the desired time bound. The time-complexity of the three methods is
respectively O(n”), O(e log n), and O(e+n log n), where e is the number of edges
of the graph. The space requirement in all three cases is O(e+n). This implies an
O((X f)n?) time algorithm for finding arbitrary realizable ffactors and an
O(mn(mn+nlog n)) time algorithm for finding realizable m-factors in the plane.
The latter result follows from the above results since we have Y fi=mn and e=
O(mn). Note that the complexity of O((Y. f;)n?) for realizable f-factors is matched
by an algorithm of [13] which always finds an optimal f-factor. For constant m,
realizable m-factors can thus be found in O(n”log n) time which is again matched
by an algorithm of [13] for computing optimal m-factors. Both algorithms of [13]
are hard to implement.

(B) By using the algorithms of Orlin [21], we can reduce the time needed for the
solution of the transportation problem to O(n® log(max{f;|1=<i= n})) for general
f-factors, and to O(n’ log m(m+log n)), for m-factors in the plane. The first bound
is incomparable to the time bound given in the preceding paragraph, and the second
bound is asymptotically better than the time bound above if m gets larger.

Below, we summarize the complexity results obtained for finding realizable
m-factors and realizable tours.

Theorem 6.2. Given a set of n points in the plane, the necklace condition can be tested
in O(n” log n) time and O(n) space. If the necklace condition is satisfied, the necklace
tour and a set of radii that realize it can be constructed within the same asymptotic
time and space bounds.

Theorem 6.3. Given a set of n points in the plane, the existence of a realizable m-factor
can be tested in O(n” log m(m+log n)) time and O(mn) space. If a realizable m-factor
exists, it can be constructed within the same asymptotic time and space bounds.

7. Concluding remarks

We have presented an algorithm which tests the necklace condition for a finite
point set. We have not attempted to extend all results to their outmost generality.
For this reason, we mention a few immediate extensions of the techniques offered
in this paper.

(1) All results described in this paper which are necessary for an extension of
the main results to three and higher dimensions generalize nicely which implies that
Theorems 6.2 and 6.3 also hold in higher dimensions where f-factors are realized
by balls. It is not clear whether or not the sophisticated construction of %'¥
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generalizes even to three dimensions, but for the generalization of Theorems 6.2
and 6.3, we can substitute it by straightforward methods without sacrificing the
complexity bounds. It is true, however, that the constants in the complexity of the
algorithm increase when the number of dimensions increases.

(2) All techniques of this paper generalize if we replace the Euclidean metric by
other L,-metrics, p=1,2,..., 0.

Preliminary computational tests seem to indicate that the results of this paper are
of very limited practical significance. Of 1000 problems with 100 points each
generated according to the uniform distribution in the unit square, only two had a
realizable 2-factor and both of them failed to be a tour. Of 1000 problems with 50
points each, 87 had a realizable 2-factor but none of them was a tour. Of 1000
problems with 30 points each, 283 had a realizable 2-factor and three had a
necklace-tour. Surprisingly, the probability that a point set uniformly distributed in
the unit square has a realizable 1-factor (that is, a perfect matching) seems to be
less than the likelihood of a realizable 2-factor (but greater than the likelihood of
a realizable tour): of 1000 problems with 100 points each, none had a realizable
1-factor, of 1000 problems with 50 points each, 11 had a realizable 1-factor, and of
1000 problems with 30 points each, 78 had a realizable 1-factor.

We believe that the linear programming result of Section 5.1 is of independent
interest. It is not hard to see, that the ideas generalize to arbitrary systems with m
inequalities and n variables, if there are at most two variables in each inequality
and the variables occur only with coefficients +1 or —1. By the presented technique,
such a system can be solved in O(n min{m, n’}+ m) time and O(m) space. Note,
that in this restricted situation we can always detect all but at most O(n’) inequalities
to be redundant.

It is interesting that the test of Section 5.1, which decides whether or not a given
tour is a necklace-tour, could be performed in asymptotically less than O(n?) time
if certain properties of the family of graphs ¥'* for point sets in the plane were
known. For example, if these graphs have n'’-separators, then a test can be
performed in O(n*?) time, which compares favorably with the O(n?) time complexity
proved in this paper. This is because the single source shortest path problem can
then be solved within this complexity bound (see [18]). The existence of such
separators has recently been established by Rote [26].
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