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Abstract. This paper studies applications of envelopes of piecewise linear functions 
to problems in computational geometry. Among these applications we find problems 
involving hidden line/surface elimination, motion planning, transversals of poly- 
topes, and a new type of Voronoi diagram for clusters of points. All results are 
either combinatorial or computational in nature. They are based on the combinatorial 
analysis in two companion papers [ PS] and [ E2] and a divide-and-conquer algorithm 
for computing envelopes described in this paper. 

1. Introduction 

This paper  cont inues  the study, ini t iated in [PS] and  in [E2], of  envelopes of 
piecewise l inear  funct ions  in two or more variables. The previous papers have 
established tight lower and  upper  b o u n d s  on the combinator ia l  complexi ty of 
such envelopes.  In this paper  we provide efficient algori thms for calculat ing 
envelopes of  this kind,  discuss several extensions and  special cases of  the previous 
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combinatorial bounds, and give a variety of  applications of these results to many 
problems in combinatorial and computational geometry. 

Let us first review the results of[PSI  and [E2]. Let s~, s2 . . . .  , sn be n d-simplices 
in ( d +  1)-dimensional space, none of which is vertical (that is, parallel to the 
( d +  1)st coordinate axis). We can thus view each s, as the graph of a partially 
defined linear function Xd+ 1 = f / ( x i ,  X 2 , . . .  , Xd) , whose domain of definition is a 
d-simplex, namely the orthogonal projection of s, onto the hyperplane xa÷ t = O. 
The upper envelope, M, of the given simplices is the pointwise maximum of these 
functions, that is, 

M ( x l ,  x 2 , . . . ,  xa) = max {f,(xl, x2 . . . .  , xa)}, 
l ~ t < n  

where each f, is assumed to be -oe  outside its domain of definition. The lower 
envelope of the simplices is defined in a symmetric fashion. 

We can associate with the envelope M a polyhedral cell complex, M*, in 
d-space such that over each cell of M* the envelope M is attained by a fixed 
function f~. Intuitively, this is the orthogonal projection of the graph of M onto 
Xd+I = 0 (see Fig. 2.1 which shows the projection of four triangles in d + 1 = 3 
dimensions). The combinatorial complexity of M is the complexity of this 
complex, that is, the total number of  faces (of any dimension) composing it. In 
general, the projection of the faces of  M does not yield a convex decomposition 
of  d-space. However, we can obtain a refined convex decomposition by superim- 
posing M* onto the arrangement of the ( ( d -  1)-dimensional) hyperplanes con- 
taining the ( d -  1)-faces of  the given simplices (see Fig. 2.2 which shows M* for 
a set of  three triangles in d + 1 = 3 dimensions). We measure the complexity of 
M in terms of this refined decomposition. 

I f  instead of simplices we have a collection of arbitrary piecewise-linear 
functions of  d variables, we can decompose the graph of each of them into a 
collection of simplices, and then obtain the upper  envelope of the given functions 
as the upper  envelope of these simplices. 

The two previous papers mentioned above analyse the combinatorial com- 
plexity of  such envelopes in d + 1 dimensions. They show that it is O(naa(n)) ,  
where a(n)  is the extremely slowly growing inverse of  Ackermann's  function. 
Moreover, this bound is tight in the worst case. For d + 1 = 2, we face the special 
case of  the envelope of n line segments in the plane. This case has been studied 
in [HS], [WS], and IS], where it is shown that the complexity of the envelope 
(in this case the number  of subsegments composing it) is O(na(n) ) ,  and that 
this bound is tight in the worst case. The proofs are based on reformulating the 
problem in terms of Davenport-Schinzel  sequences of  order 3. 

As a matter of  fact, in the one-dimensional case, the theory of  Davenport-  
Schinzel sequences yields tight almost linear upper  bounds on the complexity of 
the envelope of any collection of (partially defined) continuous univariate func- 
tions, provided that each pair of  them intersect in at most a fixed number of 
points. In contrast, for collections of n functions of  d -> 2 variables (which satisfy 
appropriate conditions on the pattern of  their intersections), no comparable tight 
upper  bounds on the complexity of  their envelopes is known in general as yet, 
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and the only general bound available so far is the trivial one, O(n~+l). We refer 
to [SS] for a few improved results for certain classes of bivariate functions. 

The proofs of the mentioned bounds for piecewise linear functions use induc- 
tion on the dimension d. The proof  in [PS] is based on a divide-and-conquer 
analysis. We partition the collection of n simplices into two subcollections of 
roughly n/2 simplices each, recursively obtain the envelope of each subcollection, 
and then obtain the overall envelope by taking the pointwise maximum of the 
two subenvelopes. Using arguments based on arrangements of  hyperplanes, 
convexity, and on the complexity of  the envelope restricted to certain lower- 
dimensional spaces, we show that the number  of  additional facets created by 
superimposing the two subenvelopes is bounded by O(ndo~(n)). This leads to a 
recurrence relation whose solution yields the desired bound on the number of  
facets (that is, d-dimensional faces) in the envelope. Using Euler's formula for 
planar maps this yields similar bounds on the total number of faces of M if 
d + 1 = 3. For higher dimensions this proof  has been extended in [E2], where the 
same bound for the overall complexity of the envelope using a different divide 
step is obtained. 

In Section 2 we follow the outline of  the proof  in [PS] to obtain a divide-and- 
conquer algorithm for calculating the envelope of triangles in three dimensions. 
The amount of  time needed is at most proportional to the maximum combinatorial 
complexity of  the envelope, namely O(n2a(n)). Because of the lack of convex 
hull algorithms in four and higher dimensions that run in time proportional to 
their output, we have not succeeded in generalizing this algorithm so that it 
runs in time O(nda(n)) if d + l > - 4 .  We also discuss several extensions and 
special cases of  envelopes of  piecewise linear functions which are needed for the 
applications that we study. 

The major part of  the paper  is devoted to applications of  the combinatorial 
and computational bounds stated above. These applications include the hidden 
line/surface removalproblem which is discussed in Section 3. We give algorithmic 
results that match and generalize previous results of  [Dv] and [M] for d + 1 = 3 
dimensions. We also obtain algorithms for related problems, such as constructing 
an image of a solid defined in Constructive Solid Geometry, and obtaining views 
of a three-dimensional projection of tetrahedra in four dimensions. 

Section 4 considers translational motion planning for polyhedra in three 
dimensions. Here, we calculate the space of free placements of a given polyhedron, 
B, which is free to translate amidst a collection of polyhedral obstacles. We also 
discuss special cases of  the problem, such as where the obstacles form a polyhedral 
terrain (that is, a piecewise linear surface meeting each vertical line at exactly 
one point), and the case where B is allowed to translate from its current position 
along a straight half-line only. The latter special case extends work on movable 
separability of  sets reported in [Tt]. 

The problem of stabbing line segments and polytopes is investigated in Section 
5. Using a standard duality transformation, we show that stabbing hyperplanes 
can be represented by points lying between the upper  envelope of one collection 
of simplices and the lower envelope of another such collection. Our results extend 
previous work on this problem in two dimensions (see [E3]). 
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Voronoi diagrams of point clusters are considered in Section 6. For each cluster 
(that is, finite set o f  points in d dimensions) its distance from a point is 
the maximum Euclidean distance from this point to any point in the cluster. 
The Voronoi diagram of  a collection of  clusters is then defined as the decompo- 
sition of space into maximal domains so that for each domain there is a unique 
nearest cluster for all points in this domain. By transforming the problem 
to (d+ l ) -d imens iona l  space, we can reformulate it in terms of envelopes of 
certain piecewise linear functions. 

We do not regard this list of  applications as exhaustive, and we expect many 
more applications to be found. For example, Tamir [Tr] has recently discovered 
applications of  our results to p-center and obnoxious p-center problems for 
certain trees and graphs. 

2. Computing an Envelope 

This section presents an algorithm for constructing the upper envelope of a set 
o f  n triangles in three dimensions. The algorithm follows the outline of  the proof 
in [PS] that shows that the combinatorial complexity of this envelope is 
O(n2ot(n)). At several points we have to introduce intricate algorithmic tools in 
order to get a worst-case optimal algorithm. For some of  these tools the complexity 
goes up more than desired when we generalize them to four and higher dimensions. 
This explains why we do not have an optimal (or even near-optimal) method for 
computing envelopes in four or higher dimensions yet. After presenting and 
analysing the algorithm, we study a few extensions of  envelope constructions. 
These will lead to several computational and combinatorial results used in later 
sections of  this paper. 

We next present the algorithm that constructs the upper  envelope of  a set, S, 
of  n triangles in three dimensions. Whenever convenient in the discussion we 
will make implicit assumptions about the triangles being in general position. The 
main reason is that we hope to get the point across if we leave out tedious 
complications. We see the general method, called the "simulation of simplicity," 
described in [EM] (see also [El ] ) ,  as a justification of this s loppy attitude. 

First, we need a few definitions. We write M(S) for the upper  envelope of S, 
and M*(S) for the subdivision obtained by projecting the faces of  M(S) vertically 
onto the plane x3 = 0 (see Fig. 2.1 which is borrowed from [PS]). In general the 
regions of  M*(S) are not convex. To make them convex we refine M*(S) by 
projecting all triangles vertically onto x3 = 0 and extending the 3[S I triangle edges 
to unbounded lines. The arrangement ~ defined by these lines is denoted by A(S), 
and /~r (S)  denotes the refined subdivision that we get by superimposing M*(S) 
and A(S). See Fig. 2.2 taken from [PS]; it shows the projection of three triangles 
and the extension of their edges yielding an arrangement of nine lines. In order 

1 The arrangement defined by a finite set of lines in the plane is the subdivision of the plane that 
we get by drawing the lines. It consists of vertices (points where lines intersect), edges (pieces of 
lines that connect vertices), and regions (connected components of the plane reduced by all lines). 
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Fig. 2.1 

to make M(S)  a viable representation of M(S) we associate each region o f / ~ ( S )  
with a pointer to the triangle that assumes the maximum height over this region. 
Since ~ t (S)  is a refinement of M*(S) this triangle is unique in any case. M*(S) 
and also M(S) can be obtained from M(S)  by merging adjacent regions above 
which the maximum height is assumed by the same triangle. By construction, the 
envelope vertically above a region of A(S) is a convex function. 

Algorithm 1 (constructs ~ t (S)  as a representation of the upper envelope of S) 

if [S[ -  < 1 then Construct M(S)  directly else 
Step 1. Partition S into sets $1 and $2 of sizes [IS]/2J and HSI/2]. 
Step 2. Cons t ruc t /~(SI )  and M(S2) recursively. 
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Step 3. Superimpose /~t(Sl) and A(S2) and, symmetrically, superimpose 
~t(S2) and A(SO. We denote the thus created subdivisions by hT/(St) 
and hT/(S~). 

Step 4. Construct A(S) which is A(S~) and A(S2) superimposed. Thus, 
hT/(S0 and/~/($2) are refinements of A(S). 

Step 5. For each region r of A(S) and for i = 1, 2 construct set S~.r_ Si that 
contains all triangles of St assuming the maximum height over a region 
of hT/(S~) contained in r. 

Step 6. For each region r of A(S) construct /~t(S) restricted to r by 
intersecting the half-spaces bounded from below by the planes that 
contain the triangles in S~.ru S2,r. h4(S) restricted to r is the vertical 
projection of the boundary facets of this convex polyhedron clipped at 
the boundary of r. 

endif. 

Let us now discuss the various steps of Algorithm 1 in further detail. At the 
same time we analyse the time-complexity of each individual step which will 
then lead to the recurrence relation 

T(n)= 2T(2)  + O(n:a(n)) 

for the amount of time, T(n), the algorithm takes. This recurrence relation solves 
to O(n2a(n)) (as in [PS]). 

The first nontrivial step of Algorithm 1 is step 3 which superimposes /~(Si) 
and A(S3-i), i=  1,2. The combinatorial analysis in [PSI guarantees that the 
number of faces in the resulting subdivision, hT/(S~), is O(n2a(n)), n = Isd ÷ ts21. 
Since all regions in both subdivisions, h~t(S~) and A(S3_i )  , a re  convex we can 
use the superimposition algorithm of Guibas and Seidel [GS] which takes time 
linear in the size of the output. Thus, step 3 takes O(n2a(n)) time. 

Step 4 superimposes two arrangements which can te  done in O(n 2) time, 
n = fs l+ ts2t, using again the same superimposition algorithm. Alternately, we 
could construct the resultant arrangement, A(S), from scratch which also takes 
only O(n 2) time (see [El]). 

To understand step 5 it is important to recall that subdivision hT/(Si), for 
i = 1, 2, as constructed in step 3 is a refinement of arrangement A(S) which is 
constructed in step 4. Thus, each region of A(S) contains several regions of 
hT/(Si). Recall also that each region of ~(/(S~) records the triangle that assumes 
the upper envelope above this region. The goal of step 5 is to collect, for each 
region r of A(S), the triangles associated with regions in hT/(St) and AT/(S:) 
contained in r. This can be done by visiting all regions of hT/(S~) using a graph 
traversal algorithm that first exhausts all regions contained in a common region 
of the arrangement and then goes to an adjacent arrangement region. This is a 
straightforward application of depth-first search (see [Tn]) which takes time 
proportional to the number of regions and edges of hT/(Si). Thus, step 5 also 
takes time O(n2a(n)). 
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Finally, we consider step 6 which is the most subtle part of  Algorithm 1. For 
each region r of  A(S) it constructs the intersection of  the half-spaces that are 
bounded from below by the planes that contain the triangles in Sl . ru  S2,r. I f  r 
is the ith region of A(S) and m,=lS,,rl+ls2,rl, then this can be done in 
O(rn~ log m~) time (see, e.g., [PrS]). Unfortunately, we only know that the sum 
of the ml is O(n2ct(n)) which does not imply anything better than that the sum 
of the rn~ log2 m~ is O(n2a(n) log n). Thus, to achieve O(n2ct(n)) running time 
we have to intersect the half-spaces in a somewhat more intelligent manner. To 
describe such an alternate algorithm define the slope of a triangle as the slope 
of the line of  intersection between the plane spanned by the xl- and the x3-axis 
and the plane that contains the triangle. I f  the slopes of  all triangles in St,r were 
smaller than the slopes of  all triangles in $2,, we could construct the intersection 
of the half-spaces by merging the recursively constructed polyhedra for S~,r and 
S2.r in linear time (see [PrS]). Unfortunately again, the recursion is such that the 
polyhedra constructed are not exactly those for the regions of  A(S) but for the 
regions of  A(SO and A(S2). For example, let r~ be the region of A(S~) that 
contains region r, for i = 1, 2. It is not advisable to use the polyhedron representing 
the subenvelope above r~ as a substitute for r 's polyhedron since it might have 
many facets that belong to half-spaces redundant above r. The combinatorial 
bound on the sum of the rn~ does not generalize to these larger numbers; thus it 
is crucial not to be generous at this point. 

The way out of this di lemma is to remember that the subdivision of r~ in/~/(S~) 
can be viewed as a representation of the polyhedron of r,. The separation of the 
triangle slopes implies that the intersection of the boundaries of the two polyhedra, 
the ones of  rt and r2 restricted to the area above region r in A(S), is a connected 
and piecewise linear curve. Figure 2.3 displays r~, r2, r, and the curve without 
showing the decompositions of  the regions. Keep in mind, however, that this 
curve can merge into the boundary of r and leave it again an arbitrary number 
of times. Because of  the slope condition, this curve has the property that it 
intersects any plane normal to the x2-axis in a single point. Using standard 
methods for merging two subdivisions along a monotone curve (see [PrS] and 
papers on merging Voronoi diagrams referred to in [PrS]), the total amount of  
effort is linear in the number  of  edges of  r plus the number  of  regions that 
subdivide r in hT/(S~) and /~/($2). In order to make this all work we have to 
provide the appropriate  subdivisions of  the regions of A(S). But these are 
provided by the superimposition of  M(Si)  and A(S3_~) which decomposes the 
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Fig. 2.3 
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subdivision of r~ into smaller pieces coinciding with regions in A(S). Thus, this 
superimposition in step 3 implicitly constructs the proper polyhedra (or suitable 
representations by subdivisions thereof) which can then be merged in linear time 
each. 

The only unresolved problem now is how we can guarantee that the slopes of  
the triangles in S~.r are smaller than the slopes of  the triangles in S2.r. But this 
can be achieved if the initial partitioning step of  Algorithm 1 constructs S, and 
S2 intelligently rather than arbitrarily. Just take the [IS[/2J triangles with smallest 
slopes, call this set S,,  and define $2 = S -S~ .  

We thus have an optimal algorithm for constructing the upper  envelope of n 
triangles in three dimensions. This is Algorithm 1 with two changes. First, the 
partition of the set of  triangles takes into account the slopes of the triangles. 
Second, step 5 is now superfluous and can be removed. This implies the main 
result of  this section. 

Theorem 2.1. The upper envelope of a set of n triangles in three dimensions can 
be constructed in O(n2ct(n)) time and storage. This is optimal in the worst case. 

We remark that Algorithm 1 can be modified so that it constructs the upper 
envelope of  n line segments in two dimensions in O(na(n)log n) time and 
O(na(n)) storage. The amount  of  storage is optimal since the envelope can 
consist of  O(nc~(n)) edges; whether or not the time bound is optimal is still an 
open problem. There is no difficulty in generalizing Algorithm 1 to four and 
higher dimensions, however, it is still an open problem whether or not this can 
be done such that the running time is o(nda(n)) for n d-simplices in d + l  
dimensions. This would then be optimal since the combinatorial complexity of 
the envelope is O(nda(n)) in the worst case. The main obstacle in obtaining this 
result is step 6 which intersects half-spaces. Currently there is no algorithm 
available that takes less than fl(m 2) time, where m is the number of  half-spaces, 
no matter how many or few faces the resulting polyhedron has. The combinatorial 
results in [PS] and [E2] only bound the sum of  the m, (where m, is the number 
of  nonredundant  half-spaces above the ith cell of  the d- dimensional arrangement) 
and not the sum of the m~. Indeed, there are cases where the sum of  the m~ is 
f~(n d÷l) and thus contradict the desired O(ndc~(n)) upper  bound. An approach 
that might be worth pursuing is to design an algorithm that follows the outline 
of  the divide-and-conquer proof  in [E2]. The main difference between Algorithm 
1 and such a hypothetical algorithm would be that the latter recurs for a constant 
number  of  nondisjoint subsets o f  d-simplices rather than for two disjoint subsets. 

The remainder of this section studies three extensions of the envelope problem 
which have algorithmic as well as combinatorial applications later in the paper. 
The first extension considers the region of  points that lie above the upper  envelope 
of  a finite set S of d-simplices and below the lower envelope of another finite 
set T of d-simplices in d + 1 dimensions. From the combinatorial results in [PSI 
and [E2] we know that both envelopes have complexity O(ndc~(n)), with n = 
I sl +ITI, and by Theorem 2.1 we can construct both envelopes in O(n2a (n)) time 
if d + 1 = 3. But how can we be sure that the intersection of the two envelopes 
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does not exceed these complexity bounds? In fact, it does not. One way to see 
this is to go through the proofs of  the o(ndot(n)) upper bounds for upper  
envelopes and to make one crucial change: rather than constructing the two 
envelopes above a cell of  the d-dimensional arrangement separately, we construct 
the region of  points between the two envelopes. Restricted to the area above a 
cell r of  the arrangement,  this region is the intersection of half-spaces and thus 
convex. It  follows that its complexity is bounded by the sum of the complexities 
o f  the two regions between the two corresponding upper  and lower subenvelopes. 
This is all we need to get the desired combinatorial result; also Algorithm I still 
works nicely in this extended case if d + 1 = 3. 

The second extension considers the special case where each d-simplex in d + 1 
dimensions is a half-hyperplane, that is, a portion of a hyperplane h restricted to 
one side of  a ( d - 1 ) - f l a t  in h. In d + l  = 2  dimensions a half-hyperplane is a 
half-line. For n such half-lines it is not difficult to show that the number  of  edges 
in the upper  envelope is at most 2n (see [E3]). This two-dimensional result can 
now be used as the base case of  the inductive analysis of  upper  envelopes in 
higher dimensions. Recall that the only reason for the a(n) factor in the com- 
plexity of  general upper  envelopes is that the base case considers line segments, 
and the upper  envelope of line segments has worst-case complexity O(na(n)). 
The reduction for half-hyperplanes in d + 1 dimensions leads to a linear number 
of  sets of  half-hyperplanes in d dimensions whose upper  envelopes have com- 
plexity O(n d-~) by inductive assumption. This leads to an upper  bound of  O(n d ) 
for the complexity of  n half-hyperplanes in d + 1 dimensions. Note that this 
bound also holds for the combinatorial complexity of  the region of points above 
the upper  envelope of one set of  half-hyperplanes and below the lower envelope 
of another set of  half-hyperplanes. Furthermore, Algorithm 1 takes only O(n 2) 
time if its input consists of  n half-planes in three dimensions. This is because 
the only step where the a(n) factor sneaks in (step 3) now has complexity O(n2). 

It is interesting to note the similarity between the upper  envelope of  a set of  
half-hyperplanes and the so-called zone of  a hyperplane in an arrangement of  
hyperplanes in d + 1 dimensions (see Chapter  5 of  [El]) .  In both cases, the 
combinatorial complexity is O(rl d) but the known proofs of  those two results 
are very different. 

Finally, we consider the case where the n d-simplices in d + 1 dimensions are 
pairwise disjoint (assuming they are relatively open). In this case, the maximum 
height above a cell of  the d-dimensional arrangement is assumed by only one 
d-simplex. The combinatorial complexity of  this arrangement is O(n d) which 
implies the same upper  bound for the envelope. The more dramatic effect of  the 
nonintersection assumption is that it simplifies Algorithm 1 significantly and thus 
allows us to generalize it to higher dimensions without loss of  worst-case optimal- 
ity. Steps 3 and 4 are now the same since /~t(S1)= A(S~), A4r(s2)= A(S2), and 
therefore .r~ir(S1) = ~7/($2) = A(S). In step 5 set Si.r is the singleton set that contains 
the highest simplex in St above the region in A(S~) containing region r in A(S). 
Thus, step 6 simplifies to a comparison between the simplex in Sl.r and the one 
in S2.r, for every r. The most expensive step of  this algorithm is now the 
superimposition of  arrangements A(SI) and A(S2) which can be done in quadratic 
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time if d + 1 = 3. In arbitrary d + 1 dimensions, this operation takes O(n d) time, 
for n = I S~I+ I S2t (see [El i ) .  Thus, we now have an algorithm that runs in arbitrary 
dimensions and takes O(n d) time. 

A similar effect (namely that the combinatorial complexity of  the envelope is 
O(n d) rather than O(nda(n))  can be observed when the n d-simplices in d + t  
dimensions intersect in a certain restrictive manner. For example, if intersections 
occur only on the highest level of  the recursion (talking in terms of the divide-and- 
conquer algorithm) then this is true. This proves that the upper  envelope has 
complexity O(n d) if the set of  d-simplices is the union of two sets with the 
property that any two d-simplices in the same set are pairwise disjoint. Unfortu- 
nately though, the computational complexity in this case might deteriorate to 
O(n 2 log n), d + 1 = 3, if the first divide step separates the union into the two sets 
rather than discriminating by slope. 

We summarize these results. 

Theorem 2.2. Let S be a set of  n d.simplices in d + 1 >- 3 dimensions and let T be 
another such set whose cardinality is at most n. 

(i) The region of points above the upper envelope of  S and below the lower 
envelope of  T has combinatorial complexity O(nda(n)) .  In d + l = 3  
dimensions it can be constructed in O(n2a(n))  time and storage. 

(ii) I f  all d-simplices in S are half-hyperplanes, then the combinatorial complexity 
of the upper envelope o r s  is O(nd),  and it can be constructed in O(n 2) 
time i f  d + 1 = 3. I f  all d-simplices in T are also half-hyperplanes, then the 
same complexity bounds hold for the region of  points above the upper envelope 
of  S and below the lower envelope of  T. 

(iii) I f  the d-simplices in S are pairwise disjoint, then the combinatorial complexity 
of  the upper envelope is O(n a) and it can be constructed in O(n d) time. 

(iv) I f  S is the union of  two disjoint sets with the property that any two d-simplices 
in the same set are disjoint, then the combinatorial complexity of  the upper 
envelope is O( n d ). 

The remainder of  this paper  considers applications of  Theorems 2.1 and 2.2 
to several problems in computational and combinatorial geometry. 

3. Hidden Line and Surface Removal 

Imagine that we take a picture of  a three-dimensional scene from a point at 
infinity. To compute what this picture looks l ike--assuming opaque objects--is 
commonly known as the hidden line/surface removal problem. Because of the 
importance of this problem for practical applications there are many algorithms 
in the literature that were suggested for the problem (see, e.g., [SSS] for a 
classification of several such algorithms). It is usually assumed that the objects 
in the scene are determined by their piecewise linear boundaries (they are 
polytopes) and that they do not intersect. We would like to mention that there 
is no essential difference between the view from a point at infinity (a parallel 



The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 321 

view) and the view from a finite point (a perspective view). Indeed, for every 
plane through a finite viewpoint there is a projective transformation that maps 
the plane to the infinite plane and therefore the viewpoint to infinity. The polytopes 
are mapped to polyhedra such that the parallel view from the new point is equal 
to the perspective view from the old point on one side of the plane. Note, however, 
that this transformation moves points to infinity and lets them come back on the 
other side of  space. In other words, polytopes gradually disappear on one side 
and, at the same time, come back on the other side of space. Thus, in order to 
get a valid picture we need to make sure that the viewpoint is shielded from the 
polytopes that come into the picture by traveling through infinity. Such a shielding 
mechanism is provided if we map the original infinite plane to a finite plane, 
using the same transformation, and use this plane as a background screen when 
we take the picture. 

In this section we adopt a generalized definition of the hidden line/surface 
removal problem which is neither restricted to three dimensions nor to noninter- 
secting objects. We first discuss the more standard case of nonintersecting objects 
and later we extend the analysis to handle intersecting objects. We also give some 
applications for this extension. 

In d + 1 dimensions, the objects in the scene are modeled by a collection of 
d-dimensional simplices; for convenience we assume that they are relatively open. 
The problem is now the same as computing the upper  envelope of the d-simplices 
assuming that the viewpoint is in the direction of the positive (d + 1)st coordinate 
axis. We can thus use the algorithms of Section 2 to solve the hidden line/surface 
removal problem. Since we presently assume that no two d-simplices intersect 
(although their relative boundaries might intersect which it is important to allow 
if we model a polytope by d-simplices), we can use Theorem 2.2(iii) to get the 
following result. 

Theorem 3.1. Let S be a set o f  n pairwise nonintersecting relatively open d-simplices 
in d + 1 dimensions. The combinatorial complexity o f  a view is O( n d ) which is best 
possible in the worst case. Furthermore, it can be constructed in O( n d ~- n log n) time. 

In three dimensions, that is, if d + 1 = 3, the same time complexity was pre- 
viously obtained by [Dv] and [M] who use known algorithms for constructing 
arrangements in the plane. 

Note that the O(n  d) bound for the combinatorial complexity holds even if 
we make the d-simplices translucent. Rather than computing only the topmost  
d-simplex above a given point we determine the topmost  l, for some constant l, 
and the "color"  at this point is a function of all l simplices. 

Consider next generalizations of  the hidden line/surface removal problem that 
arise when the given d-simplices are allowed to intersect. In this case, the problem 
is exactly the envelope problem studied in Section 2. As an example where this 
extension is needed we mention an operation that is useful in visualizing a 
four-dimensional scene given by n pairwise disjoint relatively open tetrahedra. 
Project these tetrahedra onto three dimensions and compute various views of 
this three-dimensional scene. Since we lose one dimension when we go from four 
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to three dimensions, the tetrahedra in three dimensions will, in general, intersect. 
An alternate interpretation of this operation is that we compute views of the 
four-dimensional scene by moving vertical lines in a given direction until they 
hit an object. The "view" shows the first object hit by any such line. Note that 
this visualization of the four-dimensional scene is different from a projection 
onto a two-dimensional plane along a predefined direction. 

Another application where intersections occur is in Constructive Solid 
Geometry (CSG) where an object is constructed from simple building blocks by 
means of intersection and union. The object is then represented by the tree whose 
leaves are the building blocks and each inner node stands either for the union 
or the intersection of the objects defined in its subtrees. A view of the object can 
be computed by postorder traversat of the defining tree. A special case in which 
Algorithm 1 is most effective is when the object is simply the union (or intersection) 
of  many (polyhedral) building blocks, or when its CSG tree has at most two 
levels. For an arbitrarily defined object, however, Algorithm 1 may not be very 
efficient. 

4. Translating a Polyhedron in Three Dimensions 

An object, B, in some space cannot be moved to any arbitrary position if there 
are obstacles present which it has to avoid. The motion-planning problem for B 
is to calculate the space of  all placements of  B, called the free placements of/3, 
in which it does not collide with any obstacle (see [HSS] for a recent compendium 
of work done on motion planning). In this section we consider special cases of 
motion planning in which B is allowed to translate but not to rotate. The problems 
that we address make sense in arbitrary dimensions but for simplicity and also 
because it is the most important setting, we discuss only the three-dimensional 
case. The much simpler two-dimensional case has been studied in [KLPS], [LS], 
[PSS], and [GSS]. I f  the object as well as the obstacles are polyhedra, that is, 
their boundaries are piecewise linear, then these motion-planning problems lead 
to certain envelope questions as we will see below. 

Let B be an open three-dimensional polyhedron bounded by k facets and let 
A1, A2 . . . .  , Am be closed convex polyhedral obstacles bounded by a total number 
of  n facets. It is not essential that B is open, only the description of our results 
is slightly easier this way because, otherwise, we have to allow B's boundary to 
intersect the boundary of an obstacle--only the interiors have to be disjoint. All 
results are true for B closed if we change the phrasing of the results accordingly. 
We assume that the Ai are convex; so any nonconvex obstacle is split into convex 
pieces beforehand (see [C]). Our goal is to calculate the set of  all translates of 
B that avoid the obstacles. The standard approach to solving this problem, initially 
proposed in [LW], uses Minkowski differences between the A+ and B. A translate 
B' of  B is determined by its translation vector b, that is, 

B ' = B + b = { x + b l x e B  }. 
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We interchangeably think of  b as a vector and as a point. B' intersects obstacle 
A, if and only if there is a point y ~  A, and a point  x e  B such that x + b  =y ,  
which is equivalent to b = y - x .  Another  way to say this is that B' and A~ are 
disjoint as long as b is not  in the set 

K , =  A , - B = { y - x [ y 6 A ,  and x e B } .  

K, is known as the Minkowsk i  difference of  A, and B and is sometimes referred 
to as the " expanded"  or "g rown"  obstacle. It is clear that B'  lies in a free position 
if and only if b does not belong to K = U~=~ Ki. We can thus represent the set 
of free positions by its complement ,  K c. 

To get a handle on the combinatorial  complexity of  K c assume that obstacle 
A, is bounded  by n, facets; thus, ~ _ j  n, = n. Except  for degenerate cases, each 
facet o f  K, is the Minkowski difference o f  a facet o f  A, and a vertex o f  B, of  an 
edge o f  Ai and an edge of  B, or of  a vertex o f  A, and a facet of  B. The number  
of such pairs is O ( k .  n,), in contrast to the planar  case where this number  is 
only O ( k +  n,) (see [GRS]) .  This implies that K~ is bounded  by at most  O ( k .  n~) 
faces. As a matter o f  fact, the number  o f  facet-vertex and vertex-facet  pairs is 
O ( k + n , ) ,  only the number  o f  pairing edges can be quadratic. Thus, the K~ 
altogether can be modeled by O ( k .  n) triangles which implies that the number  
of faces needed to describe K c, the set o f  free placements of  B, is O ( k  3 • n3). I f  
B is nonconvex  there are cases where the boundary  of  K c consists o f  f l (k  3 • n 3) 
faces (see Fig. 4.1: the "triple fork"  of  size k can be locked into the "three-sided 
cage" of  size n in f l (k  3 • n 3 )  different ways) which shows that the trivial bound  
is asymptotically tight. I f  B is convex, then no such example is known and a 
plausible conjecture is that  K c is bounded  by at most O ( k  2 • n 2 • c~(k. n))  faces. 
It is rather easy to give examples where the complexity in question is f l (k  2 • n2). 
Our goal is to show that the complexity o f  K c is much lower than propor t ional  
to k 3 • n 3 in certain important  cases, or failing that, to show that the complexity 
of a single connected componen t  o f  K c (which is often all we need to consider) 
is small. 

Consider  first the general case. If  we are interested in the set o f  free placements 
that can be reached by B from its initial posit ion without ever interfering with 

Fig. 4.1 
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obstacles, then we actually ask for the connected component  of  K c that contains 
the origin--rather  than for the entire K c. To get an upper bound on the com- 
binatorial complexity of  this connected component  we can use Theorem 4 in 
[PS] which shows that there are at most O((k .  n) 3-1/49) faces in its boundary. 
Unfortunately, the proof  of this result is nonconstructive and does not lead to 
an algorithm that constructs the connected component  in o ( k  3 • n 3) time. Hence, 
in the general case, even though this result sheds light on the problem structure, 
no satisfactory solution is yet available. Improvements  over these results have 
recently been obtained in [AS]. 

Things are much improved, however, when we consider the special case in 
which the obstacles A~ collectively form a so-called polyhedral terrain. This is a 
piecewise linear surface that intersects every vertical line in exactly one point. B 
is still assumed to be an arbitrary, thus not necessarily convex, polyhedron and 
we wish to find all free placements of  B above this terrain, E. Again, we represent 
such a placement B' by the point b such that B' = B + b and use the preceding 
analysis to obtain the space of  free placements K c, with K defined as above. Of 
course, in this restricted case the resulting set K ~ is connected: B can be translated 
from any free placement to any other in a canonical manner by first moving 
upward to a sufficiently high position, then translating horizontally to a position 
above the target position, and, finally, descending to the desired position. 
Nevertheless, the calculation of  K ~ is significant in certain applications. Such an 
example occurs when B is required to maintain a fixed maximal vertical distance 
from E, for example, when B surveys E from close distance as it flies over it. 
Also, by preprocessing the boundary of K c into a data structure which supports 
fast point location queries, we can decide in logarithmic time whether or not a 
given placement of  B is free (see Chapter 11 of [El  ] for an optimal data structure 
that supports point location queries). This method can also be used to determine 
the point(s) of  contact of  B's closure with E as it is lowered until it touches E. 
I f  the obstacles together form a polyhedral domain, then the boundary of K c is 
the upper  envelope of the expanded obstacles K~ = A~-  B. Theorem 1' in [PS] 
and the algorithmic results in Section 2 of this paper  now imply the following 
result. 

Theorem 4.1. Let B be a polyhedron bounded by k facets and let ~, be a polyhedral 
terrain with n facets. Then the number of  faces bounding K c, the set o f  free placements 
of  B, is O(k  2. n 2 • ct(k.  n)) and it can be constructed in the same amount of  time. 

The preceding arguments can be generalized to cases where we allow B to 
translate only along a single half-line from its current position. Two-dimensional 
variants of  this problem have been studied extensively by Toussaint and others 
(see [Tt] for a survey). By applying an appropriate projective transformation 
(similarly as in Section 3) we can assume that B is initially at infinity and is 
allowed to descend along vertical lines only. For an arbitrary collection of 
obstacles Ai we only need to find the upper  envelope of  the expanded obstacles 
Ki = A ~ - B  (again, remembering to add the transformed image of the "back- 
ground" plane at infinity). For each vertical line, this envelope gives the first 



The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 325 

obstacle hit by B if it moves along this line. If no obstacle is in the way of B's 
vertical movement, then the envelope shows the former infinite plane as the 
obstacle hit first. In the untransformed space this corresponds to B moving to 
infinity without ever hitting an obstacle. Using our combinatorial and computa- 
tional knowledge about envelopes we get the following result. 

Theorem 4.2. Let B be a polyhedron bounded by k facets and let A~ , A2, . . . , A,,  
be (possibly intersecting) convex obstacles bounded by a total o f  n facets. The set 
of free placements of  B that are reachable by translating B along all possible half-lines 
is bounded by O(n2ct(n)) faces and can be constructed in O(n2a(n))  time. 

We conclude this section with an argument that supports our conjecture that 
the combinatorial complexity of K c is only nearly quadratic in k. n if B is convex. 
Here we do not assume that the obstacles form a polyhedral terrain. We show 
that this is true if B is a line segment. To show this it suffices to demonstrate 
that there are only O(n 2) free placements of B in which it simultaneously makes 
contact with three obstacles. These triple contacts correspond to the vertices of  
KL In each such triple contact one of the contacts must be at a point of  B 
different from its two endpoints. This point must touch an edge of an obstacle 
provided we ignore degenerate cases. Fix such an obstacle edge e and consider 
the plane h through e that is parallel to B. When B translates within plane h, 
maintaining contact with e, it can reach at most O(n)  placements at which it 
makes two more contacts with the obstacles (see [KLPS]). From this the claim 
follows readily. 

5. Stabbing Line Segments and Polytopes 

Finding transversals of a finite set of objects is the first of two problems discussed 
in this paper that relate to envelopes by means of a geometric transformation. 
The second such problem deals with certain Voronoi diagrams for sets of point 
clusters. In Section 6 we show that this problem is in fact closely related to the 
stabbing problem of this section. 

Let S be a finite set of  connected objects in d + 1 dimensions. (We use d + 1 
to denote the dimensionality, rather than d, in order to be consistent with the 
notation in Section 2.) A hyperplane is a transversal of S if it intersects each 
object in S; we also say that it stabs S. Since a hyperplane intersects a connected 
object if and only if it intersects its convex hull, we can assume without loss of 
generality that all objects in S are convex. We consider the problem of finding 
all transversals of S, or a representation of this set, assuming that S is a collection 
of convex polytopes. The complexity of a solution will be measured in terms of 
n, the total number of vertices of the polytopes. In three dimensions, Euler's 
relation implies that n is proportional to the number of edges and facets bounding 
the polytopes. This is no longer true in four or higher dimensions. For this reason 
we restrict most of our discussion to d + 1 = 3 dimensions and comment on the 
difficulties encountered in four and higher dimensions at the end of this section. 
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Earlier results on this problem can be found in [E3] which gives an O(n log n)- 
time algorithm for S a set of n line segments in the plane, and in [AD] which 
gives an O(mnd)-time algorithm for m polytopes bounded by n edges in d +  1 
dimensions. Alternatively, O(nd+')- t ime algorithms are possible for the case of 
polytopes in d +  1->3 dimensions using known algorithms for constructing 
arrangements of  hyperplanes in d + 1->3 dimensions (see Chapter 7 of [Eli) .  
We show in this section that this straightforward bound can be improved to 
O(n 2) in the case of  line segments and to O(n2a(n)) in the case of  convex 
polytopes in three dimensions. These results are optimal in the worst case in a 
sense that will become clear later. 

Our development is based on a dual transform, 9 ,  that maps a point to a 
plane and vice versa. I f  p = (rr,,  rr,, rr3) is a point in three dimensions, then we 
define the plane 

~ ( p ) :  X3=27rtxl+27r~X2--Tr3. 

Notice that 9 ( p )  is nonverticai, that is, it intersects the x3-axis in a unique point. 
If  h is a nonvertical plane we define 9 ( h ) = p  such that h = 9 ( p ) .  Thus, ~ is 
involutary by definition. It is fairly easy to show that 9 preserves incidence 
relations (p 6 h if and only if 9 (h) ~ @ (p))  and order relations ( p lies vertically 
above h if and only if 9 ( h )  lies vertically above 9 ( p ) ) .  

We next extend 9 to point sets and, in particular, to polytopes. For ~ a point 
set in three dimensions we define 

9(g' )  = U 9(x) ,  
xC ;~  

that is, 9 ( ~ )  is the set of  all points that belong to at least one plane dual to a 
point of  ~. We call 9 ( ~ )  the stabbing region of ~. Since 9 preserves incidences 
we have p c  9 ( ~ )  if and only if plane @(p) intersects ~. Figure 5.1 illustrates 
these definitions. It shows ~ as a convex pentagon in two dimensions and displays 
the stabbing region of ~. It also shows a line intersecting the pentagon and its 
dual point which, of course, belongs to @(~).  I f  ~ is a (connected) polytope, 
then 9 ( ~ )  is the set of  all points that are neither vertically below all planes 
corresponding to vertices of  ~ nor vertically above all such planes. This is because, 
for such a point x, its dual plane, 9 ( x ) ,  stabs ~ and thus must separate at least 

l lmtIRll 

Fig. 5.1 
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one pair of  vertices of  ~. For ~ a line segment there are only two vertices and 
thus only two dual planes. Consequently, ~ ( ~ )  is the double wedge of points 
that lie vertically between the two planes corresponding to the line segment's 
two endpoints. 

By definition, a transversal is a plane that cuts all polytopes in S. It follows 
that plane h is a transversal of S if and only if its dual point, ~ ( h ) ,  belongs to 

~(s)= N ~(~). 

This intersection is termed the stabbing region of S. It is a representation of all 
transversals of  S. Notice that the transformation, as currently defined, excludes 
vertical planes which thus have to be treated separately. One way to do this is 
to vertically project the polytopes onto the plane spanned by the xi- and x2-axis 
and to solve a two-dimensional stabbing problem for this set. Every transversal, 
which is now a line, corresponds to a vertical transversal, a plane, of the original 
set, S. 

For a given polytope ~, @(~)  is the set of  points below or on 0//~ and above 
or on ~ p ,  where ~//~ (resp. ~op) is the upper  (lower) envelope of the planes dual 
to the vertices of  ~. These are piecewise linear bivariate functions. Thus, the 
stabbing region, S#(S), is the set of  points below or on the lower envelope of all 
functions ~//~ and above or on the upper  envelope of all functions ~ .  Using 
results from Section 2 we can give bounds on the combinatorial complexity of  
b~(S) and on the amount  of  time needed to construct it. 

In order to analyse 5e(S) we model each function ~/~ and ~ by a collection 
of  triangles in three dimensions. If  m is the number of  vertices of ~, then ~//~ 
and ~ can be decomposed into O(m) triangles. This puts us into the situation 
described in Theorem 2.2(i). The upper bound on the combinatorial complexity 
can be improved from O(n2a(n))  to O(n 2) if S is a set of  n line segments. This 
is because each ~/~ and ~ is composed of  two half-planes that meet at a common 
line. The improvement now follows from Theorem 2.2(ii). 

Theorem 5.1. Let S be a set of  convex polytopes in three dimensions and let n be 
the total number of  vertices. 

(i) The number of  faces bounding b~(S) is O(n2a(n))  and so is the amount of  
time needed to construct bD( S). Both bounds are tight in the worst case. 

(ii) The number of faces bounding AD(S) is O(n 2) if  all polytopes in S are line 
segments. In this case, O(n:) time suffices to construct b~(S). Both bounds 
are tight in the worst case. 

Using the lower bound examples indicated in [PS] it is not difficult to prove that 
all bounds are asymptotically tight in the worst case. In this context it is interesting 
to note that examples with fl(n2t~(n)) faces can be modeled even with the 
restriction that all polytopes in S are triangles in three dimensions. 

If  we specialize the computational results of  Theorem 5.1 to d + l  = 2  
dimensions, we get an algorithm that constructs the stabbing region of polygons 
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with a total of  n vertices in O(na(n) log n) time, and in O(n log n) time if all 
polygons are line segments. The former result is new although it follows easily 
from the combinatorial analysis of  two-dimensional envelopes in [HS] and the 
algorithmic techniques in [E3]. The latter result dates back to [E3]. Note the 
log n term in the time-complexity that comes up in two dimensions. The reason 
for this extra term is that the homogeneous solution of the recurrence relation 
that describes the time-complexity is essentially the same as the additive term 
(see Section 2). In three dimensions the additive term is significantly larger than 
the homogeneous solution which explains why the log n term disappears. 

We conclude this section with a few remarks about the generalization of our 
methods to d + 1->4 dimensions. The first difficulty that arises is combinatorial 
and concerns the decomposit ion of  the °/19 and Lt'~ into d-simplices. The total 
number  of  vertices of  the input polytopes, n, is proportional to the number  of  
facets of  the o//~ and ~ ,  but it might very well be that the number  of  lower- 
dimensional faces of  the ql~ and Leg by far exceeds O(n). Indeed, in d +  1 = 4 
dimensions their number  is f~(n 2) if S consists of  a constant number of  cyclic 
polytopes. Such constellations need more than O(n) simplices to model the 
boundary of the stabbing region by two envelopes of  simplices. This weakens 
our bounds on the combinatorial complexity of  stabbing regions which use 
envelope bounds. Even if we had a method that circumvents the sketched 
difficulty, there is no algorithm known that constructs the stabbing region in time 
o(n d+l) because of  reasons explained in Section 2. But O(n d+l) is straightforward 
if we use arrangement algorithms as mentioned above. 

6. Voronoi Diagrams of  Point Clusters 

In this section we consider applications of envelopes to a certain generalization 
of  Voronoi diagrams. This generalization can be defined in any number of 
dimensions, and we will do so, but our discussion of  the combinatorial and 
computat ional  complexity is mostly confined to the plane. The diagram that we 
have in mind bears close relationship to the notion of  complete linkage clustering 
(see, e.g., [H]). For this clustering method, the distance between any two clusters 
is defined as the maximum distance between any two points, one of  each cluster. 
We come back to this clustering method at the end of  this section. 

Let B denote the Euclidean distance function. For a set of  points, C, called a 
cluster, and for a point p, define 

8(p, C) = max{8(p, x)lx ~ C} 

as the distance between p and C. In most cases we let C be finite and, whenever 
it is convenient to have C infinite, it will be the convex hull of  a finite number 
of  points in which case the maximum of  the distances between p and points of 
C is well defined. The definition of 8(p, C)  implies that the closed ball with 
center p and radius 8(p, C) contains cluster C. In fact, it is the smallest ball 
centered at p for which this is true. Now let S be a finite set of  clusters. The 
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Voronoi diagram of S, °U(S), is a partition of space into maximal (but not 
necessarily connected) domains, one for each cluster, such that a point p belongs 
to the domain associated with cluster C if 6(p, C)< ,~(p ,  D) for all clusters 
D # C in S. See Fig. 6.1 for an example. It is convenient to replace a cluster C 
by its convex hull which is all right since the distance of a point p from C is the 
same as its distance from the convex hull of  C. The clusters in Fig. 6.1 are A 
(two points), B (two points), and C (three points). The domain of B consists of 
two connected components which we call regions. The solid lines show the Voronoi 
diagram and the dashed lines decompose each region using the furthest point 
Voronoi diagram of the cluster. This is the diagram that associates with each 
point the part of  the domain for which the point is the furthest point of  the 
cluster. The significance of this decomposition is that it shows which point of  
the cluster attains the distance to the cluster and where it does so. 

Below, we discuss some properties of this kind of Voronoi diagram. First, we 
demonstrate that they are closely related to envelopes and thus derive general 
upper bounds on their complexity. Second, we study the special case where the 
convex hulls of  the clusters are disjoint. It turns out that this condition reduces 
the combinatorial complexity of  the diagrams dramatically. For simplicity, we 
restrict our  attention to the two-dimensional case. Three- and higher-dimensional 
cases can be treated in the same way as the stabbing problem in four and higher 
dimensions (see Section 5); we thus omit all details pertaining to these extensions. 
Specifically, we prove the following theorem. 
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Theorem 6.1. Let S be a set of  clusters in the plane and let n be the sum of  the 
cardinalities of  the clusters. 

(i) The number of  faces of°V(S) is O(n2a(n)) .  
(it) I f  each cluster consists o f  one or two points, then the number of  faces of  

~V(S) is O(n2), and this is tight in the worst case. 
(iii) I f  the convex hulls o f  any two clusters are disjoint, then ~ ( S )  contains at 

most ]S[ regions. The number of  edges and vertices in this case is O(n). 

Proof The proof  consists of  three fairly independent steps. First, we demonstrate 
the upper  bounds in (i) and (it) by means of envelopes in three dimensions. 
Second, we construct an example that proves the lower bound on the maximum 
complexity stated in (it). Finally, we show that the domain of a cluster is connected 
if the convex hulls of any two clusters are disjoint. This leads to a proof  of  (iii). 

In order to relate ~V(S) to an envelope of triangles in three dimensions we 
use two geometric transforms. Let p = (7r1,7r2) be a point in the two-dimensional 
plane which we associate with the plane x3 = 0 in three dimensions. The first 
transform, U, projects p vertically onto the paraboloid of revolution given by 
X 3 = X 2 - ~ X  2 , that is, 

u(p) = I ~,, ~~, ~~ + ~~). 

The second transform, ~, maps p to the unique plane that touches the paraboloid 
in point U(p) ,  that is, 

(~rl+ 7r2). ~ (p) :  x3= 2rrlxl + 2n.2x2_ 2 2 

These transforms can be used to express distance information in two dimensions 
as combinatorial information in three dimensions. The crucial property here is 
that 62(p, x), the square of  the distance between points p and x in the plane, is 
equal to the vertical distance between point U(x)  and the vertical projection of 
x onto plane g~(p) (see Chapter  1 of  [El]) .  The distance from x to a point p is 
thus the square root of  the vertical distance from point U(x)  down to plane 
g~(p). Consider now a cluster of  points, C, instead of a single point. The distance 
from x to C, 6(x, C), is equal to the square root of the largest vertical distance 
from U(x)  to any of the planes ~(p) ,  p ~ C, that is, to the lower envelope, ~<-, 
of  all these planes. If  C contains m points, then this envelope is the boundary 
of a convex polyhedron consisting of at most m facets which can be decomposed 
into O(m)  triangles. Let M be the upper envelope of all the surfaces Lec, C ~ S. 
Then a point x lies in the domain of cluster C exactly when ~7c is vertically 
nearest to U(x)  among all ~qo, D ~  S. Since U(x)  lies above all surfaces ~D, 
this is equivalent to ~ c  attaining the upper envelope M at x. Thus, we get °V(S) 
by constructing the upper  envelope of the surfaces ~ o ,  or more specifically of 
the triangles composing these surfaces, and then projecting the faces of the 
envelope vertically onto the plane x3 = 0. The upper  bound of (i) now follows 
immediately from Theorem 1' in [PS]. I f  each cluster consists of  at most two 
points each, the ~ o  are either single planes or two half-planes glued together 
along a common line. For these functions we have an upper  bound of O(n 2) for 
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Fig. 6.2 

the combina to r i a l  complex i ty  as a rgued in Sect ion 2. This proves  the u p p e r  b o u n d  
in (ii). 

We next  show the lower  b o u n d  in (ii). Assume  wi thout  toss o f  general i ty  that  
n = 4 k  for  some  in teger  k. We descr ibe  a set S o f  2k clusters,  each conta in ing  
two points ,  such that  ~ ( S )  has  ~ ( n  2) regions.  This example  is i l lus t ra ted in Fig. 
6.2. It consists  o f  k po in t  pai rs  on the x~-axis such that  the  ith pa i r  can be 
ob ta ined  by  moving  the ( i - 1 ) s t  pai r  a d i s tance  e to the right,  for 2 ~  i ~ - k and  
e > 0 sufficiently small .  More  specifically,  we choose  the first pa i r  o f  points  at 
locat ions ( - 1 ,  0) and  (1 - ( k  - 1) • e, 0), with k .  e ~½. Note  that  this impl ies  that  
the x2-axis is a symmet ry  axis o f  the 2k points .  The Voronoi  d i ag ram of  these 
clusters only  consists  of  k -  2 vert ical  slabs o f  width e, one for  each pa i r  except  
for the first and  the last,  and  two hal f -p lanes ,  one for the first po in t  pa i r  and  one 
for the last.  N o w  add  ano the r  k poin t  pairs  on the  x~-axis. To descr ibe  how these 
points are  to be  chosen,  we take  a po in t  p and  move it upward  inside one  o f  the 
slabs. F o r  each loca t ion  o f  p we cons ider  the smal les t  disk with center  p that  
contains the hor izonta l  po in t  pa i r  co r r e spond ing  to the slab. By cons t ruc t ion ,  the 
disk conta ins  no o ther  hor izon ta l  cluster.  Since the hor izonta l  clusters are a lmost  
identical ,  the  wander ing  d isk  is a lmost  the same for po in t  p moving in any other  
slab. Thus,  we can choose  po in t  pairs  on the x2-axis such that  the disk a l ternates  
between con ta in ing  one vert ical  cluster  and  conta in ing  no vert ical  cluster.  Each 
slab is then d e c o m p o s e d  into 2k + 1 pieces,  k + 1 of  which define the d o m a i n  of  
the co r r e spond ing  hor izonta l  cluster.  The lower  b o u n d  in (ii) fol lows.  

F ina l ly ,  we prove  tha t  each d o m a i n  is connec ted  if  the convex hul ls  o f  the  
clusters are  pa i rwise  dis joint .  The  p r o o f  takes  two steps. First ,  it verifies tha t  the 
skeleton o f  the furthest  po in t  Voronoi  d i ag ram 2 o f  a cluster ,  for  shor t  the  skele ton 

2 The  skeleton of a cluster C is the set of points x such that there are at least two points c ~ C 
that maximize ~(x, C). It is a straight line tree with at most m - 2  vertices and 2m -3  edges, if m is 
the number of points in C. For convenience we define the skeleton to be the point c itself if C = {c}. 
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of  the cluster, intersects the domain of the cluster in a connected tree. Second, 
it shows that an arbitrary point of  the cluster can be connected to this tree by a 
straight line segment that lies entirely within the domain of  the cluster. We do 
the second step first because it is simpler than the first step. Let p be a point that 
belongs to the domain of  a cluster C (see Fig. 6.1). By definition, C is the only 
cluster that is fully contained in the closed disk with center p and radius 8(p, C). 
Let c be the point in C such that ~(p, c) = ~(p, C). I f  c is not unique, then p 
already belongs to the skeleton of  C. Otherwise, move p straight toward c until 
it runs into an edge of the skeleton. The disk at every intermediate location of p 
lies strictly inside p 's  original disk which implies that it contains no other cluster 
besides C. It is clear that p must run into an edge of the skeleton for, otherwise, 
the disk of  p would eventually vanish, which can only mean that c is the only 
point in C and thus is equal to the skeleton of C by definition. 

We now prove that if two points, x and y, on the skeleton of C belong to the 
domain of  C, then all points between x and y on the skeleton of C also lie in 
this domain. Note that the set of  points between x and y is well defined since 
the skeleton is a tree. Let us introduce some definitions. For z an arbitrary point 
of  the skeleton of C we write d~ for the smallest closed disk with center z that 
contains C, and we let 0~ denote the circle bounding dz. Since z belongs to the 
skeleton of C there are at least two points in C that maximize the distance from 
z; by definition these points lie on 0~. The line segment connecting such two 
points in C n 0z is called a C.chord of 0~ (see Fig. 6.3(b) which shows the C-chord 
of Oz). 

We now come back to proving that if x and y are two points on the skeleton 
of C that belong to the domain of  C, then any point z between x and y belongs 
to the domain of C. By definition, the only cluster contained in dx is C and 
similarly C is the only cluster contained in dy. Consider d~, the smallest disk 
around z that contains C. I f  d~ is to contain another cluster, D, at least one point 
of  D must lie in d~ - d~ and at least one point of  D must lie in dz - dy; otherwise, 
D is contained in d~ or dy too. We prove below that d ~ -  dx and d~-dy  are 

s'X\ 

\\ 

(a) (b) 

Fig. 6.3 
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separated from each other by a C-chord of 0~ (as in Fig. 6.3(b)). This implies 
that the convex hulls of  C and D intersect, a contradiction. 

We first consider the slightly simpler case that z is not a vertex of the skeleton 
and thus belongs to an edge of the skeleton. In this case, 0z has only one C-chord 
which we call s; the endpoints of s cut 0~ into two arcs. Both dx and dy contain 
s (as they contain C) which implies that s separates dz-  dx from d~-dy unless 
both 0x and Oy intersect 0~ in the same arc. We now prove that this is not 
possible. 

Think of a point ~" continuously moving on the skeleton from x to y, and let 
z be this point at some instance of time. When ~ moves away from z its circle, 
0;, moves too. It still goes through the endpoints of s, the common C-chord of 
0~ and 0~, but d~ grows along one arc of 0~ and it shrinks along the other arc. 
We call the former the growing arc and the latter the shrinking are of 0;. As long 
as ~" moves on the same edge of  the skeleton the growing arc and the shrinking 
arc do not change, that is, they are always determined by the endpoints of the 
same line segment, s. The shrinking arc hits another point, c, of C at the same 
instance of time when ~" encounters a vertex of the skeleton. (Note that the 
growing arc cannot hit a point of C since all points of C are inside the circle.) 
Now 0; contains three points of C, the endpoints of s and point ¢. When ~" moves 
on, one of the two line segments connecting c with the endpoints of s becomes 
the unique C-chord of O~. Since c lies on the shrinking arc of O~ when ~ encounters 
the vertex, the new shrinking arc can only be smaller than before, and the new 
growing arc can only be larger than before. This proves that d¢ - dx strictly grows, 
that is, if z is a point between x and y and z' is a point between z and y, then 
d z -  dx ~-d~,-d~. By a symmetric argument, d ~ - d r  strictly shrinks as r moves 
from x to y. Consequently, 0x cannot intersect the shrinking arc of 0~ and 0y 
cannot intersect the growing arc of 0~. This implies the claim for z being a point 
of an edge of  the skeleton. 

Finally, if z is a vertex of the skeleton then 0~ contains three points of C which 
cut O~ into three arcs. One arc is growing when ff is immediately before and 
immediately after z, and one arc is shrinking both times. The third arc changes 
from shrinking to growing. Since d~ - d~ is strictly growing 0~ intersects neither 
the shrinking nor the status-changing arc, and since dc-d~, is strictly shrinking 
Oy neither intersects the growing nor the changing arc. 3 Thus, d~-  d~ and d~--dy 
are, again, separated from each other, in this case by two C-chords of 0~. 

Thus we have shown that the domain of each cluster in S is connected (it can 
be empty, though) if their convex hulls are pairwise disjoint. The first part of 
claim (iii) follows. This does not imply that the number of edges and vertices 
of ~'(S) is also O(ISI). By Euler's relation for planar graphs this is, however, 
true for vertices of ~ (S )  that are incident to at least three edges. A vertex of 
degree 2 must also lie on an edge of the skeleton of the cluster in one of  the two 
adjacent domains. Since each edge of the skeleton meets the boundary of its 
cluster's domain in at most two points (this follows from the above argument) 

3 In degenerate cases 0. can contain k > 3 points of C These k points cut 0z into k arcs, k - 2 of 
which change from shrinking to growing and thus intersect neither 0z nor 0,. 
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we conclude a linear upper bound on the number of  degree 2 vertices and thus 
of edges of  °F(S), [] 

We remark that ~ (S )  can be further refined by decomposing each region of 
~ ( S )  into subregions by the corresponding skeleton. This yields a refined convex 
subdivision of the plane so that a point x belongs to a subregion corresponding 
to point c of  cluster C if and only if x is nearest to C and its distance to C is 
attained by c. In the special case where the convex hulls of the clusters are 
disjoint, the domain of  cluster C is thus decomposed into at most I Ct subregions. 
Euler's relation implies that the numbers of edges and vertices of  the refined 
subdivision are O(n),  n the total number of  points in all clusters. 

To construct T'(S) for an arbitrary collection S of clusters we can use the 
three-dimensional envelope algorithm of Section 2 which implies the following 
result. 

Theorem 6.2. Let S be a set of clusters where n is the sum of the cardinalities of 
the clusters. 

(i) Y(S) can be constructed in O(n2a(n))  time. 
(ii) I f  each cluster is of  size one or two, then O(n 2) time suOices and this is 

optimal in the worst case. 

There are two major open problems concerning cluster Voronoi diagrams that 
remain. Is O(n2a(n))  for the combinatorial complexity of  T'(S) tight? A better 
upper bound (maybe O(n2)) would also improve the time bound in Theorem 
6.2(i). Second, can ~ (S )  be constructed in less than quadratic time (maybe 
O(n log n)) if the convex hulls of the clusters are pairwise disjoint? An affirmative 
answer to the second question could also be relevant to complete linkage clustering 
of n points in the plane. In this method, the points are considered to be individual 
clusters initially, and at each stage the two nearest clusters are merged until all 
points belong to the same cluster. As mentioned at the beginning of  this section, 
the distance between two clusters is defined as the maximum distance between 
any two points, one from each cluster. The most efficient algorithm known for 
this problem takes O(n 2) time and O(n) storage for the entire sequence of  merges 
(see [Df]). At each stage, the set of  points is partitioned into a collection of  
clusters. The Voronoi diagram of these clusters is potentially useful since the two 
nearest clusters also have a common edge in the diagram. The problem is now 
to maintain the diagram through a sequence of n - 1 cluster merges. In the case 
of  single linkage clustering, where the distance between two clusters is the 
minimum distance between any two points, one from each cluster, a similar 
approach yields an O(n log n)-time algorithm (see [El]) .  The latter clustering 
method is intimately related to the notion of  the minimum spanning tree of the 
points. 
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