
Discrete Comput Geom 4:311-336 (1989)
Dl.,4'rete & C,)ml~utatNmal

eometrv
1989 Sp~mger-Verlag New York Inc. I I /

The Upper Envelope of Piecewise Linear Functions:
Algorithms and Applications*

Herbert Edelsbrunner , j Leonidas J. Guibas , 2 and Micha Sharir 3

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

2 Computer Science Department, Stanford University, Stanford, CA 94305, USA, and
DEC Systems Research Center, Palo Alto, CA 94301, USA

3 Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA, and
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract. This paper studies applications of envelopes of piecewise linear functions
to problems in computational geometry. Among these applications we find problems
involving hidden line/surface elimination, motion planning, transversals of poly-
topes, and a new type of Voronoi diagram for clusters of points. All results are
either combinatorial or computational in nature. They are based on the combinatorial
analysis in two companion papers [PS] and [E2] and a divide-and-conquer algorithm
for computing envelopes described in this paper.

1. Introduction

This paper cont inues the study, ini t iated in [PS] and in [E2], of envelopes of
piecewise l inear funct ions in two or more variables. The previous papers have
established tight lower and upper b o u n d s on the combinator ia l complexi ty of
such envelopes. In this paper we provide efficient algori thms for calculat ing
envelopes of this kind, discuss several extensions and special cases of the previous

* Work on this paper by the first author has been supported by Amoco Fnd. Fac. Dev. Comput.
Sci. 1-6-44862. Work by the third author has been supported by the Office of Naval Research Grant
N00014-82-K-0381, National Science Foundation Grant No. NSF-DCR-83-20085, by grants from the
Digital Equipment Corporation and the IBM Corporation, and by a research grant from NCRD, the
Israeli National Council for Research and Development.

312 H. Edelsbrunner, L. J. Guibas, and M. Sharir

combinatorial bounds, and give a variety of applications of these results to many
problems in combinatorial and computational geometry.

Let us first review the results of[PSI and [E2]. Let s~, s2 , sn be n d-simplices
in (d + 1)-dimensional space, none of which is vertical (that is, parallel to the
(d + 1)st coordinate axis). We can thus view each s, as the graph of a partially
defined linear function Xd+ 1 = f / (x i , X 2 , . . . , Xd) , whose domain of definition is a
d-simplex, namely the orthogonal projection of s, onto the hyperplane xa÷ t = O.
The upper envelope, M, of the given simplices is the pointwise maximum of these
functions, that is,

M (x l , x 2 , . . . , xa) = max {f,(xl, x2 , xa)},
l ~ t < n

where each f, is assumed to be -oe outside its domain of definition. The lower
envelope of the simplices is defined in a symmetric fashion.

We can associate with the envelope M a polyhedral cell complex, M*, in
d-space such that over each cell of M* the envelope M is attained by a fixed
function f~. Intuitively, this is the orthogonal projection of the graph of M onto
Xd+I = 0 (see Fig. 2.1 which shows the projection of four triangles in d + 1 = 3
dimensions). The combinatorial complexity of M is the complexity of this
complex, that is, the total number of faces (of any dimension) composing it. In
general, the projection of the faces of M does not yield a convex decomposition
of d-space. However, we can obtain a refined convex decomposition by superim-
posing M* onto the arrangement of the ((d - 1)-dimensional) hyperplanes con-
taining the (d - 1)-faces of the given simplices (see Fig. 2.2 which shows M* for
a set of three triangles in d + 1 = 3 dimensions). We measure the complexity of
M in terms of this refined decomposition.

I f instead of simplices we have a collection of arbitrary piecewise-linear
functions of d variables, we can decompose the graph of each of them into a
collection of simplices, and then obtain the upper envelope of the given functions
as the upper envelope of these simplices.

The two previous papers mentioned above analyse the combinatorial com-
plexity of such envelopes in d + 1 dimensions. They show that it is O(naa(n)) ,
where a(n) is the extremely slowly growing inverse of Ackermann's function.
Moreover, this bound is tight in the worst case. For d + 1 = 2, we face the special
case of the envelope of n line segments in the plane. This case has been studied
in [HS], [WS], and IS], where it is shown that the complexity of the envelope
(in this case the number of subsegments composing it) is O(na(n)) , and that
this bound is tight in the worst case. The proofs are based on reformulating the
problem in terms of Davenport-Schinzel sequences of order 3.

As a matter of fact, in the one-dimensional case, the theory of Davenport-
Schinzel sequences yields tight almost linear upper bounds on the complexity of
the envelope of any collection of (partially defined) continuous univariate func-
tions, provided that each pair of them intersect in at most a fixed number of
points. In contrast, for collections of n functions of d -> 2 variables (which satisfy
appropriate conditions on the pattern of their intersections), no comparable tight
upper bounds on the complexity of their envelopes is known in general as yet,

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 313

and the only general bound available so far is the trivial one, O(n~+l). We refer
to [SS] for a few improved results for certain classes of bivariate functions.

The proofs of the mentioned bounds for piecewise linear functions use induc-
tion on the dimension d. The proof in [PS] is based on a divide-and-conquer
analysis. We partition the collection of n simplices into two subcollections of
roughly n/2 simplices each, recursively obtain the envelope of each subcollection,
and then obtain the overall envelope by taking the pointwise maximum of the
two subenvelopes. Using arguments based on arrangements of hyperplanes,
convexity, and on the complexity of the envelope restricted to certain lower-
dimensional spaces, we show that the number of additional facets created by
superimposing the two subenvelopes is bounded by O(ndo~(n)). This leads to a
recurrence relation whose solution yields the desired bound on the number of
facets (that is, d-dimensional faces) in the envelope. Using Euler's formula for
planar maps this yields similar bounds on the total number of faces of M if
d + 1 = 3. For higher dimensions this proof has been extended in [E2], where the
same bound for the overall complexity of the envelope using a different divide
step is obtained.

In Section 2 we follow the outline of the proof in [PS] to obtain a divide-and-
conquer algorithm for calculating the envelope of triangles in three dimensions.
The amount of time needed is at most proportional to the maximum combinatorial
complexity of the envelope, namely O(n2a(n)). Because of the lack of convex
hull algorithms in four and higher dimensions that run in time proportional to
their output, we have not succeeded in generalizing this algorithm so that it
runs in time O(nda(n)) if d + l > - 4 . We also discuss several extensions and
special cases of envelopes of piecewise linear functions which are needed for the
applications that we study.

The major part of the paper is devoted to applications of the combinatorial
and computational bounds stated above. These applications include the hidden
line/surface removalproblem which is discussed in Section 3. We give algorithmic
results that match and generalize previous results of [Dv] and [M] for d + 1 = 3
dimensions. We also obtain algorithms for related problems, such as constructing
an image of a solid defined in Constructive Solid Geometry, and obtaining views
of a three-dimensional projection of tetrahedra in four dimensions.

Section 4 considers translational motion planning for polyhedra in three
dimensions. Here, we calculate the space of free placements of a given polyhedron,
B, which is free to translate amidst a collection of polyhedral obstacles. We also
discuss special cases of the problem, such as where the obstacles form a polyhedral
terrain (that is, a piecewise linear surface meeting each vertical line at exactly
one point), and the case where B is allowed to translate from its current position
along a straight half-line only. The latter special case extends work on movable
separability of sets reported in [Tt].

The problem of stabbing line segments and polytopes is investigated in Section
5. Using a standard duality transformation, we show that stabbing hyperplanes
can be represented by points lying between the upper envelope of one collection
of simplices and the lower envelope of another such collection. Our results extend
previous work on this problem in two dimensions (see [E3]).

314 H. Edelsbrunner, L. J. Guibas, and M. Sharir

Voronoi diagrams of point clusters are considered in Section 6. For each cluster
(that is, finite set o f points in d dimensions) its distance from a point is
the maximum Euclidean distance from this point to any point in the cluster.
The Voronoi diagram of a collection of clusters is then defined as the decompo-
sition of space into maximal domains so that for each domain there is a unique
nearest cluster for all points in this domain. By transforming the problem
to (d+ l) -d imens iona l space, we can reformulate it in terms of envelopes of
certain piecewise linear functions.

We do not regard this list of applications as exhaustive, and we expect many
more applications to be found. For example, Tamir [Tr] has recently discovered
applications of our results to p-center and obnoxious p-center problems for
certain trees and graphs.

2. Computing an Envelope

This section presents an algorithm for constructing the upper envelope of a set
o f n triangles in three dimensions. The algorithm follows the outline of the proof
in [PS] that shows that the combinatorial complexity of this envelope is
O(n2ot(n)). At several points we have to introduce intricate algorithmic tools in
order to get a worst-case optimal algorithm. For some of these tools the complexity
goes up more than desired when we generalize them to four and higher dimensions.
This explains why we do not have an optimal (or even near-optimal) method for
computing envelopes in four or higher dimensions yet. After presenting and
analysing the algorithm, we study a few extensions of envelope constructions.
These will lead to several computational and combinatorial results used in later
sections of this paper.

We next present the algorithm that constructs the upper envelope of a set, S,
of n triangles in three dimensions. Whenever convenient in the discussion we
will make implicit assumptions about the triangles being in general position. The
main reason is that we hope to get the point across if we leave out tedious
complications. We see the general method, called the "simulation of simplicity,"
described in [EM] (see also [El]) , as a justification of this s loppy attitude.

First, we need a few definitions. We write M(S) for the upper envelope of S,
and M*(S) for the subdivision obtained by projecting the faces of M(S) vertically
onto the plane x3 = 0 (see Fig. 2.1 which is borrowed from [PS]). In general the
regions of M*(S) are not convex. To make them convex we refine M*(S) by
projecting all triangles vertically onto x3 = 0 and extending the 3[S I triangle edges
to unbounded lines. The arrangement ~ defined by these lines is denoted by A(S),
and /~r (S) denotes the refined subdivision that we get by superimposing M*(S)
and A(S). See Fig. 2.2 taken from [PS]; it shows the projection of three triangles
and the extension of their edges yielding an arrangement of nine lines. In order

1 The arrangement defined by a finite set of lines in the plane is the subdivision of the plane that
we get by drawing the lines. It consists of vertices (points where lines intersect), edges (pieces of
lines that connect vertices), and regions (connected components of the plane reduced by all lines).

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 315

Fig. 2.1

to make M(S) a viable representation of M(S) we associate each region o f / ~ (S)
with a pointer to the triangle that assumes the maximum height over this region.
Since ~ t (S) is a refinement of M*(S) this triangle is unique in any case. M*(S)
and also M(S) can be obtained from M(S) by merging adjacent regions above
which the maximum height is assumed by the same triangle. By construction, the
envelope vertically above a region of A(S) is a convex function.

Algorithm 1 (constructs ~ t (S) as a representation of the upper envelope of S)

if [S[- < 1 then Construct M(S) directly else
Step 1. Partition S into sets $1 and $2 of sizes [IS]/2J and HSI/2].
Step 2. Cons t ruc t /~(SI) and M(S2) recursively.

,°'~o
/;.-"

. 4 y :=/..:::(......
, .o . " - .
¢

o ,
.o

i

Fig. 2.2

316 H. Edelsbrunner, L. J. Guibas, and M. Sharir

Step 3. Superimpose /~t(Sl) and A(S2) and, symmetrically, superimpose
~t(S2) and A(SO. We denote the thus created subdivisions by hT/(St)
and hT/(S~).

Step 4. Construct A(S) which is A(S~) and A(S2) superimposed. Thus,
hT/(S0 and/~/($2) are refinements of A(S).

Step 5. For each region r of A(S) and for i = 1, 2 construct set S~.r_ Si that
contains all triangles of St assuming the maximum height over a region
of hT/(S~) contained in r.

Step 6. For each region r of A(S) construct /~t(S) restricted to r by
intersecting the half-spaces bounded from below by the planes that
contain the triangles in S~.ru S2,r. h4(S) restricted to r is the vertical
projection of the boundary facets of this convex polyhedron clipped at
the boundary of r.

endif.

Let us now discuss the various steps of Algorithm 1 in further detail. At the
same time we analyse the time-complexity of each individual step which will
then lead to the recurrence relation

T(n)= 2T(2) + O(n:a(n))

for the amount of time, T(n), the algorithm takes. This recurrence relation solves
to O(n2a(n)) (as in [PS]).

The first nontrivial step of Algorithm 1 is step 3 which superimposes /~(Si)
and A(S3-i), i= 1,2. The combinatorial analysis in [PSI guarantees that the
number of faces in the resulting subdivision, hT/(S~), is O(n2a(n)), n = Isd ÷ ts21.
Since all regions in both subdivisions, h~t(S~) and A(S3_i) , a re convex we can
use the superimposition algorithm of Guibas and Seidel [GS] which takes time
linear in the size of the output. Thus, step 3 takes O(n2a(n)) time.

Step 4 superimposes two arrangements which can te done in O(n 2) time,
n = fs l+ ts2t, using again the same superimposition algorithm. Alternately, we
could construct the resultant arrangement, A(S), from scratch which also takes
only O(n 2) time (see [El]).

To understand step 5 it is important to recall that subdivision hT/(Si), for
i = 1, 2, as constructed in step 3 is a refinement of arrangement A(S) which is
constructed in step 4. Thus, each region of A(S) contains several regions of
hT/(Si). Recall also that each region of ~(/(S~) records the triangle that assumes
the upper envelope above this region. The goal of step 5 is to collect, for each
region r of A(S), the triangles associated with regions in hT/(St) and AT/(S:)
contained in r. This can be done by visiting all regions of hT/(S~) using a graph
traversal algorithm that first exhausts all regions contained in a common region
of the arrangement and then goes to an adjacent arrangement region. This is a
straightforward application of depth-first search (see [Tn]) which takes time
proportional to the number of regions and edges of hT/(Si). Thus, step 5 also
takes time O(n2a(n)).

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 317

Finally, we consider step 6 which is the most subtle part of Algorithm 1. For
each region r of A(S) it constructs the intersection of the half-spaces that are
bounded from below by the planes that contain the triangles in Sl . ru S2,r. I f r
is the ith region of A(S) and m,=lS,,rl+ls2,rl, then this can be done in
O(rn~ log m~) time (see, e.g., [PrS]). Unfortunately, we only know that the sum
of the ml is O(n2ct(n)) which does not imply anything better than that the sum
of the rn~ log2 m~ is O(n2a(n) log n). Thus, to achieve O(n2ct(n)) running time
we have to intersect the half-spaces in a somewhat more intelligent manner. To
describe such an alternate algorithm define the slope of a triangle as the slope
of the line of intersection between the plane spanned by the xl- and the x3-axis
and the plane that contains the triangle. I f the slopes of all triangles in St,r were
smaller than the slopes of all triangles in $2,, we could construct the intersection
of the half-spaces by merging the recursively constructed polyhedra for S~,r and
S2.r in linear time (see [PrS]). Unfortunately again, the recursion is such that the
polyhedra constructed are not exactly those for the regions of A(S) but for the
regions of A(SO and A(S2). For example, let r~ be the region of A(S~) that
contains region r, for i = 1, 2. It is not advisable to use the polyhedron representing
the subenvelope above r~ as a substitute for r 's polyhedron since it might have
many facets that belong to half-spaces redundant above r. The combinatorial
bound on the sum of the rn~ does not generalize to these larger numbers; thus it
is crucial not to be generous at this point.

The way out of this di lemma is to remember that the subdivision of r~ in/~/(S~)
can be viewed as a representation of the polyhedron of r,. The separation of the
triangle slopes implies that the intersection of the boundaries of the two polyhedra,
the ones of rt and r2 restricted to the area above region r in A(S), is a connected
and piecewise linear curve. Figure 2.3 displays r~, r2, r, and the curve without
showing the decompositions of the regions. Keep in mind, however, that this
curve can merge into the boundary of r and leave it again an arbitrary number
of times. Because of the slope condition, this curve has the property that it
intersects any plane normal to the x2-axis in a single point. Using standard
methods for merging two subdivisions along a monotone curve (see [PrS] and
papers on merging Voronoi diagrams referred to in [PrS]), the total amount of
effort is linear in the number of edges of r plus the number of regions that
subdivide r in hT/(S~) and /~/($2). In order to make this all work we have to
provide the appropriate subdivisions of the regions of A(S). But these are
provided by the superimposition of M(Si) and A(S3_~) which decomposes the

I
X

Fig. 2.3

318 H. Edelsbrunner, L. J, Guibas, and M. Sharir

subdivision of r~ into smaller pieces coinciding with regions in A(S). Thus, this
superimposition in step 3 implicitly constructs the proper polyhedra (or suitable
representations by subdivisions thereof) which can then be merged in linear time
each.

The only unresolved problem now is how we can guarantee that the slopes of
the triangles in S~.r are smaller than the slopes of the triangles in S2.r. But this
can be achieved if the initial partitioning step of Algorithm 1 constructs S, and
S2 intelligently rather than arbitrarily. Just take the [IS[/2J triangles with smallest
slopes, call this set S,, and define $2 = S -S~ .

We thus have an optimal algorithm for constructing the upper envelope of n
triangles in three dimensions. This is Algorithm 1 with two changes. First, the
partition of the set of triangles takes into account the slopes of the triangles.
Second, step 5 is now superfluous and can be removed. This implies the main
result of this section.

Theorem 2.1. The upper envelope of a set of n triangles in three dimensions can
be constructed in O(n2ct(n)) time and storage. This is optimal in the worst case.

We remark that Algorithm 1 can be modified so that it constructs the upper
envelope of n line segments in two dimensions in O(na(n)log n) time and
O(na(n)) storage. The amount of storage is optimal since the envelope can
consist of O(nc~(n)) edges; whether or not the time bound is optimal is still an
open problem. There is no difficulty in generalizing Algorithm 1 to four and
higher dimensions, however, it is still an open problem whether or not this can
be done such that the running time is o(nda(n)) for n d-simplices in d + l
dimensions. This would then be optimal since the combinatorial complexity of
the envelope is O(nda(n)) in the worst case. The main obstacle in obtaining this
result is step 6 which intersects half-spaces. Currently there is no algorithm
available that takes less than fl(m 2) time, where m is the number of half-spaces,
no matter how many or few faces the resulting polyhedron has. The combinatorial
results in [PS] and [E2] only bound the sum of the m, (where m, is the number
of nonredundant half-spaces above the ith cell of the d- dimensional arrangement)
and not the sum of the m~. Indeed, there are cases where the sum of the m~ is
f~(n d÷l) and thus contradict the desired O(ndc~(n)) upper bound. An approach
that might be worth pursuing is to design an algorithm that follows the outline
of the divide-and-conquer proof in [E2]. The main difference between Algorithm
1 and such a hypothetical algorithm would be that the latter recurs for a constant
number of nondisjoint subsets o f d-simplices rather than for two disjoint subsets.

The remainder of this section studies three extensions of the envelope problem
which have algorithmic as well as combinatorial applications later in the paper.
The first extension considers the region of points that lie above the upper envelope
of a finite set S of d-simplices and below the lower envelope of another finite
set T of d-simplices in d + 1 dimensions. From the combinatorial results in [PSI
and [E2] we know that both envelopes have complexity O(ndc~(n)), with n =
I sl +ITI, and by Theorem 2.1 we can construct both envelopes in O(n2a (n)) time
if d + 1 = 3. But how can we be sure that the intersection of the two envelopes

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 319

does not exceed these complexity bounds? In fact, it does not. One way to see
this is to go through the proofs of the o(ndot(n)) upper bounds for upper
envelopes and to make one crucial change: rather than constructing the two
envelopes above a cell of the d-dimensional arrangement separately, we construct
the region of points between the two envelopes. Restricted to the area above a
cell r of the arrangement, this region is the intersection of half-spaces and thus
convex. It follows that its complexity is bounded by the sum of the complexities
o f the two regions between the two corresponding upper and lower subenvelopes.
This is all we need to get the desired combinatorial result; also Algorithm I still
works nicely in this extended case if d + 1 = 3.

The second extension considers the special case where each d-simplex in d + 1
dimensions is a half-hyperplane, that is, a portion of a hyperplane h restricted to
one side of a (d - 1) - f l a t in h. In d + l = 2 dimensions a half-hyperplane is a
half-line. For n such half-lines it is not difficult to show that the number of edges
in the upper envelope is at most 2n (see [E3]). This two-dimensional result can
now be used as the base case of the inductive analysis of upper envelopes in
higher dimensions. Recall that the only reason for the a(n) factor in the com-
plexity of general upper envelopes is that the base case considers line segments,
and the upper envelope of line segments has worst-case complexity O(na(n)).
The reduction for half-hyperplanes in d + 1 dimensions leads to a linear number
of sets of half-hyperplanes in d dimensions whose upper envelopes have com-
plexity O(n d-~) by inductive assumption. This leads to an upper bound of O(n d)
for the complexity of n half-hyperplanes in d + 1 dimensions. Note that this
bound also holds for the combinatorial complexity of the region of points above
the upper envelope of one set of half-hyperplanes and below the lower envelope
of another set of half-hyperplanes. Furthermore, Algorithm 1 takes only O(n 2)
time if its input consists of n half-planes in three dimensions. This is because
the only step where the a(n) factor sneaks in (step 3) now has complexity O(n2).

It is interesting to note the similarity between the upper envelope of a set of
half-hyperplanes and the so-called zone of a hyperplane in an arrangement of
hyperplanes in d + 1 dimensions (see Chapter 5 of [El]) . In both cases, the
combinatorial complexity is O(rl d) but the known proofs of those two results
are very different.

Finally, we consider the case where the n d-simplices in d + 1 dimensions are
pairwise disjoint (assuming they are relatively open). In this case, the maximum
height above a cell of the d-dimensional arrangement is assumed by only one
d-simplex. The combinatorial complexity of this arrangement is O(n d) which
implies the same upper bound for the envelope. The more dramatic effect of the
nonintersection assumption is that it simplifies Algorithm 1 significantly and thus
allows us to generalize it to higher dimensions without loss of worst-case optimal-
ity. Steps 3 and 4 are now the same since /~t(S1)= A(S~), A4r(s2)= A(S2), and
therefore .r~ir(S1) = ~7/($2) = A(S). In step 5 set Si.r is the singleton set that contains
the highest simplex in St above the region in A(S~) containing region r in A(S).
Thus, step 6 simplifies to a comparison between the simplex in Sl.r and the one
in S2.r, for every r. The most expensive step of this algorithm is now the
superimposition of arrangements A(SI) and A(S2) which can be done in quadratic

320 H. Edelsbrunner, L. J. Guibas, and M. Sharir

time if d + 1 = 3. In arbitrary d + 1 dimensions, this operation takes O(n d) time,
for n = I S~I+ I S2t (see [El i) . Thus, we now have an algorithm that runs in arbitrary
dimensions and takes O(n d) time.

A similar effect (namely that the combinatorial complexity of the envelope is
O(n d) rather than O(nda(n)) can be observed when the n d-simplices in d + t
dimensions intersect in a certain restrictive manner. For example, if intersections
occur only on the highest level of the recursion (talking in terms of the divide-and-
conquer algorithm) then this is true. This proves that the upper envelope has
complexity O(n d) if the set of d-simplices is the union of two sets with the
property that any two d-simplices in the same set are pairwise disjoint. Unfortu-
nately though, the computational complexity in this case might deteriorate to
O(n 2 log n), d + 1 = 3, if the first divide step separates the union into the two sets
rather than discriminating by slope.

We summarize these results.

Theorem 2.2. Let S be a set of n d.simplices in d + 1 >- 3 dimensions and let T be
another such set whose cardinality is at most n.

(i) The region of points above the upper envelope of S and below the lower
envelope of T has combinatorial complexity O(nda(n)) . In d + l = 3
dimensions it can be constructed in O(n2a(n)) time and storage.

(ii) I f all d-simplices in S are half-hyperplanes, then the combinatorial complexity
of the upper envelope o r s is O(nd), and it can be constructed in O(n 2)
time i f d + 1 = 3. I f all d-simplices in T are also half-hyperplanes, then the
same complexity bounds hold for the region of points above the upper envelope
of S and below the lower envelope of T.

(iii) I f the d-simplices in S are pairwise disjoint, then the combinatorial complexity
of the upper envelope is O(n a) and it can be constructed in O(n d) time.

(iv) I f S is the union of two disjoint sets with the property that any two d-simplices
in the same set are disjoint, then the combinatorial complexity of the upper
envelope is O(n d).

The remainder of this paper considers applications of Theorems 2.1 and 2.2
to several problems in computational and combinatorial geometry.

3. Hidden Line and Surface Removal

Imagine that we take a picture of a three-dimensional scene from a point at
infinity. To compute what this picture looks l ike--assuming opaque objects--is
commonly known as the hidden line/surface removal problem. Because of the
importance of this problem for practical applications there are many algorithms
in the literature that were suggested for the problem (see, e.g., [SSS] for a
classification of several such algorithms). It is usually assumed that the objects
in the scene are determined by their piecewise linear boundaries (they are
polytopes) and that they do not intersect. We would like to mention that there
is no essential difference between the view from a point at infinity (a parallel

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 321

view) and the view from a finite point (a perspective view). Indeed, for every
plane through a finite viewpoint there is a projective transformation that maps
the plane to the infinite plane and therefore the viewpoint to infinity. The polytopes
are mapped to polyhedra such that the parallel view from the new point is equal
to the perspective view from the old point on one side of the plane. Note, however,
that this transformation moves points to infinity and lets them come back on the
other side of space. In other words, polytopes gradually disappear on one side
and, at the same time, come back on the other side of space. Thus, in order to
get a valid picture we need to make sure that the viewpoint is shielded from the
polytopes that come into the picture by traveling through infinity. Such a shielding
mechanism is provided if we map the original infinite plane to a finite plane,
using the same transformation, and use this plane as a background screen when
we take the picture.

In this section we adopt a generalized definition of the hidden line/surface
removal problem which is neither restricted to three dimensions nor to noninter-
secting objects. We first discuss the more standard case of nonintersecting objects
and later we extend the analysis to handle intersecting objects. We also give some
applications for this extension.

In d + 1 dimensions, the objects in the scene are modeled by a collection of
d-dimensional simplices; for convenience we assume that they are relatively open.
The problem is now the same as computing the upper envelope of the d-simplices
assuming that the viewpoint is in the direction of the positive (d + 1)st coordinate
axis. We can thus use the algorithms of Section 2 to solve the hidden line/surface
removal problem. Since we presently assume that no two d-simplices intersect
(although their relative boundaries might intersect which it is important to allow
if we model a polytope by d-simplices), we can use Theorem 2.2(iii) to get the
following result.

Theorem 3.1. Let S be a set o f n pairwise nonintersecting relatively open d-simplices
in d + 1 dimensions. The combinatorial complexity o f a view is O(n d) which is best
possible in the worst case. Furthermore, it can be constructed in O(n d ~- n log n) time.

In three dimensions, that is, if d + 1 = 3, the same time complexity was pre-
viously obtained by [Dv] and [M] who use known algorithms for constructing
arrangements in the plane.

Note that the O(n d) bound for the combinatorial complexity holds even if
we make the d-simplices translucent. Rather than computing only the topmost
d-simplex above a given point we determine the topmost l, for some constant l,
and the "color" at this point is a function of all l simplices.

Consider next generalizations of the hidden line/surface removal problem that
arise when the given d-simplices are allowed to intersect. In this case, the problem
is exactly the envelope problem studied in Section 2. As an example where this
extension is needed we mention an operation that is useful in visualizing a
four-dimensional scene given by n pairwise disjoint relatively open tetrahedra.
Project these tetrahedra onto three dimensions and compute various views of
this three-dimensional scene. Since we lose one dimension when we go from four

322 H. Edelsbrunner, L. J. Guibas, and M. Sharir

to three dimensions, the tetrahedra in three dimensions will, in general, intersect.
An alternate interpretation of this operation is that we compute views of the
four-dimensional scene by moving vertical lines in a given direction until they
hit an object. The "view" shows the first object hit by any such line. Note that
this visualization of the four-dimensional scene is different from a projection
onto a two-dimensional plane along a predefined direction.

Another application where intersections occur is in Constructive Solid
Geometry (CSG) where an object is constructed from simple building blocks by
means of intersection and union. The object is then represented by the tree whose
leaves are the building blocks and each inner node stands either for the union
or the intersection of the objects defined in its subtrees. A view of the object can
be computed by postorder traversat of the defining tree. A special case in which
Algorithm 1 is most effective is when the object is simply the union (or intersection)
of many (polyhedral) building blocks, or when its CSG tree has at most two
levels. For an arbitrarily defined object, however, Algorithm 1 may not be very
efficient.

4. Translating a Polyhedron in Three Dimensions

An object, B, in some space cannot be moved to any arbitrary position if there
are obstacles present which it has to avoid. The motion-planning problem for B
is to calculate the space of all placements of B, called the free placements of/3,
in which it does not collide with any obstacle (see [HSS] for a recent compendium
of work done on motion planning). In this section we consider special cases of
motion planning in which B is allowed to translate but not to rotate. The problems
that we address make sense in arbitrary dimensions but for simplicity and also
because it is the most important setting, we discuss only the three-dimensional
case. The much simpler two-dimensional case has been studied in [KLPS], [LS],
[PSS], and [GSS]. I f the object as well as the obstacles are polyhedra, that is,
their boundaries are piecewise linear, then these motion-planning problems lead
to certain envelope questions as we will see below.

Let B be an open three-dimensional polyhedron bounded by k facets and let
A1, A2 , Am be closed convex polyhedral obstacles bounded by a total number
of n facets. It is not essential that B is open, only the description of our results
is slightly easier this way because, otherwise, we have to allow B's boundary to
intersect the boundary of an obstacle--only the interiors have to be disjoint. All
results are true for B closed if we change the phrasing of the results accordingly.
We assume that the Ai are convex; so any nonconvex obstacle is split into convex
pieces beforehand (see [C]). Our goal is to calculate the set of all translates of
B that avoid the obstacles. The standard approach to solving this problem, initially
proposed in [LW], uses Minkowski differences between the A+ and B. A translate
B' of B is determined by its translation vector b, that is,

B ' = B + b = { x + b l x e B }.

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 323

We interchangeably think of b as a vector and as a point. B' intersects obstacle
A, if and only if there is a point y ~ A, and a point x e B such that x + b =y ,
which is equivalent to b = y - x . Another way to say this is that B' and A~ are
disjoint as long as b is not in the set

K , = A , - B = { y - x [y 6 A , and x e B } .

K, is known as the Minkowsk i difference of A, and B and is sometimes referred
to as the " expanded" or "g rown" obstacle. It is clear that B' lies in a free position
if and only if b does not belong to K = U~=~ Ki. We can thus represent the set
of free positions by its complement , K c.

To get a handle on the combinatorial complexity of K c assume that obstacle
A, is bounded by n, facets; thus, ~ _ j n, = n. Except for degenerate cases, each
facet o f K, is the Minkowski difference o f a facet o f A, and a vertex o f B, of an
edge o f Ai and an edge of B, or of a vertex o f A, and a facet of B. The number
of such pairs is O (k . n,), in contrast to the planar case where this number is
only O (k + n,) (see [GRS]) . This implies that K~ is bounded by at most O (k . n~)
faces. As a matter o f fact, the number o f facet-vertex and vertex-facet pairs is
O (k + n ,) , only the number o f pairing edges can be quadratic. Thus, the K~
altogether can be modeled by O (k . n) triangles which implies that the number
of faces needed to describe K c, the set o f free placements of B, is O (k 3 • n3). I f
B is nonconvex there are cases where the boundary of K c consists o f f l (k 3 • n 3)
faces (see Fig. 4.1: the "triple fork" of size k can be locked into the "three-sided
cage" of size n in f l (k 3 • n 3) different ways) which shows that the trivial bound
is asymptotically tight. I f B is convex, then no such example is known and a
plausible conjecture is that K c is bounded by at most O (k 2 • n 2 • c~(k. n)) faces.
It is rather easy to give examples where the complexity in question is f l (k 2 • n2).
Our goal is to show that the complexity o f K c is much lower than propor t ional
to k 3 • n 3 in certain important cases, or failing that, to show that the complexity
of a single connected componen t o f K c (which is often all we need to consider)
is small.

Consider first the general case. If we are interested in the set o f free placements
that can be reached by B from its initial posit ion without ever interfering with

Fig. 4.1

324 H. Edelsbrunner, L. J. Guibas, and M. Sharir

obstacles, then we actually ask for the connected component of K c that contains
the origin--rather than for the entire K c. To get an upper bound on the com-
binatorial complexity of this connected component we can use Theorem 4 in
[PS] which shows that there are at most O((k . n) 3-1/49) faces in its boundary.
Unfortunately, the proof of this result is nonconstructive and does not lead to
an algorithm that constructs the connected component in o (k 3 • n 3) time. Hence,
in the general case, even though this result sheds light on the problem structure,
no satisfactory solution is yet available. Improvements over these results have
recently been obtained in [AS].

Things are much improved, however, when we consider the special case in
which the obstacles A~ collectively form a so-called polyhedral terrain. This is a
piecewise linear surface that intersects every vertical line in exactly one point. B
is still assumed to be an arbitrary, thus not necessarily convex, polyhedron and
we wish to find all free placements of B above this terrain, E. Again, we represent
such a placement B' by the point b such that B' = B + b and use the preceding
analysis to obtain the space of free placements K c, with K defined as above. Of
course, in this restricted case the resulting set K ~ is connected: B can be translated
from any free placement to any other in a canonical manner by first moving
upward to a sufficiently high position, then translating horizontally to a position
above the target position, and, finally, descending to the desired position.
Nevertheless, the calculation of K ~ is significant in certain applications. Such an
example occurs when B is required to maintain a fixed maximal vertical distance
from E, for example, when B surveys E from close distance as it flies over it.
Also, by preprocessing the boundary of K c into a data structure which supports
fast point location queries, we can decide in logarithmic time whether or not a
given placement of B is free (see Chapter 11 of [El] for an optimal data structure
that supports point location queries). This method can also be used to determine
the point(s) of contact of B's closure with E as it is lowered until it touches E.
I f the obstacles together form a polyhedral domain, then the boundary of K c is
the upper envelope of the expanded obstacles K~ = A~- B. Theorem 1' in [PS]
and the algorithmic results in Section 2 of this paper now imply the following
result.

Theorem 4.1. Let B be a polyhedron bounded by k facets and let ~, be a polyhedral
terrain with n facets. Then the number of faces bounding K c, the set o f free placements
of B, is O(k 2. n 2 • ct(k. n)) and it can be constructed in the same amount of time.

The preceding arguments can be generalized to cases where we allow B to
translate only along a single half-line from its current position. Two-dimensional
variants of this problem have been studied extensively by Toussaint and others
(see [Tt] for a survey). By applying an appropriate projective transformation
(similarly as in Section 3) we can assume that B is initially at infinity and is
allowed to descend along vertical lines only. For an arbitrary collection of
obstacles Ai we only need to find the upper envelope of the expanded obstacles
Ki = A ~ - B (again, remembering to add the transformed image of the "back-
ground" plane at infinity). For each vertical line, this envelope gives the first

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 325

obstacle hit by B if it moves along this line. If no obstacle is in the way of B's
vertical movement, then the envelope shows the former infinite plane as the
obstacle hit first. In the untransformed space this corresponds to B moving to
infinity without ever hitting an obstacle. Using our combinatorial and computa-
tional knowledge about envelopes we get the following result.

Theorem 4.2. Let B be a polyhedron bounded by k facets and let A~ , A2, . . . , A,,
be (possibly intersecting) convex obstacles bounded by a total o f n facets. The set
of free placements of B that are reachable by translating B along all possible half-lines
is bounded by O(n2ct(n)) faces and can be constructed in O(n2a(n)) time.

We conclude this section with an argument that supports our conjecture that
the combinatorial complexity of K c is only nearly quadratic in k. n if B is convex.
Here we do not assume that the obstacles form a polyhedral terrain. We show
that this is true if B is a line segment. To show this it suffices to demonstrate
that there are only O(n 2) free placements of B in which it simultaneously makes
contact with three obstacles. These triple contacts correspond to the vertices of
KL In each such triple contact one of the contacts must be at a point of B
different from its two endpoints. This point must touch an edge of an obstacle
provided we ignore degenerate cases. Fix such an obstacle edge e and consider
the plane h through e that is parallel to B. When B translates within plane h,
maintaining contact with e, it can reach at most O(n) placements at which it
makes two more contacts with the obstacles (see [KLPS]). From this the claim
follows readily.

5. Stabbing Line Segments and Polytopes

Finding transversals of a finite set of objects is the first of two problems discussed
in this paper that relate to envelopes by means of a geometric transformation.
The second such problem deals with certain Voronoi diagrams for sets of point
clusters. In Section 6 we show that this problem is in fact closely related to the
stabbing problem of this section.

Let S be a finite set of connected objects in d + 1 dimensions. (We use d + 1
to denote the dimensionality, rather than d, in order to be consistent with the
notation in Section 2.) A hyperplane is a transversal of S if it intersects each
object in S; we also say that it stabs S. Since a hyperplane intersects a connected
object if and only if it intersects its convex hull, we can assume without loss of
generality that all objects in S are convex. We consider the problem of finding
all transversals of S, or a representation of this set, assuming that S is a collection
of convex polytopes. The complexity of a solution will be measured in terms of
n, the total number of vertices of the polytopes. In three dimensions, Euler's
relation implies that n is proportional to the number of edges and facets bounding
the polytopes. This is no longer true in four or higher dimensions. For this reason
we restrict most of our discussion to d + 1 = 3 dimensions and comment on the
difficulties encountered in four and higher dimensions at the end of this section.

326 H, Edelsbrunner, L. J. Guibas, and M. Sharir

Earlier results on this problem can be found in [E3] which gives an O(n log n)-
time algorithm for S a set of n line segments in the plane, and in [AD] which
gives an O(mnd)-time algorithm for m polytopes bounded by n edges in d + 1
dimensions. Alternatively, O(nd+')- t ime algorithms are possible for the case of
polytopes in d + 1->3 dimensions using known algorithms for constructing
arrangements of hyperplanes in d + 1->3 dimensions (see Chapter 7 of [Eli) .
We show in this section that this straightforward bound can be improved to
O(n 2) in the case of line segments and to O(n2a(n)) in the case of convex
polytopes in three dimensions. These results are optimal in the worst case in a
sense that will become clear later.

Our development is based on a dual transform, 9 , that maps a point to a
plane and vice versa. I f p = (rr,, rr,, rr3) is a point in three dimensions, then we
define the plane

~ (p) : X3=27rtxl+27r~X2--Tr3.

Notice that 9 (p) is nonverticai, that is, it intersects the x3-axis in a unique point.
If h is a nonvertical plane we define 9 (h) = p such that h = 9 (p) . Thus, ~ is
involutary by definition. It is fairly easy to show that 9 preserves incidence
relations (p 6 h if and only if 9 (h) ~ @ (p)) and order relations (p lies vertically
above h if and only if 9 (h) lies vertically above 9 (p)) .

We next extend 9 to point sets and, in particular, to polytopes. For ~ a point
set in three dimensions we define

9(g') = U 9(x) ,
xC ;~

that is, 9 (~) is the set of all points that belong to at least one plane dual to a
point of ~. We call 9 (~) the stabbing region of ~. Since 9 preserves incidences
we have p c 9 (~) if and only if plane @(p) intersects ~. Figure 5.1 illustrates
these definitions. It shows ~ as a convex pentagon in two dimensions and displays
the stabbing region of ~. It also shows a line intersecting the pentagon and its
dual point which, of course, belongs to @(~). I f ~ is a (connected) polytope,
then 9 (~) is the set of all points that are neither vertically below all planes
corresponding to vertices of ~ nor vertically above all such planes. This is because,
for such a point x, its dual plane, 9 (x) , stabs ~ and thus must separate at least

l lmtIRll

Fig. 5.1

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 327

one pair of vertices of ~. For ~ a line segment there are only two vertices and
thus only two dual planes. Consequently, ~ (~) is the double wedge of points
that lie vertically between the two planes corresponding to the line segment's
two endpoints.

By definition, a transversal is a plane that cuts all polytopes in S. It follows
that plane h is a transversal of S if and only if its dual point, ~ (h) , belongs to

~(s)= N ~(~).

This intersection is termed the stabbing region of S. It is a representation of all
transversals of S. Notice that the transformation, as currently defined, excludes
vertical planes which thus have to be treated separately. One way to do this is
to vertically project the polytopes onto the plane spanned by the xi- and x2-axis
and to solve a two-dimensional stabbing problem for this set. Every transversal,
which is now a line, corresponds to a vertical transversal, a plane, of the original
set, S.

For a given polytope ~, @(~) is the set of points below or on 0//~ and above
or on ~ p , where ~//~ (resp. ~op) is the upper (lower) envelope of the planes dual
to the vertices of ~. These are piecewise linear bivariate functions. Thus, the
stabbing region, S#(S), is the set of points below or on the lower envelope of all
functions ~//~ and above or on the upper envelope of all functions ~ . Using
results from Section 2 we can give bounds on the combinatorial complexity of
b~(S) and on the amount of time needed to construct it.

In order to analyse 5e(S) we model each function ~/~ and ~ by a collection
of triangles in three dimensions. If m is the number of vertices of ~, then ~//~
and ~ can be decomposed into O(m) triangles. This puts us into the situation
described in Theorem 2.2(i). The upper bound on the combinatorial complexity
can be improved from O(n2a(n)) to O(n 2) if S is a set of n line segments. This
is because each ~/~ and ~ is composed of two half-planes that meet at a common
line. The improvement now follows from Theorem 2.2(ii).

Theorem 5.1. Let S be a set of convex polytopes in three dimensions and let n be
the total number of vertices.

(i) The number of faces bounding b~(S) is O(n2a(n)) and so is the amount of
time needed to construct bD(S). Both bounds are tight in the worst case.

(ii) The number of faces bounding AD(S) is O(n 2) if all polytopes in S are line
segments. In this case, O(n:) time suffices to construct b~(S). Both bounds
are tight in the worst case.

Using the lower bound examples indicated in [PS] it is not difficult to prove that
all bounds are asymptotically tight in the worst case. In this context it is interesting
to note that examples with fl(n2t~(n)) faces can be modeled even with the
restriction that all polytopes in S are triangles in three dimensions.

If we specialize the computational results of Theorem 5.1 to d + l = 2
dimensions, we get an algorithm that constructs the stabbing region of polygons

328 H. Edelsbrunner, L. J. Guibas, and M. Sharir

with a total of n vertices in O(na(n) log n) time, and in O(n log n) time if all
polygons are line segments. The former result is new although it follows easily
from the combinatorial analysis of two-dimensional envelopes in [HS] and the
algorithmic techniques in [E3]. The latter result dates back to [E3]. Note the
log n term in the time-complexity that comes up in two dimensions. The reason
for this extra term is that the homogeneous solution of the recurrence relation
that describes the time-complexity is essentially the same as the additive term
(see Section 2). In three dimensions the additive term is significantly larger than
the homogeneous solution which explains why the log n term disappears.

We conclude this section with a few remarks about the generalization of our
methods to d + 1->4 dimensions. The first difficulty that arises is combinatorial
and concerns the decomposit ion of the °/19 and Lt'~ into d-simplices. The total
number of vertices of the input polytopes, n, is proportional to the number of
facets of the o//~ and ~ , but it might very well be that the number of lower-
dimensional faces of the ql~ and Leg by far exceeds O(n). Indeed, in d + 1 = 4
dimensions their number is f~(n 2) if S consists of a constant number of cyclic
polytopes. Such constellations need more than O(n) simplices to model the
boundary of the stabbing region by two envelopes of simplices. This weakens
our bounds on the combinatorial complexity of stabbing regions which use
envelope bounds. Even if we had a method that circumvents the sketched
difficulty, there is no algorithm known that constructs the stabbing region in time
o(n d+l) because of reasons explained in Section 2. But O(n d+l) is straightforward
if we use arrangement algorithms as mentioned above.

6. Voronoi Diagrams of Point Clusters

In this section we consider applications of envelopes to a certain generalization
of Voronoi diagrams. This generalization can be defined in any number of
dimensions, and we will do so, but our discussion of the combinatorial and
computat ional complexity is mostly confined to the plane. The diagram that we
have in mind bears close relationship to the notion of complete linkage clustering
(see, e.g., [H]). For this clustering method, the distance between any two clusters
is defined as the maximum distance between any two points, one of each cluster.
We come back to this clustering method at the end of this section.

Let B denote the Euclidean distance function. For a set of points, C, called a
cluster, and for a point p, define

8(p, C) = max{8(p, x)lx ~ C}

as the distance between p and C. In most cases we let C be finite and, whenever
it is convenient to have C infinite, it will be the convex hull of a finite number
of points in which case the maximum of the distances between p and points of
C is well defined. The definition of 8(p, C) implies that the closed ball with
center p and radius 8(p, C) contains cluster C. In fact, it is the smallest ball
centered at p for which this is true. Now let S be a finite set of clusters. The

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 329

B's domain

/ A's domain /
/

/ / / / / IIii

/ / / / - ~ ~

/ /
/

/ C's domain
/

/
/

/
/

/

Fig, 6.1

Voronoi diagram of S, °U(S), is a partition of space into maximal (but not
necessarily connected) domains, one for each cluster, such that a point p belongs
to the domain associated with cluster C if 6(p, C)< ,~(p , D) for all clusters
D # C in S. See Fig. 6.1 for an example. It is convenient to replace a cluster C
by its convex hull which is all right since the distance of a point p from C is the
same as its distance from the convex hull of C. The clusters in Fig. 6.1 are A
(two points), B (two points), and C (three points). The domain of B consists of
two connected components which we call regions. The solid lines show the Voronoi
diagram and the dashed lines decompose each region using the furthest point
Voronoi diagram of the cluster. This is the diagram that associates with each
point the part of the domain for which the point is the furthest point of the
cluster. The significance of this decomposition is that it shows which point of
the cluster attains the distance to the cluster and where it does so.

Below, we discuss some properties of this kind of Voronoi diagram. First, we
demonstrate that they are closely related to envelopes and thus derive general
upper bounds on their complexity. Second, we study the special case where the
convex hulls of the clusters are disjoint. It turns out that this condition reduces
the combinatorial complexity of the diagrams dramatically. For simplicity, we
restrict our attention to the two-dimensional case. Three- and higher-dimensional
cases can be treated in the same way as the stabbing problem in four and higher
dimensions (see Section 5); we thus omit all details pertaining to these extensions.
Specifically, we prove the following theorem.

330 H. Edelsbrunner, L. J. Guibas, and M. Sharir

Theorem 6.1. Let S be a set of clusters in the plane and let n be the sum of the
cardinalities of the clusters.

(i) The number of faces of°V(S) is O(n2a(n)) .
(it) I f each cluster consists o f one or two points, then the number of faces of

~V(S) is O(n2), and this is tight in the worst case.
(iii) I f the convex hulls o f any two clusters are disjoint, then ~ (S) contains at

most]S[regions. The number of edges and vertices in this case is O(n).

Proof The proof consists of three fairly independent steps. First, we demonstrate
the upper bounds in (i) and (it) by means of envelopes in three dimensions.
Second, we construct an example that proves the lower bound on the maximum
complexity stated in (it). Finally, we show that the domain of a cluster is connected
if the convex hulls of any two clusters are disjoint. This leads to a proof of (iii).

In order to relate ~V(S) to an envelope of triangles in three dimensions we
use two geometric transforms. Let p = (7r1,7r2) be a point in the two-dimensional
plane which we associate with the plane x3 = 0 in three dimensions. The first
transform, U, projects p vertically onto the paraboloid of revolution given by
X 3 = X 2 - ~ X 2 , that is,

u(p) = I ~,, ~~, ~~ + ~~).

The second transform, ~, maps p to the unique plane that touches the paraboloid
in point U(p) , that is,

(~rl+ 7r2). ~ (p) : x3= 2rrlxl + 2n.2x2_ 2 2

These transforms can be used to express distance information in two dimensions
as combinatorial information in three dimensions. The crucial property here is
that 62(p, x), the square of the distance between points p and x in the plane, is
equal to the vertical distance between point U(x) and the vertical projection of
x onto plane g~(p) (see Chapter 1 of [El]) . The distance from x to a point p is
thus the square root of the vertical distance from point U(x) down to plane
g~(p). Consider now a cluster of points, C, instead of a single point. The distance
from x to C, 6(x, C), is equal to the square root of the largest vertical distance
from U(x) to any of the planes ~(p) , p ~ C, that is, to the lower envelope, ~<-,
of all these planes. If C contains m points, then this envelope is the boundary
of a convex polyhedron consisting of at most m facets which can be decomposed
into O(m) triangles. Let M be the upper envelope of all the surfaces Lec, C ~ S.
Then a point x lies in the domain of cluster C exactly when ~7c is vertically
nearest to U(x) among all ~qo, D ~ S. Since U(x) lies above all surfaces ~D,
this is equivalent to ~ c attaining the upper envelope M at x. Thus, we get °V(S)
by constructing the upper envelope of the surfaces ~ o , or more specifically of
the triangles composing these surfaces, and then projecting the faces of the
envelope vertically onto the plane x3 = 0. The upper bound of (i) now follows
immediately from Theorem 1' in [PS]. I f each cluster consists of at most two
points each, the ~ o are either single planes or two half-planes glued together
along a common line. For these functions we have an upper bound of O(n 2) for

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 331

Fig. 6.2

the combina to r i a l complex i ty as a rgued in Sect ion 2. This proves the u p p e r b o u n d
in (ii).

We next show the lower b o u n d in (ii). Assume wi thout toss o f general i ty that
n = 4 k for some in teger k. We descr ibe a set S o f 2k clusters, each conta in ing
two points , such that ~ (S) has ~ (n 2) regions. This example is i l lus t ra ted in Fig.
6.2. It consists o f k po in t pai rs on the x~-axis such that the ith pa i r can be
ob ta ined by moving the (i - 1) s t pai r a d i s tance e to the right, for 2 ~ i ~ - k and
e > 0 sufficiently small . More specifically, we choose the first pa i r o f points at
locat ions (- 1 , 0) and (1 - (k - 1) • e, 0), with k . e ~½. Note that this impl ies that
the x2-axis is a symmet ry axis o f the 2k points . The Voronoi d i ag ram of these
clusters only consists of k - 2 vert ical slabs o f width e, one for each pa i r except
for the first and the last, and two hal f -p lanes , one for the first po in t pa i r and one
for the last. N o w add ano the r k poin t pairs on the x~-axis. To descr ibe how these
points are to be chosen, we take a po in t p and move it upward inside one o f the
slabs. F o r each loca t ion o f p we cons ider the smal les t disk with center p that
contains the hor izonta l po in t pa i r co r r e spond ing to the slab. By cons t ruc t ion , the
disk conta ins no o ther hor izon ta l cluster. Since the hor izonta l clusters are a lmost
identical , the wander ing d isk is a lmost the same for po in t p moving in any other
slab. Thus, we can choose po in t pairs on the x2-axis such that the disk a l ternates
between con ta in ing one vert ical cluster and conta in ing no vert ical cluster. Each
slab is then d e c o m p o s e d into 2k + 1 pieces, k + 1 of which define the d o m a i n of
the co r r e spond ing hor izonta l cluster. The lower b o u n d in (ii) fol lows.

F ina l ly , we prove tha t each d o m a i n is connec ted if the convex hul ls o f the
clusters are pa i rwise dis joint . The p r o o f takes two steps. First , it verifies tha t the
skeleton o f the furthest po in t Voronoi d i ag ram 2 o f a cluster , for shor t the skele ton

2 The skeleton of a cluster C is the set of points x such that there are at least two points c ~ C
that maximize ~(x, C). It is a straight line tree with at most m - 2 vertices and 2m -3 edges, if m is
the number of points in C. For convenience we define the skeleton to be the point c itself if C = {c}.

332 H. Edelsbrunner, L. J. Guibas, and M. Sharir

of the cluster, intersects the domain of the cluster in a connected tree. Second,
it shows that an arbitrary point of the cluster can be connected to this tree by a
straight line segment that lies entirely within the domain of the cluster. We do
the second step first because it is simpler than the first step. Let p be a point that
belongs to the domain of a cluster C (see Fig. 6.1). By definition, C is the only
cluster that is fully contained in the closed disk with center p and radius 8(p, C).
Let c be the point in C such that ~(p, c) = ~(p, C). I f c is not unique, then p
already belongs to the skeleton of C. Otherwise, move p straight toward c until
it runs into an edge of the skeleton. The disk at every intermediate location of p
lies strictly inside p 's original disk which implies that it contains no other cluster
besides C. It is clear that p must run into an edge of the skeleton for, otherwise,
the disk of p would eventually vanish, which can only mean that c is the only
point in C and thus is equal to the skeleton of C by definition.

We now prove that if two points, x and y, on the skeleton of C belong to the
domain of C, then all points between x and y on the skeleton of C also lie in
this domain. Note that the set of points between x and y is well defined since
the skeleton is a tree. Let us introduce some definitions. For z an arbitrary point
of the skeleton of C we write d~ for the smallest closed disk with center z that
contains C, and we let 0~ denote the circle bounding dz. Since z belongs to the
skeleton of C there are at least two points in C that maximize the distance from
z; by definition these points lie on 0~. The line segment connecting such two
points in C n 0z is called a C.chord of 0~ (see Fig. 6.3(b) which shows the C-chord
of Oz).

We now come back to proving that if x and y are two points on the skeleton
of C that belong to the domain of C, then any point z between x and y belongs
to the domain of C. By definition, the only cluster contained in dx is C and
similarly C is the only cluster contained in dy. Consider d~, the smallest disk
around z that contains C. I f d~ is to contain another cluster, D, at least one point
of D must lie in d~ - d~ and at least one point of D must lie in dz - dy; otherwise,
D is contained in d~ or dy too. We prove below that d ~ - dx and d~-dy are

s'X\

\\

(a) (b)

Fig. 6.3

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 333

separated from each other by a C-chord of 0~ (as in Fig. 6.3(b)). This implies
that the convex hulls of C and D intersect, a contradiction.

We first consider the slightly simpler case that z is not a vertex of the skeleton
and thus belongs to an edge of the skeleton. In this case, 0z has only one C-chord
which we call s; the endpoints of s cut 0~ into two arcs. Both dx and dy contain
s (as they contain C) which implies that s separates dz- dx from d~-dy unless
both 0x and Oy intersect 0~ in the same arc. We now prove that this is not
possible.

Think of a point ~" continuously moving on the skeleton from x to y, and let
z be this point at some instance of time. When ~ moves away from z its circle,
0;, moves too. It still goes through the endpoints of s, the common C-chord of
0~ and 0~, but d~ grows along one arc of 0~ and it shrinks along the other arc.
We call the former the growing arc and the latter the shrinking are of 0;. As long
as ~" moves on the same edge of the skeleton the growing arc and the shrinking
arc do not change, that is, they are always determined by the endpoints of the
same line segment, s. The shrinking arc hits another point, c, of C at the same
instance of time when ~" encounters a vertex of the skeleton. (Note that the
growing arc cannot hit a point of C since all points of C are inside the circle.)
Now 0; contains three points of C, the endpoints of s and point ¢. When ~" moves
on, one of the two line segments connecting c with the endpoints of s becomes
the unique C-chord of O~. Since c lies on the shrinking arc of O~ when ~ encounters
the vertex, the new shrinking arc can only be smaller than before, and the new
growing arc can only be larger than before. This proves that d¢ - dx strictly grows,
that is, if z is a point between x and y and z' is a point between z and y, then
d z - dx ~-d~,-d~. By a symmetric argument, d ~ - d r strictly shrinks as r moves
from x to y. Consequently, 0x cannot intersect the shrinking arc of 0~ and 0y
cannot intersect the growing arc of 0~. This implies the claim for z being a point
of an edge of the skeleton.

Finally, if z is a vertex of the skeleton then 0~ contains three points of C which
cut O~ into three arcs. One arc is growing when ff is immediately before and
immediately after z, and one arc is shrinking both times. The third arc changes
from shrinking to growing. Since d~ - d~ is strictly growing 0~ intersects neither
the shrinking nor the status-changing arc, and since dc-d~, is strictly shrinking
Oy neither intersects the growing nor the changing arc. 3 Thus, d~- d~ and d~--dy
are, again, separated from each other, in this case by two C-chords of 0~.

Thus we have shown that the domain of each cluster in S is connected (it can
be empty, though) if their convex hulls are pairwise disjoint. The first part of
claim (iii) follows. This does not imply that the number of edges and vertices
of ~'(S) is also O(ISI). By Euler's relation for planar graphs this is, however,
true for vertices of ~ (S) that are incident to at least three edges. A vertex of
degree 2 must also lie on an edge of the skeleton of the cluster in one of the two
adjacent domains. Since each edge of the skeleton meets the boundary of its
cluster's domain in at most two points (this follows from the above argument)

3 In degenerate cases 0. can contain k > 3 points of C These k points cut 0z into k arcs, k - 2 of
which change from shrinking to growing and thus intersect neither 0z nor 0,.

334 H. Edelsbrunner, L. J. Guibas, and M. Sharir

we conclude a linear upper bound on the number of degree 2 vertices and thus
of edges of °F(S), []

We remark that ~ (S) can be further refined by decomposing each region of
~ (S) into subregions by the corresponding skeleton. This yields a refined convex
subdivision of the plane so that a point x belongs to a subregion corresponding
to point c of cluster C if and only if x is nearest to C and its distance to C is
attained by c. In the special case where the convex hulls of the clusters are
disjoint, the domain of cluster C is thus decomposed into at most I Ct subregions.
Euler's relation implies that the numbers of edges and vertices of the refined
subdivision are O(n), n the total number of points in all clusters.

To construct T'(S) for an arbitrary collection S of clusters we can use the
three-dimensional envelope algorithm of Section 2 which implies the following
result.

Theorem 6.2. Let S be a set of clusters where n is the sum of the cardinalities of
the clusters.

(i) Y(S) can be constructed in O(n2a(n)) time.
(ii) I f each cluster is of size one or two, then O(n 2) time suOices and this is

optimal in the worst case.

There are two major open problems concerning cluster Voronoi diagrams that
remain. Is O(n2a(n)) for the combinatorial complexity of T'(S) tight? A better
upper bound (maybe O(n2)) would also improve the time bound in Theorem
6.2(i). Second, can ~ (S) be constructed in less than quadratic time (maybe
O(n log n)) if the convex hulls of the clusters are pairwise disjoint? An affirmative
answer to the second question could also be relevant to complete linkage clustering
of n points in the plane. In this method, the points are considered to be individual
clusters initially, and at each stage the two nearest clusters are merged until all
points belong to the same cluster. As mentioned at the beginning of this section,
the distance between two clusters is defined as the maximum distance between
any two points, one from each cluster. The most efficient algorithm known for
this problem takes O(n 2) time and O(n) storage for the entire sequence of merges
(see [Df]). At each stage, the set of points is partitioned into a collection of
clusters. The Voronoi diagram of these clusters is potentially useful since the two
nearest clusters also have a common edge in the diagram. The problem is now
to maintain the diagram through a sequence of n - 1 cluster merges. In the case
of single linkage clustering, where the distance between two clusters is the
minimum distance between any two points, one from each cluster, a similar
approach yields an O(n log n)-time algorithm (see [El]) . The latter clustering
method is intimately related to the notion of the minimum spanning tree of the
points.

Acknowledgment

The authors would like to thank Emo Welzl for valuable and stimulating
discussions on some of the problems presented in this paper. In particular they

The Upper Envelope of Piecewise Linear Functions: Algorithms and Applications 335

would like to mention that Emo Welzl independently derived parts of
Theorem 6.1(iii).

References

[GRS]

[GS]

[GSS]

[HS]

[H]
[HSS]

[KLPS]

[AS] Aronov, B. and Sharir, M., Triangles in space, or: Building (and analyzing) castles in the
air, Proc. 4th Ann. A CM Sympos. Comput. Geom., 1988, pp. 381-391.

[AD] Avis, D. and Doskas, M., Algorithms for high dimensional stabbing problems, Report
SOCS-87.2, School of Computer Science, McGill University, Montreal, Quebec, 1987.

[C] Chazelle, B., Convex partitions of polyhedra: a lower bound and worst-case optimal
algorithm, SIAM J. Comput. 13 (t984), 488-507.

[Df] Defays, D., An efficient algorithm for a complete link method, Comput. J. 20 (1977), 364-366.
[Dv] Devai, F., Quadratic bounds for hidden line elimination, Proc. 2nd Ann. ACM Sympos.

Comput. Geom., t986, pp. 269-275.
[El] Edetsbrunner, H., Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[E2] Edelsbrunner, H., The upper envelope of piecewise linear functions: tight bounds on the

number of faces, Report U1UCDCS-R-87-1396, Department of Computer Science, Univer-
sity of Illinois, 1987.

[E3] Edelsbrunner, H., Maurer, H. A., Preparata, F. P., Rosenberg, A. L., Welzl, E., and Wood,
D., Stabbing line segments, BIT 22 (1982), 274-281.

[EM] Edelsbrunner, H. and MiJcke, E. P., Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms, Proe. 4th Ann. ACM Sympos. Comput. Geom.,
1988, pp. 118-133.
Guibas, L J., Ramshaw, L, and Stolfi, J., A kinematic framework for computational
geometry, Proc. 24th Ann. IEEE Sympos. Found. Comput. Sci., 1983, pp. 100-1tl.
Guibas, L J. and Seidel, R., Computing convolutions by reciprocal search, Discrete Comput.
Geom. 2 (1987), 175-193.
Guibas, L J., Sharir, M., and Sifrony, S., On the general motion planning problem with
two degrees of freedom, Proc. 4th Ann. A C M Sympos. Comput. Geom., 1988, pp. 289-298.
Hart, S. and Sharir, M., Nonlinearity of Davenport-Schinzel sequences and of generalized
path compression schemes, Combinatorica 6 (1986), 151-177.
Hartigan, J. A., Clustering Algorithms, Wiley, New York, 1975.
Hopcroft, J., Schwartz, J., and Sharir, M. (eds.), Planning, Geometry and Complexity of
Robot Motion, Ablex, Norwood, N J, 1987.
Kedem, K., Livne, R., Pach, J., and Sharir, M., On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1
(1986), 59-71.

[LS] Leven, D. and Sharir, M., Planning a purely translational motion for a convex object in
two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom. 2
(1987), 9-31.

[LW] Lozano-Prrez, T. and Wesley, M. A., An algorithm for planning collision-free paths among
polyhedral obstacles, Comm. ACM 22 (1979), 560-570.

[M] McKenna, M., Worst-case optimal hidden-surface removal, ACM Trans. Graphics" 6 (1987),
19-28.

[PSI Pach, J. and Sharir, M., The upper envelope of piecewise linear functions and the boundary
of a region enclosed by convex plates: combinatorial analysis, Discrete Comput. Geom., to
appear.

[PSS] Pollack, R., Sharir, M., and Sifrony, S., Separating two simple polygons by a sequence of
translations, Discrete Comput. Geom. 3 (1988), 123-t36.

[PrS] Preparata, F. P. and Shamos, M. I., Computational Geometry--An Introduction, Springer-
Verlag, New York, 1985.

[SS] Schwartz, J. T. and Sharir, M., On the two-dimensional Davenport-Schinzel problem, Report
193 (revised), Computer Science Department, Courant Institute, New York, 1987.

[S] Shor, P., Private communication.

336 H. Edelsbrunner, L. J. Guibas, and M. Sharir

[SSS] Sutherland, I. E., Sproull, R. F. and Shumacker, R, A., A characterization of ten hidden
surface algorithms, Comput. Surveys 6 (1974), 1-55.

[Tr] Tamir, A., Improved complexity bounds for center location problems on networks by using
dynamic data structures, Manuscript.

[Tn] Tarjan, R. E., Depth-first search and linear graph algorithms, SIAM J. Comput. 2 (1972),
146-160.

[Tt] Toussaint, G., Movable separability of sets, in Computational Geometry, G. T. Toussaint,
ed., North-Holland, Amsterdam, 1985, pp. 335-375.

[WS] Wiernik, A. and Sharir, M., Planar realization of nonlinear Davenport-Schinzel sequences
by segments, Discrete Comput. Geom. 3 (1988), t5-47.

Received November 30, 1987, and in revised form February 3, 1988.

