

The Upper Envelope of Piecewise Linear Functions: Tight Bounds on the Number of Faces*

Herbert Edelsbrunner

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract. This note proves that the maximum number of faces (of any dimension) of the upper envelope of a set of *n* possibly intersecting *d*-simplices in d+1 dimensions is $\Theta(n^d \alpha(n))$. This is an extension of a result of Pach and Sharir [PS] who prove the same bound for the number of *d*-dimensional faces of the upper envelope.

1. Introduction

This note considers the combinatorial complexity¹ of the upper envelope of a finite set of (possibly intersecting) *d*-dimensional simplices² in (d+1)-dimensional Euclidean space. In order to define the notion of an envelope we think of each *d*-simplex as the graph of a real-valued, linear *d*-variate function. This function, *f*, is defined so that $x_{d+1} = f(x_1, x_2, \ldots, x_d)$ whenever $(x_1, x_2, \ldots, x_d, x_{d+1})$ is in the simplex. If no such x_{d+1} exists we conveniently set $f(x_1, x_2, \ldots, x_d) = -\infty$. The (*upper*) envelope of the set of simplices is now the pointwise maximum of all corresponding *d*-variate functions. The (upper) envelope of more general piecewise linear *d*-variate functions is implicitly defined since the graph of every such function is a collection of *d*-dimensional polyhedra

^{*} This work was supported by Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862 and by the National Science Foundation under Grant CCR-8714565. Research on the presented result was partially carried out while the author worked for the IBM T. J. Watson Research Center at Yorktown Height, New York, USA.

¹ By the combinatorial complexity we mean the number of faces of any dimension k < d. In our analysis we assume that d, the number of dimensions, is a fixed constant.

² A *d-dimensional simplex* (or *d-simplex*) in d+1 dimensions is the intersection of a hyperplane with d+1 half-spaces, where a *half-space* is defined as the set of points on and to one side of a hyperplane.

which can be decomposed into d-simplices. To prove an upper bound on the combinatorial complexity of the envelope of n d-simplices we assume without loss of generality that the d-simplices are in general position. Among other things this means that the hyperplanes that contain the d-simplices are nonvertical.³ Other implications of the general position assumption are implicitly used whenever it is convenient.

Let S be such a set of n d-simplices in d+1 dimensions and let M_S be its envelope. If we project every face of M_S vertically onto the hyperplane $x_{d+1} = 0$ we get a cell complex,⁴ M_S^* , and we denote the number of k-faces⁵ of M_S^* by $\psi_k(S)$ for $0 \le k \le d$. Formally, we consider the sum of the $\psi_k(S)$ as the combinatorial complexity of M_S . This note proves tight upper bounds for $\psi_k^{(d+1)}(n)$, where

 $\psi_k^{(d+1)}(n) = \max{\{\psi_k(S) | S \text{ a set of } n \text{ d-simplices in } d+1 \text{ dimensions}\}},$

for all $0 \le k \le d$ and constant values of d. Prior to this note, tight bounds were known for all k only if d+1=2,3 and for k=d if d>3. In two dimensions (d+1=2), S is a set of (possibly intersecting) line segments in the plane. Using so-called Davenport-Schinzel sequences of order 3 [HS] and [WS] prove that $\psi_k^{(2)}(n) = \Theta(n\alpha(n))$, for k=0, 1, where $\alpha(n)$ is the extremely slowly growing inverse of Ackermann's function. [PS] proves $\psi_d^{(d+1)}(n) = O(n^d \alpha(n))$ using a divide-and-conquer argument and shows that this upper bound is tight by extending the two-dimensional lower bound construction of [WS] to three and higher dimensions. In d+1=3 dimensions the Euler characteristic can be used to extend the upper bound for 2-faces to 0-faces (vertices) and 1-faces (edges). In this note we prove the following result.

Theorem. $\psi_k^{(d+1)}(n) = \Theta(n^d \alpha(n))$ for $0 \le k \le d$.

In other words, the combinatorial complexity of the envelope of n d-simplices in d+1 dimensions is proportional to $n^d \alpha(n)$ in the worst case. It is easy to verify the lower bound of the theorem. [PS] shows that there is a collection of n d-simplices in d+1 dimensions such that the number of d-faces of the envelope is $\Omega(n^d \alpha(n))$. The lower bound for $0 \le k < d$ follows since every d-face has at least one k-face in its boundary and every k-face belongs to the boundary of at most some constant number of d-faces, if we assume general position of the d-simplices. The constant is linear in d. The proof of the upper bound is presented in Section 2 of this note. It is an extension of the divide-and-conquer proof of

³ A hyperplane is *nonvertical* if it intersects the (d+1)st coordinate axis in a unique point.

⁴ A cell complex is a collection of closed convex sets (called *faces*) of various dimensions such that the relative interiors of the faces partition the space and the intersection of any two faces is again a face.

⁵ A maximal connected component, f, of the intersection of M_s^* with a k-dimensional affine subspace is a k-face of M_s^* if the interior of f relative to the subspace is nonempty and f is not contained in the relative interior of a (k+1)-face of M_s^* .

[PS]. Combinatorial extensions and algorithmic applications of the theorem can be found in [EGS].

2. Proof of the Theorem

We first review the main steps of the proof and then describe each step in appropriate detail. Most of the arguments are concerned with a refinement, \bar{M}_{s} , of the cell complex M_s^* in d dimensions. \bar{M}_s has the nice property that every face is convex. Being a refinement of M_s^* the number of faces of \overline{M}_s is certainly an upper bound on the number of faces of M_s^* . The overall structure of the proof is inductive over the number of dimensions. In a specific dimension, d + 1, we use a divide-and-conquer argument, that is, we form subsets of S, the set of d-simplices, consider the envelopes of these subsets and combine them to get the envelope of S. More precisely, we consider the cell complexes \overline{M} of the subsets and combine those to get \overline{M}_s . The combination makes use of the convexity of M_s 's faces and the inductively available upper bounds on the combinatorial complexity of envelopes in d dimensions. A careful choice of the subsets of S allows us to prove the upper bound of the theorem for $2 \le k \le d$. Finally, we use the Euler characteristic for cell complexes to extend the upper bound to k = 0, 1. The order in which we present the various steps of the proof is different from the order used in this outline.

Definition of \overline{M}_s . As mentioned above, \overline{M}_s is a refinement of M_s^* which is a cell complex in *d* dimensions. (The *d*-dimensional space is identified with the hyperplane $x_{d+1} = 0$ in d + 1 dimensions.) Recall that M_s^* is obtained by projecting every face of M_s vertically onto $x_{d+1} = 0$. To obtain \overline{M}_s from M_s^* we also project each *d*-simplex in *S* vertically onto $x_{d+1} = 0$ and, in addition, extend each (d-1)-face of each projected *d*-simplex to the full hyperplane in $x_{d+1} = 0$ that contains it. Thus, \overline{M}_s is M_s^* after superimposing an arrangement⁶ of (d+1)n hyperplanes; the arrangement is denoted by A_s .

It is convenient to think of \overline{M}_s as a refinement of A_s : every cell (i.e., *d*-face) of A_s is further decomposed by projections of intersections between *d*-simplices. Consider the vertical slab, V_c , in d + 1 dimensions whose points project vertically to points of some cell *c* of A_s . Restricted to V_c , a *d*-simplex in *S* cannot be distinguished from the (*d*-dimensional) hyperplane that contains the *d*-simplex. It follows that M_s , the envelope of *S*, restricted to V_c is the boundary of the convex polyhedron that is the intersection of the half-spaces bounded from below by the hyperplanes containing the *d*-simplices cutting through V_c . This implies that in \overline{M}_s every cell of A_s is further decomposed into convex faces. Consequently, every face of \overline{M}_s is convex. We let $\overline{\psi}_k(S)$ denote the number of *k*-faces of \overline{M}_s .

⁶ An arrangement in d dimensions is the cell complex obtained by dissecting the space with a finite number of hyperplanes. If n is the number of hyperplanes then the number of faces of the arrangement is $O(n^d)$ (see [Grü] and [E]).

Use of the Euler Characteristic

The Euler characteristic of a cell complex in d dimensions is a linear relation for the numbers of k-faces, $0 \le k \le d$. For \overline{M}_s it has the simple form

$$\sum_{k=0}^{d} (-1)^{k} \bar{\psi}_{k}(S) = 1 + (-1)^{d}$$

since all faces of \tilde{M}_s are convex and therefore simply connected (see [Gre]). Assuming $\bar{\psi}_k(S) = O(n^d \alpha(n))$ for $2 \le k \le d$ we get

$$\left|\bar{\psi}_0(S)-\bar{\psi}_1(S)\right|=O(n^d\alpha(n)).$$

Thus, the number of vertices and edges of \overline{M}_S can be asymptotically more than $n^d \alpha(n)$ only if their difference is small, that is, $O(n^d \alpha(n))$. However, by assumption of general position every vertex of \overline{M}_S is incident upon d+1 edges if it lies inside a cell of A_S , and between d+2 and 2d if it lies on the boundary of a cell of A_S . In any case, we have

$$\bar{\psi}_1(S) \ge \frac{d+1}{2} \,\bar{\psi}_0(S)$$

which implies that both $\bar{\psi}_0(S)$ and $\bar{\psi}_1(S)$ can be at most proportional to their difference, as long as $d \ge 2$. This proves $\bar{\psi}_k^{(d+1)}(n) = O(n^d \alpha(n))$ for k = 0, 1 if the same upper bound holds for $2 \le k \le d$.

An Exercise in Solving Recurrence Relations

Later we prove that indeed $\bar{\psi}_k^{(d+1)}(n) = O(n^d \alpha(n))$ for $2 \le k \le d$. The type of recurrence relation that we have to deal with is of the form

$$T(n) = \binom{m}{d+1-k} \cdot T\left(\frac{d+1-k}{m} \cdot n\right) + O(n^d \alpha(n)),$$

where m > d + 1 - k is an integer constant independent of *n*. The solution to this recurrence relation is $O(n^d \alpha(n))$ if the homogeneous solution is $O(n^{d-\epsilon})$ for some $\epsilon > 0$. We show that *m* can always be chosen such that this is true.

The homogeneous solution of the above recurrence relation is n^{β} , with

$$\beta = \log_2 \binom{m}{d+1-k} / \log_2 \frac{m}{d+1-k}$$

The requirement $\beta < d$ can be rewritten as

$$\binom{m}{d+1-k} < \left(\frac{m}{d+1-k}\right)^d$$

The Upper Envelope of Piecewise Linear Functions: Tight Bounds

which is equivalent to

$$\frac{(d+1-k)^d}{(d+1-k)!} < \frac{m^d}{m \cdot (m-1) \cdot \cdots \cdot (m-d+k)}.$$

The ratio on the right side has d factors in the numerator and d+1-k factors in the denominator which implies that

$$\frac{(d+1-k)^d}{(d+1-k)!} < m$$

is sufficient to guarantee $\beta < d$ as long as d+1-k < d which is equivalent to $k \ge 2$. Thus, the recurrence relation solves to $O(n^d \alpha(n))$ if $k \ge 2$ and *m* is chosen appropriately. The above calculation shows that choosing *m* exponentially in *d* is sufficient.

Adding Hyperplanes

The final step of the proof (described later) takes the envelopes of a constant number of subsets of S and obtains the envelope of S by combining those envelopes. Let $S_1, S_2, \ldots, S_{\mu}$ be the subsets of S and consider the cell complexes \bar{M}_{S_i} for $1 \le i \le \mu$. When we combine those cell complexes it is important that they are refinements of the same arrangement as \bar{M}_S , namely of A_S . To satisfy this need, we superimpose A_S on \bar{M}_{S_i} , for every $1 \le i \le \mu$, and call the resulting cell complex \bar{M}_S . Adding hyperplanes to \bar{M}_{S_i} clearly increases the number of faces. We now show that the effect of adding hyperplanes on the number of faces is surprisingly small.

When we add a hyperplane we create new k-faces that lie in the hyperplane and we cut old k-faces into pairs of new k-faces; in the latter case the hyperplane contains a (k-1)-face that splits the old k-face. Thus, we can estimate the increase in combinatorial complexity from \overline{M}_{S_i} to \overline{M}_{S_i} by counting the faces in the hyperplanes added to \overline{M}_{S_i} . The number of hyperplanes added to \overline{M}_{S_i} is at most (d+1)n and thus linear in the size of S.⁷

Consider now the decomposition of a hyperplane, h, in \overline{M}_{S_i} . In order to bound the number of faces in h we use the following auxiliary claim, which we also establish using induction over the number of dimensions. The claim considers cell complexes that are slightly more general than the cell complexes \overline{M} .

Claim. Let S be a finite set of d-simplices in d + 1 dimensions, let \overline{M}_S be the cell complex in d dimensions as defined earlier, and let \overline{M} be \overline{M}_S after adding a finite number of hyperplanes (in d dimensions). The number of faces of \overline{M} is $O(N^d \alpha(N))$, where N is the number of d-simplices in S plus the number of hyperplanes added to \overline{M}_S .

⁷ Some of the hyperplanes of A_s are already present in \bar{M}_{S_i} and do not have to be added.

If d = 1, S is a finite set of line segments in the plane. The vertical projection of the upper envelope of S is a decomposition of the x_1 -axis into intervals. [WS] establishes that the number of intervals is $O(n\alpha(n))$ if n = |S|. If we add N - n points to the subdivision of the x_1 -axis we get at most $O(n\alpha(n) + N)$ intervals which is smaller than $O(N\alpha(N))$ and thus the claim is correct for d = 1.

We now come back to hyperplane h which intersects the other hyperplanes in a (d-1)-dimensional arrangement consisting of $O(n^{d-1})$ faces. The decomposition of h in \overline{M}_S is a refinement of this arrangement which can be obtained from a cross-section of M_S as follows. Let h' be the vertical hyperplane in d+1dimensions whose intersection with $x_{d+1} = 0$ is h. The cross-section $M_S \cap h'$ is the envelope of O(n) (d-1)-simplices⁸ in h' which has $O(n^{d-1}\alpha(n))$ faces by inductive assumption (the above claim for (d-1)-simplices in d dimensions). Inductively, we can also assume that the decomposition of h in \overline{M}_{S_i} (which we obtain by superimposing the vertical projection of the cross-section with the arrangement in h described earlier) has at most $O(n^{d-1}\alpha(n))$ faces. Thus, the total number of faces in the cell complexes \overline{M} (taken over all sets S_i for $1 \le i \le \mu$) is at most $O(n^d \alpha(n))$ larger than the total number of faces of the cell complexes \overline{M} (taken over the same collection of sets).

Notice that the argument makes no use of the fact that every hyperplane added to \overline{M}_{S_i} contains a (d-1)-face of the vertical projection of a *d*-simplex in S_i . It can therefore be applied to any odd hyperplane that we like to add. This is important for proving the claim for d+1 dimensions which can thus be done along the same lines.

Combining Envelopes

For this step of the proof it is important that M_s , the envelope of S, restricted to a vertical slab defined by a cell of A_s , is the lower boundary of a convex polyhedron. Thus, every face is convex and every intersection of d+1-k dsimplices (for $0 \le k \le d$) contains at most one k-face within this slab. Let us now fix k to some integer between 2 and d including the limits. We partition S into m > d+1-k subsets of approximately equal sizes⁹ and then form

$$\mu = \binom{m}{d+1-k}$$

sets of size approximately $n \cdot (d+1-k)/m$ by merging every combination of d+1-k subsets. For example, if k=d then the new sets are the original m subsets, and if k=d-1 the sets are the unions of any two original subsets. It is important to see that any (d+1-k)-tuple of d-simplices is contained in at least one of the μ sets.

⁸ h' intersects a d-simplex in a (d-1)-dimensional convex polytope which can be decomposed into a constant number of (d-1)-simplices.

 $^{^{9}}S$ can be partitioned such that the sizes of any two subsets differ by at most 1.

The Upper Envelope of Piecewise Linear Functions: Tight Bounds

We now come back to M_S , the envelope of S, restricted to the vertical slab, V_c , defined by cell c of the arrangement A_S in $x_{d+1} = 0$. This restricted part of M_S corresponds to the decomposition of c induced by \overline{M}_S . We consider the μ sets formed above and denote them by $S_1, S_2, \ldots, S_{\mu}$. If a k-face f of \overline{M}_S lies inside c, then it is contained in the projection of the intersection of some d + 1 - k d-simplices $s_1, s_2, \ldots, s_{d+1-k}$. There is at least one index j, $1 \le j \le \mu$, such that S_j contains all those simplices. By convexity, \overline{M}_{S_j} restricted to c has a k-face gthat contains f; g is also contained in the projection of $s_1 \cap s_2 \cap \cdots \cap s_{d+1-k}$. It follows that the number of k-faces of \overline{M}_S within c is at most the total number of k-faces of $\overline{M}_{S_1}, \overline{M}_{S_2}, \ldots, \overline{M}_{S_{\mu}}$ in c. The total number of k-faces of \overline{M}_S is thus at most the sum of the numbers of k-faces of \overline{M}_{S_1} through $\overline{M}_{S_{\mu}}$. By the argument in the previous step of the proof we therefore get

$$T(n) = \binom{m}{d+1-k} T\left(\frac{d+1-k}{m} \cdot n\right) + O(n^d \alpha(n)),$$

where T(n) is the maximum number of k-faces of \overline{M}_s , that is, $T(n) = \overline{\psi}_k^{(d+1)}(n)$. The analysis of this recurrence relation presented earlier implies that the constant m can be chosen so that the solution is $O(n^d \alpha(n))$. This implies

$$\overline{\psi}_k^{(d+1)}(n) = O(n^d \alpha(n)) \quad \text{for} \quad 2 \le k \le d.$$

The same bound for k = 0, 1 is now implied by our considerations of the Euler characteristic of \overline{M}_s . This completes the proof of the theorem.

References

- [E] Edelsbrunner, H., Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
- [EGS] Edelsbrunner, H., Guibas, L. J., and Sharir, M., The upper envelope of piecewise linear functions: algorithms and applications, *Discrete Comput. Geom.*, to appear.
- [Gre] Greenberg, M. J., Lectures on Algebraic Topology, Benjamin, Reading, MA, 1967.
- [Grü] Grünbaum, B., Convex Polytopes, Wiley, Chichester, 1967.
- [HS] Hart, S. and Sharir, M., Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, *Combinatorica* 6 (1986), 151-177.
- [PS] Pach, J. and Sharir, M., The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: combinatorial analysis, *Discrete Comput. Geom.*, to appear.
- [WS] Wiernik, A. and Sharir, M., Planar realization of nonlinear Davenport-Schinzel sequences by segments, *Discrete Comput. Geom.* 3 (1988), 15-47.

Received January 11, 1988.