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The Upper Envelope of Piecewise Linear Functions: 
Tight Bounds on the Number of Faces* 

H e r b e r t  E d e l s b r u n n e r  

Department of Computer Science, University of Illinois at Urbana-Champaign, 
Urbana, IL 61801, USA 

Abstract. This note proves that the maximum number of  faces (of any dimension) 
of the upper envelope of  a set of n possibly intersecting d-simplices in d +  1 
dimensions is O(ndc~(n)). This is an extension of a result of Pach and Sharir [PS] 
who prove the same bound for the number of  d-dimensional faces of  the upper 
envelope. 

1. Introduction 

This  n o t e  c o n s i d e r s  the  c o m b i n a t o r i a l  c o m p l e x i t y  ~ o f  the  u p p e r  e n v e l o p e  o f  a 

finite set o f  (poss ib ly  in te r sec t ing)  d - d i m e n s i o n a l  s imp l i ce s  2 in ( d + l ) -  

d i m e n s i o n a l  E u c l i d e a n  space .  In  o r d e r  to de f ine  the  n o t i o n  o f  an  e n v e l o p e  we 

th ink  o f  e a c h  d - s i m p l e x  as the  g r a p h  o f  a r e a l - v a l u e d ,  l i nea r  d - v a r i a t e  func t ion .  

This  f u n c t i o n ,  f ,  is d e f i n e d  so tha t  Xd+l=f(xi,x2,...,Xd) w h e n e v e r  

(x l ,  x 2 , . . . ,  Xd, Xd÷~) is in t he  s implex .  I f  n o  such  Xd+l exists  we  c o n v e n i e n t l y  set 

f ( x~ ,  x 2 , . . . ,  xa) = --oo. The  (upper) envelope o f  the  set  o f  s i m p l i c e s  is n o w  the  

p o i n t w i s e  m a x i m u m  o f  all  c o r r e s p o n d i n g  d - v a r i a t e  func t ions .  T h e  ( u p p e r )  
e n v e l o p e  o f  m o r e  gene ra l  p i e c e w i s e  l inea r  d - v a r i a t e  f u n c t i o n s  is imp l i c i t l y  de f i ned  

s ince  the  g r a p h  o f  eve ry  such  f u n c t i o n  is a c o l l e c t i o n  o f  d - d i m e n s i o n a l  p o l y h e d r a  

* This work was supported by Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862 and by the National 
Science Foundation under Grant CCR-8714565. Research on the presented result was partially carried 
out while the author worked for the IBM T. J. Watson Research Center at Yorktown Height, New 
York, USA. 

1 By the combinatorial complexity we mean the number of faces of any dimension k < d. In our 
analysis we assume that d, the number of dimensions, is a fixed constant. 

2 A d-dimensional simplex (or d-simplex) in d + 1 dimensions is the intersection of a hyperplane 
with d + 1 half-spaces, where a half-space is defined as the set of points on and to one side of a 
hyperplane. 
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which can be d e c o m p o s e d  into d-s impl ices .  To prove an u p p e r  b o u n d  on the 
combina to r i a l  complex i ty  o f  the enve lope  o f  n d - s imp l i ce s  we assume without  
loss of  genera l i ty  that  the d - s impl ices  are in genera l  posi t ion.  A m o n g  o ther  things 
this  means  that  the hype rp l anes  that  conta in  the d - s impl ices  are nonvert ical .  3 
Othe r  impl i ca t ions  o f  the  general  pos i t ion  a s sumpt ion  are impl ic i t ly  used  
whenever  it is convenient .  

Let S be such a set o f  n d-s impl ices  in d + 1 d imens ions  and  let M s  be its 
envelope .  I f  we project  every face of  M s  ver t ica l ly  onto the hype rp l a ne  Xd~t = 0 
we get a cell complex ,  4 M * ,  a,~d we deno te  the number  o f  k-faces  5 o f  M *  by 
@k(S) for  0-< k < - d. Fo rma l ly ,  we cons ider  the sum of  the  ~k(S)  as the com- 
b ina to r ia l  complex i ty  o f  Ms.  This note proves  t ight  u p p e r  b o u n d s  for  @~d÷~7(n), 

where  

oCkd+i~(n) = max{@k(S)lS a set of  n d - s impl ices  in d + 1 d imensions} ,  

for  all 0 -  k <- d and  cons tan t  values  o f  d. Pr ior  to this note ,  t ight  b o u n d s  were 
known  for  all k only if  d + l  = 2 , 3  and for  k =  d if d > 3 .  In two d imens ions  
( d  + 1 = 2), S is a set o f  (poss ib ly  intersect ing)  l ine segments  in the p lane .  Using 
so-ca l led  D a v e n p o r t - S c h i n z e l  sequences  o f  o rde r  3 [HS]  and  [WS]  prove  that  
tp~2)(n)=O(nct(n)) ,  for k = 0 ,  1, where  a ( n )  is the  ex t remely  s lowly  growing 
inverse  o f  A c k e r m a n n ' s  funct ion.  [PSI proves  t~dd+lt(n)= O ( n d a ( n ) )  using a 
d i v i d e - a n d - c o n q u e r  a rgumen t  and  shows tha t  this u p p e r  b o u n d  is t ight  by extend-  
ing the two-d imens iona l  lower  b o u n d  cons t ruc t ion  o f  [WS]  to three and  higher  
d imens ions .  In d + 1 = 3 d imens ions  the Euler  charac ter i s t ic  can be  used  to extend 
the  uppe r  b o u n d  for  2-faces to 0-faces (vert ices)  and  1-faces (edges) .  In this note 

we prove the fo l lowing result .  

Theorem. ~k~d+l~(n) = ®(hack(n)) for  0 < -- k <- d. 

In  other  words ,  the combina to r i a l  complex i ty  o f  the enve lope  o f  n d - s imp l i ce s  
in d +  1 d imens ions  is p r o p o r t i o n a l  to ndct(n) in the  worst  case. I t  is easy to 
verify the lower  b o u n d  o f  the theorem.  [PS] shows that  there  is a co l lec t ion  o f  
n d - s imp l i ce s  in d + 1 d imens ions  such tha t  the  n u m b e r  of  d - faces  o f  the  enve lope  
is f ' t(naot(n)). The  lower  b o u n d  for  0 -  < k <  d fol lows s ince every d - f a c e  has  at  
leas t  one k- face  in its b o u n d a r y  and  every k- face  be longs  to the b o u n d a r y  o f  at  
mos t  some cons tant  n u m b e r  of  d-faces,  if  we assume genera l  pos i t ion  of  the 
d - s impl ices .  The cons tan t  is l inear  in d. The p r o o f  o f  the u p p e r  b o u n d  is p resen ted  
in Sect ion 2 o f  this note.  It is an  extens ion o f  the d i v i d e - a n d - c o n q u e r  p r o o f  of  

3 A hyperplane is nonvertical if it intersects the (d + 1)st coordinate axis in a unique point, 
4 A cell complex is a collection of closed convex sets (called faces) of various dimensions such 

that the relative interiors of the faces partition the space and the intersection of any two faces is 
again a face. 

s A maximal connected component, f, of the intersection of Ms* with a k-dimensional affine 
subspace is a k-face of Ms* if the interior of f relative to the subspace is nonempty and f is not 
contained in the relative interior of a (k+ 1)-face of M*. 
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[PS]. Combinatorial extensions and algorithmic applications of  the theorem can 
be found in [EGS]. 

2. Proof of the Theorem 

We first review the main steps of  the proof  and then describe each step in 
appropriate detail. Most of  the arguments are concerned with a refinement, fiqs, 
of the cell complex Ms* in d dimensions, rids has the nice property that every 
face is convex. Being a refinement of  Ms* the number  of  faces of  Ms is certainly 
an upper  bound on the number of faces of M*.  The overall structure of the 
proof  is inductive over the number of  dimensions. In a specific dimension, d + 1, 
we use a divide-and-conquer argument, that is, we form subsets of  S, the set of  
d-simplices, consider the envelopes of  these subsets and combine them to get 
the envelope of S. More precisely, we consider the cell complexes ~t  of  the 
subsets and combine those to get Ms. The combination makes use of  the convexity 
of/~ts'S faces and the inductively available upper  bounds on the combinatorial 
complexity of  envelopes in d dimensions. A careful choice of the subsets of S 
allows us to prove the upper  bound of the theorem for 2 <- k-< d. Finally, we use 
the Euler characteristic for cell complexes to extend the upper bound to k = 0, 1. 
The order in which we present the various steps of  the proof  is different from 
the order used in this outline. 

Definition of Airs. As mentioned above, Mrs is a refinement of  M* which is a 
cell complex in d dimensions. (The d-dimensional space is identified with the 
hyperplane Xd÷l = 0 in d + 1 dimensions.) Recall that M*  is obtained by projecting 
every face of  Ms vertically onto Xd÷~ = O. TO obtain Ms from M* we also project 
each d-simplex in S vertically onto Xd+~=O and, in addition, extend each 
( d -  1)-face of  each projected d-simplex to the full hyperplane in Xd+~ = 0 that 
contains it. Thus, Ms is Ms* after superimposing an arrangement 6 of  ( d + l ) n  
hyperplanes; the arrangement is denoted by As. 

It is convenient to think of ~ts as a refinement of  As: every cell (i.e., d-face) 
of As is further decomposed by projections of  intersections between d-simplices. 
Consider the vertical slab, Vc, in d + 1 dimensions whose points project vertically 
to points of  some cell c of  As. Restricted to ~ ,  a d-simplex in S cannot be 
distinguished from the (d-dimensional) hyperplane that contains the d-simplex. 
It follows that Ms, the envelope of  S, restricted to Vc is the boundary of the 
convex polyhedron that is the intersection of the half-spaces bounded from below 
by the hffperplanes containing the d-simplices cutting through Vc. This implies 
that in Ms every cell of As is further decomposed into convex faces. Consequently, 
every face of  ~ts is convex. We let d/k(S) denote the number  of  k-faces of  fi~ts. 

An arrangement in d dimensions is the cell complex obtained by dissecting the space with a 
finite number of hyperplanes. If n is the number of hyperplanes then the number of faces of the 
arrangement is O(n d) (see [Grii] and [E]). 
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Use of the Euler Characteristic 

The Euler characteristic of  a cell complex in d dimensions is a linear relation 
for the numbers  o f  k-faces, 0-< k-< d. For h4s it has the simple form 

d 

E ( - 1 ) ~ ( s )  = 1 + ( - 1 Y  
k=O 

since all faces o f  Ms are convex and therefore simply connected (see [Gre]) .  
Assuming 0 k ( S ) =  O(nda(n)) for 2<-k-<-d we get 

leTo(s)- ~,(s)I = o(n%(~)) .  

Thus,  the number  of  vertices and edges o f  Ms can be asymptotical ly more  than 
n da (n) only if their difference is small, that  is, O(n da (n)).  However,  by assump- 
tion o f  general position every vertex o f  ~ts is incident upon  d + 1 edges if it lies 
inside a cell o f  As, and between d + 2 and 2d if it lies on the boundary  o f  a cell 
o f  As. In any case, we have 

- S > d + l -  S 

which implies that both  ~0(S) and tpl(S) can be at most propor t ional  to their 
difference, as long as d ->2. This proves ~d÷~(n) = O(nea(n)) for k = 0 ,  1 if the 
same upper  bound  holds for 2 <- k ~ d. 

An Exercise in Solving Recurrence Relations 

Later we prove that indeed ~ d ÷ l ~ ( n ) =  O(nda(n)) for 2 < -- k<-d. The type o f  
recurrence relation that we have to deal with is of  the form 

T(n)=(d+7_k  ) • T(d+'~ -k" n)+O(ndot(n)), 
where m > d + 1 - k is an integer constant  independent  of  n. The solution to this 
recurrence relation is O(nda(n)) if the homogeneous  solution is O(n a-~) for 
some e > 0. We show that  m can always be chosen such that this is true. 

The homogeneous  solution o f  the above recurrence relation is n o , with 

( m ) /  m 
fl = log2 d + l - k  l°g2 d + l - k "  

The requirement  13 < d can be rewritten as 

d 
rn m 



The Upper Envelope of Piecewise Linear Functions: Tight Bounds 341 

which is equivalent to 

( d + l  - k )  d m d 
<~ ' .  

( d + l - k ) !  m . ( m - 1 )  . . . . .  ( m - d + k )  

The ratio on the right side has d factors in the numerator and d + 1 -  k factors 
in the denominator  which implies that 

( d + l  - k )  d 
< m  

( d + l - k ) !  

is sufficient to guarantee /3 < d as long as d + 1 -  k < d which is equivalent to 
k-> 2. Thus, the recurrence relation solves to O(n da (n)) if k---2 and m is chosen 
appropriately. The above calculation shows that choosing m exponentially in d 
is sufficient. 

Adding Hyperplanes 

The final step of the proof  (described later) takes the envelopes of  a constant 
number of  subsets of S and obtains the envelope of S by combining those 
envelopes. Let $1, $2 . . . .  , S,~ be the subsets of  S and consider the cell complexes 
A7/s, for 1 <-i <-/z. When we combine those cell complexes it is important that 
they are refinements of  the same arrangement as Ms, namely of As. To satisfy 
this need, we superimpose As on h4ts,, for every 1 <- i -< ix, and call the resulting 
cell complex Ms,. Adding hyperplanes to h4s, clearly increases the number  of  
faces. We now show that the effect of  adding hyperplanes on the number  of faces 
is surprisingly small. 

When we add a hyperplane we create new k-faces that lie in the hyperplane 
and we cut old k-faces into pairs of new k-faces; in the latter case the hyperplane 
contains a (k - 1)-face that splits the old k-face. Thus, we can estimate the increase 
in combinatorial complexity from h4ts, to Ms, by counting the faces in the 
hyperplanes added to /~s,- The number of hyperplanes added to hT/s. is at most 
(d + 1)n and thus linear in the size of  S.7 

Consider now the decomposition of a hyperplane, h, in h~ts. In order to bound 
the number of  faces in h we use the following auxiliary claim, which we also 
establish using induction over the number of  dimensions. The claim considers 
cell complexes that are slightly more general than the cell complexes /~t 

Claim. Let S be a finite set of  d-simplices in d + 1 dimensions, let ~I s be the cell 
complex in d dimensions as defined earlier, and let ~I be hTl s after adding a finite 
number of hyperplanes ( in d dimensions). The number of faces of ~4 is O( Na ct ( N ) ), 
where N is the number of d-simplices in S plus the number of hyperplanes added to 

7 Some of the hyperplanes of A s are already present in /~s, and do not have to be added. 
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I f  d = 1, S is a finite set o f  line segments in the plane. The vertical projection o f  
the upper  envelope of  S is a decomposi t ion  o f  the xl-axis into intervals. [WS] 
establishes that the number  o f  intervals is O(na(n)) if n = ISI. I f  we add N -  n 
points to the subdivision of  the xl-axis we get at most O(nc~(n)+ N) intervals 
which is smaller than O(Na(N)) and thus the claim is correct for d = 1. 

We now come back to hyperplane h which intersects the other  hyperplanes 
in a (d  - 1)-dimensional arrangement  consisting o f  O(n d-I) faces. The decompo-  
sition o f  h in h~s is a refinement o f  this ar rangement  which can be obtained from 
a cross-section o f  Ms as follows. Let h '  be the vertical hyperplane  in d + 1 
dimensions  whose intersection with xd÷l = 0  is h. The cross-section Ms n h' is 
the envelope o f  O(n) (d-1)-simplices 8 in h'  which has O(nd-~a(n)) faces by 
inductive assumption (the above claim for  ( d - 1 ) - s i m p l i c e s  in d dimensions).  
Inductively,  we can also assume that the decomposi t ion  o f  h in ~(/s, (which we 
obtain by super imposing the vertical project ion o f  the cross-section with the 
ar rangement  in h described earlier) has at most  O(nd-la(n)) faces. Thus,  the 
total number  o f  faces in the cell complexes h~/(taken over all sets Si for 1 -< i -</z) 
is at m o s t  O(ndot(n)) larger than the total number  o f  faces o f  the cell complexes 

(taken over the same collection o f  sets). 
Notice that the argument  makes no use o f  the fact that every hyperplane added  

to ~ts, contains a (d - 1)-face o f  the vertical projection o f  a d-s implex in Si. It 
can therefore be applied to any odd hyperplane  that we like to add. This is 
important  for proving the claim for d + 1 dimensions which can thus be done 
along the same lines. 

Combining Envelopes 

For this step of  the p roo f  it is important  that Ms, the envelope o f  S, restricted 
to a vertical slab defined by a cell of  As, is the lower boundary  o f  a convex 
polyhedron.  Thus, every face is convex and every intersection o f  d + 1 - k  d- 
simplices (for 0-< k-< d)  contains at most one k-face within this slab. Let us now 
fix k to some integer between 2 and d including the limits. We partit ion S into 
m > d + 1 - k subsets o f  approximately  equal sizes 9 and then form 

(m) 
tz= d + l - k  

sets o f  size approximate ly  n .  (d  + 1 - k ) / m  by merging every combina t ion  o f  
d + 1 -  k subsets. For  example,  if k = d then the new sets are the original m 
subsets, and  if k = d - 1 the sets are the unions  o f  any two original subsets. It is 
impor tant  to see that  any (d  + 1 - k) - tuple  o f  d-simplices is conta ined in at least 
one  o f  t h e / x  sets. 

8 h' intersects a d-simplex in a (d - 1)-dimensional convex potytope which can be decomposed 
into a constant number of (d - 1)-simplices. 

9 S can be partitioned such that the sizes of any two subsets differ by at most 1. 
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We now come back to Ms, the envelope of  S, restricted to the vertical slab, 
V,, defined by cell c of  the arrangement As in Xd+, =0.  This restricted part of  
Ms corresponds to the decomposition of c induced by /~s. We consider the 
sets formed above and denote them by Sin, $ 2 , . . . ,  S , .  If  a k-face f o f / ~ s  lies 
inside c, then it is contained in the projection of the intersection of some d + 1 - k 
d-simplices s~, s 2 , . . . ,  Sd+,-k. There is at least one index j, 1 <-j<-/.~, such that 
Sj contains all those simplices. By convexity, 1Vls, restricted to c has a k-face g 
that contains f ;  g is also contained in the projection of  s, m s2 ~"  • • n Sd+,-k. It 
follows that the number of  k-faces of h4s within c is at most the total number 
of k-faces of/~s,, /~/s~, • • •, Ms, in c. The total number of k-faces of  hT/s is thus 
at most the sum of the numbers of k-faces of -~/s, through hT/s. By the argument 
in the previous step of the proof  we therefore get 

m \ / d + l - k  ) 
T(n)= d+l_k)T~ m .n +O(nda(n)), 

where T(n)  is the maximum number of k-faces of  h4s, that is, T(n)  = ~ff+')(n). 
The analysis of  this recurrence relation presented earlier implies that the constant 
m can be chosen so that the solution is O(nda(n) ) .  This implies 

t~ka+'~(n)=O(nda(n)) for 2<-k<-d. 

The same bound for k = 0, 1 is now implied by our considerations of  the Euler 
characteristic o f / ~ s .  This completes the proof  of  the theorem. 
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