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Abstract. Motivated by a number of motion-planning questions, we investigate in
this paper some general topological and combinatorial properties of the boundary
of the union of n regions bounded by Jordan curves in the plane. We show that,
under some fairly weak conditions, a simply connected surface can be constructed
that exactly covers this union and whose boundary has combinatorial complexity
that is nearly linear, even though the covered region can have quadratic complexity.
In the case where our regions are delimited by Jordan arcs in the upper halfplane
starting and ending on the x-axis such that any pair of arcs intersect in at most
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of the union is only @(na(n)), where a(n)is the extremely slowly growing functional
inverse of Ackermann’s function.
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1. Preliminaries

Recent work in planning a collision-free motion for a robot has given rise to a
number of interesting questions in combinatorial geometry. For example, Kedem
et al. [KL*] posed and answered the following question: Suppose we are given
n closed Jordan curves' in the plane. Denote the curves by vi, ¥2,..., ¥., and
there interiors by K,, K,,..., K,, respectively. If we assume that each pair of
curves v, y;, with i# j, intersect each other in at most two points, how many
intersection points total can there be on the boundary of K ={J/_, K;? The
answer to this question was important in the analysis of an efficient algorithm
investigated in [KL*] for planning a collision-free translational motion of a
convex polygon amidst polygonal obstacles.

If we allow as many as four intersection points per pair of curves, the number
of intersection points on the boundary of the union of the interiors of our curves
can easily become @(n’), as Fig. 1 shows. Notice that this behavior is attained
even when our closed Jordan curves are triangles and that, asymptotically speak-
ing, a quadratic number of intersections is the worst possible—as long as there
is a fixed bound on the number of intersections of any particular pair of curves.
In [KL*] it is shown that, under the assumption of at most two intersections per
pair of curves, the total number of intersection points on the boundary of K can
be at most O(n). This linear bound allowed the authors to prove the efficiency
of a simple algorithm for the stated motion-planning problem.

How many intersection points can there be on the boundary of K if we allow
at most three intersection points per pair of curves? Under the assumption that
all intersections have to be proper (i.e., transverse) this question is improperly
stated. Any pair of closed Jordan curves must have an even number of proper
intersections, so any pair of curves intersecting in at most three points intersects
in fact in at most two points. In order to make better sense of the question, let
us modify the set-up as follows.

We let each v, be a Jordan arc, i.e., an open curve without self-intersections,

starting and ending on the x-axis, and otherwise lying fully above the x-axis.

Two such arcs y; and ¥, with i # j, can have any number of proper intersections;
in particular, one or three intersections are possible. We find it convenient to

Fig 1. A quadratic number of intersections.

' A Jordan curve is one without sell. -intersections.
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Fig. 2. Three-intersecting Jordan arcs in the upper halfplane.

extend each arc y; to be a bi-infinite curve by adding to it the portions of the
x-axis from —oo to its left endpoint, and then from its right endpoint to +00. We
also orient each such bi-infinite arc from left to right, in the obvious way. Every
arc thus extended subdivides the plane into two apen regions. The one lying to
the right of y; we call the interior of y, and denote by K,,, abbreviated K;; note
that each K; contains the lower halfplane. We also find it convenient to assume
that the x-axis itself is always one of our arcs.

So now our question becomes, given n such Jordan arcs in the upper halfplane,
with at most three intersections per pair above the x-axis (the three-intersection
condition), how many intersection points total can there be on the boundary of
K=U_, Ki? We call this the three-intersection problem. See Fig. 2 for an
example.

In this paper we prove that the answer to this questian is @(na(n)), where
a(n) is an extremely slowly growing function of n that is the functional inverse
of Ackermann’s function. The same function arises in the theory of Davenport-
Schinzel sequences developed by Sharir [HS], [S], and in its many geometric
applications. We also show that the same bound holds for the combinatorial
complexity of the exterior boundary of the union of any n “halfspaces™ whose
bounding curves are bi-infinite and have the property that each pair of these
curves intersects in at most three points.

The three-intersection problem is a generalization of several problems whose
solution is already known. For example, assume each arc ¥: is the graph of a
partially defined positive function y = y,(x) (whose domain of definition is the
interval between the two endpoints of y,), and that any two distinct such graphs
intersect in at most one point (the pseudoline condition). Complete each y, to
be a totally defined function by drawing two rays steeply descending from its
endpoints until they encounter the x-axis. Then it is easily checked that any pair
of these total functions intersect in at most three points. But in this case the
boundary of K (in the previous notation) is the upper envelope of the functions
7:(x); by Davenport-Schinzel theory [A], [HS], the number of intersections of
the vy, on the boundary of K is at most A,(n) = O(na(n)). A more special case
of this result can be obtained as follows. Take a collection of n segments
e, e,..., e, so that each ¢ is nonvertical and lies above the x-axis. For each i,
let ; be the arc obtained by connecting the two endpoints of ¢, to the x-axis by
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Fig. 3. The upper envelope of segments.

two vertical segments (see Fig. 3). Clearly, each pair of these arcs y; intersects
in at most three points. The upper envelope of the segments e; coincides with
the boundary of K. Again, by known results [HS], [WS], the number of intersec-
tions along this envelope is O(na(n)) and this bound is tight in the worst case.

The main characteristic of these special cases is that the complement of K is
connected; equivalently, the boundary 3(K) of K is a single connected curve.
As will be apparent from the subsequent analysis, the crucial difficulty that we
face in studying the general three-intersection problem is the presence of “‘holes”
in K (as shown in Fig. 2). It should be noted that if we consider only the common
boundary between K and a single connected component of the complement of
K, then the number of intersections along that portion of 3(K) is at most
O(na(n)); this is a variant of a more general result [GSS], [PSS], that the number
of intersections along such a portion of 3(K) is O(A,43(n)) if each v, is a Jordan
arc and each pair of such arcs intersect in at most s points.

We deal with the presence of holes by lifting our arcs onto a surface & on
which the corresponding union of the interiors of these arcs is simply connected.
This surface R is a covering space for the region K. The holes in K arise because
different “flaps” of the surface R happen to overlap each other when projected
canonically down to the plane.

The rest of the paper is organized as follows: Section 2 discusses the construc-
tion of the surface R and a total ordering that results among the subarcs of the
vi forming the boundary of K —incidentally, that section makes no use of the
three-intersection property. In Section 3 this ordering is viewed as a symbol
sequence in which five alternations of two symbols are forbidden but long
repetitions are possible. Thus we nearly get a Davenport-Schinzel sequence of
order 3, but not quite. Section 3 also gives an example showing that not only
can d(K ) have Q(na(n)) intersections in the worst case (which can occur even
if each y, is an extended segment, as discussed above) but that K can also have
Q(na(n)) holes. It is these holes that give rise to the long repetitions mentioned
above. Finally, Section 4 deals with these uncontrolled repetitions using a global
homotopy argument (here the three-intersection property is used strongly).

2. A Simply Connected Surface that Covers K

Let us consider the boundary a(K ) of the region K that was defined earlier as
the union of all regions K; bounded by the arcs . The intersection points along
the boundary 3(K) subdivide it into a collection of primitive subarcs, each of
which is a single connected piece of one of the original Jordan arcs y, for
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some i, 1 =i=n (or of the x-axis, which by convention we count as one of our
arcs). We call these primitive subarcs segments. Each endpoint of a segmen: |
an intersection point. Thus the segments can naturally be grouped into conneci.
components, each group bounding the same connected region of the complement
of K. This complement consists of one infinite region, and zero or more bounded
regions that we refer to as holes. The boundary of each hole is a circular sequence
of segments, while the boundary of the infinite component is a bi-infinite chain
of segments.’

In this section we derive the surprising fact that there is a natural linear
ordering of all the segments in 9( K ). This ordering stems from the existence of
a (in general nonsimple) curve I' that starts at —co on the x-axis and proceeds
to the right, always following one of the 1y, consistently with its orientation,
possibly switching arcs at intersection points but never retracing its steps, and
finally ending at +co on the x-axis. We refer to each connected subarc that I
traverses on a y; before switching to a different v; as an edge of I'. The curve I'
traverses each segment in 3( K ) exactly once and satisfies two important further
conditions:

(a) T visits all segments coming from the same original arc y, in their natural
order, and

(b) all holes lie outside of T, in the sense that I' can be continuously deformed
over K so as to coincide with the x-axis.

This curve I" is the projection onto the xy-plane of the boundary of the simply
connected surface & mentioned earlier. The surface & itself can be obtained by
gluing together copies of the K; by a topological process described in detail
below. As we mentioned earlier, this construction is independent of the three-
intersection property (which is not assumed in this section). However, we still
assume that any two distinct arcs vy, and v, intersect only transversely and at a
finite number of points. This allows us to describe the gluing process in finite
(combinatorial) terms.

Consider the arrangement’ defined on the xy-plane by the n bi-infinite arcs
¥:- This arrangement subdivides the plane into a number of connected two-
dimensional cells that are joined together along pieces of our arcs. The finiteness
assumption above implies that this arrangement has finite combinatorial com-
plexity. We form a covering space for the cells in K, as follows. Let us take as
many copies of each cell in the arrangement as there are arcs containing the cell
in their interior. For instance, we take zero copies of each hole, one copy of each
cell in K bordered by a segment not on the x-axis, and n copies of the lower
halfplane. We call these copies patches to distinguish them from the underlying
cells themselves. Initially we sew these patches together to form n surfaces® S,
each surface corresponding to one of the K,. We then repeatedly perform a
“gluing” operation combining pairs of these surfaces into new surfaces, until

? By abuse of language, we also refer to the unbounded region as a hole.
* See [E] for more information on arrangements, in general.
* Technically, we use the word “surface” to refer to a 2-manifold with boundary.
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Fig. 4.  An illustration of the surfaces S,

only one surface remains; this will be the desired surface . We now elaborate
on this construction.

The initial surface S, for I<i=< n, is formed by taking a patch corresponding
to each of the cells in K, and then attaching these patches together along shared
edges, by just imitating the way the corresponding cells attach to each other
down in the xy-plane. It is clear that each S, is a simply connected surface.
Associated with each of the S, is a canonical projection map 7 mapping points
on S to the corresponding points in K; on the xy-plane.® Figure 4 gives an
example of three arcs y,, v,, 7, and the corresponding surfaces S,, S,, ;.

So far it may seem that we have done a lot of work for nothing: after all we
only got the K, back from the construction. But we now start a process of gluing
the S; together to form more complex surfaces. This process becomes confusing
if we attempt to understand it while working on the xy-plane only. The reason
is that some of the surfaces we form may contain several of the patches covering
the same cell in the xy-plane. The proper way to keep track of which pairs of
patches are to be identified (*“glued™), and which are not, is to work with the
more general concept of a surface (2-manifold with boundary).

The gluing process giving rise to these surfaces can be described at the top
level as follows. Initially we put the n surfaces S,,5,,...,S, in a list & Then
we repeatedly perform the following operation until our list contains only a single
surface: extract any two surfaces from #, glue them together in a manner to be
specified, and put the resulting surface back in % The surfaces that arise during
the gluing process will be simply connected two-dimensional manifolds with
boundary. Each such surface S will also have a canonical projection map = down
to the xy-plane that, in general, will nor be one-to-one. The surface S will naturally
cover (be a covering space for) some subset of the Ki—those K, corresponding
to the §;’s that were glued together to form S. At any one time, for each K, there
will exist a unique surface S in our list % in whose construction S, was used.

*Our use of language suggests that we think of the S; as lying “above™ the xy- plane.
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Furthermore, it will be possible to lift the region K, homeomorphically and
canonically onto the corresponding surface § via the inverse projection map 7 .

During the gluing process certain pairs of points belonging to different surfaces,
or even possibly to the same surface, become identified, or glued together. Two
points can be identified only if they project to the same point on the xy-plane,
according to their respective canonical projection maps. Actually, the gluing
always works in a patch-by-patch basis. Two patches covering the same cell in
the xy-plane are called compatible. Two compatible patches are either fully
identified in the obvious way, or kept fully disjoint. Thus the gluing process can
be described in combinatorial terms as acting on the finite collection of patches.
Finally, a small point of terminology: a patch is called a boundary paich if one
of its bounding edges is part of the boundary of the surface it lies on.

Let the contents of the list £ be T,, T;,..., T, at some point during the gluing
process. Let f denote the function such that f(i) =j 1=i=n 1<j=k, if the
original surface §; was used during the gluing process in forming T,. We summarize
below the invariants that we maintain:

(a) each T, 1=<j=<k, is a simply connected surface with boundary,

(b) each T}, 1=j =<k, singly covers the lower halfplane, and either does not
cover, or singly covers, each cell adjacent to the lower halfplane,

(c) foreach T, 1=j=<k n( T)) < K, where 7 is the canonical projection map
of T,

(d) each boundary patch of a T; is a boundary patch of an §, for some i such
that f(i)=j, and

(e) each K;, 1 =i=n, uniquely and homeomorphically lifts onto Ty via 7',

We now give the details of the gluing process and prove that these invariants
are maintained. Without loss of generality, assume that our next action on the
list &£ is to glue together T, and T,. We start by identifying the patches in T,
and T, corresponding to the lower halfplane. We now put in a bag all the
remaining patches of T, and T,, together with this single copy of the lower
halfplane, and repeatedly perform the following operation. As long as there are
two compatible patches in the bag that border® the same patch along the same
edge, we identify them and put the single copy back in the bag. This process
clearly terminates, as the number of patches originally in the bag is finite, and
each identification reduces the number of patches by one. The remaining patches
in the bag, when the gluing is finished, can be resewn together along shared
seams by the original recipes provided by T, and T,. What is the nature of the
resulting object T? Before we address this question, let us work through this
gluing process as applied to the three surfaces of Fig. 4.

Suppose S, and S, are chosen to be glued first. Besides the lower halfplane
copies, only one more pair of patches needs to be identified, yielding the surface
T shown in Fig. 5. Note that this surface has two overlapping flaps that were
not glued together. Next we glue together T and S,. Three pairs of patches border
the x-axis and they get glued together to start with. Now the patches in T

i We:ssume that gluing does not disturb any pre-existing adjacency relationships among patches.
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Fig. 5. The gluing process on the example of Fig. 4.

corresponding to the portions of the overlapping flaps covered by S, are glued
to the compatible patch of §,, and therefore to each other. Finally, the patches
in T corresponding to the portion of the overlapping flaps not covered by S, are
glued together, yielding the final surface ®. Note that this last gluing was between
two patches of the same surface. Figure 5 illustrates this entire construction.

Lemma2.1. Theresult T of gluing together T, and T as described above is a surface.
Proof. Since T consists of surface patches sewn together along common boun-

daries, it can only fail to be a surface if it were to contain a “'bifurcation”, as
shown in Fig. 6. Such bifurcations can indeed be present in the middle of the

frant view side view
Fig. 6. A bifurcation.
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gluing operation described above. But the presence of a bifurcation signifies that
the gluing operation is not yet finished—there are more compatible patches that
ought to be glued together. So when the gluing is finished, the remaining patches
sewn together do form a surface. D

The surface T is clear| y connected (everything connects to the patch covering
the lower halfplane), but in fact more is true.

Lemma 2.2. The surface T is simply connected.

Proof. Simple connectivity for a surface means that any loop on it can be
contracted to a point. We assume inductively that the surfaces T, and T, are
simply connected. In our argument, we find it necessary to apply the concept of
simple connectivity to the “surfaces with bifurcations” that arise as intermediate
temporary objects during the gluing of T, with T; to produce T: Let us call these
intermediate objects semisurfaces. For the sake of brevity we do not give formal
definitions of these concepts here.

We start a gluing operation by identifying the patches of T, and T, correspond-
ing to the lower halfplane. Any loop on this semisurface that does not go over
the glued area is clearly a loop on either T, or T,, and therefore contractible. If
a loop y goes over the glued area and cannot be viewed as a loop lying entirely
on T, or entirely on T,, then y can be written as Y=a,a; - a,, where each
of the a; is an arc that can be drawn entirely on T,, or entirely on T,.” It is clear
that the transition points between these arcs can be chosen to be points that,
under the canonical mapping , project on the x-axis. Let v; be the transition
vertex from a;_, to a; (we set v,= v,,). Choose x to be any point in the glued
area and connect x by paths p, to each of the vertices v;, where all these paths
lie entirely in the glued region. Note that as a consequence each p; corresponds
to a path in T,, as well as a path in T,. Now 7y is clearly homotopic to
(Pr1a1p7 ' Wp20293") * + * (Pmetmpi"). Each term in parentheses is a loop in either
T, or T;, and therefore trivial. Thus y itself is contractible.

We now prove that each further identification of two patches during our gluing
operation preserves simple connectivity. Let & denote the current simply con-
nected semisurface and assume our next step is to glue together two patches Q
and R to form a new patch U, and thus obtain a new semisurface ¥'. By
assumption, Q and R must be compatible and they must both border a common
patch P of & Let y be a loop in ¥'. We argue in a manner similar to that of the
previous paragraph. If y is already a loop in &, there is nothing to show. Otherwise,
as above, y can be written as Y=a,a; - - - a,, where each of the a, is an arc
that can be drawn entirely on % Again, the breakpoints v, between these arcs
can be chosen to be points on the boundary of the patch U. Let x be a point on
the common boundary between this patch and P. Connect x by a path p; lying

? We assume here that the loop y intersects the x-axis only finitely often, but our argument does
not depend on this ption. The same comment applies to general gluing step discussed in the
sequel.
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Surface S

Fig. 7. The argument for simple connectivity.

entirely in U to each vertex v,. The p, thus correspond to paths in both Q and
R. Therefore, if we write y as (p,a,0;")(p>0:03") * - * (pmap;'), we see that it
is equivalent to a loop on ¥, and therefore contractible. Figure 7 illustrates this
construction.

By continuing in this fashion, we can prove that the final semisurface of the
gluing operation, which is the surface T, is also simply connected. For the reader
familiar with topology, the argument given above is a relatively simple variation
on the proof of van Kampen's theorem; see, for example, [M] or [Spal. O

The rest of the invariants are now easy to verify. If both T, and T, singly
cover the same cell C bordering the lower halfplane, then clearly their (unique)
patches covering C will be identified. Thus T also covers each cell bordering the
lower halfplane either zero times, or one time. Since no patches are thrown away
during the gluing process, it follows that boundary patches in T must come from
boundary patches in either T, or T;. Let now S, be one of the initial surfaces
used in forming (say) T,; thus f(i)=1. By induction, a homeomorphic copy of
S; exists on T,, and therefore on T. The reason is that each of the patches in T,
that forms this copy of §; survives also in T (though it may have been glued to
other patches of T, or T;). This copy of S, in T is canonical in the following
sense. Consider a cell C on the xy-plane that is part of K,. Let p be a path
connecting some point of this cell to the lower halfplane and lying entirely in
K;. The endpoint of p in the lower halfplane admits of a unique lifting onto T.
By an obvious monodromy argument (see, for example, [Spr]) it follows that all
of p admits of a unique lifting onto T. This uniquely identifies the patch in T
covering C that is associated with the canonical lifting of K, onto T via 7.
These observations prove that invariant properties (a), (b}, (d), and (e) hold; the
truth of (c¢) is immediate.

As each gluing operation reduces the number of surfaces on the list & by one,
after n — 1 such operations our list will contain a single surface. This is the desired
final surface 9. We have derived the fact that R is simply connected and that it
exactly covers K, the union of the K,’s (the latter follows because ® contains
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copies of all the patches and consists of nothing but copies of such patches).
Each K, has a canonical lifting onto # as a simply connected subsurface of &,
The desired curve I', whose existence was postulated at the beginning of this
section, is simply the projection on the xy-plane of the boundary 3(R) via the
canonical projection map .

It is clear that any segment in 3(K) not on the x-axis is part of the border of
some cell in K that corresponds to a unique patch in one of the original surfaces
S;. This patch cannot partake in any gluing and therefore survives as a boundary
patch in . Thus it follows that w(a(®)) covers all the segments of 9(K ). Now
consider any one of the original arcs, say v,. Since a homeomorphic copy of S,
exists on & as a simply connected subsurface, it follows that any portions of
3 R) that come from lifting v, occur along 8(R) in the same order as along ;.
A rigorous version of this argument is given in [GSS]. Thus I visits segments
from the same arc y; in an order consistent with their natural order along 1y,
Finally, note that the x-axis has a unique lift onto & (it is, after all, one of the
7:) and 3(%) can be homotopied over R to this lift of the axis. Down on the
xy-plane this homotopy becomes a homotopy of I" over K to the x-axis. Thus
all holes are outside I'. We have now proved the desired theorem.

Theorem 2.1. There exists a bi-infinite curve T' that includes all of the segments
bounding K, each exactly once. This curve traverses each segmen! in an order
consistent with its own orientation and traverses different segments from the same
arc in an order consistent with their ordering along the arc. Furthermore, T' can be
continuously deformed inside K so as to coincide with the x-axis.

This curve I for the arrangement in Fig. 2 is shown in Fig. 8.

We close this section with a remark that will come in handy in the next section.
Suppose that along the boundary of # we have an edge coming from original
arc 7y;, later one from %, and then one from ¥, again (these edges need not be
consecutive). Then we claim that to each of the two transitions corresponds a
crossing of y, and v,. To see this, lift y, onto ® and cut the surface by following
this lifted image from the first edge of v; along the boundary to the second. The
arc y; also lifts onto the same surface and needs to get from the x-axis to the
piece we have cut off in between the two edges of y,. This implies that there must
be two crossings between the lifted images of the arcs on the surface and a Sortiori
on the plane.

Fig. 8. The curve I corresponding to the arrangement of Fig. 2.
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3. An Almost Davenport-Schinzel Sequence

We now concentrate our attention on the sequence X that consists of the segments
in d(K) ordered according to the order implied by I'. For the purposes of this
section we think of £ as a finite word over an alphabet whose symbols are the
original arcs v,. Each segment 5 in X is given the symbol of the original arc that
contains it. Here we start using the three-intersection property.

Lemma 3.1. The sequence I does not contain an alternation among the original
arcs of the form vy, « - ;- - -y~ ;- oy,

Proof. Consider the boundary of the surface #. An alternation of the specified
kind along I’ clearly implies a similar alternation on the boundary of the surface.
By the remark at the end of Section 2, each of the appearances of ¥, between
two appearances of y, implies two crossings between the two arcs. These four
crossings in total are distinct, as they occur along disjoint portions of ,, but this
contradicts the three-intersection property. O

It is clear that along the boundary of & the same labeling scheme produces
an (n,3) Davenport-Schinzel sequence X', as any two consecutive edges must
have distinct labels. By the results in [HS], the length of ' is bounded by
O(na(n)). Unfortunately, down on the plane the same need not be true: along
Z adjacent equal elements can occur, as in the example of Fig. 9. In this case
Z = aaabbbcce. This happens because a single edge on the boundary of the surface
R can be broken into many pieces down in the plane by flaps of the surface
crossing over it.

We also note that (}(na(n)) is a lower bound on the length of £ in the worst
case, as well as on the number of holes. The bound on the length of X follows
from the result of [WS] mentioned earlier. In [WS] Wiernik and Sharir construct
a set of n line segments in the plane such that its upper envelope has Q) (na(n))
pieces. In their construction (in fact, in any arrangement of line segments) the
upper envelope consists of O(n) convex bays, along each of which a particular
segment can appear only once. We now use this example to construct a collection
of O(n) three-intersecting Jordan arcs possessing many holes, as follows. Assume
the x-axis lies below all segments. As described earlier, extend each segment to
a trapezoid by dropping vertical lines from each of its endpoints to the x-axis.
Now for each of the bays in the upper envelope we add a new simple Jordan

Fig. 9. Adjacent segments in X can come from the same edge.
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Fig. 10. The hooks used to construct an arrangement of three-intersecting Jordan arcs with
many holes.

arc that starts and ends far to the left on the x-axis, but then comes in over the
appropriate bay and cuts a piece off each of the segments in the bay, as exemplified
in Fig. 10. We call these added Jordan arcs hooks. As Fig. 10 makes clear, each
hook intersects a trapezoid in at most two points. Furthermore, the hooks can
be drawn so they are disjoint among themselves: The result is an arrangement
of O(n) three-intersecting simple Jordan arcs where the number of holes present
is {}(na(n)): there is one hole per inner vertex of each bay in the upper envelope.
Note that this example gives us a construction where not only is the length of
the contracted sequence X' at least Q) (na(n)), but so is the number of repetitions
in X (i.e., the quantity [2|—[2]).

Davenport-Schinzel theory in fact implies that we will get a nearly linear
upper bound on the length of the contracted sequence 3’ as long as the maximum
number of intersections between any pair of our Jordan arcs is bounded by any
fixed constant s. The quadratic behavior in X for s = 4 occurs exactly because of
the breakage of single edges on the surface % into many segments bearing the
same label down on the plane. In the next section we show that under the
three-intersection assumption such bad breakage cannot occur.

4. Controlling the Fragmentation

Let us concentrate on a single edge e of I. We must understand how it can
happen that e contains many segments; see Fig. 11 for an illustration. Let a
denote the original arc containing e, and let S, be the corresponding initial
surface, a canonical homeomorphic copy of which lies in #. Let ¢’ denote the
portion of e from the beginning of its first segment to the end of its last segment.
The subarc e’ consists of an alternation between segments and covered portions;
these covered portions we term windows. As we remarked, windows can arise
because different flaps of the surface ® can cross over e, The flaps are formed
by the lifted interiors of other original arcs. In the subsequent analysis we make
strong use of the three-intersection property.

Let B be an original arc that contributes to these flaps crossing over e’ (so the
homeomorphic copy of S, in % contains a portion that crosses over ¢). Note
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Fig. 11. The fragmentation of the darkened edge into segments and windows.

that along e’, the number of crossings of a and B has to be even. The reason is
that in effect ¢’ starts and ends in holes, i.e., outside 8. The same argument
actually applies to the crossings along any window. Because of the three intersec-
tion property, it now follows that such an arc B must have exactly two intersections
with €', and these intersections must both occur in the same window. So there
are only two ways in which B can cross over e', as illustrated in Fig. 12: the arc
B can either cross from the inside, or from the outside.

Lemma 4.1.  No original arc can cross over a window JSrom the inside.

Proof. Assume that 8 crosses over ¢’ from the inside. Let p and g be the two
crossings on e’ where 8 escapes out of K... Define B, to be the subarc of 8 that
connects p to the x-axis and does not contain g define B, symmetrically. By the
three-intersection property, at least one of the arcs B, and B, lies entirely inside
K.. Thus there is a path from the lower halfplane to p (and gq) that lies inside
both K, and K. By the definition of the gluing operation, S, must be glued to
Sp along the portion of e between p and q, contradicting the assumption that e
is a single edge of I, O

Lemma 4.2. If the original arc B crosses the edge e belonging to original arc «
over a window from the outside, then the portion of B between its entry and exit
into K., along that window is fully contained inside K,.

from outside

Fig. 12. The two ways an arc can cross over the darkened edge.
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Proof.  Obvious from the three-intersection property. [

Now that we have all this structure at our disposal we can proceed as follows.
Order all the original arcs y, in some arbitrary order. Choose the next unprocessed
arc a and consider all the other arcs crossing into « from the outside, along
windows occurring on edges of a. Each intruding arc enters through only a single
window, so we can partition the intruders according to the window through which
they enter. Take all intruders entering through a particular window w and deform
them as a group inside K, so as to bring them extremely close to the window w.
By this we mean (1) that we can bring them so close to w that no arc except a
contains the deformed portions in its interior, and (2) that we maintain the
combinatorial structure of the arrangement of these intruders among themselves
inside K,. Notice that we can do this deformation so that no new intersections
are introduced (though old intersections may be lost). This is so because there
are no arcs crossing w from the inside, by Lemma 4.1. Also note that this
deformation does not affect the covered region K and it maintains the three-
intersection property. We do such a group deformation for every window w of
a. It is clear that the deformed portions do not interfere with each other, since
windows are separated along a. This completes the processing of a and we now
proceed similarly to the next original arc. Since all deformations associated with
the processing of one arc happen entirely inside the interior of the arc and *‘clear
out” that interior, subsequent deformations affect interiors of other arcs and
hence do not interfere with the cleared region inside a. Figure 13 illustrates this
deformation process.

The end result of this deformation process is that for each window w of each
arc « we have cleared out a small corridor inside K, and near w. That corridor
is covered by K, only. Furthermore, the corridors corresponding to different
windows on the same edge can all be connected into a single connected region
that is covered by K, only and includes on its boundary all segments on that
edge. In Fig. 13, the corridor for one of the edges of a is enclosed by a dashed
line. For every edge e of a let us now choose one point p, arbitrarily in the
combined corridor associated with e, and then connect p, to the endpoints of
the segments on the edge e by nonintersecting paths lying inside K, only. This
is clearly possible. We do this for all of our original arcs. We also choose a point

Fig. 13. The deformation process.
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Fig. 14. The vertices of the graph G and the paths crossing the darkened edge.

in the lower halfplane and connect it by nonintersecting paths in the lower
halfplane to all the segment endpoints that lie on the x-axis. Now consider the
graph G whose vertices are these newly introduced points and whose edges are
defined by the nonintersecting paths we just drew. Each graph edge corresponds
to two of our paths coming together at a hole vertex. Figure 14 illustrates that
construction. A similar construction was used in [KL*].

Note the following facts. Firstly, the number of vertices of G is the number
of edges of the surface &, which in our case is O(na(n)). Secondly, every hole
vertex gives rise to an edge of G, because it corresponds to an endpoint of two
segments, one, say, along arc a, and the other along arc 8. Thirdly, the number
of edges between two given vertices of G is at most three, by the three-intersection
property. And fourthly, the way that we have drawn the edges of G shows that
it is a planar graph, as each halfedge of it is covered by the interior of a single
arc. From Euler’s theorem we can finally conclude the desired result.

Theorem 4.1.  The maximum total number of sides in the exterior boundary of the
union of n three-intersecting Jordan arcs is ©(na(n)).

We remark that the same theorem holds if we arbitrarily choose for some of
the v, the region K to be the one to the right of the arc (as we have consistently
done up to now), and for others the one to the left of v, (or, equivalently, orient
those v, the opposite way). The reason is that all of our arguments can be carried
out on the sphere as well as on the plane. The y; there start and end on the
equator, and each K; includes the portion of the upper hemisphere to the right
of the corresponding v;, as well as the lower hemisphere. If all the K, together
completely cover the sphere, then there is nothing to show. Otherwise we can
carry out our surface construction for ® as before; we start by identifying the
patches corresponding to the lower hemisphere and proceed to glue in the manner
of Section 2. It is also easy to check that the deformation arguments needed in
Section 4 are not affected by the couple of new cases that arise from doing the
construction on the sphere. We end by repeating a remark we made in the
Introduction: an interesting consequence of this extension of our result is that
the exterior boundary of the union of n halfspaces bounded by three-intersecting
bi-infinite curves has combinatorial complexity @(na(n)).
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5. Conclusions

We believe that the construction of the surface # sheds some light on how the
complexity of the exterior boundary of the union of a number of Jordan regions
arises out of two different effects: the Davenport-Schinzel controlled behavior
along the boundary of this surface and then the internal fragmentation introduced
by the overlap of different flaps when projected down onto the plane.

We hope that this surface construction will also be found of use in algorithmic
questions, since it provides a simply connected manifold of nearly linear boundary
complexity (as long as the number of intersections per pair of arcs is bounded)
that covers an area of the plane that can have quadratic complexity when explicitly
represented.
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