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ABSTRACT

We investigate the complexity of determining the shape and presentation (i.e. position with orientation)
of convex polytopes in multi-dimensional Euclidean space using a variety of probe models.

1. Introduction

This paper considers the problem of discovering the environment by means of simple sensory
equipment. We are motivated by robots that can make ‘probes’ into their surroundings. The term
‘probe’ is intended to cover a whole range of crude sensory devices. An example of a probe might be a
robot arm moving in a fixed direction untl it contacts an obstacle. Such a probe might yield the spatial
position of a point on the obstacle. Another example is an ultra-sound device that can detect the prox-
imity (but not the precise location) of other objects. In contrast to such crude devices, one might think
of using vision to discover one’s environment: the amount of data gathered and processed in vision sys-
tems is many orders of magnitude greater than the kind of data gathered by probes. Consequently, the
computational issues are rather different. While vision is a much studied topic, the area of processing
crude sensory data is relatively new. It is reasonable to ask why should one bother with probes when
we can accomplish much more using data-intensive sensory equipment. The answer is that data-
intensive sensory equipment (such as a camera) may be uneconomical, too delicate or physically impos-
sible to install. Even if we could gather such data, the processing of such data may be computationally
too expensive. Probe devices are usually more robust, cheaper and smaller; the processing of such data
is also expected to be relatively cheap. Device engineers have invented many ingenious methods to
gather such crude sensory data. The theoretical understanding of processing such data is clearly impor-
tant for the effective use of such devices. Furthermore, our understanding of the problem enhances our
understanding of convex polytopes.

One of the first papers in this area is [CY87] which considers the problem of determining a con-
vex polygon using ‘finger’ probes. Such probes can be imagined as a point moving from infinity along
a straight line until the point contacts an object. The data yielded by the probe is this contact point. (If
the probe misses all objects, the contact point is ‘at infinity’, by convention.) They proved that for a
convex n-gon, 3n probes are sufficient and 3n — 1 probes are necessary. This may appear a little
surprising since their algorithm only assumes that the object is a convex n-gon for some unspecified n.
In this paper, we consider probing convex polytopes in d-dimensional Euclidean spaces €%, d > 2, and
look at several reasonable models of probes:

. a moving point (‘finger probe’)

+ NSF Grant MCS-83-03926 and DCR-85-05517
# Amoco Foundation Faculty Development in Computer Science

§ NSF Grant DCR-84-01633 and DCR-84-01898




° a moving hyperplane (‘hand probe’)
. a light-source yielding a silhouette

. a plane yielding a cross-section
«  amoving line in E>
< finger probe with € > 0 uncertainty

We consider a complexity model that counts the worst case number of probes where the successive
probes are adaptive, i.e., can depend of the previous probe outcomes. Note that we do not count the
cost of determining successive probes. This assumption, similar to that of counting only comparisons in
sorting-related problems, can be justified under various circumstances.

We use the following standard terminology: for any point set X < E¢, its boundary and interior is
denoted dX and int(X), respectively. A (possibly non-convex) closed polyhedron P is star-shaped if
there is a point x in the polyhedron such that the line segment connecting x with any other point of P is
also contained in P. The set of all such points x is the kernel of P. A polytope is a bounded
polyhedron. The boundary of a polyhedron P < E? is partitioned in the usual way into i-faces for
i=0,...,d-1 where we define an i-face 1 be any relatively open subset of £¢ homeomorphic to E*.
Thus the interior of P is a d-face. Two faces are incident if one of the faces is contained in the closure
of the other. We use vertex, edge, facet and cell as synonyms for 0-face, 1-face, (d—1)-face and d-face.
Let f,(P) denote the number of i-faces of P. The partition of £ into a set of i-faces (¢ =0,...,d)
such that the closure of each face is equal to a union of faces is called a cell-complex. In this paper, the
cell complex is determined by a finite set of hyperplanes.

The organization of this paper is as follows: section 2 investigates the complexity of finger-
probing a convex polytope P < E4. We show that fo(P) + fy_,(P) finger probes are necessary and
fo(P) + (d+2)f4-,(P) finger probes are sufficient. We also show that probing with hyperplanes is dual
to finger probing. Section 3 addresses more complex probes such as light-sources which yield
silhouettes and intersecting hyperplanes that yield cross-sections. In section 4 we consider line probes in
E*. It is important to realize that in line probes, no information about the points of contact between the
line and the polytope is given; that such probes can determine polytopes is not obvious. We give an
algorithm using a number of probes that is linear in the number of faces of the polytope. Section 5
examines probes that have uncertainty of € > 0. The issues here are considerably more subtle. It is not
even clear that a meaningful generalization of our other probe models can be posed in this context.
Finally, section 6 discusses the results of this paper and indicates directions for future work.

2. Finger Probing

Let P ¢ ‘E° be a convex polytope (so P is closed and bounded) whose interior contains the origin
0. Nothing else is known about P. The goal is to infer complete information about P on the basis of
probes as we now describe. A finger probe F is an unbounded directed line. We imagine a point mov-
ing along the directed line F. The contact point C(F, P).of F at P is the first point on P that F inter-
sects along its direction. The probe path =(F, P) of F to P is the directed half-line contained in the line
F, with direction consistent with F and terminating at C (F, P). We also write C(F) and m(F) for the
contact point and path, respectively, when P is undersiood. If F does not intersect P, we say that the
probe misses P and the contact point is at infinity, denoted C (F) = o; the probe path n(F) is equal to F
in this case. The finger probe model was first studied in [CY87] for the case d = 2. We first investigate
the case d = 3 and then generalize the result to arbitrary d.

2.1. Bounds in E?

Let Fy,...,F, be a sequence of probes and let ¢; = C(F;) and x; = n(F;), i = 1, . . . ,m, denote
the comresponding contact points and probe paths. We next introduce some structures to capture the
information gained from these probes. For any set of points X, let conv(X) denote the smallest closed
convex set containing X.
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Pm={cy,...,Cn }is the (current) set of contact points.
Hp = conv(P, U { 0 }) is the convex hull of the set of contact points together with the origin
0.

Ap is the cell complex defined by the planes that support facets of %/,
Clearly the convexity of P implies

H.eP

Next we want to define the smallest set Oy, that is guaranteed 10 contain P. Each probe path ; casts a
‘shadow’ which consists of all those points x that cannot be contained in P by virtue of the convexity of
P and the fact that every point in P, lies on the boundary of P. This shadow is precisely defined by
the set §; of those points x such that the probe path x; would intersect the interior of

conv(Puu{O0}u{x).
We can define

O;‘=‘-£3 —US,‘

i=1

Thus O,, = E* for m = 0. The set O, can be rather complicated to understand, and for the pur-
poses of upper bounds, we prefer to use an alternative set defined as follows. Let v be a contact point in
Pp. Lethy, ...,k (k2 1) be the open half-spaces where each h; does not contain O but is bounded
by a plane containing a facet incident to v. Define K, to be the intersection of hy,...,h. Ifvisa
vertex of #,, then K, is a cone with vertex v; if v is in the relative interior of an edge (resp. facety of
H,, then K, is a wedge (resp. a half-space). Notice that K, is the set of points x such that v belong$ to
the interior of conv (P, U { O, x }). It follows that X, is contained in §; if v = ¢;. We now define

0,=FE- UK,
where v ranges over P,. Clearly, for all m > 0,
Ou & O
and
HoEPC Oy

Lemma 1. O, is star-shaped with 7, as its kernel.

Proof. Define E’, as the complement of K,, and define H, as the kernel of K,. Thus, H, is the
intersection of the closed half-spaces that are complements of the half-spaces h,, - - - ,h; used in
defining K,. If v is a vertex of %, then H, is the smallest cone with apex v that contains #; if v
belongs to an edge of #,, then H, is a wedge; and if v belongs to a facet of %, then H, is a half-
space. In any case, H, contains #,,, and furthermore, %, is the intersection of all H,, for v ranging
over all vertices of #,. By definition of O,, as the intersection of all K,, the kemnel of O,, contains
the intersection of all A,. Therefore, H, is subset of the kemel of O,. We conclude that %, is
exactly the kernel of O,, since every facet of K, contains a facet of O,,, where v is a vertex of %,,.

Q.ED.

If O belongs to the interior of #{,, and we only know about the contact points P,, (i.e. we know
nothing about the probe paths) then #,, and O,, are the strongest possible sets in the sense that #,
(resp. O,,) cannot be replaced by a larger (resp. smaller) set in the above lemma. Initially, #, consists
of just the origin and Oy = E3.

It is natural to say that P is determined when %, = P = O,,. Now we propose a probing strategy
to determine P.




—“-

331

Definition. A facet of 7, or of O,, is said to be verified if the plane defined by that facet con-
tains at least four co-planar points of P, such that one of these points is in the relative interior of con-
vex hull formed by the other points; otherwise the facet is unverified. The plane containing such a facet
is said to be verified or unverified according as the facet is verified or unverified. A probe aimed at the
relative interior of an unverified facet is said to be trying to verify that facet.

Definition. A veriex of %, is said to be verified if it is incident to at least three verified farets of
H.,; otherwise, it is unverified. A vertex of O,, is verified if it is a verified vertex of #,.

We sometimes call an unverified facet a ‘conjectured’ facet. An attempted verification of a facet
succeeds if the contact point lands on the facet. This terminology is justified by the observation that a
verified facet of %, is necessarily contained in a facet of P. Roughly speaking, our strategy consists of
sending probes where each probe tries to verify a conjectured facet. If this objective fails then we get a
contact point p which may or may not be co-planar with other facets of #,; in any case, p is a new
vertex of H,,;. If we can somehow guaraniee that an unverified facet of %/, has at most a constant
number of vertices, then the pigeonhole principle guaraniees that J{, cannot have too many vertices so
that we must eventually succeed in verifying a facet. To guarantee this constant, our probes must avoid
verified facets and we need to make sure that we land on at most one unverified facet. To meet the first
goal, we use the fact that a verified facet of O,, contains a facet of P and can therefore be used as an
upper bound for the facets of P they contain. To meet the second goal, we use the arrangement 4, we
can land on two or more unverified facets only if we land on an edge or a vertex of 4,,. The union of
edges and vertices of 4,, can be easily avoided, however, since it is only a one-dimensional subcom-
plex. The constant that we will obtain is four which implies that each verified facet will contain at most
five contact points. :

Note that P is not completely explored as long as we do not have a contact point at each vertex.
For, it is possible that a facet of the polytope (of potentially arbitrarily small area) has been overlooked.
The verification of the vertices, however, is automatic: this is because in choosing probes that avoid
verified facets of O,,, we are forced to aim at vertices of O,,.

The method just outlined is a generalization of the method of Cole and Yap. It should be noted,
however, that the necessity of controlling the number of contact points in a single unverified facet is a
new phenomenon in three dimensions. In two dimensions, one of any three collinear points is in the
relative interior of the convex hull of the other two. In three dimensions, one can have an arbitrarily
large number of co-planar points without having any point in the relative interior of the convex hull of
the others. Surprisingly, nothing new arises in dimension four or greater.

The next lemma establishes a bijective correspondence between verified facets of %, and verified
facets of Op.

Lemma 2. Each verified facet of %, is contained in a verified facet of O,,, and each verified
facet of O,, contains a verified facet of #{,,.

Proof. Let f be a verified facet of #,. If v is a point in ®,, in the relative interior of f then K,
is a half-space bounded by the plane through the facet . This K, in mwm determines a unique verified
facet f* of O,, containing f. Conversely, a verified facet of O,, contains four contact points with one in
the relative interior of the convex hull of the other three, by definition. These four contact points neces-
sarily lie in a verified facet of .. Q.E.D.

This lemma allows us to be sloppy when we refer to ‘verified facets’ without saying whether they
are facets of H, or of O,. For the next lemma to make sense, the reader should realize that even
when all the facets of O,, are verified, there could be facets of 4/, that are not yet verified.

Lemma 3. The following are equivalent statements: (i) All facets of O,, are verified. (ii) On is
convex. (iii) each vertex of 4/, is incident to some verified facet of #,.

Proof. (i) = (ii). Suppose all facets of O,, are verified. If a facet f of O,, is verified then s
contained in the half-space containing O determined by the plane of f. Let C denote the intersection of
all such (closed) half-spaces. Thus O, ¢ C. Equality between O,, and C follows since O, has no
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facet that does not belong o a facet of C.

(ii) » (iii). Observe that if v € H,, is not incident to a verified facet of #,, then for any ball B
centered at v with sufficiently small radius, B N K, does not intersect K, forall u #v, u € P,. This
means that B - X, =B N O,,. This shows that O,, is not convex, since B — K, is not convex.

(iii) = (i). Observe that the proof is complete if we show that any unverified facet of O, is con-
uined in a facet of K, for some v that is not incident to any verified facet of H,. Let f be any
unverified facet of O,. There exists av € P, such that f is contained in some facet f” of K,. For the
sake of contradiction, assume that some facet of K, contains a verified facet g of O,. Let w be a point
of P, in g (w exists because g is verified). Then K, < K,, which implies that one facet of K, belongs
to the plane dK,, and that the other facets of K, are in the interior of X,,. Hence f cannot be a facet of
O, since O, ¢ E* - K,,. This is a contradiction. Q.E.D.

For convenience, we define ¥, to be the intersection of the ‘verified’ half-spaces where a
‘verified’ half-space is one comaining #,, and bounded by a verified plane. Initially ¥, = Y, is the
entire space E°. Clearly ¥/, is convex and O,, < V,,. From the preceding lemma, we see that equal-
ity holds precisely when all the facets of O,, are verified. We will use the vertices of ¥,, to choose
our probe lines.

We shall maintain the following invariant (H) in our probing strategy. This guarantees that each
unverified facet of P will contain at most five contact points.
(H) Each unverified facet of %/, is a triangle, with at most one exception which may be a quadrila-
teral.
This invariant is easily initialized by forming a tetrahedron #{, about the origin. Our probing strategy is
as follows: .
If all facets of #,, are verified, we are done. Otherwise, choose any unverified facet f of #{,. If
there are any unverified quadrilateral, choose f to be it Treating the plane of f to be horizontal
and lying above the origin, there are two cases: if there is any vertex v of V/,, above the plane of
/. then v is unverified and we let F be a probe aimed from v to any point x in the relative interior
of f. If v does not exist, pick any F aimed at an interior point x where the path of F right up to x
lies entirely in ¥/,,. By a suitable perturbation of x, we can ensure that F satisfies the additional
property of not intersecting any vertex or edge of the cell complex 4,,.
It is clear that F as specified above exists. For a later application, we made an additional observation
about the preceding probing strategy: it is easy to see that we can further assume that the probe we
choose is aimed at the origin.
Lemma 4. The invariant (H) is maintained by the outcome of probe F.

Proof. Note that the contact point p of F will lic between v and x; if v does not exist, then p
occurs before or at x. If p =x then we have verified the face f. If v exists and p = v then we have
verified v; v is now a contact point and it is incident at at least three verified facets of O,,.;. Finally, if
P is equal to neither x nor v then p is a new vertex of ., and we form some new facets, each
incident at p. Then f is no longer a facet. Notice that if a point lies in a cell of 4,, then it is not
coplanar with any three contact points that belong to the closure of a common facet of #,,. Further-
more, if a point belongs to a facet of #,, then it is coplanar with the vertices of only one facet of #/,,.
Our probing strategy assures that F does not hit a verified facet, and it hits at most one plane defined by
an unverified facet of #,. It follows that F creates at most one new quadrilateral while the only old
quadrilateral, if any, disappears. Q.E.D.

Using this strategy, we continue until P is determined. The partial correctness of the algorithm is
clear. To show termination, note that with each probe, we either increase the number of unverified ver-
tices of H,, or verify a facet or verify a vertex. By the pigeonhole principle, the number of unverified
vertices is at most 3(fo(P) — k) + 1 where k is the number of verified facets. Termination is assured
since we never verify a facet or a vertex more than once.
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There is a contact point at each vertex of #,,, and each facet has at most 5 contact points incident
to it (one of these contact points lies in the relative interior of the triangle or quadrilateral formed by the
others). This gives an upper bound of fy(P) + 5f2(P).

We prove a lower bound by a straightforward adversary argument. First observe that every vertex
of P must be probed. Next note that the relative interior of each facet of P must be probed. Combining
this with the preceding upper bound, we obtain:

Theorem 5. Let P be a convex polytope in E3. Let T¢(P) be the warst case number of finger
probes necessary to determine P. Then

foP) + [2(P) S Tr(P) < foP) + 5f2(P).

2.2. Higher-dimensional finger probing

Seeing that probing in 3-dimensions encounters a difficulty that has no analogue in the planar
case, it is not immediately clear whether we will encounter yet new difficulties in 4-dimensions and
beyond. Fortunately, nothing new arises and we can obtain a fairly straightforward generalization. We
merely sketch a proof.

Theorem 6. Let P be a convex polytope in E%, d > 3, and T(P) be the worst case number of
finger probes necessary to determine P. Then

foP) + faui(P) S Tp(P) < fo(P) + (d+2)f3-1 (P).

Proof. The lower bound argument of the case d = 3 clearly generalizes. To obtain the upper i
bound, we organize our probes so that probes either land on %, on a facet of 4, in a cell of 4, or ;
at a veriex of O,. To see this, we can check that all the lemmas for the 3-dimensional algorithm hold.

The corresponding invariant is that an unverified facet of H,, have d contact points, with at most one

exception that may have d + 1 contact points. Q.ED.

2.3. Hyperplane probes

In contrast to the above, we now define a probe to be a moving hyperplane H approaching from
infinity in the direction of its normal. The contact hyperplane C (H) is the location of H where it first
contacts P. Interestingly, this probe model can be reduced to finger probing using a duality transforma-
tion. For a point p # O in ‘E4, let its dual be the hyperplane D (p) where the vector p is normal to
D (p) and the point T;Lz belongs to D (p). For any hyperplane h that avoids O, h* denotes the closed

halfspace bounded by 4 and containing 0. Then define
DP)= NDp)

peP

as the dual image of P. It is straightforward to verify that D (p) is a hyperplane that touches D (P) in a
vertex if and only if p belongs to a facet of P, and that D (p) supports a facet of D (P) if and only if p is
a vertex of P. For all computations it is therefore sufficient to consider the dual images of all responses
(that is, images under D inverse) and to apply the strategy for finger probing as explained above. It is
important to realize that we can apply the finger probing strategy of section 2.1 because, by an earlier
remark, we can assume the finger probes of that strategy are directed at the origin. This yields

Theorem 7. Let P be a convex polytope in E¢, d > 3, and let Ly(P) be the worst case number
of hyperplane probes necessary to determine P. Then

foP) + faar(P) S Ly(P) < (d + 2)fo(P) + f41(P).

3. Cross section and silhouette probing

We consider two models of probing a polytope in 3-dimensions here. In the first case, a probe
consists of a direction in which a polytope cross section is to be taken. All cross sections are assumed
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to pass through the origin so that it suffices o specify the direction via a normal vector. In the second
case, we consider probes which are specified by the position of a point source of light. Again, to sim-
plify the results, we assume the point source is at infinity. The result of such a probe is the silhouette of
the polytope generated by the light source. Duality shows that these two models are really the same:

Theorem 8. Cross section probing and silhouetie probing are duals.

To obtain upper bounds, we reduce finger probing to cross section probing as follows: a finger
probe F together with the origin O determine a plane P which we use to define our cross section probe.
If F passes through the origin then we can choose P to be any plane containing F. Clearly, the outcome
from this cross section probe yields at least as much infarmation as the outcome of F. Thus, it follows
from the results in section 2 that for any convex polytope P C E3, if Tc(P) is the worse case number of
cross section probes through the origin necessary to determine P then

Tc(P) < fo(P) + 5f2(P)
It is easy to show a linear lower bound. First we observe that for any P, there is a perturbation P’ of P
such that To(P") 2 fo®) . This comes from the fact that any correct algorithm must pass a cross sec-

tion through each vertex of P. The bound then follows from the fact that we perturb P to P’ so that
every three vertices of P’ define a plane that avoids the origin O. In fact this bound holds for any
‘certificate’ (non-deterministic algorithm) for P’. A fortiori no sublinear algorithm is possible. We may
conclude that our above upper bound on T¢(P), which is given by an apparently wasteful reduction of
finger-probes to cross-section probes, is at most a constant factor from the optimal.

4. Line probing 5

We consider probing a polytope in 3-dimensions using line probes. Intuitively, a line probe A
consists of a line sweeping out a plane H;. The position of the line at time ¢ € R (R is the set of all
real numbers) is A,, where all the lines A, are parallel. The probe contacts a given bounded closed sub-
set P ¢ E? the first time ¢, such that A, N P # @. It is important to realize that we are told the line
A;, but get no information about the set A,, N P. One motivation for such probes is the IBM RS-1
robot which has LED sensors on two opposing robot fingers. The invisible ray between the two finger
corresponds to a sweeping line that is cut off on contact with an object. The paper [CY87] uses the
same model to motivate finger probes: here we imagine an object to be a polygonal piece of cardboard
somehow supported to stand with one of its edges on a table.

More precisely, a line probe A is a triple

(@, 1, ¥)

where d € R, n and v are unit vectors that are orthogonal to each other. See figure 1. The probe deter-
mines the probe plane H,, that is normal to 1 at distance d from the origin O. For any ¢ € R, let A,
denote the line

{sa+(@n+tV):s5eR}
where @ = @i x ¥. Note that A, is contained in the plane H; and the line moves in the direction of V.
The result line of the probe on a bounded closed subset P is the line A,, where
to=min{tre R:\,nP 23D}

Ifl,nP=®foraﬂtthenwesettn=ooabovveandwesaythaxthel.,.iSuhdeﬁned. The result of the
probe is then said to be infinite or finite according to whether ¢y = e or not.

We call ii the probe orientation and ¥ the probe direction. A probe A = (d, B, V) is centered if
d=0. If X =(d, ', V) is another probe, then A and A’ are opposite if H; = H,- and V' =-v. Again,
A and A’ are said to be parallel if @ = +ii’ where as usual u =@ X V is the probe orientation. Note that

in this case, either H, and H, are parallel, or else @ is parallel 1 the line H; N Hy.. More impor-
tantly, the result lines (if both finite) of a pair of parallel probes are either identical or they determine a




plane.

Assume we are given a convex polytope P whose interior contains the origin O. In the following,
we will say that a point (resp. line, plane) is verified at a particular moment if we can deduce from the
result lines that the point (resp. line, plane) is a vertex (resp. contains an edge, contains a facet) of P.
Before describing the algorithm we describe a basic subroutine.

Half-profile computation. Let H be any closed half-space such that its bounding plane oH inter-
sects P. Letwbcanydxrecnonpamllclmmeplamaﬂ Let h(W) denote the plane normal to W and
passing through the origin. Then a (H, w)-profile (of P) is the planar pro;ecuon of H N P along the
direction of W onto h(W). Let the projection of 9H in h(W) be L. Thus the (H, w)-profile is a polygon
R < h(w) with one side abutting L. Suppose R has m vertices, that is,

R =(uy, uz, . . ., lm).

In our application, we can assume that m 22 and without loss of generality, assume that the edge
[y, 4n] abuts L. Again, in our application below, we are told two distinct points on the edge [u;, un].
It is not hard to see that a simple modification of the algorithm of Cole and Yap, we can either (a)
determine that m = 2 using one probe or else (b) determine that m > 2 and compute R using 3m — 2
line probes. The procedure is called a half-profile computation. To see why the half-profile computa-
tion is essentially a finger probe problem in the plane, observe that if we restrict ourselves to line probes
). whose probe orientations are parallel to w, then the behavior of the moving line A, is faithfully
recorded by the intersection of A, with h(W). Clearly the intersection of the probe plane H, with h (W)
gives rise 10 a (planar) finger probe of the (H, W)-profile.

Remark: Note the similarity between this subcomputation and the shadow probes of the previous
section. Since this subcomputation already makes a linear number of probes, and there is a linear lower
bound on the number of shadow probes, this suggests a quadratic lower bound in the number of line
probes. Thus our linear upper bound on line probing is somewhat surprising.

We are ready to give the overall algorithm. At the beginning of the nth step below (r 2 0), we
maintain the following invariant. There is a set ¥/, of verified verices, and #, is defined to be the
convex hull of ¥, U { O }. Let ¥, denote the subset of the facets of #, each of whose plane is
verified.

To initialize, we do a ‘full profile’ of P along any direction w, in exact analogy with the half-
proﬁle computation above. That is, we restrict ourselves (o line probes whose orientations are parallel 10
w, and hence such line probes are faithfully represented by finger probes in the plane h(w), and a direct
application of the planar probing problem in [CY87] gives us the desired profile, which is a projection Q

335
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of P onto h(w).

We then continue as follows. Note that the polygon Q < h(W) is such that its vertices are projec-
tons of vertices (possibly edges) of P and its cdges are projections of edges (and possibly facets) of P.
Let e be an edge of Q. Consider the plane ’(e) containing e and perpendicular to 4(w). We know that
there is at least one edge of P, and possibly one facet of P, lying in h'(e). Our goal is to verify the ver-
tices of P in h'(e). This is easily reduced to “hyperplane probe™ in A’(e), as described in section 2.3.
In other words, we restrict our atientions to line probes A whose probe planes are #’(e). By duality,
hyperplane probes are transformed to the planar finger probing problem of Cole and Yap. Note that we
already know two parallel hyperplane probe outcomes — namely the two lines parallel to W and passing
through the endpoints of e. Using at at most 3m additional hyperplane probes, we can determine the
m 2 1 edges of P lying in h'(e). Although the original formulation of Cole and Yap does not allow
m=1, this is easily modified to suit our situation, allowing us to charge at most 3 probes to each edge of
P found in this way. For reference, we call this probing of h'(e) an edge verification procedure. The
probes made in the full-profile computation of Q can be charged to the vertices of P that project onto
vertices of Q; and hence we charge at most 3 probes to each vertex of P found. We now have our ini-
tial set ¥, of verified vertices, and of verified facets Fo. The general nth step is as follows:

If every facet of 7, is verified then we halt and P = #,. Suppose some facet f is still
unverified. Leszemelmlf-spaccwhereUuplmeanpponsﬂ,a:fdedownotcomain
the interior of %{,. Chooseanydhecﬁonﬁin&lfsuchthatﬁisnormﬂelmanyedgeofﬁ
Construct the (H, w)-profile. If f is acmally a facet of P, then one probe would verify this, In

this case #,,, = H,. Otherwise, we get a non-trivial profile R = (u,, . .. ,u4,) (m = 3) and we
next perform an edge verification procedure for each edge [u;,4;4] (i=1,...,u,) as dcscribed
above,

Complexity analysis: A profile computation that yields a profile of the form R T |
with m 2 3 costs 3m — 2 probes. Sinceatlemtm—2newmﬁcesarcrevealedinthispmcws,we
chargeeachofthencwvcrﬁceswirhatmost?wob&sﬁ'ommeproﬁlecompumion. The edge
verification procedure for each of the edges [u;,u;,] charges at most 3 probes to each edge that is
revealed. This proves a bound of 7fo(P) + 2f; (P) + fa(P).

Theorem 9. Let the worst case number of line probes to determine a convex polytope P in E*
be T;(P). Then
folP) + f2(P) S To(P) S Ufo(P) + 21 (P) + f2(P).

Proof. We only have to show the lower bound. For each facet f, there is at least one line probe
whose result line lies in the plane of f. For cach vertex v, there is at least one line probe whose result
line passes through v but does not lie in any of the planes defined by a facet incident to v. Q.E.D.

It ought to be remarked that the edge verification procedure is a highly unstable numerical pro-
cedure. It would be nice to give an alternative algorithm with better stability properties.
5. Probing in the presence of uncertainty

5.1. The model

The issue of probing in the presence of uncertainty is sufficiently intricate that we will restrict our-
selves to finger probes in the plane. -Let € > 0 denote a fixed number that quantifies the uncertainty in
our model. For any point x let E(x) denote the closed disk of radius € centered at x. For any set X of
points, define its e-expansion E X and its ¢-interior I X as follows:

EX = UES(X)
ze X

I1.X ={ x:E.(x) < interior (X) }




EIX=EX-IX

Clearly /. X c X c E_X. Let P be a (closed) convex polygonal region. Then /P is an open set, and
E.P and EI.P are closed sets. The set I.P, if non-empty, has boundary that forms a convex polygon
with at most the same number of sides of P. The boundary of E.P is decomposed into straight line seg-
ments and circular arcs as illustrated in figure 2.

We use the above sets to assign meaning to the term ‘a probe has € uncertainty’ or ‘e-probes’.
Such a probe is again denoted by a directed line. To distinguish probes with uncertainty from our origi-
nal finger probes, we refer to the latier as ‘standard probes’ or ‘0-probes’; we may also write Co(F) and
o(F) for the contact point and probe path of standard probes. Out of the many possible interpretations
of error probes, we choose one with the following semantics: we imagine an e-probe F as specifying a
collection of standard probes F” such that each F” is parallel to F, similarly directed and such that there
is a vector v of length at most € where F’ = F + V. Call this collection of standard probes the e-bundle
of probes defined by F. Each such F’ defines the contact point Co(F’, P), which corresponds to a point
Co(F’, P) -V on F; this point Co(F’, P) — ¥ is called a potential e-contact point. Note that two dif-
ferent vectors v and & may give rise to the same standard probe F’ but they could be distinguished in
that they give rise to distinct e-contact points. This is captured as follows.

Definition. Let F be an e-probe and P be any polygon, not necessarily convex. A point p (possi-
bly p = =) on F is called a potential e-contact point of F at P if there exists a standard probe F in the
e-bundle defined by F such that either p = « = Co(F’, P) or d(p, Co(F, P)) < &.

For any potential e-contact point x of F, we have a corresponding probe path n(F, x) defined
analogously as for standard probes: m(F, x) is a directed half-line that terminates at x. For simplicity
(mainly in upper bound proofs), we prefer to ignore the information provided by the entire probe path
n(F, x) and simply consider the contact point x. Note that if o is a possible e-contact point for F then
F does not intersect I.P; the converse is not true. In any case, let C¢(F, P) ¢ F denote the set of finite
potential e-contact points. If P is understood, we write C(F) instead of C(F, P). If P is convex then
C.(F, P) is a connected interval of F; if P is non-convex then C(F, P) need not be connected.

Lemma 10. The set C.(F, P) is equal to F N E X where
X = { Co(F', P): F is in the e-bundle of F }.
It follows easily that
() For all P, not necessarily convex, (_JC(F, P) c EI.P where the F ranges over all &-probes.
F

(i) If P is star-shaped then \ C(F, P) = EI.P.
F
In our model of computation, it is important to realize that the algorithm can only specify e-probes

F but some adversary (relative to P) will specify some e-contact point in C(F). There is no assump-
tion that the adversary will even consistently reply with the same contact point for two identical probes.

E.P
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However it is easy to see that the adversary can do no worse by being consistent. Thus, we may define
a P-adversary A to be a rule which for each sequence of e-probes F = (Fy, . .. ,F), k 2 1, specifies a
point A(F) in C.(Fy, P). We call A a forgetful adversary if A(F) depends only on the last probe F,.
We may similarly define a probe algorithm to be a rule B such that for any sequence & = (&, . . . , %),
k = 0, of probe paths, the rule either decides that it is an ‘end-game’ or else specifies a probe B(%). We
usually consider probe algorithms that are determined only by the contact points on the probe paths T;
G=1,....h.

Let B be any probe algorithm and A be any adversary. Together they determine a unique
sequence of probes F, F,,. and a unique sequence of probe paths =, n;,, where foreach k = 1,
Fe=B(m,....,m ), and pp=AWF,, ... .Fp)
and B (m,, . . ..m) is an ‘end-game’. We call the sequence (Fy, m;, Fy, . .. ,F}, m;) a game.
Say a set of points X is extremal if

X c d(conv(X)).

Observe that the set of e-contact points for P need not be extremal. Despite such difficulties, we will
attempt to recover in this new setting concepts from the standard probe case. For example, we can
recover the notion of collinearity by saying that three distinct points x;, x,, x5 are e-collinear if there is
a line L that has non-empty intersection with each of E.(x;), i =1, 2, 3.

Definition. Let 8 > 0. For any finite set IT of e-probe paths, let X (IT) be the set of finite contact
points in II. A convex polygon Q is said to &fit IT if I is consistent with the response of a Q-
adversary with 3-error. Let H5(TT) denote the set of all convex polygons that d-fit IT. We defineTI to

- be &-consistent if H5(IT) is non-empty. If IT" < IT and IT is 3-consistent then we call IT a 8-consistent

extension of IT'.

A slight clarification may be necessary 1o our definition of -fit since IT is a set of e-probe paths
and yet we consider Q-adversaries with 8-error: this should cause no confusion since an e-probe path is
formally no different than a 8-probe path (both are specified by directed rays). A Q-adversary with &
error is simply one that treats each e-probe F as if it were a &-probe, i.e., it ignores the value of € but
returns a point in Cz(F,Q). The key definition in this section is the next idea of a ‘certificate’.

Definition. Let § > 0 and IT a finite set of probe paths. We say that [T 8-determines a convex
polygon P if for all e-consistent extensions IT” of I1, P &-fits IT". If § is a finite sequence of &-probes
then we say S is a &-certificate for P if the following holds: if T1 is any set of probe paths defined by
some P-adversary with e-error in response to S, then IT 8-determines P.

Note that if I1 d-determines P, since IT is a consistent extension of itself, we must have
P € Hg(IT). The crucial step in this development is to introduce a new parameter § > 0 that is indepen-
dent of . There is a kind of double-standard in our definition of ‘T1 3-determining P’: we want P to &-
fit IT" but IT’ is an e-consistent (rather than a 8-consistent) extension of I1. A certificate is essentially a
non-deterministic non-adaptive algorithm; it allows one to verify (up to 8 precision) whether P has a cer-
tain shape. We first show an absolute lower limit on the precision & of any certificate:

Theorem 11. For any P, if § < 2¢ then there does not exist any d-certificate of P.

Proof. Suppose S is a purported 3-certificate for P. Consider the P-adversary that for any probe
gives the response corresponding to the case of no errors. Let IT be the corresponding set of probe paths
for § with respect to this adversary. Now choose any edge e of P and let ¥ be the vector of length &
that points normal outward from e. Let Q be the polygon obtained by transiating P a distance of € in
the direction perpendicularly outward from e, so @ = P + V. We show that IT could be the response of
a Q-adversary (with &-error) to the probes in §. Let F be a probe in S and let its contact point in IT be
x. Let F’ be the probe obtained by translating F by the vector v (so F’ is in the bundle of probes
defined by F) First suppose that x is at infinity, Then F misses P implies F* misses (), S0 oo is an
appropriate response of a Q-adversary to F. If x is finite, then ¥’ = x + ¥ is the standard contact point of
F’ with Q. Since x’ € E(x), again x is an appropriate response of a Q-adversary o F. Finally, to show




a g-consistent extension to IT, let &t be the probe path that is aimed normally at the midpoint of edge e
with contact point at distance 2¢ outside of P. Clearly IT"=I1 u { n } is a e-consistent extension of IT.
But P does not 8-fit IT, contradicion. Q.E.D.

The inwition for the preceding lemma is that there is an €-uncertainty associated with contact
points, but there is an added e-uncertainty arising from the desire to ensure that ‘no further probes’ can
nullify our present guess about the shape cf the polygon.

5.2. Analysis of a certificate _

In contrast to the last result, we now show a positive result about certificates. In the context of
standard probes, [CY87] noted that every P has a certificate of 2n probes, and there are no certificates
with fewer probes. We need only a very mild ‘largeness’ requirement for P, namely:

(#) I4P is non-empty and each edge of P has length | e| > 2e.

We show that with only two probes more than in the standard certificate, we can achieve a certificate of

precision 8 = O (€). Our goal is to analyse the following set S (P) of probes:

(i) For each comer ¢ of P, arbitrarily pick one of the two edges e incident on ¢ and let ¢’ to be the
point on e at distance € away. Send a probe F, aimed at ¢” such that F, is normal to e.

(i) For each edge e of P, send a probe F, that is parallel to e and at distance e+ (e+ means any value
that is infinitesimally greater than €) from e and such that F, misses P.

(iii) Let ¢ be a comer with angle less than 60°. Send a probe that misses P but which intersects F,
orthogonally at a distance &+ from c. Since there are at most two such corners, we use at most
two such probes. Call these the special probes.

First we prove the following lemma:

Lemma 12. Let IT be any set of probe paths produced by a P-adversary in response to the probes
in S(P). Let & = (F, p) be a probe path such that if IT U { & } is &-consistent.
(@) If F intersects I3 + v3)eP then p # .
() If p # o then p lies outside of I g 4 \7)eP.

Proof. (a) Since IT L { & } is econsistent, let O be a polygon that e-fits [T U { = }. Assume
that F is horizontal and at distance (2 + V2)e below the x-axis. For the sake of contradiction, suppose

= o and there is a point y € F NI, 3P. So there is a standard probe F” in the e-bundle defined

by F such that F misses Q. Say F” lies above F. Since E . 53(y) < P, there is some corner ¢ of P
that lies on or above the x-axis. Similarly, there is some comer ¢’ of P that lies on or below the hor-
izontal level y = -2(2 + V2)e. Consider the probe path (F., x) in II for some x. It is not hard to see
that x is finite (since each edge of P is at least 2¢ long. Furthermore, x is at a distance at most V2 ¢
from ¢. Hence x is at least 2¢ above F. Since x can be the response of a Q-adversary (with e-error) 10
F., 90 has some point ¢ at a distance less than € from x. Thus ¢ is at least € distance above F. A
similar argument with respect to the comer ¢’ shows that there is a point ¢’ in dQ at a distance at least €
below F. This implies that the Q-adversary could not respond with p =  for the probe F. This proves
that O does not e-fit IT U { = }, contradiction.

(b) This is similarly shown, and is omitted in this proceedings. Q.E.D.

We are now ready (o prove the main positive result about certificates. .

Theorem 13. Let P be a convex n-gon satisfying the ‘largeness requirement’ (*) and
8> 2 +2¢e. Then S(P) as specified above is a S-certificate for P.

Proof. We have already observed in the above proof that each of the probes F, gives a finite con-
tact point. Also each F, and also each of the two special probes yield contact points at infinity. Let T1
be any set of probe paths from some P-adversary’s response to S (P). For each probe F that has contact
point at infinity, we let Hp be the half-space bounded by F which contains P. Let O be the convex
polygon obtained by intersecting the n + 2 half-spaces Hr. We observe that Q ¢ ExP: it is here that
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we need the two special probes of S (P).

Now consider any e-consistent extension IT’ of IT. We want to show that P 8-fits IT". Take any
probe path (F, x) € I’ = I1. If x = o, then by the last lemma F must miss /3P, so (F, x) is consistent
with the response of a P-adversary with §-error. So suppose x is finite. Then by the last lemma again,
x is not in JgP. It is also easy w0 see that x is not outside of EcQ. This implies that x is inside EzP.
Therefore x &€ EI;P. We are not yet done since x € EIP is a necessary but not sufficient condition for
(F, x) 1o be a response of a P-adversary with S-error: we must consider the entire probe path itself. In
particular, if the probe path (i.e. the half-line of F terminating at x) intersects an edge e of P then we
must be sure that E5(x) N e is not empty. This can be checked. Q.ED.

By 2a + O(1) probes, we can improve the precision of our certificate S (P) arbitrarily closer to 3.
To do this, we first generalize the observation that there are at most two angles less than 60°:

Claim: Let6=(1- -i—)m: for some k 2 3. Then every convex polygon P has at most k-1 angles
that are < 8.

[Proof of claim: If P has k angles which are < 6, form the subpolygon Q with k vertices formed from
these vertices of P. Each angle of Q is no larger than the comresponding angle in P. Hence we obtain
d:econuadicﬁonﬂmke=(k—2)xisstricdylargermanthetotalinwrioranglmofg,whichisequa!m
(k — 2)n.] Using this claim, we can now send probes 10 ‘cut off sharp comers’ analogous to our two
special probes in S§(P). The number of ‘sharp comers’ is a function k(5) of &, and we use
O (k(8)) = O(1) special probes.

6. Concluding remarks .

The study of ‘crude’ sensory data is relatively new in robotics. In this paper we studied the prob-
lem of determining a convex polytope using various models of probing. At first glance, it is surprising
ﬂlalwecanevenobmmﬁnjtebouMsondlealga'immswiﬂmutanyﬁnﬂlerinfomaﬁon about these
polytopes (compare (2) below). Many interesting questions remain.

1) Thesecﬁononmob&swhhmoﬂ‘emmanymm&eﬁngpmspectsfmﬁmham We have iso-
latedsomekeyconceptsmshowmatsomeofzhemﬂtsonsmﬂmdmbescmbeemdedina
meaningful way. Anopenprob[emismﬁndefﬁciemalgorithmsmdemmjnepolytopesupw&
‘precision. Another intriguing question is the trade-offs between accuracy § = &(e) and the number
of probes.

(2) It is natural to try to extend our results on standard probes to non-convex objects. However,
without further assumptions about these objects, there is no meaningful extension of our results
even for star-shaped objects. In other words, there is no algorithm that can determine the objects
exactly in a finite number of steps. On the other hand, the problem becomes meaningful if we
make additional assumptions on the star-shaped objects similar to (¢) in section 5.2. Similarly, the
extension to multiple convex polygons can only work with additional information.

(3) The approach t0 vision known as the ‘model-based vision’ has been extensively investigated, espe-
cially by researchers at Stanford. Abstractly, this is essentially the problem of preprocessing infor-
mation about the objects or scenes to be identified. Suppose that, given a polygon P, we want 1o
know whether P is a translation and rotation of some convex polygon taken from a given finite set
S. The upper and lower bounds of Yap and Cole no longer holds. Indeed, H. Bernstein [Ber86]
has observed that 2n + O(1) probes suffice (the necessity of this bound is easy).

(4) The probing strategies reported in this paper rely on substantial, although polynomial time, compu-
tal:ionswhichprocessﬂwresultsofdlepastprobesandmenﬁgumomthenextpmbe. It would
be interesting to analyze the complexity of these background computations.
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