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We prove that given n =3 convex, compact, and pairwise disjoint sets in the plane, they may
be covered with # non-overlapping convex polygons with a total of not more than 6n — 9 sides,
and with not more than 3n — 6 distinct slopes. Furthermore, we construct sets that require
6n —9 sides and 3n — 6 slopes for n=3. The upper bound on the number of slopes implies a
new bound on a recently studied transversal problem.

1. Introduction

Consider a collection of n convex, compact, and pairwise disjoint sets labeled
from 1 through » in the plane. We wish to cover each set i with a convex polygon
a;, such that no two polygons overlap. Here, a convex polygon is defined as the
bounded intersection of a finite number of closed half-planes. A polygon with k
sides is also called a k-gon. Wenger [5] shows that the polygons can be chosen
such that not more than 12n + 12 sides realizing not more than 6n + 6 distinct
slopes are required. In this paper we improve the bounds by showing that 6n — 9
sides and 3n — 6 distinct slopes suffice, that is, n =3 convex sets may be covered
by a set of »n disjoint k;-gons, 1 <i<n, where

> ki<6n-9.
i=1

Furthermore, for n =3, we construct sets that require 6n — 9 sides and 3n — 6
distinct slopes to cover. Thus, our bounds on the number of sides and slopes are
tight.
The organization of this paper is as follows. In Section 2 we demonstrate lower
bounds on the number of sides and slopes needed. In Section 3, we describe and
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analyze a construction of polygons which proves the upper bounds. Finally,
we apply the result to a transversal problem and a triangulation problem in
Section 4.

2. A lower bound construction

For each n =3 there is a collection of n compact, convex, and pairwise disjoint
sets in the plane that simultaneously requires the maximum number of sides and
the maximum number of slopes to be covered. These sets are described in the
proof of the following theorem which states the lower bound.

Theorem 1. To cover n =3 compact, convex, and pairwise disjoint sets by disjoint
convex polygons, one per set, may require 6n — 9 sides and 3n — 6 distinct slopes.

Proof. Construct an equilateral triangle Aabc. Now, construct an equilateral
triangle Aa'b’c’, which is a  scale copy of Aabc with the same center, but
rotated by . Next connect the vertices of Aabc and Aa’b’'c to form a graph as
shown in Fig. 1. (The triangles are in broken lines; the graph is solid.)
Recursively repeat the process by letting the old Aa’b’c’ be the new Aabc. We
finish the construction by completing the inner-most part with one of the three
constructions shown in Fig. 2 depending on whether n modulo 3 is 0 (Fig. 2a), 1
(Fig. 2b), or 2 (Fig. 2c). Topologically, we can view the construction as what we
see if we wrap a hexagonal grid around the inside of a hollow cylinder, and then
look down the cylinder axis. Now perturb each vertex slightly so that each edge of
the graph has a distinct slope, and shrink each face by some small amount ¢ to
form n disjoint convex sets.

Consider the construction for # a multiple of 3. The three outer-most faces
require pentagons to cover; the three inner-most faces require quadrilaterals to

Fig. 1. A lower bound example.
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(b)

Fig. 2. Completing the lower bound construction.

cover; all other faces require hexagons. Thus at least 6- (n —6)+5:3+4-3=
6n — 9 sides are required for a covering. If we disregard the three outer-most
sides, then each side of the covering polygons is parallel to at most one other
side, provided ¢ is small enough. This implies that the construction requires at
least (6n —9 —3)/2=3n — 6 distinct slopes. Similar inspection of the other two
cases shows that they also require 6n — 9 sides and 3n — 6 slopes. [

Note that the sets constructed in the above proof can in fact be covered by
polygons with a total number of 6n —9 sides and 3n — 6 slopes. This is because
the slopes of the three outer-most sides can be chosen to be equal to three other
slopes. This is not quite true only if n = 3. In this case we can find three covering
polygons with 9 sides and also polygons with 3 slopes, but there are no three
polygons that achieve both bounds simultaneously (see Fig. 3).

R\

Fig. 3. Covering 3 sets with 9 sides or 3 slopes.

3. Area maximal polygons

We begin our upper bound construction by circumscribing polygons around the
convex sets, such that all sides have distinct slopes. Since the objects are convex
and compact this is always possible such that no two polygons intersect. The
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Fig. 4. Circumscribing polygons around the sets.

reason for choosing pairwise non-parallel sides is technical. At this stage we are
neither concerned about the number of sides of the polygons nor about the
number of slopes. Let A be the set of polygons {a,, a,,...,a,}. We then
circumscribe a triangle around all the polygons. Let £>0 be the minimum
distance between a polygon’s boundary and its corresponding convex set. We will
use ¢ in the last stage of the construction. Fig. 4 shows an example of the
construction at the current stage.

We now grow the polygons in A so that they maximize their area. The growing
process will create polygons with overlapping boundaries but disjoint interiors.
This deficiency will eventually be remedied by shrinking each polygon by a small
amount. The growing process works as follows. Let the sides of each polygon
move out until each polygon is of maximal area, subject to the constraint that no
two polygons’ interiors overlap. To more precisely describe the expansion
process, consider a polygon as the intersection of half-planes. Moving out a side
means to move the corresponding half-plane, in the direction perpendicular to the
side and away from the polygon’s interior. In other words, each side of the new
expanded polygon remains parallel to the corresponding side of the unexpanded
polygon. For our result it is irrelevant whether the sides move simultaneously or

(b) (c)

Fig. 5. Growing a polygon.
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Fig. 6. Maximal polygons and their contact graph.

one after the other in an arbitrary order. Notice, however, that different
schedules lead to different polygons.

There is one case where we have to add another side to a polygon, as shown in
Fig. 5a. If the endpoint v of a side uv encounters the side of another polygon, we
grow a new side v'v at vertex v and continue moving uv outwards. The new side
lies on the same line as the side that vertex v encoutered. Note that the
expanding process is finite since a side is stopped forever if it is stopped. There
are two conditions that will stop a side from moving further. First, the side
touches another polygon’s corner (see Fig. 5b), or, second, a side shrinks to a
point and vanishes (see Fig. 5¢).

We introduce a few definitions in order to analyze the polygons constructed as
described above. We say that polygons a; and a; are in contact if a side of g
intersects the boundary of g; or, vice versa, a side of a; intersects the boundary of
a;. We consider a side as a relatively open set, that is, it does not include its
endpoints. Then g; and g; are not in contact if they share a single point which is a
corner of both. We now construct the contact graph G of A. G contains a vertex
for each polygon in A and an edge between any two vertices that correspond to
polygons in contact. More formally, G=(V,E) with V={v,|a;€A} and
E = {{v;, v;} | a; contacts a;}. To avoid confusion, we refer to elements of the
polygon’s boundaries as sides and corners, and to elements of the contact graph
as edges and vertices. Fig. 6 shows an example of a set of polygons and the
corresponding contact graph. It is obtained by growing the polygons in Fig. 4.

Lemma 1. The contact graph G is planar.

Proof. We embed the contact graph in the plane as follows. We put each vertex,
v;, inside its corresponding polygon, a;. Any two contacting polygons, a; and a;,
share a point, p, on their boundary, so we can draw the corresponding edge
straight from v; to p and then straight from p to v, Whenever p is not unique we
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Fig. 7. Avoiding overlapping edges.

choose it on the sides of the two polygons rather than at a corner. If p is not
common to any other pair of polygons, then this embedding of {v;, v;} cannot
intersect any other edge which is similarly embedded.

There, is however, one case in which we produce intersecting edges. Let p be a
point of a side of g; that is also the corner of at least two other polygons (see Fig.
7). If such a case occurs, then our embedding of the contact graph is not plane
but we can still argue that the contact graph is planar (that is, it allows a plane
embedding). Notice that the side of a; that contains p also contains an open
interval including p that does not intersect any other edges. Choose k points in
this interval where k is the number of polygons which have a corner at p. We can
now draw the k edges through these k points rather than through p. Non-
intersecting edges are guaranteed if the order of the points in this interval
matches the order of the polygons around point p. O

From now on when we talk about the contact graph, we mean the original
embedding which may contain overlapping edges. To use planarity of the contact
graph for proving an upper bound on the total number of sides, we have to relate
edges with sides.

Lemma 2. Every side of each polygon is crossed by at least one edge of the contact
graph.

Proof. Suppose a side is not crossed by an edge. Then the side does not touch
another corner or side. In this case it can be moved further to increase the area of
the polygon, thus the polygon is not maximal, a contradiction. [

Using Lemmas 1 and 2 we can prove that 6n —3 sides and 3n slopes are
sufficient to cover n convex sets by disjoint convex polygons. However, to prove
tight upper bounds we need one more step in the construction. For this step it is
essential to understand the structure of a hole in a maximal construction, where a
hole is defined as a connected component of the complement of the union of
polygons inside the outer triangle (see shaded areas in Fig. 6). Clearly, any hole is
an open, bounded polygon.
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Lemma 3. The outer triangle of a maximal construction cannot intersect the
boundary of a hole.

Proof. Assume the outer triangle touches a hole and let e;, e,, . .., e, be the
sides of the hole enumerated in counterclockwise order around the hole. Each ¢;
belongs to a side f; of a polygon or of the outer triangle. This side properly
contains e;, for, otherwise, the polygon is not maximal. Let e, be a side whose
one endpoint lies on the outer triangle. It follows that f; contains one endpoint of
f2» f> contains one endpoint of f;, etc. This eventually contradicts since f; cannot
contain an endpoint of f; which is a side of the outer triangle. O

Note that it is straightforward to use the proof of Lemma 3 for showing that
each hole is convex. This is, however, immaterial for proving the main result of
this section. We now continue with the construction. Call a side a spoke if one of
its endpoints (or both) lie on the outer triangle and the side is not colinear with a
side of the other triangle. By Lemma 3, a spoke lies in the common boundary of
two polygons. Grow this triangle continuously. As the triangle grows, the spokes
are extended and the incident polygons are expanded. When two spokes meet,
we let them stop there and start a new spoke that maintains convexity. Continue
this process until the triangle disappears to infinity. When this process is done, we
are left with a set of spokes that radiate outwards to infinity.

Reconstruct the contact graph. Lemmas 1 and 2 still hold for the new contact
graph. Any new sides added are between two polygons and thus are crossed by
edges of the contact graph. Call a vertex v; of the contact graph peripheral if it
lies on the unbounded face and let d(v;) denote the degree of v;. By construction,
v; corresponds to an unbounded polygon with at most d(v;) sides.

Lemma 4. For every peripheral vertex v; of the contact graph for n =3 polygons,
we have d(v;) = 2.

Proof. Suppose d(v;) =0. By Lemma 1, the unbounded polygon a; must have no
sides, therefore all of its sides must have been removed with the outer triangle.
Thus the polygon must cover the entire plane, a contradiction since there are at
least two other polygons.

Suppose d(v;) = 1. Then the unbounded polygon g; has a single side ! which is
unbounded on both ends. Let [’ and [” be the two spokes adjacent to / and let g,
be the ploygon that contacts a;. Since a; contacts g; only, /' and /" must be sides of
a;. But g; is convex and neither [’ nor /" may be parallel to [. This is because the
construction started out with pairwise non-parallel sided and no new slopes are
ever introduced. This also prevents the creation of two parallel sides which do not
belong to the same line. Therefore, either ! or I” must intersect I, a
contradiction. [
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By construction of the contact graph, G = (V, E), each edge either crosses a
corner touching a side or it crosses two collinear sides. We partition E
accordingly, that is, E =E,UE,, where E; contains all edges of E that go
through a corner and E, contains all edges that cross two sides. Using Lemmas 1
through 4 we can now prove tight upper bounds on the number of sides and
slopes.

Theorem 2. A collection of n compact, convex, and pairwise disjoint sets in the
plane may be covered with n non-overlapping convex polygons with a total of not
more than 6n —9 sides. Furthermore no more than 3n — 6 distinct slopes are
required.

Proof. Let S be the set of all polygon sides and m be the number of distinct
slopes. At most, we have one side in § for each edge in E_,, and two sides in § for
each edge in E,,. Thus,

S| = |Ees| + 2 | El-
Likewise, we have at most one slope for each edge in E, or E,,, which implies
m < |E| + |El.

Let k be the degree of the unbounded face of the contact graph, that is, the
number of edges on the periphery. A planar graph with a face of degree k has no
more than 3n — 3 — k edges. Thus, we have

|Ecs| + |E| <3|V|-3—-k=3n-3-k
since |[V| =n by definition of the contact graph. This implies

IS| <|E| + 2 |Es| S2(|E| + |Ess|) <23 |V| -3 — k) = 6n — 6 — 2k,
and
m=<|E |+ |Es|<3n—-3—*k

Now we bound each of the k unbounded polygons by adding extra sides at least
¢ away from the corresponding sets. If we aim at minimizing the number of sides
we choose one side per unbounded polygon. An exception occurs if one of the
unbounded polygons is a half-plane, in which case we need yet another side to
bound the polygon. The degree of the corresponding contact graph vertex must
be at least 2, so we have counted the half-plane boundary as two sides. Use the
credit for an extra side to bound the polygon. If our goal is to minimize the
number of slopes, we choose the additional sides parallel to existing sides. This
may force us to pick two sides for an unbounded polygon if this polygon is
bounded only by two spokes.

Let ' be the new set of sides and m' the number of slopes. We have

[$|<|S|+k=6n—6—k=<6n-—9
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and
m=m=3n-3—-k<=3n-6.

Shrink the polygons by & to generate the final set of disjoint covering
polygons. O

4. Applications to two combinatorial geometry problems

We apply our results to the problems of transversals and triangulations of a set
of convex objects.

A Transversal Problem. The original motivation for studying the covering
problem of this paper stems from a transversal problem defined for a finite
collection of convex, compact, and pairwise disjoint sets in the plane. Let S be
such a collection and let the sets be labeled from 1 through n. A line that cuts all
sets is called a transversal of S. Clearly, a transversal intersects the sets in a
well-defined order which can be expressed by a permutation of (1, 2, . . ., n) and
by its reverse since a transversal is not directed. Such a pair of permutations
induced by a transversal is called a geometric permutation of S.

In two papers Katchalski et al. [3, 4] study the maximum number of geometric
permutations that can be realized by any collection of n convex, compact, and
pairwise disjoint sets. They prove that 2n — 2 is a lower bound if n =4, and that
() is an upper bound for this number. Wenger [5] reduces the transversal
problem to the covering problem studied in this paper and proves that 6n + 6 is
an upper bound. Our analysis (Theorem 2) improves this bound to 3n — 6.
Finally, Edelsbrunner and Sharir [1] prove that 2n —2, the lower bound
established in [4], is also an upper bound and thus the answer to the extremal
problem if n =4.

Thus, it appears that the upper bound of [1] is strictly stronger than what can
be obtained from Wenger’s reduction together with our analysis of the covering
problem. This is not really the case since the reduction is applicable to a more
general extremal problem that also considers lines missing some of the sets.
Define 7(S) as the smallest integer such that there are m(S) permutations of S
with the following property. If / is a directed line, then the sequence of sets met
by [ is a subsequence of one of the m(S) permutations or its reverse. We are
interested in

7t(n) = max{zx(S) | |S| =n}.

Below we state the result which follows from Theorem 2. For completeness, we
also indicate the main steps needed to prove that Theorem 2 implies the result.

Theorem 3. n(n)<3n—-6if n=3.



162 H. Edelsbrunner et al.

The main idea of the proof is the construction of a set of lines, H, such that any
two sets in S are separated by at least one line. To each line we assign its angle in
[0, ) and we assume without loss of generality that there is at least one line with
angle 0. The m <|H| angles cut the interval [0, 7) into m open intervals. For
each interval, we can give a permutation such that a new line whose angle lies in
this interval intersects the sets in a not necessarily consecutive subsequence of this
permutation or its reverse. The construction of the permutation is straightfor-
ward: for every pair of sets, the line in H that separates the two sets decides
which one of the two goes first.

Thus, the problem is now reduced to finding a set H with small angle set. To
get such a set, we cover each set by a convex polygon (see Section 3), and for
each side we add the line that contains it to H. For any two disjoint convex
polygons in the plane there is at least one side whose extension to a line separates
the polygons. This lemma proves that the set H thus constructed contains a
separating line for every pair of sets. By Theorem 2, there is a covering by
polygons with a total number of at most 3n — 6 different slopes which implies that
the size of the angle set of H is at most 3n — 6 and this proves the result.

It is interesting to note that the construction of H given above is optimal. In
fact, the lower bound example of Section 2 (see Fig. 1) shows n sets that require
3n — 6 lines to separate each pair. It is, however, not clear whether or not
Theorem 3 is the best possible. Currently, the best lower bound for z(n) is 2n — 2
which follows from the lower bound for the transversal problem mentioned in the
introduction of this section.

A Triangulation Problem. Florian and Schmidt [2] recently considered the
following problem which is related to the polygon covering problem studied in
this paper.

Decompose a given triangle that contains n convex and pairwise disjoint
objects into triangles so that every triangle intersects at most one of the
objects.

They show that 6n — 5 triangles are sufficient and that the multiplicative factor,
6, is the best possible. Our construction can be used to show a tight bound of
6n — 11 triangles.

We decompose the triangle into triangles as follows. Construct the covering
polygons as described in Section 3. We will have a polygonal covering and contact
graph as shown in Fig. 6. The results up until Lemma 3 hold. We do not grow the
outer triangle. Now triangulate each polygon and each hole.

Each i-gon will require i — 2 triangles. We will count the total number of sides
and then subtract the number of polygons. Let V, E, and F be the vertices,
edges, and bounded faces respectively of the contact graph and let k be the
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degree of the outer face of the contact graph. Then there are no more than 2 |E|
polygon sides corresponding to contact graph edges, and we have k + 3 extra
sides around the periphery. Since there are 2 |V| polygons, we require no more
than 2 |E| + k + 3 — 2 |V/| triangles to triangulate the polygons.

We now consider the hole triangulation. Each hole corresponds to a face of the
contact graph. By Lemma 3, no hole may touch the outer triangle. By Lemma 5
(which we prove below), the number of sides of a hole is no more than the degree
of the corresponding face. Furthermore, we need 2 |E|—k — 2 |F| triangles to
triangulate the holes, the —k term follows from the fact that the sum of the face
degrees is 2 |E| — k.

Altogether we need 4 |E|—2(|V| + |F|) + 3 triangles. But |V|+ |F|=|E| +1,
and we have shown in Section 3 that |E|<3n — k — 3. Therefore the number of
triangles is bounded by 6n —2k — 5. Since k =3, we have the upper bound of
6n — 11.

Lemma 5. The number of sides of a hole is no more than the degree of the
surrounding face of the contact graph.

Proof. The sides of the hole are sides of bounding polygons. Therefore each side
of the hole must pass through an edge of the contact graph. Furthermore, since
any two polygon sides passing through the same edge must be collinear, no more
than one of these can be a side of the hole. O

One small technicality remains: the outer face may not be a simple path, that
is, may contain an edge twice. In this case, each extra side also adds an extra edge
to the outside hole that we threw out, so there is no net gain in requisite triangles.

Finally, we show the 6n — 11 bound is tight by triangulating perturbations of
Figs 1 and 2. We perturb the constructions in Figs 1 and 2 such that the interior
vertices are replaced with triangular holes. Perturbing the figure one creates
2n — 5 triangular holes. The polygons require 6n — 6 sides (the three outermost
faces now require hexagons), therefore the polygons will require 4n — 6 triangles.
Thus we need 6n — 11 triangles to cover the perturbed construction.

Theorem 4. A triangle that contains n convex and pairwise disjoint objects can be

decomposed into at most 6n — 11 triangles so that the interior of each triangle
intersects at most one object. This bound is tight.
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