Algorithmica (1990) 5: 561-571 - -
Algorithmica

@© 1990 Springer-Verlag New York Inc.

Searching for Empty Convex Polygons'
David P. Dobkin,? Herbert Edelsbrunner,’ and Mark H. Overmars*

Abstract. A key problem in computational geometry is the identification of subsets of a point set
having particular properties. We study this problem for the properties of convexity and emptiness.
‘We show that finding empty triangles is related to the problem of determining pairs of vertices that
see each other in a star-shaped polygon. A linear-time algorithm for this problem which is of
independent interest yields an optimal algorithm for finding all empty triangles. This result is then
extended to an algorithm for finding empty convex r-gons (r>3) and for determining a largest empty
convex subset. Finally, extensions to higher dimensions are mentioned.

Key Words. Computational geometry, Empty convex subsets, Analysis of algorithms, Combinatorial
geometry.

1. Introduction. A fundamental problem in geometric complexity concerns the
counting and reporting of objects from a collection that have certain desirable
properties. We consider here instances of this problem involving subsets of a
finite set of points in Euclidean space that form the vertex sets of convex polytopes
which are empty, that is, the polytopes contain no other points of the set in their
interiors. We refer to such subsets as empty convex subsets. If the point set S is
given in the Euclidean plane, then we call an empty convex subset of size r an
empty convex r-gon. We are specifically interested in the following problem:

Let S be a set of n points in general position in the plane, that is, no three
points are collinear. For a given positive integer r, 3=r=n, find all empty
convex r-gons of S.

A solution of this problem is called an enumeration of the set I',(S). The
cardinality of this set is represented by 7,(S). The reader should note that the
naive algorithm consists of enumerating all subsets of r points, determining
whether they all lie on their convex hull and finally determining whether any
other point is interior to this convex hull. This algorithm runs in time O(n""" log r)

! The first author is pleased to acknowledge support by the National Science Foundation under Grant
CCR-8700917. The research of the second author was supported by Amoco Foundation Faculty
Development Grant CS 1-6-44862 and by the National Science Foundation under Grant CCR-8714565.
2 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.

3 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA.

* Department of Computer Science, University of Utrecht, P.O. Box 80012 NL-3508 TA Utrecht, The
Netherlands.

Received March 20, 1988; revised March 23, 1989. Communicated by C. K. Wong.

562 D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars

. n :
and can have output size as large as () or as small as 0 as n and r vary. This
r

range of possible values is an interesting problem and is briefly addressed below.

We present a solution with running time proportional to ¥,(S) when r=3,4
and vy;(S)+ry,(S) when r = 5. As an intermediate result we get an algorithm that
determines a largest empty convex subset in time proportional to y,(S), which
compares favorably with the O(n*)-time algorithms given in [1] and [4]. Indeed,
Baranyi and Fiiredi [2] show that the expected value of y5(S) is quadratic in the
size of § if the points are chosen uniformly in the unit-square. The amount of
space of the algorithms in [1] and [4] is O(n®) and O(n), respectively. The space
needed by our algorithm is somewhere in between, that is, proportional to the
maximum number of empty triangles with common leftmost vertex.

Our algorithms are based on a result for computing the visibility of vertices
of a star-shaped polygon. Hershberger [8] has previously given a linear-time
algorithm for this problem—his algorithm is more general in that it also works
for simple polygons that are not star-shaped. We present a different approach
that leads to a considerably simpler (although highly recursive) algorithm which
is readily applicable to our more general problem. In all of our algorithms, we
assume that the points lie in general position. If this is not the case, it is possible
to find modifications of our algorithms with the same running times.

In the next section we give an overview of the algorithm to come. The following
three sections then fill in the details with Section 3 describing the visibility
algorithm, Section 4 showing how to find the longest convex chain, and Section
5 dealing with reporting empty convex r-gons. Section 6 summarizes the results
and comments upon the range of values possible for y,(S) as S ranges over all
point sets of size n. The final section describes extensions to higher dimensions.

The problem of finding empty convex r-gons has a long history. Erdés [6]
asked whether there was a value f(r) such that all sets of at least f(r) points in
general position in the plane determine an empty convex r-gon. It was shown
that f(3) =3, f(4) =5, and f(5) = 10 by Harborth [7]. Horton [9] has shown that
f(r) is infinite for r>6. The value of f(6) remains open, although Overmars
et al. [11] detected a set of 26 points without empty convex hexagon using
an incremental version of the algorithm described in this paper. This implies
f(6)=27.

2. The Basic Algorithm. Let S be the set of n points in the plane for which we
want to find all subsets of r points that form a convex r-gon that is empty, i.e.,
does not contain any other point in the set. We assume that the points in § lie
in general position and that no two points lie on a common vertical line.

To find all empty convex r-gons we locate for each point p all empty convex
r-gons that have p as leftmost vertex. In this way, each empty convex r-gon is
reported exactly once.

Globally, the algorithm works as follows:

1. For each p € S, sort all other points by angle around p, resulting in an ordered

Searching for Empty Convex Polygons 563

set S,. From S, remove all the points to the left of p and add p instead. This
results in a star-shaped polygon P,. The kernel of P, is the set of all points
from which every edge of P, is visible; obviously, p belongs to the kernel
of P,.

2. For each p € S, compute the visibility graph VG, inside P,, including the edges
of P,, not including the visibility edges involving p.

3. For each p € S, compute all convex chains in VG, of r—2 edges. Each of these
forms, together with p, an empty convex r-gon.

The correctness of the method follows from the following observations:

1. Any convex empty r-gon has a unique leftmost point p. This follows from the
fact that no two points lie on a vertical line.

2. Whether r points form an empty convex r-gon with p as leftmost vertex is
independent of the points to the left of p. Hence, these points can be discarded
(as happens in step 1).

3. Any convex empty r-gon with p as leftmost vertex must lie inside P, and has
edges of VG, as edges.

4. Point p can see any vertex of P, (it lies in the kernel). Hence, if p;, ..., p,—
form a chain in VG,, the r-gon p, p, ..., p,_, is empty.

5. Point p lies to the left of the other points and the other points are sorted by
angle about p. Hence, if p,, ..., p,_, is a convex chain, the r-gon p, p1, ..., Pr—1
is convex.

We now describe the three steps of the algorithm in more detail. Step 1 asks
for each point p of S to sort the other points around it. Using standard sorting
methods this can be done in time O(n?log n). Using the results of [3] and [5]
it is possible to do the sorting around all the points simultaneously in time O(n?).
Removing the points to the left of p and forming the polygons P, can easily be
done in time O(n?).

Step 2 of the algorithm asks for computing the visibility graph inside a polygon
P. There is an algorithm for this problem which runs in time linear in the output
size [8]. In our case the polygon P has a particular shape. First, it is star-shaped
and, secondly, one of its vertices lies inside the kernel. For this input there is a
simpler algorithm with the same asymptotic running time. This algorithm is
presented in the next section.

Step 3 is split into two steps. In the first step, described in Section 4, we
determine the longest convex chain in the visibility graph. In fact, we determine
for each edge of the visibility graph the longest convex chain that starts there
(and goes counterclockwise). In the second step we use this information to
determine all the chains of length r—2. Both parts run in time proportional to
the size of the visibility graph.

3. The Visibility Graph of a Star-Shaped Polygon. We are now given a star-
shaped polygon P of N vertices with one vertex p that lies in the kernel. We are
interested in obtaining the visibility graph inside P, denoted as VG. For a pair
of vertices of P we say that they are visible within P if the line segment joining

564 D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars

them lies entirely in P (including its boundary). Note that, because of our
assumption that the points lie in general position, the line segment will either
intersect the boundary of P in its two endpoints or is an edge of P. The wvisibility
graph inside P consists of all pairs of vertices of P that are visible within P.

The vertices of P are ordered counterclockwise around p, numbered
Pi, - .-, Pn—1.- Because of the requirements we have later we compute the visibility
graph as a directed graph in which edges run from lower-indexed to higher-
indexed vertices. (Moreover, we do not include the visibility edges involving p.)
The edge (in the visibility graph) between p; and p; (i <j) is denoted by ij.

We construct the visibility graph VG during one counterclockwise scan around
the polygon. When we visit p, we construct all incoming edges of p;,. With each
vertex p,, £{=<i, we maintain a queue Q, that stores the starting points of some
of the incoming edges of p, in counterclockwise order. It contains those points
p; such that j¢ is an edge of the visibility graph and we have not yet reached
another point p, with k> ¢ such that jk is an edge of the visibility graph. Hence,
Q, is a kind of waiting list. It contains those points that can be seen by p, but
could not be seen since, because p, blocks their view. The required operations
that can be performed in constant time are the following:

1. ADDC(if): it creates an edge from i to j. This edge is stored at both p; and D
for later use.

2. TURN(Jj, jk): it returns left or right depending on whether p; lies to the left

or to the right of the directed line passing through p; and p; in this order.

(Note that it cannot lie on the line.)

FRONT(Q): it returns the index of the first point in queue Q.

DEQUEUE(Q): it removes the first point from queue Q.

ENQUEUE(L, Q): it adds the point p, to queue Q.

bl ol

The algorithm now looks as follows:

procedure VISIBILITY;
fori=1to N—1do Q,=C end;
for i==1to N —2 do PROCEED(i, i+1) end.

procedure PROCEED(, j); 3
while Q; # & and TURN(FRONT(Q,)i, ij) = left do
PROCEED(FRONT(Q,), j);
DEQUEUE(Q));
end;
ADD(3);
ENQUEUE(, Q).

PROCEED adds an edge from point p; to p;. It also checks whether any of
the points in the waiting queue of p; are visible from p; and, if so, recursively
calls PROCEED. Because the points in the queue are sorted counterclockwise
only a first portion of the queue needs to be checked.

Searching for Empty Convex Polygons 565

Note that the new edge is added after all the recursive calls. This guarantees
that the points in the queues are indeed sorted counterclockwise. Also, for each
node we collect the incoming and outgoing edges sorted counterclockwise.

The correctness of the method follows from the following lemma:

LEmMA 1. Letj>i. ije VG ifand only if j=i+1 or there is a vertex py, i <k <j,
such that ik € VG, kj € VG, and TURN (ik, kj) = left.

Proor. First note that because p lies inside the kernel, ij € VG if and only if
triangle pp;p; is empty. Now the proof goes as follows:

only if: If j# i+1 take the point p, between p; and p; that lies nearest to the
line ij. As the triangle pp;p; is empty, TURN(K, kj) =left. Moreover, obviously
ike VG and kje VG.

if: If j=i+1 i clearly is in VG. If j> i+1 both the triangles pp,p; and pp,p;
are empty. Moreover, p, lies beyond ij since p;, pi, p; form a left turn. Hence,
the triangle pp;p; must be empty and therefore ije VG. O

LeEmMaA 2. Finding the visibility graph takes time O(|VG|).

Proor. This followsimmediately from the fact that with every call of PROCEED
an edge is added to the visibility graph. O

4. Finding the Longest Convex Chain. Given the visibility graph as a directed
graph in which edges run from lower-indexed vertices to higher-indexed vertices
(as produced by the algorithm described above), we now determine a longest
convex chain. This is equivalent to finding a largest empty convex subset with a
fixed leftmost vertex. In fact, we determine for each edge e of the visibility graph
the length, L., of the longest convex chain starting with e going counterclockwise.

To this end we treat the vertices clockwise, starting at the highest-indexed
vertex. We take care that after treating some vertex p; all incoming edges of p;
have their L field set to the right value.

The method works as follows: Assume we are at some vertex p. Let the incoming
edges of p be iy,..., iimax and the outgoing edges 0,,..., 0, both ordered
counterclockwise by angle. Note that the algorithm for computing the visibility
graph inside P gives us the edges in this order. For all outgoing edges we know
the length of the longest convex chain that starts there.

We treat the incoming edges in the reversed order, starting at i;,,,. For this
first incoming edge we look at all outgoing edges that form a convex angle with
it. Let these edges be o, . . . , Oppmax - If they do not exist, we set L; _to 1. Otherwise,
let m be the maximal value of the L fields of them. Then L, =m+1. Clearly,
all outgoing edges that form a convex angle with i; form a convex angle with
i;_;. But we do not have to check these outgoing edges again. We already know
that m is the maximal length among them. Hence, for the next incoming edge
we know that the length of the chain is either m +1 or there is an outgoing edge
with index smaller than [with larger L field. Hence, starting at /—1 we look at

566 D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars

preceding edges that form a convex angle with the incoming edge. Thus ! will
become the new minimal index and m the new maximal L field (if any). In this
way we continue.

The following procedures state the algorithm precisely:

procedure MAXCHAIN;
for i'= N —1 downto 1 do TREAT(p;) end.

procedure TREAT(p);
Let i;,..., {imax be the incoming edges of p, and let
01, .., Osmax e the outgoing edges of p, both ordered counterclockwise.
I'= omax; m:=0;
for j:= imax downto 1 do
L,-J =m+1;
while />0 and TURN(j;, 0;) = left do
if L,,> m then

m=1L,;
Li=m+1
end;
I=1-1
end
end.

The correctness of the method easily follows from the above discussion. (Note
that in the algorithm the function of [is slightly different than described. Rather
that being the minimal index that does form a convex angle it is the first one
that does not form a convex angle and, hence, the first one that has to be checked
with the next incoming edge.)

LemMA 3. Finding the maximal chain and filling in the L fields takes time O(| VG|).

Proor. For each vertex p we look at every incoming edge and every outgoing
edge once. So in total we look at each edge twice. As the size of the visibility
graph is larger or equal to the number of vertices of the polygon, the bound follows.

5. Reporting the Empty Convex r-Gons. We now have, for each edge in the
visibility graph, the length of the longest convex chain starting there. We now
use this information to determine all the chains of some given length r—2
(resulting in empty convex polygons of r vertices). We do so during one scan of
the vertices in counterclockwise order.

For each edge e we maintain a set C, of all chains of length less than r—2
ending on e for which we know (using the L field) that they can be extended to
a chain of length r—2. A chain is stored as a sequence of points. Moreover, with
the chain its length is also stored. We use the following operations on chains.
The first three require constant time and the fourth takes time linear in its output
size.

Searching for Empty Convex Polygons 567

1. LENGTH(ch): returns the length of chain ch.

2. EXTEND(ch, e): returns chain ch extended with edge e.

3. CREATE(e): creates a chain of length 1 starting with edge e.
4. REPORT(ch): reports chain ch as an answer.

To be able to form and extend chains in an efficient way, for each point p; we
sort the outgoing edges by decreasing the L field. As we know that each L value
lies between 1 and N —2 we can do this during one global radix sort in time
O(|VGY). For a point p let S, =0}, .. ., 0%max be this sorted list of outgoing edges.
As before S, =0, ..., Oumax is the list of outgoing edges sorted counterclockwise.
We assume that we have pointers from the elements in S, to the elements in S,
such that given a point in S, we can remove it in time O(1) from S, . The algorithm
looks as follows:

procedure CHAINS;
for i==1to N -2 do TREAT(p;) end.

procedure TREAT(p);
Let S;=1i,,..., iimax b€ the incoming edges of p.
Let S,=0,,..., O,max be the outgoing edges of p.
Let S, =0),..., 0bma be the outgoing edges of p sorted by L.
for j:=1 to omax do
if L, =r—2then C, = {CREATE(0;)} else C, = end
end;
m =1 { i is the index so that S, contains edges 0,,, . . . , Opmax (these
edges are also denoted as 0,...,0m) }
m' = omax { m' keeps track of the size of §,,, in fact,
m'=omax—m+11};
for j:=1 to imax do
_ while m = omax and TURN(;, o0,,) = right do
Delete o,, from S);
m=m-1;, m=m+1
end;
for each che C; do
t=1; I'=LENGTH(ch)
while r=m’'and L, =r-2-1do
ch’''=EXTEND(ch, 0});
if /=r—3 then REPORT(ch’) else C,,;= C,,u{ch’} end;
t=1t+1
end
end
end.

The routine TREAT creates the sets of chains for all outgoing edges of the
point p. All incoming edges will have their sets of chains ready. As a first step
for each outgoing edge with an L-field greater or equal to r—2 we create a chain
consisting only of the edge. We know for sure that this chain can be extended

568 D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars

to a chain of length r—2. Next we extend chains on incoming edges by moving
them to the appropriate outgoing edges. This is done by first removing all the
outgoing edges that do not form a convex angle with the current incoming edge.
(Because of the order in which we treat the incoming edges they also do not
form a convex angle with the other incoming edges.) Now we know that all
outgoing edges form a convex angle with the current incoming edge. For each
chain ch on this incoming edge we extend it with all outgoing edges it can be
extended with (note that there is at least one such outgoing edge). To this end
we treat the outgoing edges by decreasing length. As long as the L-field of the
outgoing edge is at least r—2—LENGTH(ch) we can extend the chain ch with
it. If it gets length r—2 we report it, otherwise it is stored on the outgoing edge.
An extended chain is represented by its last edge and a pointer to the old chain.
We can thus extend a chain in constant time without destroying the old chain.
In effect, this is an implicit representation of all chains in trees.

LEmMMA 4. Reporting the chains of length r takes time and space O(|VG|+ rk)
where k is the number of reported chains.

Proor. For each point p the following operations are performed: (i) Initializing
the sets of chains for each outgoing edge. This obviously takes time O(|VG|) in
total. (ii) For each incoming edge we remove some outgoing edges. As each
outgoing edge is removed at most once, this takes time O(|VG]) in total. (iii) For
each chain on an incoming edge we try to find edges with which it can be extended.
We know that there must be at least one such edge. Per chain we spend an
amount of time proportional to the number of extending edges found. Hence, in
total, this will add up to O(rk) time. ' O

6. The Result in the Plame. Before stating the implications of the previous
sections, we state a few results on the behavior of the v,(S). The following results
on the minimum of v,(S), denoted by g,(n), over all sets S of n points in the
plane (assuming that no three points are collinear) are essentially due Horton
[9] and to Baranyi and Fiiredi [2]. There is a positive constant ¢ such that

n’/2+cen=gi(n)=2n’>, n*/4+en=gy(n)=3n’
n/6+c=gi{n)=2n’, and g (n)=n?/2.
Furthermore, Bardnyi and Fiiredi [2] prove that the expected number of empty
triangles is O(n?) if the points are uniformly distributed in the unit square. To

present our time bounds we also need the following result which is a lower bound
on y,4(S) in terms of y5(S):

ws)=n(s)-("3")

Searching for Empty Convex Polygons 569

This inequality can be seen if we consider the visibility graph of a star-shaped
polygon P as constructed in Section 3. Let p be the leftmost vertex of P. For
every visibility edge of P which is not at the same time a boundary edge we have
at least one empty convex quadrilateral with this visibility edge as a diagonal.
The visibility edge is also an edge of the empty triangle whose third vertex is p.
Thus, for every empty triangle (except for those defined by p and a boundary
edge of P) we have at least one empty convex quadrilateral and no quadrilateral
is counted twice. The result follows since the star-shaped polygons have a total

of (n ; 1) boundary edges.

Combining the results from the previous sections and applying these com-
binatorial results yields:

THEOREM 5. Given a set S of n points in the plane, in general position, all subsets
of r points that form an empty convex r-gon can be determined in time and space
O(y:(S)+ ry,(8S)). For r=3, 4, this simplifies to O(y,(S)).

Proor. This follows from the preceding sections, noting the following: The
sorting takes time O(n®) and as y5(S) =Q(n*) we do not have to include it in
the bound. Any edge in one of the visibility graphs computed corresponds to a
unique empty triangle. Hence, the total sum of the number of edges of the visibility
graphs is equal to y5(S). The second statement follows since y4(S) is at least
proportional to ¥;(S). ' O

Using the algorithms of Sections 3 and 4 we have also established the following
result:

THEOREM 6. Given a set S of n points in the plane, it is possible to determine a
largest (in terms of number of sides) empty convex polygon in time and space
O(73(8)).

Since the expected size of y3(S) is O(n”) we have an algorithm that runs in
expected quadratic time, assuming uniform distribution in the unit-square.

7. Extensions to Higher Dimensions. The construction of empty simplices in d
dimensions (that is, empty convex subsets of size d + 1) can be reduced to maximal
(or minimal) vector computation. Here a vector a=(a;, a,,...,a,)e V is a
minimum if there is no other vector b=(B,, B2,...,Bs)€ V with B, =a; for
1 =<i=d. The reduction can be done as follows. Take any d points p,, ps, - - -, Pa,
construct their convex hull s;_; which is a (d —1)-dimensional simplex, and
consider all points p on one side of the hyperplane spanned by s;_;. We can
represent each such point p by the vector whose components are the d angles
defined by s,_, and the d facets of the simplicial pyramid with base s,_, and
apex p. (In three dimensions these angles are the three dihedral angles at the
edges of the base triangle.) Clearly, {p, p, p2,.-., pa} is empty if and only if
there is no point ¢ whose d angles are componentwise smaller than p’s angles.

570 D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars

Thus, the points that together with p,, p,, ..., ps form empty convex simplices
correspond to the minimal angle vectors. Finding all minima of a set of n vectors
in d dimensions can be done in O(nlogn+n log?™2 n) time (see [10]). Since
we do the minimal vector computation for every d points in the set we get an
O(n°*'log?™? n)-time algorithm which improves the trivial O(n“*?)-time method
for finding all empty simplices.

The minima finding step can be used to construct convex subsets of sizes larger
than d+1 incrementally. This can be done as follows. Consider the convex
hull of an empty convex subset of size r—1=d +1. This is a convex polytope
with »—1 vertices and no points of the set inside. If we assume that no d+1
points lie on a common hyperplane, then all facets of the polytope are
(d —1)-dimensional simplices. Using minimal vector computation we can now
try to erect a simplicial pyramid at any such facet—in order to maintain convexity
we can allow only points on top of such a facet whose angles are sufficiently
small as determined by the neighboring facets. Note that the newly added point
is connected to d other points.

This approach has the disadvantage that not all convex subsets can be construc-
ted this way. In three dimensions, the smallest counterexample is the octahedron
which has six vertices and is simplicial (as required by assumption) but has no
vertex of degree 3. In four dimensions the cyclic polytope with six vertices (one
more vertex than the simplex) is a counterexample since every vertex has degree
equal to 5.

Still, the idea of extending the convex set by finding minimal vectors should
not be abandoned yet. In three dimensions, every convex polytope has at least
one vertex whose degree is at most 5. This implies that every convex subset can
be constructed by raising pyramids on top of triangles, adjacent pairs of triangles,
and chains of three triangles (see Figure 1). More specifically, for a given convex
subset of size r—1 we construct the convex hull and do the following:

1. For every triangle we solve a three-dimensional minimal vector problem.

2. For every pair of adjacent triangles we solve a minimal vector problem which
is four-dimensional since every point above two triangles is represented by
the vector of the four dihedral angles it defines at the edges where the two
triangles do not touch.

3. For every triplet of triangles such that the second is adjacent to the first and
the third triangle but the first and the third are not adjacent, we solve a
five-dimensional minimal vector problem.

Fig. 1. A three-, four-, and five-sided pyramid raised on top of one, two, and three triangles.

Searching for Empty Convex Polygons 571

The number of triangular facets, pairs of adjacent triangles, and triangle chains
of length three is linear in r—1. For constant r, this process yields all empty
convex subsets of size r (each one at most r! times) with O(n log® n) time per set.

The difficulty in extending this approach even to four dimensions is that cyclic
polytopes with r—1 vertices have minimum vertex degree r—2. Thus, the
dimensionality of the minimal vector problems are not bounded by any constant
independent of r. We conclude this section with an open problem. Is there a
polynomial-time algorithm for finding a largest empty convex set of n points in
three dimensions?

References

[1] Avis, D., and Rappaport, D., Computing the largest empty convex subset of a set of points,
Proc. 1st Ann. ACM Sympos. Comput. Geom., 1985, pp. 161-167.
[2] Baéranyi, 1., and Fiiredi, Z., Empty simplices in Euclidean space, Canad. Math. Buil., 30 (1987),
. 436-445.
[3] Chazelle, B., Guibas, L., and Lee, D., The power of geometric duality, BIT, 25 (1985), 76-90.
[4] Edelsbrunner, H., and Guibas, L., Topologically sweeping an arrangement, J. Comput. System
Sci., 38 (1989), 165-194.
[5] Edelsbrunner, H., O'Rourke, J., and Seidel, R., Constructing arrangements of lines and
hyperplanes with applications, SIAM J. Comput., 15 (1986), 341-363.
[6] Erdds, P., Combinatorial problems in geometry and number theory, Proc. Sympos. Pure Math.,
34 (1979), 149-162.
[7] Harborth, H., Konvex Fiinfecke in ebenen Punktmengen, Elem. Math., 33 (1978), 116-118.
[8] Hershberger, J., Finding the visibility graph of a simple polygon in time proportional to its
size, Proc. 3rd Ann. ACM Sympos. Comput. Geom., 1987, pp. 11-20.
[9] Horton, J. D., Sets with no empty convex 7-gons, Canad. Math. Bull., 26 (1983), 482-484.
[10] Kung, H. T., Luccio, F., and Preparata, F. P., On finding the maxima of a set of vectors,
J. Assoc. Comput. Mach., 22 (1975), 469-476.
[11] Overmars, M. H., Scholten, B., and Vincent, 1., Sets without empty convex 6-gons, Bull EATCS,
37 (1989), 160-168.

R4

FIRE E
L e L L - i e B e e el TS S R
[T e W.”:l:u;‘@ll - i
AR e g S e RE R Tt o G R TR m 70 AeralA BRI TR -1
AT T S e ™ AR U M L 2 ey 1.#_3
ST L S 1ML g PLER S
AT g ey S s el Eosie VU 8 Giekod Py Ea0l sebene=an o e
SRV N [CE G ST I pnmmllcﬁ.l'?m BN las Do
P LA s - I N
10y i mmepTrroanry By s <6 Sl M IL peeE G e
L o e o rg?..*in-ﬁ .
R T e T ™
_ l;"‘"““. vl _ o
L L I b W|_Lﬂ5ﬁﬁmmi= 1 mHE TR 1 \.u'ﬁiﬂtm
{_ 7] ;i:nzﬁ' e osiignan’ e gma e e Bapas v M.,m.p'w"‘l e =g
E o e i #
=1 I O i L o O T T e Il
Mo Ula e a L Fpe W aboden Towm ;-hﬁ gy

B e g T e
WL B i

(RN R ke SOt v WY o 0 Bt Rl S - e A e B

| GEhwLne. v . mﬁ AR R l.e";‘iﬂ\'l M‘F #.ahitin -til.{lw. = e
Tiee=ratrmibin s tfqugtﬂ(p&iﬁrlh-ﬁp‘ﬁu :_nm;mdoﬂﬂ};ufy)ui; :unum_
lﬂ |||u'ia"' - 'J.ll 1 =] M.luj!i:i |m_1 [} [@_ﬂlﬂ Ia‘ﬂlug_y lfm R 0 ¥ B 1)
R L L e e T L R R | ST 0y
OGRIOT * IPRBIE DY TG W LGN DS oINS R i b 0D 0V e W) wal
B S £ R I T P T TR S L) P T S
' Wﬁ“‘%&gmm AV a2 g ROt s ¥l waSio emite

_'l".'u‘ﬂr'li -th;"m _.wfﬁ_k)l‘ﬁnr Wl

- S o
T - t w“

