J. Symbolic Computation (1990), 10, 335-347

Tetrahedrizing Point Sets in Three Dimensionst

H. EDELSBRUNNER,' F. P. PREPARATA? AND D. B. WEST?

! Department of Computer Science, > Co-ordinated Science Laboratory and Departments of
Electrical & Computer Engineering and of Computer Science and * Co-ordinated Science
Laboratory and Department of Mathematics, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

(Received 10 February 1988)

This paper offers combinatorial results on extremum problems concerning the number of
tetrahedra in a tetrahedrization of n points in general position in three dimensions, i.e. such
that no four points are co-planar. It also presents an algorithm that in O(n log n) time constructs
a tetrahedrization of a set of n points consisting of at most 3n — 11 tetrahedra.

1. Introduction

Tetrahedrizing a point set in three-dimensional Euclidean space is not only a natural
generalization of the well-studied problem of triangulating a point set in two dimensions,
but it is also central to a number of applications in numerical computing (Strang & Fix,
1973) and in solid modelling (Cavendish et al, 1985). Indeed, both the solution of partial
differential equations by the finite element method and the structural analysis of complex
physical solids require the decomposition of a given spatial domain into elementary cells,
which, in their simplest form, are tetrahedra. The problem is formulated as follows:

given a set P of n points in three dimensions, a tetrahedrization of P is a decomposition
of the convex hull of P into (solid) tetrahedra, such that

(i) P contains the four vertices and no other points of each tetrahedron, and

(ii) the intersection of two tetrahedra is either empty or a face of each.

Here we use “face” in its general simplicial meaning; a face of a tetrahedron is the convex
hull of some of its vertices, that is, it is the set of convex combinations of these vertices.
A facet is the convex hull of three vertices of a tetrahedron.

Traditionally, in solid modelling applications desirable triangulations and tetrahedri-
zations are those which avoid thin and elongated cells. The Delaunay triangulation
(Preparata & Shamos, 1985) and its three-dimensional counterpart are very attractive
because they exhibit the above property. However, whereas in two dimensions any
triangulation of any set of n points (Delaunay or otherwise) has ®(n) cells, it has been
noted (Preparata & Shamos, 1985; Klee, 1980; Seidel, 1982) that a Delaunay tetrahedri-
zation may consist of @(n?) cells. This fact, perhaps, has held back the investigation of
this problem in the context of computational geometry.
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In this paper we undertake this study. To defer the study of degeneracies to a later
stage, we assume that the points of P are in reasonably defined general position, that is,
no four points are co-planar, or, with reference to Delaunay tetrahedrizations, no five
points are co-spherical. It is important to note that degenerate point sets do not behave
as well as non-degenerate point sets; Avis & EIGindy (1987) contains results to this effect.
This paper is organized as follows. In section 2 we present several combinatorial results
regarding tetrahedrizations. Let the size of a tetrahedrization denote the number of
tetrahedra used. We give precise bounds on the size of a tetrahedrization of n points and
present results on four naturally arising extremal problems. In section 3 we present a
best-possible result on balanced partitioning of a set of points internal to a tetrahedron.
Such partitioning, achievable in linear time, is central to a tetrahedrization algorithm —
called Stepwise Refinement—developed in section 4. It produces a tetrahedrization of
size at most 3n—11 in O(n log n) time, but may create thin and elongated cells. Finally,
in section 5 we discuss two additional tetrahedrization algorithms. One constructs the
Delaunay tetrahedrization and runs in time O(n?). The second—called Greedy Peeling—
constructs a tetrahedrization with at most 5n—19 cells and runs in time O(n*?log n).
Some interesting open questions—both algorithmic and combinatorial —are presented
in section 6.

2. Combinatorial Facts about Tetrahedrizations

We start with Euler’s formula for three-dimensional complexes, n — e+ f— ¢ =0, where
¢ is the number of cells, f is the number of facets (boundaries between cells), e is the
number of edges (boundaries between facets), and n is the number of vertices. This
formula is a corollary of more general theorems in homology theory (see for example,
Greenberg (1967)); an elementary proof can be found in Hopf (1953). In a tetrahedrization
of P, the set of vertices is precisely P. All cells are tetrahedra, except the unbounded cell,
and all facets are triangles. Letting ¢ be the size of the tetrahedrization, that is, the number
of internal tetrahedra, we have n—e+f—1t=1. We will henceforth, occasionally refer to
the internal tetrahedra of a tetrahedrization as its cells, for ease of expression. Furthermore,
we will refer to the vertices, edges and facets on the boundary of the convex hull of P
as the hull vertices, hull edges and hull facets, respectively. Other vertices, edges and facets
will be said to be interior. Throughout the paper, we let n’ be the number of hull vertices,
and we define n"=n—n’, the number of interior vertices.

The hull vertices and hull edges form a maximal planar graph. Thus, there are 3n'—6
hull edges and 2n'—4 hull facets. Every interior facet belongs to two cells and every cell
has four facets. Thus 4¢+(2n'—4) =2f, and we can eliminate f from the earlier formula
to obtain the fundamental combinatorial relationship of tetrahedrizations.

LEmMA 2.1. For any tetrahedrization of a set of n points in general position, with n' hull
points and n" interior points, we have

t=e—n—-n'+3=e-2n"—n"+3.

In particular, given fixed values for n’ and n”, such as for a fixed point set, we get one
- o n
additional cell for each additional edge used. There are at most ( 2) edges altogether,

and always at least the 3n'—6 hull edges. In addition, every interior vertex belongs to at
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least four edges, so there are at least 2n"” edges involving interior vertices. Hence we get
trivial bounds

n—3£rs(n;l)—n’+2.

Given a point set P, let 7(P) and T(P) be the minimum and maximum size of its
tetrahedrizations. This suggests four types of extremal questions. Let P, . be the collection
of point sets consisting of n points, of which n’ lie on the boundary of the convex hull.
Let

T(n, n')= max {T(P)}, 7(n, n) = min {r(P)},
€ Pun PePy

p(n,n')= max {r(P)}, and R(n, n’)= min {T(P)}.
Pe Pn,n' Pe 'pfl.n‘
In the remainder of this section we present bounds on these functions; these bounds are
best possible in some cases.

2.1. THE MAXMAX PROBLEM

The number of tetrahedra used in a tetrahedrization of a given set of n points is a
n
maximum if all ( 2) pairs of points are connected by edges. We will show that for every

number n' of hull vertices, 4 =< n' < n, there is a tetrahedrization with (2) edges. This will

g
prove that the trivial upper bound, IE( 5 ) —n'+2, can be achieved for every n'. We

should remark that Rothschild & Straus (1985) also contain a lower bound for this, which
is weaker but is valid in higher dimensions. Our construction uses the moment curve in
four dimensions and projections of a four-dimensional polytope onto three-dimensional
linear subspaces. Its validity relies on a combinatorial fact about the position of points
on the moment curve.

LEMMA 2.2. Consider the moment curve M,={(x, x*, x* x*)}. For any four points
Do, P1, P2, ps on My determined by x,<Xx,<x,<Xx;, the hyperplane h determined by
Do, D1, P2, ps meets M5 only at {p,, p\, p», ps}. Equivalently, the points on M, given by x in
(=00, x5) L (X1, X3) U (x5, +0) are on the opposite side of h from the points on M, given by
x in (x5, X))o (xz, X3).

Proor. If not, then the moment curve has five points py, p1, p2, P3, P+ determined by
Xo, X1, X2, X3, X4 that lie in a common hyperplane. Suppose the defining equation of the
hyperplane is a + bx + cy + dz + ew = 0. Treating these as linear equations for the unknown
parameters a, b, ¢, d, e, we have a non-zero solution if and only if the matrix of coefficients
with entries m; ;=x/_},1=i,j=5, has determinant zero. However, this is the Vander-
monde matrix, with determinant IT,.; (x; —x;) # 0.

The following discussion is simplified if we introduce an above/below relation along
the fourth coordinate axis. We say that a point (xo, yo, 2o, Wo) lies above a hyperplane
A+Bx+Cy+Dz+ Ew=0if

E>0 and A+ Bxy+Cyo+ Dzy+ Ewy>0
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(or, equivalently, if both are negative). Otherwise, the point lies below the hyperplane
unless it lies on it. Hyperplanes with E = 0 are called vertical and the above/below relation
is not defined.

Note that the parameters a, b, ¢, d, e of the hyperplane, h, in the proof of Lemma 2.2
are such that [],<;<4 (x —x;) = a+ bx + ¢y + dz + ew; therefore, e =1 and the above/below
relation is defined. Indeed, all points defined by x in (x,, x,) U (X, x;) lie below h and
all points in (—00, x,} U (x;, x;) U (x5, +20) lie above h.

We construct the maximum tetrahedrizations from a convex polytope, 2, defined as
the convex hull of n points on J(,. Let these be p, p,, . . ., p,., determined by x, < x, <
"t <X,—1. P is a so-called cyclic polytope (see for example, Bronsted (1983), chapter
2) which satisfies the following properties.

(i) The three-dimensional faces of ? are the tetrahedra determined by L=
{Pi, Piv1s Piers Pra}: 0= i<j=n-3}and U ={{p,, p;, Pi+1, Par}: 1 =i=n—3}. It follows
from Lemma 2.2 that 2 is supported from below by any hyperplane spanning a tetrahedron
in L and supported from above by any hyperplane spanning a tetrahedron in U.

(ii) Each pair {p;, p;},i#j, defines an edge or P, and every edge is an edge of a
tetrahedron in L.

(iii) po, P15 - - -, Py are the n vertices of P, and every vertex is a vertex of at least one
tetrahedron in L and in U.

If we project the lower boundary of % (the tetrahedra in L) vertically onto the xyz-space

n
we get a tetrahedrization with n'=n hull vertices and (2) edges. It follows that the
n—1 y . 1) v
number of tetrahedra is ( ) )— n+2 which, indeed, is the cardinality of L. In order

to get maximum tetrahedrizations for n'<n we move a point g on a vertical line from
w=+c0 downwards. The line is chosen so that it intersects ? and so that no two
hyperplanes spanning three-dimensional faces of 2 intersect it in the same point. At any
location of g (still above 2) we centrally project from g onto the xyz-space all tetrahedra
of & that g cannot see.f As g moves closer to 2 it sees fewer and fewer tetrahedra until,
right before it meets 2, it sees only one tetrahedron. Whenever a tetrahedron disappears
from g¢’s sight it takes with it a vertex of  —in other words, n’ decreases by 1. Thus,
for every value of n’, 4=n’=<n, we have a tetrahedrization with n vertices altogether, n’

hull vertices, and (;) edges. This implies the following result.

=1
THEOREM 2.3. T(n, n’)=( 5 )—n’+2, ford=n'=n.

2.2. THE MINMIN PROBLEM

The trivial lower bound n —3=n'-3+n"=<t is achieved when the tetrahedrization has
exactly 3n'—6+2n" edges. Since 3n'—6 edges are hull edges, we must then have 2n"
interior edges. This is possible when n” =0, but already when n" =1 we need more interior
edges and thus more tetrahedra. In fact, it seems that we need at least four edges for

 There is a minor technical difficulty which comes up when the hyperplane through g parallel to the
xyz-space intersects 2. In this case, the central projection does not yield a tetrahedrization in the sense defined
above. To remedy this deficiency, we choose a hyperplane that separates g and ® and centrally project the
invisible tetrahedra of % onto this hyperplane.
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each additional interior point. The resulting bound is achievable constructively, by an
iterative procedure that forms the basis for the algorithm in section 4. Rothschild & Straus
(1985) consider the value of 7(n, n') in higher dimensions, allowing the inclusion of
degenerate point sets.

THEOREM 2.4. 7(n, n')=n'—3+3n", with equality when n"=<3.

Proor. With n" =0, we achieve the trivial lower bound of n —3 when there are no interior
edges. To construct the example inductively, add the nth point by pasting a tetrahedron
onto a hull facet of the example on n — 1 points in a way that maintains convexity. Viewing
this construction in reverse, a vertex of hull degree three (an *“‘ear”) is always available
for removal. Note that this construction can be performed with each vertex incident to
at most six edges, by making the nth vertex adjacent to the three previous vertices.

When n">0, we can insert interior vertices successively into the tetrahedrization
described above. Similarly, the algorithm in section 4 starts with a tetrahedrization of the
hull points and then absorbs the interior points. For each new vertex, we add edges to
the four corners of the tetrahedron containing it, replacing that cell by four. Each additional
vertex adds four edges and three tetrahedra, so 7(n,n")=n'—3+3n".

To show equality when n" = 3, we must force interior edges in any such tetrahedrization.
In addition to the 3n'—6 hull edges, let the interior edges be counted by ey +e,+e,,
where e¢; counts the edges with i interior vertices as endpoints. Then t=n"-3-n"+
ey+ e, +e,. We show next that e, +e,=4n" if n"=3. It may hold that ¢,+ e, +e,=4n" in
general, which would make this bound optimal.

Let S be the set of interior vertices. Every interior vertex must be incident to at least
four edges and to at least four tetrahedra. Now let x be an interior vertex with exactly
four edges to y,, y», y; and y,. Since choice is limited, every 4-tuple {x, y;, ¥;, ¥}s 4 J,
ke{1,2,3, 4}, forms a tetrahedron; in particular, every triplet {y;, y;, yx} forms a facet of
the tetrahedrization. So if we remove x together with its incident edges and facets, then
we are left with a tetrahedrization with S decreased by one point and e, + e, decreased
by four. By induction, the bound is thus tight if there is an interior vertex with exactly
four incident edges. If there is no such vertex, then every vertex in § is incident to at

least five edge. Then
nﬂ'
e;te;=5n"— g
1 2 ( 2 )

where the binomial coefficient accounts for the edges that connect interior vertices and

2 : n" !
thus are counted twice in the first term. The claim follows because 5n"— ( 5 ) =4n" if
n"=3.

2.3. THE MAXMIN PROBLEM

Here, we investigate the minimum number of tetrahedra needed to tetrahedrize the
worst point set. For the case n = n’ where all points are hull points, Sleator et al. (1986)
uses hyperbolic geometry to show there exists a point set for which every tetrahedrization
has at least 2n — 10 cells when n > 12. This shows that the algorithm and resulting bound
in the next theorem are optimal when all points are hull points. It would be nice to extend
their proof to consider interior points, or to obtain a combinatorial proof of the lower
bound for the case when all points are hull points.
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THEOREM 2.5. p(n, n')=<3n—n'—10 for n'> 12, with 10 replaced by 9, 8,7, respectively,
Jorn’'e{7,8,9,10, 11, 12}, {5, 6}, {4}.

ProoFr. Again we use the insertion algorithm to obtain a linear-size tetrahedrization for
any point set. Begin by considering the hull points. Let A be the maximum vertex degree
in the graph of the boundary of the convex hull, and let v be a vertex attaining that. We
call A the hull degree of v. Add edges from v to the n'—1— A vertices not adjacent to it
on the boundary of the convex hull and add facets from v to the edges that connect these
vertices. This tetrahedrizes the interior with 2n’—4— A cells. Now consider each interior
point successively, and add edges to the four corners of the cell containing it, replacing
that cell by four cells. The resulting number of cells is 2n'—4—A+3n"=3n—n'—4—A.
The graph of the boundary of the convex hull is an arbitrary maximal planar graph,
which may have A as small as [6—12/n].

If A=n"—1, we have constructed a tetrahedrization of size n'—3+3n". This suggests
a more refined problem. Let

p(n,n',A)= max {r(P)},

PeP,

where
P . ={PeP,,:largest hull degree is equal to A}.

We have p(n, n’, A)=2n'—4—A+3n" and conjecture equality. This is the most important
of the combinatorial problems discussed in this section, since the truth of this conjecture
would demonstrate that the algorithm of section 4 is optimal in terms of the number of
tetrahedra it constructs.

2.4, THE MINMAX PROBLEM

In this section, we study the smallest number R such that every set of n points in
general position, with n’ hull points, has a tetrahedrization of size at least R. Tetrahedriz-
ations with many cells are among the least useful, from many practical viewpoints.
Consequently, we consider this extremal problem the least significant of the four con-
sidered. The best lower bound we have is the trivial one applicable to all tetrahedrizations;
that is, this extremal problem is also the one where we have the weakest results. More
precisely, there are point sets for which the largest known tetrahedrization is linear.
However, we have not been able to bring the upper bound below quadratic; we have
been able to forbid only a constant fraction of the edges. Indeed, we show an upper
bound on R(n, n’) which is approximately 14/15 times T(n, n').

THEOREM 2.6. R(n, n')=3n"+f(n'), where f(n')=4n’'-25 if 13=n’, f(n')=3n"-13 if
T=n'=12, f(n')=2n"-T7 if 5=n"<6, and f(n')=n'-3 ifn'=4. Forn'=n,

2
R(n, n'}s(:) —%+ O(n).
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ProoF. We give a construction of a tetrahedrization that shows the lower bound. Consider
first the case n”=0. Take the vertex, v, with the maximum degree, d, and remove it from
the point set. Recompute the convex hull and fill the space between v and the new hull
with d —2 tetrahedra. These tetrahedra are spanned by v and the triangles of the new
convex hull that v can see. Iterate on this process until only three points are left. To
obtain the lower bound stated in the theorem just note that d =6 as long as there are at
least 13 vertices, d =5 as long as there are at least seven vertices, d =4 if the number of
vertices is five or six, and d =3 if there are four vertices. To generalize this result to
arbitrary n” note that an interior vertex gives rise to two additional triangles on the convex
hull when it appears on the hull for the first time. Thus, it also gives rise to two additional
tetrahedra. When we remove this point as a vertex of the hull its degree is at least three
which gives rise to another tetrahedron.

Proving upper bounds on R(n, n') is equivalent to finding point sets for which every
tetrahedrization has many missing edges. The smallest point set for which not all edges
can appear in a tetrahedrization is the set of six points whose hull edges form the graph
of the octahedron. In addition to the 12 hull edges, there are three skew diagonals joining
opposite vertices. If all 15 edges are used, Lemma 2.1 yields six tetrahedra, and then
Euler’s formula says there are 16 facets. However, each diagonal belongs to at least three
facets, and since the diagonals share no endpoints these facets are all distinct. Together
with the eight hull facets, we get at least 17 facets and a contradiction.

It is interesting to note that all three diagonals of an octahedron can be used if additional
points are used as vertices. However, at least one such vertex must be inside the octahedron.
The proof of this claim is left as an exercise to the reader. We will use this condition to
our advantage.

Now suppose n = n’ and the points are clustered in six groups near the six vertices of
an octahedron. As the points in each group approach that vertex of the octahedron, the
only cells that retain positive volume are those using points from four clusters with at
least one cluster from each diagonally opposite pair of vertices. If an edge is used between
each pair of opposite clusters, then we obtain a tetrahedrization of the octahedron using
all three diagonals, which was forbidden above. Hence there are no edges joining some
pair of opposite clusters, which means there are at least |n/6]2 edges missing. We
distribute the points within each cluster recursively by the same argument and so that all
points are convex hull vertices. The forbidden edges are counted by a geometric series
summing to n°/30+ O(n).

3. A Geometric Partitioning Problem

In this section, we examine a partitioning problem for finite point sets inside a simplex
in d dimensions. The three-dimensional case will be applied later when we discuss a
time-optimal algorithm that tetrahedrizes a finite set of points in three dimensions. The
objective is to choose a point that will partition the other points in a balanced way. The
problem is to guarantee that there is a point that does a good job of balancing. More
precisely:

Let P be a set of n points in a d-dimensional simplex & with vertex set V=
{v;: 1=i=d+1}. We assume that no four points of Pu V are co-planar. For any pe P,
let #,(p) be the simplex with vertices {p} U (V —{1}); note that | %! #,(p)=%. We
define the imbalance of a point pe P to be B(p)=max,<;cy{|P N F(p)|—1}. The
problem is to determine the smallest imbalance that can be guaranteed; that is, the
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value of B,(n)=maxp min,.p{B(p)}, where P runs over all n-point sets in a d-
dimensional simplex &.

The main result of this section determines the exact value of 8,(n).
TueoRreEM 3.1, By(n)=|d- n/(d+1)].

ProoOF. Suppose n =k mod(d +1). To prove B4(n)= |d- n/(d+1)], let ¢ be an interior
point of & and place the points of P arbitrarily close to the line segments cv;,. For1=i<k,
place [n/(d+1)] points close to cv;: with i> k associate |n/(d+1)] points. For any
point p associated with any line segment cv;, the points associated with all other line
segments all lie in the simplex %;(p). We can avoid any additional imbalance by letting
p be the innermost point associated with cv, (see Figure 1(a)). Hence for this P we have
min, p{B(p)}=n—[n/(d+1)]=|d-n/(d+1)].

To prove the upper bound, consider an arbitrary n-point set P in &; we find p € P with
B(p)=n—[n/(d+1)].Let F,, F,,..., Fi, denote the d + 1 facets of &, with the vertices
of & being V —{v;}. From each facet %; choose a (d —2)-face of &; call it %;. Among
the hyperplanes through the interior of & that intersect %; in precisely %], let h; be the
one through a point p; of P that has exactly [n/(d +1)]—1 points of P on the opposite
side of it from ;. Call this set of points P; (see Figure 1(b)). Define P=P—|_J,<;=44, P.
By construction,

= n
Plzpn—-(d+1){|—|-1]>0.
Pl=n-@+0(| 2] 1)
Thus, P is non-empty. For any p e P, #,(p) contains no point of P, U {p;}. Consequently,
for every i, ¥:( p) contains at most

o 4 b 54
d+1| |Ld+1

Notice that the argument that proves the upper bound on B,(n) is constructive. In
fact, it suggests an algorithm that can be implemented to run in time O(n):
fori:=1tod+1do
Choose F from facet &, and construct hyperplane h; as defined above using a linear
time median algorithm (see Aho et al, 1974). Mark the points of P that lie on the
opposite side of k; from %,

points of P.

vy Vy

(a)
Figure 1
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endfor;
The unmarked points of P are exactly those of set P. Partition & using an arbitrary
point pe P.

We conclude the following result.

THEOREM 3.2. Let & be a simplex with vertex set V, and let P be a set of n points in the
interior of & such that no four points of Pu V are co-planar. Then there is a linear-time
algorithm that picks a point p of P such that each simplex spanned by p and a facet of &
contains at most B,(n) points of P.

Intuitively, Theorem 3.2 states that there is a time-optimal algorithm that constructs a
partition that is at least as good as the best partition for the worst point set.

4. Tetrahedrizing by Stepwise Refinement

This section gives an algorithm that constructs a tetrahedrization of a set P of n points
in E*in O(n log n) time. The size of the constructed tetrahedrization is

2n'—4—-A+3n",

where n” of the points are interior and A is the largest hull degree.

The algorithm has two phases. First, it constructs the convex hull of P and a tetrahedri-
zation of the hull points of P. Second, it iteratively inserts the interior points by subdividing
the tetrahedron that contains such a point into four tetrahedra. Below, we give a formal
description of this process. We assume that no four points of P are co-planar.

ALGORITHM 4.1. (Tetrahedrizing by stepwise refinement.)

Initial step. Construct the convex hull of P, pick a vertex v with largest degree A, and
initialize the tetrahedrization to the set of tetrahedra spanned by v and the hull facets
that do not contain ». For each tetrahedron J constructed, determine Pu int(J),
the set of points in P contained in the interior of 7, and push J onto a stack.

Iteration. Refine the tetrahedrization as follows:
while there is a tetrahedron & on the stack do

Remove J from the stack.
if m=|Pnint(J)|=1 then
Pick a point p in P nint(J) with imbalance at most B8;(m) and partition J into
four tetrahedra spanned by p and the facets of J. For each new tetrahedron
", determine P int(J') and push it onto the stack.
endif
endwhile.

To implement the initial step of Algorithm 4.1, we need an algorithm that constructs
the convex hull of P and an algorithm that determines the location of each interior point
in the initial tetrahedrization. For the first part, we use the algorithm of Preparata &
Hong (1977) which takes O(n log n) time to construct the convex hull of P.

Due to the special structure of the initial tetrahedrization, we can reduce the second
part of this step to a batched version of the planar point location search problem. Let v
be the maximum degree vertex of the convex hull ? of P chosen by Algorithm 4.1, and
let i be a plane through v that is tangent to P. Let h' be a plane parallel to h, with P
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between them. Project every facet of ? from point v onto plane h'. This yields a
triangulation in k' with the property that an interior point p of P belongs to a tetrahedron
spanned by v and facet ¥ if and only if the central projection of p onto h’ belongs to
the projection of facet & onto h’. There are several algorithms that solve the batched
point location problem in O(nlogn) time (see Preparata, 1979; Lee & Yang, 1979;
Edelsbrunner et al., 1986). Hence the initial step of Algorithm 4.1 can be implemented
in O(n log n) time.

The only non-trivial part of the iteration step of Algorithm 4.1 is the determina-
tion of a point within a given tetrahedron J with imbalance at most 85(m), where m =
|P A int(F)|. By Theorem 3.2, such a point can be found in O(m) time.

For a particular input, let T; be the total amount of time required by the iteration step.
Let n’ be the number of hull points of P, and notice that the tetrahedrization constructed
in the initial step of Algorithm 4.1 has t'=2n"—4—A cells. We have

"
T, =X T(n),
i=1
where n{ is the number of points in the ith cell of the initial tetrahedrization and T(n”)
is the amount of time required to tetrahedrize it. Using recursive partitioning by balanced
points,

T(n{) = O(n{)+ T(n)) + T(ni2)+ T(ni3)+ T(ni,),

with ni, +ni;+ni3+ni,=ni —1and max{n{,, n{, n{s, ni} < Bs(n}). Therefore, T(n!) =
O(ni log n{) and T; = O(n log n), which implies that Algorithm 4.1 runs in O(n log n)
time.

Next, we analyse the number of tetrahedra constructed by Algorithm 4.1. The tetrahe-
drization constructed by the initial step consists of 2n’ —4 — A tetrahedra, where A is the
largest hull degree. For each interior point, we get three additional tetrahedra. This implies
the main result of this section.

THeEOREM 4.1. Let P be a set of n points in three dimensions, no four co-planar, let n’ be
the number of hull points of P, and let n" be the number of interior points of P. Algorithm
4.1 constructs a tetrahedrization of P in O(n log n) time that consists of 2n'—4—A+3n"
tetrahedra,

There are several open questions raised by the investigations described in this section.
One is whether or not the constructed tetrahedrization is optimal in the worst case, that
is, whether or not there exists a point set that cannot be tetrahedrized using fewer
tetrahedra, for every pair of values n'+n"=n. Partial results on this problem can be
found in section 2.3.

There are a few questions related to the determination of a point inside a tetrahedron
that has reasonably low imbalance. The algorithm suggested in section 3 determines a
point that is worst-case optimal, but for a given point set there may be points with
considerably lower imbalance. How expensive is it to identify a point with minimum
imbalance? Also, it is not hard to see that our example of a point set inside a tetrahedron
which realizes the largest minimum imbalance (see section 3) cannot have another
worst-case configuration in any of the four subtetrahedra. This raises the question of how
imbalanced the best partition must be in the amortized sense. To formalize this question,
we define the depth 6(J) of each tetrahedron J created in the iterative partitioning
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process. If J is created during the initial step of Algorithm 4.1, put 8(J) =0. Otherwise,
J is obtained by partitioning an earlier tetrahedron 7", in which case set §(7) = 8(J") +1.
Theorem 3.1 implies that the depth of any tetrahedron is bounded from above by log,sn.
However, the largest necessary depth we have found in tetrahedrizing an n-point set is
log, n+ O(1): take four hull points and let the other points lie on a circular arc connecting
two hull points.

Finally, there is the problem of generalizing Algorithm 4.1 to four and higher dimensions.
Unfortunately, the initial step becomes by far the most expensive part of the algorithm.
The worst-case complexity of any algorithm that constructs a simplicial dissection of the
convex hull of a set of n points in d =2 dimensions cannot be less than O(n'¥/?), since
there are examples such that the convex hull itself consists of O(n!?/?)) facets (see
Bronsted, 1983). More about this problem can be found in Avis & ElGindy (1987).

5. Other Tetrahedrization Methods

As noted earlier, the Delaunay triangulation of a planar point set has the interesting
property of local equiangularity, that is, no diagonal of a convex quadrilateral comprising
two adjacent triangles can be flipped to achieve an increase of the minimum of the six
angles of the triangles. This is viewed as an indication of how well-proportioned it is
and, although it is not clear how this notion generalizes to three dimensions, it motivates
algorithms for the Delaunay tetrahedrization.

Reported in the literature (Cavendish er al., 1985) is an approach to Delaunay tetrahe-
drization, based on iterative insertion, which may run in Q(r?) time for a worst-case
point set of size n. We propose the following technique which is folklore but to the best
of our knowledge not described anywhere in the literature. We consider the three-
dimensional space E> containing P (with coordinates x, y and z) as the hyperplane
w =0 in the four-dimensional space E* with coordinates x, y, z and w. Next we project
the points of P in the w-direction to the rotation paraboloid of equation w = x*+ y*+ 2.
Let ¢(P) be the resulting set of points. As discussed in Edelsbrunner & Seidel (1986)
and Preparata & Shamos (1985) this mapping (the composition of an inversive and a
projective transformation) identifies the Delaunay tetrahedrization in E* with an appropri-
ate portion of the convex hull of ¢(P) in E* Therefore, the construction can be carried
out by resorting to a four-dimensional convex hull algorithm; the most efficient one is
due to Seidel (1981) and runs in time O(n?). We summarize:

THEOREM 5.1. The Delaunay tetrahedrization of a set of n points in E* can be constructed
in time O(n?).

We now discuss an alternative algorithm to that of section 4 to produce a linear-size
tetrahedrization. The shortcoming of this algorithm is its substantially higher running
time, but the shapes of the cells produced are likely to be better proportioned.

Let (P’, P") be a partition of P so that P’ is the set of hull points of P. By the assumption
of non-degeneracy, the edges on the boundary of the convex hull of P form a maximal
planar graph G(P) with |P'| vertices and 3|P'|-6 edges, and therefore contains a vertex
of hull degree at most five.

An iteration of the algorithm selects a minimum degree vertex v of G(P), and constructs
the convex hull of P—{v}, until the current point set consists of exactly four points. This
action has motivated the name of “Greedy Peeling”.
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By means of a list containing the vertices of degree at most five, selection of v is trivial.
The bulk of the work is the construction of the new convex hull. The required action is
a local “gift-wrapping”, which constructs one facet at a time. The construction of a facet
can be viewed as a plane pivoting around an existing edge until it first meets a point of
P —{v}. In the dual space, pivoting is interpreted as tracing an edge of the skeleton of
an arrangement of planes, which can be done in time O(n'/?log n) and O(n) memory
space by means of the algorithm reported in Edelsbrunner (1986).

To evaluate the size of the resulting tetrahedrization, we consider the set difference
%(p) between the convex hull of P and the convex hull of P—{p}. Let » denote the
number of vertices of the (non-convex) polytope %€(p) that belong to P”. Out of » vertices
of €(p) at most six are vertices of the convex hull of P (this includes the vertex p). It
is readily verified that €(p) can be tetrahedrized into at most 3+2v cells: of these, we
*““charge” three to vertex v, and two to each of the » points which have emerged as new
hull vertices. Since this extra charge occurs only once for points of P”, the total number
of tetrahedra generated by the algorithm is bounded above by 3n'+5n"—11=5n—19.
Therefore the greedy peeling algorithm produces a linear-size tetrahedrization of a set of
n points in E* in time O(n*?log n).

6. Discussion and Open Problems

For convenience, we assumed in our discussion of tetrahedrizations that no four points
are co-planar. In practical applications this will not always be the case. To render our
results useful for real life computations, we suggest that the input points be conceptually
perturbed. If the perturbation is defined for every £ > 0 and the perturbed set approaches
the input set when £ goes towards 0, then all computations can be based on the assumption
that ¢ is sufficiently small and no suitable value of & needs to be computed. More details
about such a method and its efficient implementation can be found in Edelsbrunner
(1986). The disadvantage of the perturbation method is that the algorithm constructs
tetrahedra whose vertices are co-planar or collinear. Depending on the application, we
may or may not want to remove such tetrahedra in a final phase. If we remove the
degenerate tetrahedra, we will be left with vertices that lie on edges or facets of the
tetrahedrization. Thus, the obtained cell complex will not necessarily be face-to-face.

Finally, we mention several interesting questions about tetrahedrizing point sets.

(i) What is the minimum and maximum difference or ratio between 7(P) and T(P)?
In particular, the point sets achieving 7(n, n’) and T(n, n') or p(n, n’) and R(n, n') are
different.

(ii) What are the minimum and maximum sizes of Delaunay tetrahedrizations for point
sets in P, ,-? Seidel (1982) gives the maximum for n'=4. In this case, the numbers are
the same as for general tetrahedrizations (see Theorem 2.3).

(iii) For a given point set P do there exist tetrahedrizations of all sizes between 7(P)
and T(P)? This would follow if one could show that every tetrahedrization of P can be
transformed into any other tetrahedrization by a sequence of local changes, where a local
change replaces an appropriate facet by the edge connecting the respective forth vertices
of the two tetrahedra, or vice versa.

(iv) Can the region between two non-overlapping convex polytopes always be
tetrahedrized with a linear number of tetrahedra?

(v) Is there an algorithm for the Delaunay tetrahedrization for point sets in P, that
runs in time O(n(log n)* + k), for some @ > 0, where k is the size of the tetrahedrization?
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The motivation for the last three questions is that of finding reasonably efficient
tetrahedrizations using tetrahedra that are well-shaped. Our fast algorithm for finding a
linear tetrahedrization tends to use elongated tetrahedra.

ReEMARK. After finishing the research on the presented subject, the authors learned that
the O(nlogn) time construction of a tetrahedrization in three dimensions has been
discovered independently by Avis & ElGindy (1987). Avis & ElGindy also offer an
elaborate discussion of degenerate point sets that possibly contain co-planar and collinear
points. Their method to cope with degenerate point sets is rather different from the one
suggested in section 6.

The authors wish to thank Emo Welzl for substantially simplifying part of the proof of Theorem 2.4.
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