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Let § be a set of n closed intervals on the x-axis. A ranking assigns to each interval, s, a distinct rank,
p(s)e{1,2,...,n}. We say that s can see t if p(s)<p(t) and there is a point pesn ¢ 5o that péu for all u
with p(s) < p(u) < p(1). It is shown that a ranking can be found in time O(nlogn) such that each interval
sees at most three other intervals. It is also shown that a ranking that minimizes the average number of
endpoints visible from an interval can be computed in time O(n*?). The results have applications to
intersection problems for intervals, as well as to channel routing problems which arise in layouts of
VLSI circuits.
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1. INTRODUCTION

Let S be a set of n closed intervals on the real line. We define a ranking, p, as a
bijective mapping from S to {1,2,...,n}. A ranking of S can be visualized by
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130 H. EDELSBRUNNER ET AL.

drawing each interval, s, as a horizontal line segment, §, with height p(s) and so
that s is its vertical projection onto the x-axis.

We define the notion of visibility in a ranked set of intervals. For s and ¢ in S,
we say that § sees [ (or 7 is visible from 5) if p(s)<p(t) and there exists a point
pesnt such that pé¢u for all u with p(s)<p(u) <p(r). More specifically, § sees the
left endpoint of f (the left endpoint of 7 is visible from $) if p(s) <p(t), s contains the
left endpoint of ¢, and no interval u with p(s) < p(u) < p(t) contains the left endpoint
of t. Analogously for the right endpoint of t.

Intuitively, “§ sees 7 means that there is a position on § such that if one stands
at this position and looks vertically upward then one sees 7. See Figure 1.1 for an
example.

R ———

Figure 1.1 Vertical visibility in a ranking: §, sees §, but cannot see ;.

In this paper we study some aspects of rankings and visibility. In Section 2 we
look at rankings where the maximum number of line segments any one line
segment sees is small. We show that for every finite set of intervals there exists a
ranking such that any line segment sees at most three other line segments. An
algorithm will be given that computes such a ranking in time O(nlogn) if the
number of intervals is n. In Section 3 we apply this result to obtain a new data
structure for the interval intersection problem: store a finite set of intervals so that
for a query interval the intervals it intersects can be reported efficiently. In Section
4 we give a method for minimizing the average number of visible endpoints from a
line segment. We show that this problem has applications to one sided channel
routing. We prove that the problem can be reduced to computing a maximum
matching in a bipartite graph which is known to be solvable in time O(n’2).
Finally, Section 5 gives some concluding remarks and directions for further
research,

Throughout this paper we will use the following notation. S is a set of n
intervals. The intervals are denoted by s, 7, u and v, with or without subscripts; the
corresponding horizontal line segments are denoted by §, 7, 7 and #. It will be
important to distinguish between the left endpoint of s, Z,, and the left endpoint of
S, £ For the right counterparts we write r; and r,. Note that if s#¢ then /;%/,
because p(s) # p(t) but =/, may hold. So, in a ranking, a line segment may see £;
but not /£, although £,=/,.
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2. MAXIMUM INDIVIDUAL VISIBILITY

The goal of this section is to describe a way to rank a set of intervals so that the
visibility is constant for each line segment. We do this in three stages. First, we
describe a certain way to rank intervals, then we prove that in a thus obtained
ranking any line segment sees at most three other line segments, and finally we
describe an algorithm that implements the construction in time O(nlog n).

2.1 A Lower Bound

If a line segment sees k endpoints then it can see at most k+ 1 other line segments.
We show that k<2 is always achievable. Let us first make sure that this is best
possible.

Lemma 2.1 There exists a set of six intervals so that in every ranking of this set
there is a line segment that sees at least two endpoints.

Proof See Figure 2.1 for the set of six intervals for which we prove the
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Figure 2.1 An example of six intervals so that every ranking has one line segment that sees at least
two endpoints.

assertion. Assume that p is a ranking in which no line segment sees more than one
endpoint. Then p(s;) <p(s,), since otherwise §, sees #; and some other endpoint
(either ry or the leftmost endpoint of the line segments blocking the view to r;).*
By a similar consideration we obtain p(s,) <p(s,). If p(s,)<p(s;), then 5, sees ry
and r4. So the only possibilities for s, to be ranked among s; and s, are

p(s3)<p(s;)<p(sy) and p(s;) <p(ss) <p(sy).

The ranking of s; is now determined; in the first case we have p(s,)<p(s;) <
p(s;) <pls,) and in the second case p(s;) < p(s;) <p(s,) <p(s,). This can be seen by
simply going through the two possibilities for the first case and the three
possibilities for the second case. In either case, §; sees r; or r,. By a symmetric
argument for {s,.s,,5s,5¢} it follows that §, sees £5 or g, so §, sees two endpoints
after all. O

Remarks

1) By checking all possibilities with a computer, one can show that six intevals
are necessary to prove the lemma, that is, for five or fewer intervals it is

*We write £; and r; short for 7 and rg.
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always possible to rank them so that no line segment sees more than one
endpoint.

2) Lemma 2.1 does not quite imply that there is a set of intervals so that every
ranking contains an interval that sees at least three other intervals. Still, this
is true but we leave the argument to the interested reader.

2.2 Constructing a Ranking

The ranking we design consists of a sequence of layers, (%, %,,...,%,,), Where
each %; is interchangeably treated as a set or sequence of intervals or of line
segments, as is convenient. The intervals in layer %, will be assigned higher ranks
than the intervals in %; for i<j. The idea is that we make the layers such that a
line segment in layer %; can only see endpoints in its own layer and in one other
layer above it.

The first layer, .#,, is constructed as follows. Let s, be the interval in § with
4,,=min{/]|seS} and r; maximal among these; s, is the first interval in .&,.
Assume we have found the first j intervals, s,,s,,...,5; In ;. Now we consider
the set of intervals se§ with #es; and r ¢s;. If this set is empty the first layer is
complete. Otherwise, take s;,, from this set such that r,,,  is maximal. In this way
we continue until we can no longer extend the first layer. Assume %=
(51.83.....8). We define p(s;)=n—k+i for 1<i<k. So the intervals forming the
first layer are assigned the highest ranks, where the first such intervals gets the
lowest of those ranks and the last gets the highest. Setting §'=S—%,, we
construct the next layers in the same way from §'. See Figure 2.2 for an example
of the ranking we get.

Ls

L4

Figure 2.2 Ranking a set of intervals by layers.
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2.3 Analysis of the Ranking

To prove that every line segment sees at most two endpoints we need a few simple
observations. First, note that for each layer %, the union Ii=Jscgs is a single
interval. Furthermore, we have I;=1I; or I;n1;=0 if j<i. In the latter case, I, lies
to the right of I;. This implies that a line segment § in layer %, can only see line
segments in its own layer and in at most one other layer, namely layer .&; with
largest j so that j<iand [;<1;.

Let us now consider a layer &;=(sy,5,,...,5,). Clearly every 5, 1=I<k;—1,
sees only one endpoint in the same layer, namely the left endpoint of 5, ,, and 3,
sees no endpoint in Z;. Let £;=(ty,1,,...,t,) be the lowest layer above #; with
I;<1; (if it exists). The only left endpoint of a line segment in #; visible from
below is that of f,, followed by the right endpoints of £y, 65,...5 0, in this order
from left to right. Thus, if a line segment § in %, sees at least two endpoints in Z;
then it must either see the left and the right endpoint of 7, or two consecutive
right endpoints. The former contradicts the way t, is chosen. In the latter case, let
§ see the right endpoints of 7, and #,,,. By the way t,,, is chosen after ¢, it follows
that r,,,,=r,. But then, 5 can see the right endpoint of 7, ; only if 5 is the last line
segment in %, and therefore it sees no endpoint within its own layer. Con-
sequently, § sees at most two endpoints in either case. This proves the main result
of this section.

THEOREM 2.2 For every finite set of intervals there exists a ranking in which every
line segment sees at most two endpoints.

2.4  Implementing the Construction

In the remainder of this section we show how to compute such a ranking
efficiently. To construct the layers we need to be able to perform two operations
efficiently:

1) find an interval with smallest left endpoint, and if there are several of them,
find among those the one with largest right endpoint, and

2) find the interval with left endpoint in some interval s and right endpoint as
large as possible.

Both questions can be efficiently answered using a minimum height binary tree
which we now define. The leaves of the tree are in one-to-one correspondence with
the intervals so that the inorder of the leaves gives the sequence of intervals sorted
from left to right by left endpoint, and if two intervals have the same left endpoint
then the one with the larger right endpoint precedes the other. Each internal node,
k, stores an interval, i(k), with largest right endpoint stored in a leaf below k.
More precisely, if x has children p and v then i(x)=i(p) if ry,)<ri, i(x)=iy) if
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Tiw <Tis and i(k) is any one of the two if r;,=ry,. This tree can be constructed
in time O(nlogn).

As to operation 1, the interval with smallest left endpoint (and if this is
ambiguous, the one with largest right endpoint) is stored in the lefimost leaf of the
tree and can thus be retrieved in constant time. To understand how operation 2
can be executed efficiently notice that all intervals whose left endpoints lie in some
query interval s are stored in a consecutive list of leaves. These leaves define
O(logn) subtrees, and for each such subtree an interval with largest right endpoint
is stored in its root. In time O(logn) we can find these roots and select one
interval, among the O(logn) intervals, with largest right endpoint.

The algorithm works as follows. As initialization we construct the above tree for
the set S of intervals. We continue constructing layers as long as the tree is not yet
empty. Each layer is constructed as follows. Using operation 1 we identify the
interval, s;, with smallest left endpoint and remove it from the tree; s, is the first
interval in the layer. Assume we have constructed the layer up to interval s;. Using
operation 2 we determine the interval with largest right endpoint whose left
endpoint falls into s; If such an interval does not exist then the current layer is
complete. Otherwise, call this interval s;,, and add it to the current layer. We
delete s;, , from the tree and continue.

[t remains to explain how an interval, s, can be deleted from the tree.
Structurally, we delete the leaf that stores s plus we delete its ancestors bottom-up
until we arrive at an ancestor, g, that still has one child that is not an ancestor of
the deleted leaf. Starting at y we continue moving up, and for each node on the
way we recompute the stored interval from the intervals of its children until we
reach the root or a node whose interval remains unchanged. Clearly, a deletion
does not take more than O(logn) time and does not increase the future search
time. Altogether we do at most 2n search operations (only n are successful) and n
deletions which implies the following result.

THEOREM 2.3  Given a set of n intervals, a ranking where no interval sees more than
two endpoints can be constructed in time O(nlogn) using O(n) storage.
3. AN ALGORITHMIC APPLICATION

In this section we show how a ranking of a set of intervals can be used to solve
the following search problem:

store a given set of n intervals, S, in some data structure, and for each later
specified query interval, g, report the intervals in S it intersects.

A data structure for this problem can be based on the ranking method of Section
2. When we explain how the intervals that intersect g can be determined, using
this data structure, we first consider the special case where g is a point and later
extend the search algorithm to intervals,

3.1 The Data Structure

Let p be a ranking of § as described in the previous section and call a point p on
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the real line a breakpoint if p is an endpoint of an interval s so that no interval ¢
with p(t) <p(s) contains p. Based on p we construct a directed graph #Z=(S, A)
with (s,t)e 4 if and only if s sees t. The data structure consists of the graph #
(arcs are represented by pointers) in addition to a linear array that stores the
breakpoints sorted from left to right. Let p,p,,...,p.»m<2n, be the sorted
sequence of breakpoints. With each gap between two adjacent breakpoints,
(P, Pi+1), We store a pointer to the interval (node in %) with lowest rank that
contains it (if such an interval exists). The lowest rank interval that contains a
breakpoint p; is either the interval of gap (p;_,, p;) or that of (p;, p; ), if they exist.

Here are some properties of this data structure. By Theorem 2.2, the outdegree
of each node in # is at most three. This implies that O(n) storage suffices for 2.
Since the linear array also takes only O(n) storage this is true for the entire data
structure. # is planar because arcs in # correspond to vertical visibilities, but this
will not be important.

3.2 Constructing the Data Structure

Given p, the data structure can be constructed in time O(n) as follows. Process the
intervals in order of decreasing rank. At any point in time we store a linked linear
list of the breakpoints for the current set of intervals, plus a pointer for each gap
between adjacent breakpoints as described for the linear array above. To add a
new interval, s, we locate its two endpoints in the list—both are new breakpoints
that need to be added to the list. The old breakpoints that are contained in s
(there are at most two) have to be deleted from the list. At the same time we find
the intervals visible from s and add appropriate arcs to %.

Unless the interval is the rightmost in its layer, constant time suffices to locate
its endpoints if we start at the breakpoint that corresponds to one of the endpoints
of the preceding interval. We use the following procedure to locate the right
endpoint, r, of the rightmost interval in some layer ¥,—the left endpoint takes
only constant time once the right endpoint is located. Start at the leftmost
breakpoint, b, that corresponds to an endpoint of the preceding layer (we assume
that a special access pointer to b is set up at the time it is created) and walk to the
right in the list until the location of r is found. .

We argue that the procedure for locating rightmost right endpoints takes only
O(n) time in total. Consider the list between b and r; it is split into a left and a
right part by the leftmost breakpoint b’ of an endpoint in %, The left part will
remain untouched for the rest of the algorithm which implies that the total size of
all left parts is O(n). The right part will be deleted completely when the intervals of
%, are added. Since we cannot delete more than we construct, the total size of all
right parts is also O(n).

After processing all intervals the graph £ is complete and we just need to copy
the linked list of breakpoints to a linear array.

3.3 Searching in the Data Structure

First we consider the problem of reporting all intervals of S that contain a point g;
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let their number be k and denote them by s,,s,,...,s, in order of increasing rank.
The first step is to locate g in the linear array of breakpoints, that is, to determine
the largest breakpoint p;<g. If p; does not exist then k=0 and we are done.
Otherwise, the lowest rank interval that contains g, s,, is either stored with
(pi—1,p;) or with (p;, p;+,). Now we use £ to report all the other intervals that
contain g in order of increasing rank. Assume that we reached some interval s;.
After reporting s; we examine the (at most three) outgoing arcs of node s; in A.
We are done if s; has no outgoing arc or if no interval visible from s; contains
g—in these cases k=j. Otherwise, determine the interval of the at most three
visible from s; that contains g and has lowest rank of those that contain g; this is
Sit1.

' Next, let g=[a,b] be an interval and consider the problem of reporting all
intervals in S that intersect q. Such an interval

i) contains at least one of the two endpoints of g, or
ii) both of its endpoints lie in g.

To find the intervals that satisfy (i) we apply the algorithm of the previous
paragraph for points @ and b and mark the nodes of # thus visited. Each interval
that satisfies (ii) is reachable in # by a path starting at a marked node or by a
path starting at a gap in the linear array that is contained in g. To find all such
intervals we thus go through the sequence of gaps contained in g and mark all
nodes of # pointed to by these gaps. In the final step, we put all marked nodes
onto a stack and process each one as follows until the stack is empty. Take an
interval s off the stack, report it, and test each of the at most three intervals visible
from s. If such an interval is yet unmarked and intersects ¢ then mark it and push
it onto the stack.

3.4 The Analysis

As mentioned above, the data structure for a set S of n intervals takes O(n) storage
and O(n) time for construction if the ranking, p, is given. By Theorem 2.3, it takes
O(nlogn) time to construct it from S. The time to find all k intervals that contain
a point is O(logn) for searching the linear array plus O(k) to walk through #.
Similarly, the time to report all k intervals that intersect a query interval g=[a, b]
is O(logn+k), but a brief argument is required.

First, we mark the intervals that contain a or b or both; this takes time O(logn)
plus time proportional to the number of marked intervals (each interval is marked
at most twice). Next, we mark the intervals identified by the gaps contained in q.
In this step, a single interval can be marked an arbitrary number of times. Still, the
total number of different intervals marked in this step is at least half the number
of gaps visited and thus at least half the total number of marks applied. The rest
of the algorithm takes O(k) time because only intervals that intersect g are pushed
onto the stack, and each such interval is processed only once and in constant time.
This implies the following result.

THEOREM 3.1 The above data structure stores a set of n intervals in O(n) storage
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and can be constructed in time O(nlogn); it can be used to report the k intervals that
intersect a query interval q in time O(log n+k).

Remark The logn term in the query time is caused solely by the initial binary
search step that locates the endpoints of the query interval in the linear array of
breakpoints. In applications where the endpoints are chosen from some bounded
universe U=1{0,1,...,u—1} of integers faster search methods exist. For example, if
u is reasonably small we can construct a linear array with index set U in which
each gap is represented by a sequence of entries all with the same pointer to a
node in #. With direct access in this array we improve the query time to O(k+ 1)
with storage going up to O(u+n). Complexities between this extreme and the one
of Theorem 3.1 can be obtained using the y-fast trie of Willard [14] or the g-fast
trie of Willard [15]. The y-fast trie gives query time O(loglogn+k) and storage
O(n), but a large amount of preprocessing is required because the method is based
on perfect hashing. The g-fast trie solves the problem in query time O(,/logn+k)
and storage O(n) and takes only O(nlogn) time for construction. These results
improve the O(f;+k) solution of [6] which works for the special case where
the query interval is a point.

4. MINIMIZING THE AVERAGE ENDPOINT VISIBILITY

We have seen that for every set of intervals we can find a ranking such that at
most two endpoints are visible from each line segment. In this section we address
the problem of minimizing the average number of endpoints visible from each line
segment. Of course, this is equivalent to minimizing the total number of endpoint
visibilities and, since each endpoint is seen at most once, to maximizing the
number of endpoints that are not visible from any line segment.

We say that for a ranking p of a set § of intervals, an endpoint ¢ (or r) is
exposed if no interval ¢ with p(t) <p(s) contains 7, (or ry). Note that if Z; (or r,) is
exposed then 7, (r;) is a breakpoint in the terminology of Section 3. Define
Ly={¢|seS} and Rg={rsseS}, the sets of left and right endpoints of the line
segments. A subset I of Lgu Rg is exposed if all elements in I are exposed, and I is
exposable if there exists a ranking p of S in which I is exposed. In this
terminology, this section studies the problem of finding a maximum exposable
subset of Lgu Rg.

4.1 Motivation from One-sided Channel Routing

The problem of finding a maximum exposable subset of Lgu R arises in the
layout of VLSI circuits. Layouts of VLSI circuits are composed of placed modules
and their interconnections by wires. The routing of these wires can be done in two
layers, where the change from one layer to another necessitates a via. A good
layout practice is to minimize the number of vias.

Take, for example, the routing situation shown in Figure 4.1(a). The rectangles
symbolize modules. The modules contain several labelled points (which are called
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Figure 4.1 (a) One sided channel routing problem, (b) a possible solution, and (c) an optimal solution.

terminals and are labelled in the figure with lower case letters). A set of terminals
which have a common label is called a net. All terminals belonging to the same net
must be electrically interconnected by wires. These interconnections must take
place on the tracks running above the modules, where horizontal wires are allowed
in one layer, and vertical wires are allowed in both. Wires that belong to distinct
nets may not cross at the same layer. A net may contain any number of terminals.
The most common distinction is between 2-point nets as opposed to nets with
more than two terminals, that are often referred to as multi-point nets. This
problem is known as the one sided channel routing problem (see, for example, [8]
or [13] or [1]). We deal here with the special case where all nets are 2-point nets.
Figure 4.1(b) illustrates a possible solution requiring 6 vias. The optimal solution,
however, needs fewer vias as shown in Figure 4.1(c). Note that if we represent each
2-point net by an interval, then every unexposed endpoint in a given ranking
requires a via. Therefore, the problem of via minimization for this situation is
equivalent to the problem of finding a ranking with a maximum exposed subset.
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We remark that the intervals which correspond to 2-point nets all have distinct
endpoints, but in the following sections we do not make this assumption.

4.2 Average Versus Worst-case Visibility

It turns out that the problem of this section is quite different from minimizing the
maximum individual visibility. Indeed, the algorithm in Section 2 can produce
rankings with far fewer than the maximum number of exposed endpoints. Consider
three sets of mtervaly, T={t,. 6. ... 8 U=t .. i} and ¥V=45,,8,,....,6.}
such that no two endpoints are the same, and

1) t;Stiv, ;S Uy, and v; S v, 4, for 1<i<n,
2) t,nu,=0, and
3)forall 1Si<n, ¢, et and r, €u,

(see Figure 4.2). Now apply the algorithm of Section 2 to compute a ranking for
§=TuUu V (see Figure 4.3). In such a ranking the number of exposed endpoints
is 2n+2 while the ranking indicated in Figure 4.2 implies that a set of 4n
endpoints is exposable. Conversely, if we remove an interval from T and U each,
every ranking that maximizes the number of exposed endpoints is equivalent to
the one in Figure 4.2. This is because the only way to expose another endpoint (a
right endpoint in T or a left endpoint in U) is to move a line segment of T or U
below all line segments of V. If we do this with a line segment in T, say, then
we lose n endpoints at once (the left endpoints in V), and this cannot be
compensated for even if we move all line segments of T below the ones of V. But
in a ranking as indicated in Figure 4.2, the topmost line segment of V sees 2n—2
endpoints.

v

Figure 42 The sets T, U and V for n=5.
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Figure 43 The ranking of Tu U U V as produced by the algorithm in Section 2.

4.3 Excluding Endpoints

For the remainder of the section, let S be a set of intervals as usual. We start with
two basic observations.

Figure 44 An excluding pair.

First, consider two intervals, s,t€8§, so that /,</,<r,<r, (see Figure 4.4). If ¢
follows s in the ranking (the case shown in Figure 4.4), then 7 is not exposed
independent of the ranking of the other intervals. If s follows f, then r; is not
exposed. Hence there is no ranking with both 7, and r; exposed; we say that £, and
rs exclude each other.

Second, let s and t be two intervals with s<¢ and let p be a ranking with
p(s)>p(t). If we move 5 right below 7 (that is, s gets the rank of ¢t and the ranks of
intervals u with p(t)<p(u) <p(s) increase by one), then the number of exposed
endpoints does not decrease. Hence, we may as well let s precede . A ranking p
for which p(s)<p(r) if s=t is true is called inclusion consistent.

Of course, when we restrict ourselves to inclusion consistent rankings, we
immediately exclude some of the endpoints from the game. If s ¢ and £,=7, then
/; is not exposed in any inclusion consistent ranking; we say that ¢ is shy.
Analogously, if s <t and r,=r, then r, is shy. Let L < Lg and R < R, be the sets of
endpoints that are not shy. The exclusion graph of S is the bipartite undirected
graph ¥=(L U R, A) with {x,y} €4 if xeL, yeR, and x and y exclude each other.

Since two endpoints, x and y, that exclude each other cannot be exposed in the
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same ranking of S,/ < L UR is independent* in ¢ whenever I is exposable. We
demonstrate below that also the reverse is true, that is, every independent node set
I of 4 is exposable. In addition, we give a description of all inclusion consistent
rankings for which a given independent set I is exposed.

4.4  Partial Order Constraints for Rankings

We start with a definition. For I a subset of L U R we define the relation #F = §x §
so that (s,t)e .7 if

i) st or

ii) £;el and Z; and r; exclude each other, or r;el and #4; and r; exclude each
other.

A pair (s,t) that satisfies (i) is called an inclusion pair and one that satisfies (ii) is
called an exclusion pair. Note that no pair in .# can be an inclusion and an
exclusion pair at the same time.

It is clear that the definition of .# captures the necessary condition for an
inclusion consistent ranking with I exposed since t must follow s in any inclusion
consistent ranking that exposes [ if (s,t)e.#. We continue by first showing that .#
is acyclic if and only if I is independent. Second, we prove that I is exposable if
and only if .7 is acyclic.

Lemma 4.1 .7 is acyclic if and only if I € L u R is independent in 4.

Proof (=) If I is not independent then there are nodes /; and r; in I with
{Zsr:} € A. By definition of A4, /; and r; exclude each other. It follows that both (s, 1)
and (t,s) are exclusion pairs which thus constitutes a cycle in .#.

(=) In a first step we show that if (s,t)e# and (t,u) is an inclusion pair in .#,
then s#u and (s,u)e.#. Assume first that s=u. But then t s which contradicts
(s,t)e.# because s#t. If (s,t) is an inclusion pair, then (s,u) is also an inclusion
pair and therefore in .#. Finally, if (s,t) is an exclusion pair, then either Z;el and
Li<tbi<r,<r,, or rel and ¢, </ <r,<r; assume the former without loss of
generality. If s € u, then (s,u) is an inclusion pair. Otherwise, £, =7/, </, <r,=r,<r,,
and (s,u) is an exclusion pair. In both cases (s,u)e.# as claimed.

We assume that [ is a set of independent nodes in % and that .# is not acyclic.
Consider a minimal cycle in #; this is a sequence $,,S,,...,5, S+ =5; SO that
(5;,8:41)€F for 1=i<k but (s,s;)¢.# unless j=i+1. This cycle contains no
inclusion pair; otherwise, we could shorten the cycle by the previous observation.
Therefore, the cycle consists only of exclusion pairs. Thus either /; €l and ri, ¢1,
or rg €l and /¢ 1; assume without loss of generality that the latter is the case.
Then we have rg el for all 1<i<k and therefore r, <r,,,, for all 1 <i<k. But then
r,, <y, a contradiction. O

Si+1

Lemma 4.1 implies that if I is exposable then .# is acyclic. In this case, the
transitive closure of .# is a partial order. The lemma below considers linear
extensions of such partial orders.

*A subset of nodes is independent if no two of its nodes are adjacent.
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LEMMA 4.2 A4 subset I of L UR is exposed in an inclusion consistent ranking p of
S if and only if p is a linear extension of .#.

Proof (<) Suppose xel is not exposed in a ranking p of S that is a linear
extension of .#. Assume without loss of generality that x=/. Then there is an
interval ¢ with p(t)<p(s) and xet. Hence, either t 2 s, which is not possible since
then (s,f) is an inclusion pair, or r; and x=/; exclude each other, which is not
possible either because (s, ) is an exclusion pair.

(=) Let I be exposed in an inclusion consistent ranking, p, which is not a linear
extension of .#. That is, there are s and t so that p(s) <p(t) and (t,s)€.#. Hence,
either rrel and r,es, or /el and /,es. In either case an endpoint in I (r; or £,) is
not exposed in p—a contradiction. O

Remark Lemma 4.2 implies that I is exposable if and only if .# is acyclic. This
together with Lemma 4.1 proves the earlier claim that I is exposable if and only if
it is independent in %. Notice that Lemma 4.2 talks only about inclusion
consistent rankings. However, because I is a subset of LUR, and not only of
Lsu Rg, I is exposable if and only if it can be exposed by an inclusion consistent
ranking.

4.5 Computing an Optimal Ranking

By Lemma 4.2, .# provides a description of all inclusion consistent rankings in
which I is exposed. We summarize:

1) There is a maximum exposable set of endpoints, I, which is a subset of L U R,
where L and R are the sets of left and right endpoints that are not shy.

2) A set I is a maximum exposable subset of LUR if and only if I is a
maximum independent node set in .

3) A linear extension of .# is an inclusion consistent ranking of S.

By (2), computing a maximum exposable set amounts to computing a maximum
independent set in the exclusion graph % of § which is bipartite. As is well known,
a maximum independent set is the complement of a minimum covering node set*
and, by a theorem of Konig [7] (see e.g. [2, Thm. 5.3]), the size of a minimum
covering in a bipartite graph is equal to the size of a maximum matching.t
Furthermore, given a maximum matching of %, time proportional to the number
of nodes and arcs of % suffices to construct such a minimum covering or its
complement, a maximum independent set. Now, a maximum matching in a
bipartite graph with N <2n nodes can be found in time O(n*?) time (see [5] or
[4]); this step is the bottleneck of our algorithm.

Note that the graph ¢ might have up to (3) edges. However, we never have to

*A subset of the nodes in a graph is a covering if every arc is incident to at least one node in the set.
TA subset M of the arcs in a graph is a matching if no two arcs in M are incident to a common
node.
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store ¢ explicitly—rather the set of intervals constitutes an O(n) storage implicit
representation of ¥ from which the adjacency of two given nodes (two endpoints)
can be deduced in constant time. An inspection of the maximum matching
algorithm in [S] and of the transformation from a maximum matching to a
maximum independent set (see e.g. [2, chapter 5]) shows that O(n) working
storage suffices.

Given I, we can compute a linear extension of # in time O(n?), again without
explicitly storing .#. One way to do this is to store with each interval ¢ the number
of intervals s with (s,t)e.#. To compute these counters we simply consider each
pair of intervals, (s,t), decide in constant time whether it is in £, and if it is we
increment t's counter by one. After this initialization we repeatedly remove an
interval with counter equal to 0. When we remove s we also test pairs (s, t), for all
t still in the structure, and decrement ¢’s counter if (s,t)e.#. The sequence of
removed intervals is the linear extension of .#. This implies the main result of this
section.

THEOREM 4.3 A maximum exposable set, I, of endpoints of a set S of n intervals
(with a ranking p in which I is exposed) can be computed in time O(n*?) time and
storage O(n).

5. DISCUSSION AND OPEN PROBLEMS

In this paper we introduced the notions of ranking intervals and of visibility in a
ranked set of intervals. We showed that any set of intervals has a ranking so that
each interval sees at most two endpoints and therefore at most three other
intervals. This result has application to an interval intersection problem discussed
in Section 3. We also showed how to compute a ranking that minimizes the
average number of endpoints seen per interval. This problem has application to
the one-sided channel routing problem.

Still, there are a number of open problems that remain. For some sets it is
possible to rank the intervals so that each interval sees at most one endpoint. Such
a ranking would simplify the search algorithm for the interval intersection problem
because it replaces a ternary decision per interval (it sees up to three other
intervals) by a binary decision (only two intervals are visible). To the best of the
author’s knowledge it is still open whether there is a polynomial time algorithm
that computes a ranking with each interval seeing at most one endpoint, if such a
ranking exists.

Another open problem is concerned with sets of intervals that change over time.
Is it possible to maintain a ranking in which each interval sees only a constant
number of endpoints and where the insertion or deletion of an interval requires
only few changes in the ranking? A positive solution to this problem could lead to
a simple and efficient dynamic data structure for the above mentioned interval
intersection problem.

There are various open problems related to the one sided channel routing
problem. One of them is to solve the one-sided channel routing problem with
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multi-point nets. One possible approach to this problem is to break up each
interval which corresponds to the span of a net into subintervals, and find a
ranking with a maximum exposed set. However, this does not necessarily
correspond to a solution requiring a minimum number of vias. Another open
problem is when the number of available tracks is a given constant ¢. In this case
we would like to find an assignment, &, which is a mapping from an interval set to
the tracks {1,2,...,t} such that intervals mapped to the same track are disjoint,
and the number of exposed endpoints is maximized.

The notions of ranking, assignment and visibility can be extended to objects in
two and higher dimensions. A ranking, p, is a bijective map from a set of objects,
S, to {1,2,...,n}, where n=|S , and s sees t if there is a point pes t that does not
lie in any ue S with p(s) < p(u) <p(t). We can thus ask the question whether or not
the results of this paper can be generalized to two and higher dimensions. In
general, S cannot be ranked so that each object sees only few other objects—take
for example S as a set of n vertical and n horizontal lines in the plane. On the
other hand, n half-planes can be ranked so that each half-plane sees only O(logn)
other half-planes—is O(1) possible? Positive results along these lines would imply
new algorithms for intersection problems in two and higher dimensions. We refer
to [9] for some results in the planar case.
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