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A Hyperplane Incidence Problem
with Applications to Counting Distances

HERBERT EDELSBRUNNER AND MICHA SHARIR

ABSTRACT. This paper proves an O(mz” 33 L m+ n) upper bound on the

number of incidences between m points and n hyperplanes in four dimen-
sions, assuming all points lie on one side of each hyperplane and the points
and hyperplanes satisfy certain natural general position conditions. This
result has applications to various three-dimensional combinatorial distance
problems. For example, it implies the same upper bound for the number of
bichromatic minimum distance pairs in a set of m blue and » red points
in three-dimensional space. This improves the best previous bound for this
problem.

1. Introduction

Combinatorial distance problems for finite point sets in Euclidean spaces
are classical topics in discrete geometry. Most popular is probably the ques-
tion of how often the unit distance can occur in a set of m points in two or
three dimensions; this question was originally studied by Erdos [10, 11]. The
current best upper bound in the plane is O(m‘” 3) (see [15] and also [4]), and
in three dimensions Clarkson et al. [4] proved O(m>/*8(m)), where B(m) is
an extremely slowly growing function related to the inverse of Ackermann’s
function. No matching lower bounds are known.

This paper considers three distance problems in three dimensions and im-
proves the best previous upper bound in each case. The results are as follows.
The number of bichromatic minimum distance pairs in a set of m blue and
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n red points is O(mz‘{ 3w+ m+ 7). The same bound holds for the number
of bichromatic nearest neighbor pairs if no three points are collinear. For
a (monochromatic) set of m points, the number of furthest neighbor pairs
is O(m‘” %) if no three points are collinear. All three bounds are corollaries
of the following more general result on the number of incidences between
m points and » hyperplanes in four dimensions. If no three points are
collinear, no three hyperplanes intersect in a common 2-flat, and each hyper-
plane bounds a closed half-space that contains all points, then the number
of incidences is O(mz’[ Wi m+ n). Besides the application of this result
to three-dimensional distance problems we also consider an application to
three-dimensional Delaunay triangulations.

This paper is organized as follows. §2 proves the upper bound on the hy-
perplane incidence problem, §3 explains how this problem relates to counting
incidences between points and spheres in three dimensions, §4 discusses the
combinatorial distance problems, and §5 concludes the paper.

2. The hyperplane incidence problem

This section proves the main result of this paper, an upper bound for the
following combinatorial geometry problem.

PROBLEM SPECIFICATION, Let P be a set of m points and H a set of
n hyperplanes in four-dimensional Euclidean space satisfying the following
conditions.

(H.i) No three points of P are collinear.
(H.ii) No three hyperplanes of H intersect in a common 2-flat,
(H.iii) Each hyperplane in H bounds a closed half-space that contains P.

What is the maximum number of incidences between the points and the
hyperplanes, in terms of m and »n, where the maximum is taken over all
sets P of size m and H of size n satisfying the three conditions? We
define I(m, n) to be equal to this number.

We prove an upper bound on I(m, n) by adapting the methods of Clark-
son et al. [4]. This is done in two steps. First, bounds are obtained which
are tight for the cases when m is much smaller than n (m < /n) and
when n is much smaller than m (n2 < m); using the terminology of [4] we
call these bounds Canham thresholds. Second, these bounds together with
the methods of [4] are used to establish an upper bound for the remaining
case (vVn < m < nz). To prove the Canham thresholds (Lemma 2.1) we
make use of the fact that the problem is self-dual, that is, if we apply a dual
transform we arrive at the same problem, only with the roles of m and n
interchanged. Indeed, choose the origin in the interior of the intersection of
half-spaces that contains all points of P. For a point p different from the
origin let

P ={x|{x,p)=1}
be the polar hyperplane, and for a hyperplane 4 avoiding the origin define



A HYPERPLANE INCIDENCE PROBLEM 255

the polar point h™ so that h = (h*)*. Using straightforward algebraic ma-
nipulations it can easily be verified that p € h iff #* € p*. Furthermore,
three points are collinear iff their polar hyperplanes intersect in a common
2-flat. In other words, if we map all points to their polar hyperplanes and
all hyperplanes to their polar points we get a point/hyperplane incidence
problem satisfying conditions (H.i) and (H.ii). In addition to the incidence
preserving property the polar transform preserves sidedness relative to the
origin, which implies that also condition (H.iii) is satisfied after polarization.
Hence, I(m, n)=1(n, m).

The Canham thresholds. The intersection of half-spaces defined by the
hyperplanes is a closed convex polyhedron % with at most n facets. The
upper bound theorem (see [3] or [8]) implies that % has at most O(n?)
vertices, edges, and ridges. Let the degree of a face (vertex, edge, ridge, or
facet) be the number of hyperplanes in H that contain it. Clearly, the degree
of any facet is 1, by assumption (H.ii) the degree of any ridge is 2, and the
degree of any edge or vertex can be arbitrary. Still, the sum of degrees, over
all faces, is at most O(nz) by the following argument. Take each hyperplane
that contains a vertex or edge of # and push it inwards (towards the origin)
by a tiny amount so that each such hyperplane now supports a facet. Call
the new polytope %’. Next we slightly perturb the hyperplanes, on a much
smaller scale than before, in order to transform %’ into a simple polyhedron
%", again without decreasing the sum of face degrees. Now every edge has
degree 3 and every vertex has degree 4 which implies the claim by applying
the upper bound theorem to %" . After these introductory remarks we are
ready to prove the Canham thresholds.

LEmMA 2.1. I(m,n)=0(myn+n) and I(m, n) = O(ny/m+m).

ProoF. Because of the self-dual property of the incidence problem we can
restrict ourselves to proving I(m, n) = O(ny/m+m). Let P be the set of m
points, H the set of n hyperplanes, and % the polyhedron defined above
which contains P . If a point p € P lies in the interior of & it contributes
0 to the number of incidences, if it lies in the relative interior of a facet it
contributes 1, and if it lies in the relative interior of a ridge it contributes
2. The total number of incidences involving such point is therefore O(m).
Each edge of & contains at most two points of P, by condition (H.i), and
each vertex contains at most one point of P. By the claim established earlier,
the total number of incidences involving points on edges and vertices of &
is therefore O(n?) which gives a combined bound of O(m + n?). To get
I(m, n) = O(ny/m+m) we simply partition H into [n/\/m] subsets of size
at most /m each. For each subset we get only O(m) incidences with points
of P and therefore we get at most O(ny/m + m) incidences altogether. O

In general, a ridge is a (d — 2)-face of a d-polyhedron. Because % is a 4-polyhedron a
ridge of % isa 2-face.
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ReEMARKS. (1) Conditions (H.i) and (H.ii) can be relaxed to allow up
to some constant number of points that are collinear and hyperplanes that
meet in a common 2-flat without sacrificing the asymptotic bounds in Lemma
2.1. However, if we drop (H.i) or (H.ii) we can find examples with Q(mn)
incidences. The problem that results when we drop (H.iii) but not (H.i)
and (H.ii) is more difficult. The best lower bound known to the authors is
Q(m‘” i loglogm) for the case m = n and is based on an example of Erdos
[11] (see also [4]).

(2) Conditions (H.i) and (H.ii) imply that no three hyperplanes can all be
incident to three common points. Using a standard extremal graph lemma
(see [2] or [4]) this can be used to prove O(mn*>+n) and O(nm™> +m) as
upper bounds on I(m, n). These bounds are significantly weaker than the
bounds of Lemma 2.1, which illustrates the importance of condition (H.iii)
and the use of the upper bound theorem.

The main result. We introduce some notation. For a hyperplane & € H let
h* be the closed half-space bounded by 4 that contains the origin. Recall
that we assume that the origin lies in the interior of % which implies that
€ = hen h™. We now present a sequence of arguments that add up to a
proof of the main result of this section.

First, choose a random sample R C H of size r. Form the convex polyhe-
dron & =(,cgh" and note that # contains all points of P and also the
origin. It will be convenient to assume that .% is actually a polytope (that
is, it is bounded) which can be achieved by intersecting it with a sufficiently
large tetrahedron.

Second, we triangulate % as follows. Choose a directed line so that no
hyperplane normal to this line contains two vertices of .%# and call the di-
rection defined by this line vertical. It thus makes sense to talk about a point
being higher than another point. A ridge (that is, 2-face) of # is triangu-
lated by connecting its highest vertex to all other vertices. Each triangle is
thus bounded by two edges incident to the highest vertex of the ridge and a
third edge which is an original edge of the ridge. Similarly, a facet (that is,
3-face) of % is triangulated by connecting its highest vertex to all vertices,
edges, and triangles in the (triangulated) boundary of the facet. Thus, each
tetrahedron is incident to the highest vertex and is bounded by a triangle
not incident to this vertex. Finally, the interior of % is triangulated by
connecting the origin to all vertices, edges, triangles, and tetrahedra in the
(triangulated) boundary of % . The number of 4-simplices generated is equal
to the number of tetrahedra in the boundary of % . In turn, the number of
tetrahedra is at most twice the number of triangles because any ridge is inci-
dent to only two facets. Finally, the number of triangles used to triangulate
the ridges is bounded from above by the number of edge/ridge incidences.
The number of ridges incident to a single edge is at most the degree of the
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edge, and we noted earlier that the sum of edge degrees is at most quadratic
in the number of hyperplanes. Thus, if k is the number of 4-simplices in
the triangulation then k = O(r2 ).

For the application of a probabilistic counting result due to Clarkson and
Shor [5] in the fifth step below, it is important that each 4-simplex is uniquely
determined by some constant number of hyperplanes. Indeed, a triangle lies
in a plane (the intersection of two hyperplanes) and each vertex is defined by
two lines (the intersection of this plane with two other hyperplanes). At least
two of the three vertices share a line because at least one of the edges of the
triangle is chosen to lie on a line. Thus, we need at most seven hyperplanes
to define a triangle. A tetrahedron connects a triangle to a vertex (the inter-
section of four hyperplanes, one of which contains the triangle) and is thus
defined by at most ten hyperplanes. A 4-simplex just connects a tetrahedron
with the origin and is therefore determined by at most ten hyperplanes and
a point that is fixed independent of % .

Another necessary property for the application of the probabilistic count-
ing result is that a 4-simplex defined by the origin and at most ten hyperplanes
in the way described above is in the triangulation if and only if it does not
intersect any other hyperplane. Unfortunately, this is not strictly true because
the hyperplanes are not in general position which allows for the possibility
that different sets of at most ten hyperplanes define the same 4-simplex. How-
ever, we can simulate an arbitrarily small perturbation of the hyperplanes to
get them into general position and define the triangulation with respect to this
perturbation. The perturbation is used merely for the purpose of assigning
proper sets of hyperplanes to the 4-simplices of the triangulation—it is ig-
nored as far as point/hyperplane incidences are concerned. Before we 20 on
with the proof we remark that the origin is an arbitrary point in the interior
of €. We may therefore assume that each point of P that does not lie on
the boundary of % lies in the interior of a 4-simplex of the triangulation.

The third step of the proof bounds the number of incidences involving
points in the interior of &% . For 1<i <k, let o; be the interior of the ith
4-simplex, set m; = |PNg,|, and let n; be the number of hyperplanes in H
that have nonempty intersection with g,. Using the first bound in Lemma

2.1 we thus get Z;LI O(m;\/m; + n;) as an upper bound for the number of
incidences that happen in the interior of % .

Fourth, we bound the number of incidences involving points on the bound-
ary of % . For a hyperplane 4 € R define P,=Pnh and m, = |P,|. The
convex hull of P, is a convex polytope of dimension 3 or less. Because of
its low dimensionality, it has at most O(m,) edges and 2-faces. Since no
three points in P, are collinear (condition (H.i)) and no three hyperplanes
in H meet in a common 2-flat (condition (H.ii)), the total number of in-
cidences involving points of P, is O(m, + n). If we sum this bound over
all r hyperplanes h € R we get O(I(m, r) + nr) since a point p belongs
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to as many sets P, as there are incident hyperplanes h in R. We have
I(m, r) = O(r/m + m) using the second bound in Lemma 2.1.

In the fifth and final step we make use of the probabilistic counting result
of Clarkson and Shor [5]. It implies that the expected value of
¥ O(m,m;+n;) is O(my/n[r+kn/r). Note that kn/r = O(nr) and that
the above sum is an upper bound on the number of incidences that happen
in the interior of % . Thus, there exists a subset R C H of size r so that
the number of incidences in the interior of % is at most O(m/n/r + nr).
Adding to this bound the incidences on the boundary of # we get

I(m, n) = O(mv/nfr +nr+rv/m+m)

as an upper bound on the total number of incidences. If we choose r equal
to [m*?/n'*] this bound becomes O(m**n*? + (m"/%/n'"®) + m). This
choice of r is meaningful if /n < m < n* in which case mm/nlﬁ <m.
For the remaining cases, m < /n and n*<m , Lemma 2.1 shows that the
number of incidences is at most O(m + n) . This concludes the proof of the
main result of this section which we now state.

THEOREM 2.2. The maximum number of incidences between m points
and n hyperplanes in four dimensions satisfying conditions (H.1)-(H.iii) is
I(m,n) = O(mz,rz,nz,rs +m+n).

REMARKS. (1) Remark (1) after Lemma 2.1 also applies to the bound in
Theorem 2.2.

(2) Note that the only way condition (H.ii) is exploited in the above proofs
is that more than some constant number of points cannot be incident to more
than some constant number of common hyperplanes. Another condition
achieving the same goal is

(H.ii") No four points of P lie in a common 2-flat.

In other words, Theorem 2.2 can also be shown if we replace (H.ii) by
(H.ii").

(3) We state as an open problem to prove any superlinear lower bound for
I(m,n).

3. The sphere incidence problem

Using Theorem 2.2 and a fairly standard geometric lifting transform (see,
for example, [8]), we can derive a good upper bound for an incidence problem
involving points in three dimensions. To simplify the notation we use the
word sphere to either mean a sphere in the common Euclidean sense, or a
plane. We define a (generalized) ball as a closed ball, a closed half-space,
or the complement of an open ball in three dimensions. Thus, each sphere
bounds two balls and for each ball there is a sphere that bounds it. This
slightly nonstandard use of terms will be restricted to the scope of this section.

PROBLEM SPECIFICATION. Let P be a set of m points and S a set of »
spheres in three-dimensional Euclidean space satisfying these conditions.
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(8.1) No three spheres in S intersect in a common circle or line.
(S.ii) Each sphere s € S bounds a ball s* so that P C s .

What is the maximum number of incidences between the points and spheres,
where the maximum is taken over all sets P of size m and S of size n
satisfying (S.i) and (S.ii)?

We derive an upper bound on the number of incidences by mapping P
to a set of m points and S to a set of n hyperplanes in four dimen-
sions so that conditions (H.i)-(H.iii) are satisfied. More specifically, a point
p = (m,, m,, m;) is mapped to the point p = (7y, 7y, 7y, nf+n§+7z§). Note
that p is the vertical projection of p, a point in the X, X,X,-space, onto the
paraboloid of revolution specified by the equation X, = xf + x32 + xi . Simi-
larly, a sphere s in the x,x,x,-space is mapped to a four-dimensional hyper-
plane § by vertically projecting each of its points onto the same paraboloid
and defining § as the (unique) hyperplane that contains all these points. The
crucial property of this transform is that a point p lies outside, on, or inside
a sphere s iff p lies vertically above, on, or below §. (If s is a plane then §
is a vertical hyperplane (parallel to the x,-axis) and sidedness is maintained
as in the general case.) It thus follows that the sets P = {p|p € P} and
S = {5]s € S} satisfy condition (H.iii). Condition (H.i) holds because no
three points of the paraboloid are collinear, and (H.ii) follows from (S.i).
What we said above includes as a special case that p € s iff p € 5, which im-
plies the following upper bound for the number of point/sphere incidences.

THEOREM 3.1. The number of incidences between m points and n spheres
in three dimensions satisfying conditions (S.i) and (S.ii) is O(mzf 0?3 4
m+n).

REMARKS. (1) In agreement with remark (1) after Lemma 2.1, condition
(S.1) can be relaxed to allow up to some constant number of spheres inter-
secting a common circle or line.

(2) As noted in remark (2) after Theorem 2.2, it is possible to replace
condition (H.ii) by (H.ii') without sacrificing the O(m*>n*> + m +n) upper
bound. By the same reason it is possible to replace (S.i) by

(S.i') No four points of P lie on a common circle or line
without sacrificing the upper bound given in Theorem 3.1.

(3) No superlinear lower bound for the sphere incidence problem of this
section is currently known to the authors; see also remark (3) after Theorem
2.2.

4, Combinatorial distance problems

In this section we apply Theorem 3.1 to get upper bounds on problems
about repeated distances between points in three-dimensional Euclidean
space. Many such problems were originally posed by Paul Erdds and were
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considered before in the literature. We refer to the problem collection of
Moser and Pach [14] as a general source of relevant information.

4.1. Bichromatic minimum distance. Given a set P of m blue points and
a set Q of n red points in three-dimensional Euclidean space, what is the
maximum number of pairs (p, ¢) € P x Q that realize the minimum dis-
tance between points of different color? The best previous bounzcl, derived in
(4], is O(m**n®/*B(m , n)+m +n), with B(m, n) = 22"/ and o the
inverse of Ackermann’s function. The reduction to Theorem 3.1 should be
obvious: around each blue point draw a sphere with radius equal to the min-
imum bichromatic distance. Condition (S.i) is satisfied because all spheres
are equally large, and condition (S.ii) holds because all red points lie on or
outside all spheres.

THEOREM 4.1. The number of bichromatic minimum distance pairs in a
set of m blue and n red points in three-dimensional Euclidean space is
O(mmnw +m+n).

ReEMARK. In the case of a monochromatic set of m points in three di-
mensions the maximum number of minimum distance pairs is ©(m) . This
is because if 13 or more points have the same distance to a point p then at
least two of them are closer to each other than to p. It follows that each
point p belongs to at most 12 minimum distance pairs. This packing argu-
ment fails in the bichromatic case because points of the same color can be
arbitrarily close to each other.

4,2. Bichromatic nearest neighbors. Given sets P and Q as before, call
(p, q) € P x Q a (blue/red) nearest neighbor pair and q a nearest neighbor
of p if ¢ € QO minimizes the Euclidean distance from p to Q. Let N(p)
be the number of nearest neighbors of p and consider Zpe pN(p). We
will assume that either no three points of P are collinear or that no four
points of Q are cocircular. The best previous upper bound for this sum is
O(m>*n**B(m, n) + m + n) (see [4]). By drawing a sphere around each
blue point p, with radius equal to the distance between p and its nearest
neighbors, we again reduce the distance counting problem to the problem of
§3. If no three points of P are collinear we get condition (S.i) and if no
four points of Q are cocircular we get condition (S.i') (see remark (2) after
Theorem 3.1). In both cases we obtain the following upper bound.

THEOREM 4.2. The number of blue/red nearest neighbor pairs in a set of m
blue and n red points in three-dimensional Euclidean space is O(mz” I
m+n) if no three blue points are collinear or no four red points are cocircular.

REMARKS. (1) As in the case of repeated minimum distance pairs, the
maximum number of nearest neighbor pairs is ©(m) for a monochromatic
set of m points in three dimensions. Again, the packing argument used to
prove the upper bound fails in the bichromatic case.
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(2) The case where all points of Q lie on a circle in three-dimensional
space and all points of P lie on the axial line of this circle shows that the
bound of Theorem 4.2 does not hold without restrictions on the locations of
the points.

4.3. Furthest neighbors. Let P be a (monochromatic) set of m points in
three dimensions, and call (p, q) a furthest neighbor pair and q a furthest
neighbor of p if g € P maximizes the Euclidean distance from p. For
each p € P let F(p) be the number of furthest neighbors and consider
Ep cp F(p) . Assuming no three points are collinear, the best previous bound

on this sum can be found in [4] and is O(m*?8(m)), with B(m) = 2°C(m")_
improving earlier bounds given in [6, 9]. If we draw around each point p the
sphere with radius equal to the distance between p and its furthest neighbors
we get an instance of the problem in §3. Indeed, condition (S.ii) is satisfied
because no point lies outside any of these spheres, and we get condition (S.1)
if no three points are collinear and (S.i") if no four points are cocircular. This
implies the following result.

THEOREM 4.3. The number of furthest neighbor pairs in a set of m points in
three-dimensional Euclidean space is O(m" 3) if no three points are collinear
or no four points are cocircular.

REMARKS. (1) An example similar to the one in remark (2) after Theorem
4.2 shows that the maximum number of furthest neighbor pairs is quadratic
in m if no condition on the location of the points is imposed.

(2) It is worthwhile to note that the maximum number of maximum dis-
tance pairs is ©(m), namely 2m — 2, as shown independently in [12, 13,
16].

4.4. Delaunay triangulations. There is a relation between three-dimen-
sional Delaunay triangulations and the incidence problems considered in §§2
and 3. Let P be a set of m points in three dimensions. We call P C P a
proper Delaunay subset if there is a unique sphere so that the points of P’
lie on the sphere and all other points of P lie outside the sphere, and we call
the sphere a Delaunay sphere. The Delaunay triangulation of P, denoted by
Z(P), is the cell complex whose bounded cells are the convex hulls of the
proper Delaunay subsets of P and whose unbounded cell is the complement
of the convex hull of P (see [7] or [8]). We note that Z(P) is not necessarily
a triangulation because there may be bounded cells that are not tetrahedra.
In fact, the problem we study below is interesting only if many of the cells
are not tetrahedral.

Let the degree of a cell of & (P) be its number of vertices; the number of
edges of the cell is at most three times the degree minus 6 and the number
of 2-faces is at most twice the degree minus 4. We consider the problem of
bounding the sum of degrees of subsets of the collection of Delaunay cells.
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Let S be the set of all Delaunay spheres. By definition, all points of P
lie on or outside any Delaunay sphere. In other words, P and S satisfy
condition (S.ii) of §3. We now argue that S also satisfies (S.i), that is, no
three Delaunay spheres intersect in a common circle. Suppose to the contrary
that there are three Delaunay spheres, s, , s, , and Sy, that meet in a common
circle. It follows that the centers of the three spheres lie on a common line.
Assume that the center of s, lies between the other two centers. But then all
points of s, that do not belong to the common circle lie either inside s, or
inside s,. Because no points of P can lie inside s; or s, it follows that all
points of PNs, lie on a circle which contradicts the assumption that s, is a
Delaunay sphere. Using Theorem 3.1 we thus get the following bound on the
sum of degrees. Note that since the Delaunay triangulation of P has at most
O(mz) cells, the term #n in the bound of Theorem 3.1 is always subsumed
by the leading term.

THEOREM 4.4. The sum of degrees of n cells in the Delaunay triangulation
of any m points in three-dimensional Euclidean space is O(mz’( Iy m).

ReMARK. Because of the dual correspondence between Delaunay triangu-
lations and Voronoi diagrams (see [8]), Theorem 4.4 implies that the total
number of edges incident to n vertices of the Voronoi diagram of any m
points in three dimensions is O(mzf( P m).

5. Conclusions

This paper studies a number of combinatorial distance problems in three-
dimensional Euclidean space and derives improved upper bounds for all prob-
lems considered. The bounds are direct applications of an O(mz‘{ 3y m+
n) bound on the number of incidences between m points and n hyperplanes
in four dimensions which holds if no three points are collinear, no three hy-
perplanes intersect in a common 2-flat, and each hyperplane bounds a closed
half-space that contains all points. It is possible to extend the techniques and
results of this paper to d > 5 dimensions. However, because of the many
different general position assumptions possible we face a multitude of differ-
ent problems with different answers. It seems worthwhile to come up with a
classification of the different cases to guide future efforts in this direction.

Coincidentally, the above upper bound is the same as for the number of
incidences between m points and » lines in the plane, without restriction
on the points and lines. However, unlike in the planar problem where the
upper bound is known to be tight, there is no superlinear lower bound known
for the hyperplane incidence problem. To close the gap between the current
upper and lower bounds is the most important open problem suggested by
the results of this paper.

We would like to point out that although the results of this paper are mainly
combinatorial, the techniques also have algorithmic applications. For exam-
ple, [1] gives a randomized algorithm inspired by our constructive proof that
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finds a bichromatic minimum distance pair for a set of m blue and red

points in three dimensions in expected time O(m‘*’( : log“'“H 2 m). This algo-

rithm is used to construct a minimum spanning tree of m points in three
dimensions in the same amount of time.

REFERENCES

1. P. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl, Euclidean minimum span-
ning trees and bichromatic closest pairs, Proc. Sixth Ann. Sympos. Comput. Geom. 1990,
pp. 203-210.

2. B. Bollobas, Extremal graph theory, London Math. Soc. Monographs, no. 11, Academic
Press, London, 1978.

3. A. Bronsted, An introduction to convex polytopes, Graduate Texts in Math., Springer-
Verlag, New York, 1983.

4. K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl, Combinatorial
complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5
(1990), 99-160.

5. K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geom-
etry. II, Discrete Comput. Geom. 4 (1989), 387-421.

6. F. R. K. Chung, Sphere-and-point incidence relations in high dimensions with applications
to unit distances and furthest-neighbor pairs, Discrete Comput. Geom. 4 (1989), 183-190.

7. B. Delaunay, Sur la sphere vide, 1zv. Akad. Nauk SSSR Otdel. Mat. Estestvennyka Nauk
7 (1934), 793-800.

8. H. Edelsbrunner, Algorithms in combinatorial geometry, Springer-Verlag, Heidelberg,
1987.

9. H. Edelsbrunner and S. S. Skiena, On the number of furthest neighbor pairs in a point set,
Amer. Math. Monthly 96 (1989), 614-618.

10. P. Erdoés, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.

11. —, On sets of distances of n points in Euclidean space, Magyar Tud. Akad. Mat. Kutalé
Int. Kozl. 5 (1960), 165-169.

12. B. Griinbaum, A proof of Vdzsonyi’s conjecture, Bull. Res. Council Israel Sect. A 6 (1956),
77-78.

13. A. Heppes, Beweis einer Vermutung von A. Vdzsonyi, Acta Math. Acad. Sci. Hungar. 7
(1956), 463-466.

14. W. O. J. Moser and J. Pach, Research problems in discrete geometry, Manuscript, Dept.
Math., McGill Univ., Montreal, Quebec, 1986.

15. J. Spencer, E. Szemerédi, and W. T. Trotter, Jr., Unit distances in the Euclidean plane,
in Graph Theory and Combinatorics, Academic Press, London, 1984, pp. 293-303.

16. S. Straszewicz, Sur un probleme geometrique de P. Erdés, Bull. Acad. Polon. Sci, Cl. III
5 (1957), 39-40.

17. E. Szemerédi and W. T. Trotter, Jr., Extremal problems in discrete geometry, Combina-
torica 3 (1983), 381-392.

(H. Edelsbrunner) DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT URBANA-
CHAMPAIGN, URBANA, ILLINOIS 61801
E-mail address: edels@cs.uiuc.edu

(M. Sharir) COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY,
NEw YORrK, NEW YORrk 10012 AND SCHOOL OF MATHEMATICAL SCIENCES, TEL Aviv UNIVER-
SITY, TEL Aviv 69978, IsRAEL

E-mail address: sharir@taurus.bitnet



T




