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This paper proves that for every n>4 there is a convex n-gon such that the
vertices of 2n— 7 vertex pairs are one unit of distance apart. This improves the
previously best lower bound of | (5n— 5)/3 ] given by Erd6s and Moser if n=17.
© 1991 Academic Press, Inc.

1. INTRODUCTION

[his paper addresses an instance of a combinatorial distance problem
ginally mentioned by Erdés and Moser [EM] (see also [E2]). The
»blem can be defined as follows. Call a finite set, S, of points in the plane
wex if it is the set of vertices of a convex polygon, and write f(S) for the
mber of vertex pairs {p, ¢} with |p, g|=1 (|p, g| being the Euclidean

tance between p and g). Now define

f(n)=max{f(S)|S convex and |S| =n};

The first author is pleased to acknowledge partial support by the Amoco Fnd. Fac. Dev.
aput. Sci. 1-6-44862 and the National Science Foundation under Grant CCR-8714565.
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that is, f(n) is the maximum number of unit-distance pairs of a convex set
of n points in the plane.

Almost 30 years ago, Erdés and Moser [EM ] showed f(n) = 5n — 5/3 |
(see also [MP]), and recently Fiiredi [F] proved f(n) < c-nlog n for some
constant ¢ < 12. This implies that the convexity restriction is an essential
part of the problem since the maximum number of unit distance pairs for
the general planar case is known to be at least n' *<°8l°¢" (see [E1]). The
currently best upper bound for the general case is ¢ -n*? (see [SST]).

This note shows that the constant factor of the lower bound of Erdds
and Moser is not best possible. More specifically, we proved f(n)=>2n—7
which exceeds the other bound if n= 17. The lower bound construction is
presented in Section 2.

2. THE CONSTRUCTION

This section describes a convex set of n points in the plane that realizes
2n—T unit-distance pairs. It consists of the centers of three circles with
unit radius and n— 3 points that lie on the three circles. An elementary
geometry lemma that is used for the construction will be proved after
describing the point set and counting the unit—distance pairs.

Let 4, B, and C be the corners of an equilateral triangle whose sides
have length 1. 4, B, and C will not belong to the point set but merely aid
in the construction of S. Now draw a circle arc between B and C with cen-
ter at 4 and let a be the midpoint of this arc. Symmetrically construct b
between C and A4 and ¢ between A4 and B (see Fig. 1(a)). We finish the first
step of the construction by drawing a circle ¢, with center a that passes

(a)

FiG. 1. (a) Drawing the circle arcs. (b) Choosing the points.
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through A and symmetrically circles ¢, and c.. By construction, all three
circles have radius 1. Of the three circles only points sufficiently close to A,
B, or C will be used for S (see Fig. 1(a)).

For the next step of the construction assume that 4, B, C is the counter-
clockwise sequence of vertices around the triangle they define. Choose a
point a; on circle ¢, in counterclockwise direction after 4 but still suf-
ficiently close to 4. If e=|A4, a;| then the rest of the construction will
guarantee that all points of S— {a, b, ¢} lie in e-neighborhoods of 4, B,
and C. For sufficiently small £> 0 this guarantees that S will be convex.

Next, choose a point &, on circle ¢, such that |a,, b,| = 1. It is fairly clear
that b, lies after B, in counterclockwise direction, and we will establish
below that 0 < |B, b,| <|A4, a,|. Now just repeat the last construction step
until we have n points (together with a, b, and c¢) and let this be set S.
Thus, from b, we construct point ¢, on circle ¢, such that |b,, ¢,| =1, from
¢, we construct a,, from a, we construct b,, and so on and so forth (see
Fig. 1(b)). Since the construction is symmetric and we have 0< |B, b,| <
|4, a,| if a, is sufficiently close to 4, we obtain

|4, ay| > |B, by| >|C, ¢;| > |4, ay| > |B, by| > --- >0.

In fact, the points a; converge to A, the b; converge to B, and the c;
converge to C.

Let us now compute f(S), the number of unit-distance pairs. First note
that a is at distance 1 from every point a;, i>1, and the symmetric
statements hold for b and ¢. This gives n — 3 pairs. Second, a, is at distance
1 from b,, b, is at distance 1 from ¢, ¢, from a,, a, from b,, and so on.
This give n—4 pairs which adds up to 2n—7 unit-distance pairs as
claimed.

Finally, we prove the elementary geometry lemma used for the construc-
tion.

Lemma. 0<|B, b,| < |4, a,| if |4, a| is sufficiently small.

Proof. Consider a trapezoid W, X, ¥, Z with horizontal sides WX
and YZ that is symmetric with respect to a vertical axis. Assume
| W, X| > |Y, Z|] as in Fig. 2a. Let ¢ be the circumcircle of the trapezoid and
let U be the midpoint of the circle arc that connects X and Y. Symmetri-
cally define ¥ between Z and W. Observe that UV can be rotated around
the center of ¢ so that it coincides with WY which implies

\U, V=W, Y|.

Now replace the circle arcs connecting X and ¥ and Z and W by circle arcs
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Fic. 2. (a) Trapezoid construction. (b) A=U", B=V", a, =Y.

with larger radius than c. The edge connecting the new midpoints U’ and
V' is shorter than UV which implies

|U, V'| < |W, Y|

We remark that by the same argument a diagonal of the trapezoid is longer
than the edge connecting the midpoints of XY and of ZW. This, however,
is trivial since the total length of the diagonals of a convex quadrilateral is
always larger than the total length of two opposite sides.

We finish the proof of the lemma by explaining how the trapezoid relates
to the construction of S. As shown in Fig. 2b, we can identify U’ with 4,
V' with B, and Y with a,. Point W is after B in counterclockwise direction
and the distance between B and W is the same as between 4 and a;. By
the above analysis, we have |a,, W|=|Y, W|> |4, B| =1 which implies
that b,, which is at distance 1 from a,, must fall between B and W,
exclusive. [

Remarks. (1) The reader might notice that the lemma is not necessary
for the construction because |B, b,| varies continuously with |4, a,|. It is,
however, necessary for a complete understanding of the point set and helps
in eliminating an otherwise necessary case-analysis in constructing the set.

(2) Consider the graph whose nodes are the first 12 points of S and
whose edges are the unit-distance pairs among those points. If we contract
nodes a;, b;, ¢, for i=1, 2, 3 we get a K, ; which shows that the graph is
not planar (of course, that it is not plane as drawn in Fig. 1b is plain). This
excludes the possibility to prove a linear upper bound on f(n) by showing
that the induced graph is always planar.
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