T
" V. Bruvére

The introduction of the word yw in the forest above gives the path

1

(h', ca, ¢ ca’
in the tre? of root b7, where the last node is underlined. So, we come back to the
word cac’a*he’. I gives the path

(cac,ca’, a)

in the tree of root cac, where the last node belongs to T and has no son comparable

with be” So we finish by a trip in the tree of root be. We have effectively computed
the word

_l'lz b"."ﬂl")ﬂd.b""he Yl

such that v'¢ ywA*,
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This paper describes an eflective procedure for stratifying a real semi-algehraic set into cells of
constant description size. The attractive feature of our method is that the number of cells produced
is singly exponential in the numher of input variables. This compares favorably with the doubly
exponential size of Collins’ decomposition. Unlike Collins” construction, however, our scheme
does not produce a cell complex but only a smooth stratification. Nevertheless, we are ahle 1o
apply our resulls in interesting ways to problems of point location and geometric optimization,

1. Introduction

This paper studies techniques for building economical stratifications of real
semi-algebraic sets. Let f,,....f, be n d-variate polynomials with rational
coeflicients; we assume that the number of variables d as well as the maximum
algebraic degree of the polynomials are independent of n. We seek a partition of
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N into “simply-shaped™ cells, of dimensions ranging from 0 to d, so that each £
has constant sign (0, positive, or negative) over each cell ¢ in the decomposition.
If, in addition, each cell is a smooth manifold, such a decomposition is then called
a sign-invariant stratification. Our goals are (i) to keep the number of cells as small
as possible, and (ii) to keep the "shape’ of each cell as simple as possible (both
topologically and combinatorially). Obviously, the number of cells cannot be smaller
than the number of connecled components into which the varieties Vfi={f,=0}
partition 'R, In the worst case this number is on the order ®(n?), as easily follows
from Milnor’s Theorem [6, 7, 38). Note that these components might be very complex
and thus completely unsuitable for our purposes. In particular, the number of
polynomials needed to define a single connected component (in the unguantified
first-order theory of the reals) might be very large, not to mention its topology which
can be also very complex. To enforce property (ii), and more specifically, to ensure
that each cell can he described by a constant-size formula and is diffeomorphic
to an open k-ball, for some k= d, we need 1o cut up each such component still
further.

This prablem has been studied extensively over the last 15 years. Collins' landmark
paper [22] vields a sign-invariant stratification with O(n2' ') cells of simple shape.
The resulting structure is powerful enough to decide the truth of any quantified
formula in the firsi-order theory of reals, and in doing so, eliminates quantifiers
!‘mm such formulae. In fact, quantifier elimination has been recently shown to be
inherently doubly exponential in the number of variables [25]). Recent findings show
‘hou_revcr. that many restiicted problems related to the theory of reals can be solvc(;
tn singly exponential time and storage. For example, deciding the existential theory
of the reals [42], eliminating quantifiers from a formula with a bounded number of
allf:rnalions between universal and existential quantifiers [9, 30], or deciding if two
points lie in the same connected component [10]. Our paper can be regarded as
another step in that direction,

!,el us first motivate our study by its applications. A major one is the generalized
rmml.locminn problem discussed in [16]-and its applications. Let f,, ... f. ben
d-\lmrmle polynomials as above, and let x be a point in M9 is x a lz.e;'o ol" ;ny fi?
It 'u: understood that the polynomials are given once and for all, but that the poli;lt
¥isa query which must be answered on-line. In many applications it is desirable
to ol'?lam more information than a simple yes-or-no answer, so we add the following
requlremem._s. If the answer is positive, the index i of some f; for which x is a zero
should be given. Otherwise. the point x falls in some conr;ectcd component ¢ of
Mieicn l.l'*' M0 v) = 0}, and the output should return a pointer (o some precom-
puted [Tm.m in ¢, or more generally, some precomputed attribute associated with ¢
Often, |1.-s useful to obtain information about the varieties at or right above the.
qﬂe!‘?’ poml. For example, if x =(x,, ... + Xq) is not a zero of any f;, this might mean
providing the index k of some fi (if any) such that f(x, X4 1, 2) has the
smallest real root (in -) larger than x, ar;mng all /'s. ' e

The mt‘flivalion for studying this generalized form of point location is that its
language is powerful enough (o express any multidimensional searching probiem

A
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expressed as a first-order predicate in the theory of real-closed fields. A related
application, which in fact is also used as a subroutine in the point location algorithm,
is the following general paradigm: We are givén the polynomials fiv. .o fyasinput
data to some problem that needs to be solved over the entire space WY We would
like to break the problem into independent subproblems, by decomposing M into
a small number of cells and by obtaining in each cell ¢ a subproblem that involves
only the polynomials whose varieties V f; intersect ¢. If we can keep both the number
of cells and the number of varietics crossing each cell small, then this divide-and-
conquer scheme will be efficient. This paradigm has indeed been used for point
location [18] (albeit only for hyperplanes), as well as for a miscellany of other
algorithmic and combinatorial applications (see e.g., [4, 14, 17,19, 20, 27, 32, 41]).
With the exception of [ 20], however, these applications involve only linear features
(points, lines, hyperplanes, etc.). Moreover, most of these studies involve planar
decompositions, and only very few efficient decomposition techniques are known
in three dimensions [4, 12, 15] or higher [22].

The extensive theory of random sampling that has been developed in the last few
years (e.g., in |14, 17,19, 20, 27, 32, 41] provides a tool to implement this divide-and-
conquer paradigm: Choose a random sample R of r of the varieties \/ f, and obtain
a sign-invariant decomposition of M’ for R. The analysis of [14, 17, 19, 32| implies
that if each cell ¢ in the decomposition has a simple shape, then, with high probability,
no cell meets more than an(log r)/r varieties (for some constant a that depends on
the dimension d and the degree of the given polynomials). Chazelle and Friedman
[14] provide a deterministic method for constructing such a decomposition. Thus
the size of the decomposition is a crucial factor in the overall complexity of this
divide-and-conquer technique.

This paper provides an efficient new technique for stratifying real semi-algebraic
sets. Roughly speaking, we show how to partition d-space into cells of constant
description-size, over which the signs of the f’s remain invariant. Fach cell is a
smooth connected manifold which admits a simple parametrization and can be fully
specified as a semi-algebraic set over a constant number of polynomials. The number
of cells is O(n) in one dimension and O(n** ?) in dimension d > 1. Actually, with
a bit of extra work it is possible to lower the space requirement to o(n™ 'Bin))
for d =2, where B(n) is a very slow-growing function (so slow that its inverse is
not even primitive-recursive); specifically, we have g(n)= 24" where ¢ is a
constant dependent only on the dimension d and the maximum degree of the input
polynomials, and « is a functional inverse of Ackermann’s function. This fairly
minor improvement requires a lengthy analysis, so it will be omitted. The construction
can be performed in time O(n’" 'log n). Within the same asymptotic time we can
also compute an algebraic point in each cell of the decomposition.

As we mentioned earlier, our construction produces a number of cells which is
singly exponential in the dimension (as a function of n), and is thus a noticeable
improvement over the doubly exponential size of Collins® decomposition [22]. Of
course, the purpose of Collins' construction is different from ours, since it is designed
as a decision procedure for the first-order theory of real-closed fields. Incidentally,
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our algorithm can decide the existential restriction of that theory, albeit not as fast
as in [11,42]. One drawback of our method is that, like Collins', it generales
polynomials of degree doubly exponential in the dimension. Reducing this bound
to singly exponential is a challenging open problem.

Applying this stratification technique in conjunction with the random sampling
approach, we obtain an eflicient point location algorithm that can answer any query
in O(log n) time, using O(n*? ?'") space, in dimension d > 1, for any fixed ¢ > 0.
The preprocessing time is O(n*'"") time (deterministic) and O{n**"?**) (random-
ized). These bounds assume that the coefficients of each input polynomial fi, as
well as of certain auxiliary polynomials derived by the construction, can be stored
in a single computer word and that arithmetic operations on word-size integers can
be performed in constant time. To obtain an upper bound on the bit complexity
of the algorithm we must multiply both preprocessing and query times by a poly-
nomial in the maximum number of bits required to encode any coefficient in the fi's.

Our result is a substantial improvement over ther the best previous algorithm,
which requires storage doubly exponential in the dimension; namely, O(n®' ') [16].
Many algorithms have been given for searching among curves in two-dimensions
[21, 28, 44]. See also [26. 39| for background information.

Point location among algebraic varieties is at the center of subquadratic algorithms
for many optimization problems. By straight substitution of our techniques we
improve upon all these algorithms at once. Here are a few examples among many
others:

(1) Computing the minimum vertical separation between two sets of line segments
in 3-space [37].

{2) Computing the longest line segment which fits inside a simple polygon [37].

{3) Computing the time at which the convex hull of a set of points in (polynomial)
motion enters its steady-state | 5]. : )

(4) Given m red objects (algebraic curves, surface patches, etc.) and n blue
objects, does any red object intersect any blue object? (A generalization of Hoperoft's
problem ).

(5) Giiven m rays and n triangles in 3-space, find the first triangle hit by each of
the rays, or alternatively, find the number of triangles stabbed by each ray [16].

This paper is organized as follows. In the next two sections we discuss our
stratification technique and we introduce the key notion of a semi-cylindrical cell
df'cnmposiiinn. We discuss point location in Section 4 and mention some applica-
tions of our techniques in Section S. To preserve the flow of the presentation, all
the proofs that are not essential for the understanding of the overall discussion have
heen relegated to an appendix,

2. Preliminaries

We recall some standard terminology and introduce some of the hasic concepts
to be used later. In particular, we define a sign-invariant stratification formally, and
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we discuss the notion of a cylindrical cell and its upper boundary. Finally, we review
the algebraic tools needed for eliminating variahles from polynomials, and in
particular, the fundamental theorem of subresultant theory.

Let Q= Qlx,....,xs] be the ring of polynomials with rational coefficients. A
subset of M” is a semi-algebraic set if it can be derived from sets of the form
{xe M’ |f(x) =0}, where [ Q,, by union, intersection, and complementation. It is
a classical result that any semi-algebraic set in M can be partitioned into manifolds
of dimension between 0 and d |49]. Such a partition is called a stratification; its
elements are called strara. It is immediate that the n-fold product of the stratification
of it given by (00, 0), {0}, and (0, +00) is itself a stratification of M": its strata are
called sign-sequences. Given a polynomial map F=(fi,. .- [ }: M =M", where
each f;€ Q,, the preimage F '(o) of a sign-sequence o is called a maximal sign-
invariant set. A stratification of M" is sign-invariant for F if each stratum is a subset
of a maximal sign-invariant set.

Let us make a few remarks to clarify these concepts. It should be clear that the
collection S of maximal sign-invariant sets need not always be a stratification. For
example, let d =2 and F = (f,), with f,(x, ¥) = xv. The variety {(x, ¥) € W*|fi(x, p) =
0} belongs to S, but it contains the critical point (0, 0) and thus [ails to be a stratum.
Interestingly, however, perturbing f, into f| =/, +¢, for almost any ¢ # 0, ensures
that the variety f(x, ) =0 consists of regular points, and hence, is a I-manifold’.
In general, it follows from Sard's Theorem |47] that the values of F(x) are all
regular, except for a zero-measure subset of . Consequently, for almost any change
of Finto F +¢, where £ =(f,,....,r,)eM", the perturbed variety

{xeM|f(x)+e,=0,... fi(x)+r, =0},

for any k=d. is a (d — k)-manifold. (This means, for example, that a randomly
perturbed polynomial curve in R’ does not self-intersect.) It follows trivially that
each maximal sign-invariant set is now a manifold. Thus, if § is not a stratification
to begin with, almost any perturbation in the constant terms of the n coordinate
polynomials of F will make it into one. Although not essential for our theory, this
might be a useful tool in practice.

The main tool behind our data structure for point location is a new constructive
proof that semi-algebraic sets admit sign-invariant stratifications. A crucial feature
of the construction is that each stratum is a semi-algebraic set which can be defined
by a constant number of polynomials of Q,. We call such a set a Tarski cell. This
can be regarded as a first step towards triangulating real-algebraic varieties. What
will be lacking in our construction, however, is that our Tarski cells do not “glue”
properly to one another to form a cell complex [45].

A cvlindrical cell of M is either a singleton {a}, where a is real-algebraic, or an
open interval (a, b), where a and b are real-algebraic or +00. The upper houndary
of the cell ¢, abbreviated ubd{¢), is {a} in the first case and {b} in the second case.

' Throughout this paper, unless specilied ntherwise, the term manifold will refer to a smoath manifold
without houmdary
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Il bh=+c0, however, the upper boundary of ¢ is not defined. Given x=
(xi,.oooxy )eM’ "and Y <R, theset {(x,,...,x, ,, ¥} ye Y} is denoted x® Y.
If k>1, a cylindrical cell of R* falls in one of the five categories below, where ¢’
is a cylindrical cell of M* ', and f, g are real-valued smooth (i.e., infinitely differenti-
able) functions over ¢
(i) e = {x®(f(x), g(x))|x€ ¢}, where ¢ is a cylindrical cell of *~', and
S(x)<g(x) for all x € ¢". The upper boundary of ¢ is | {(x®{g(x)}|x € ¢'}.
(ii) c={x® (-, g(x))|x e’} and ubd(c) =) {(x@{g(x)}|xe ).
(iii) c=1J{x®{f(x), +c0)|x € c'}; its upper boundary is not defined.
(iv) c=U{x®M|xec’); its upper boundary is not defined.
(V) e=U{x®{f(x)}|x€e '} and ubd (c) = {c}.
The smoothness of f and g ensures that cylindrical cells and their upper boundaries
(when defined) are connected smooth manifolds which admit single-chart bases
[47] (meaning that they can be described by a single local parametrization). In the
following the dimension of a cell will refer to the dimension of the corresponding
manifold.

Lemma 2.1. A cvlindrical cell of M is a k-manifold (k < d) which can be parametrized
by a single smooth diffcomorphism mapping the open unit ball U* to the cell,

Proof. See Appendix. []

Lemma 2.2. Whencver defined, the upper houndary of a cylindrical cell of dimension
k (as a manifold) is a cvlindrical cell of dimension k or k—1.

Proof. Straightforward induction. [

The notion of upper boundary allows us to define cell decompositions in a two-stage
process: First, we pack ‘N with cylindrical cells whose closures cover R?; then we
complete the packing into a covering by adding on appropriate upper boundaries.
We develop this idea in detail in the next Section.

We cl.osc these preliminaries with a short review of subresultant theory. Let
A=), i, an" and B(x)=},_,., Bx' be two polynomials with coefficients in
Q or Q.. (or actually in any integral unique-factorization domain with identity
[48]), where a,, B, # . From the uniqgue factorization Theorem we easily find that
Alx) and B(x) have at least one common divisor if and only if there exist two
polynomials U(x) and Vix) of degree h—1 and a -1 respectively, which do not
vanish identically, such that

U{x)A(x) - VI B(x). (2.1)

|l‘1d.eed. if the identity above is true then all the irreducible factors of U(x)A(x)
divide V(x)B(x). But V is of degree too small to contain all the factors of A with

% OB remimsnE
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their multiplicities, so some factor of A must divide B. Conversely, if A and B have
a common factor f(x), then we have the equation

(B(x)/f(x)NA(x) = (A(x)/[(x)) B(x),

which establishes our claim. Now, if we develop (2.1) we obtain a homogeneous
system of linear equations which, in order to have a nontrivial solution, must have
its determinant equal to 0. This (a+ b)x(a+ b} determinant is called the resultani

of A and B:

@, a, cee g
oy @, | " Oy
o, @, gy
Br Bny ' Po
Br  Bw o Ba
By By - Bo

Pursuing in this vein we can characterize the fact that A and B have a specified
number of common factors by using subdeterminants of the matrix ahove. For
0<j<=min(a, b), let M, be the matrix obtained by deleting the last j rows of A
coefficients, the last j rows of B coefficients, and all the last 2j columns. We can
then define psc’(A, B) (the jth principal subresultant coefficient of A and B) as the
délerminanl of M,. The same reasoning used above leads to the following important
fact (e.g., Brown and Traub [8]).

Lemma 2.3. Two polynomials A and B have exactly j common roots (i.e., j is the degree
of their greatest common divisor) if and only if j is the least index k for which

psc*(A, B)#0.

3. Semi-cylindrical cell decompositions

Let F=(f,,....f,) be a polynomial map in Q. We build a sign-invariant
stratification of M’ for F by assembling cylindrical cells together, one dimension
at a time. Let V f,={x|f;(x) =0}. The gist of the method is to consider the variety
V fixf;, for each pair i=j, and form its intersection with each of the remaining
varieties. Then we project all these intersections onto M ', along with the critical
points of V/ f;x f,, and the silhouettes of all the varieties (i.e., the critical sets of their
projection maps). We treat these projections as a collection of polynomials in Q, .
Proceeding recursively, we end up with a cell decomposition of MY ', which we
next lift cylindrically into a cell decomposition of R”. Finally, we use the variety
V f,%f; 1o chop off the vertical cylinders into cylindrical cells. We now repeat this
aperation for all pairs f;, f;, which gives us a total of ("; 'Y cell decompositions of
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MY referred to as K-decompositions. Next, we examine every cell of every K-
dcc'omposition in turn, and keep only those that are free of intersections with any
variety V f;. These candidate cells might still be intersecting, so we add one final
selection criterion based on the indices of their defining polynomials. This gives us
a collection of mutually disjoint Tarski cells which, together with their upper
boundaries, constitute the desired sign-invariant stratification of M.

The resulting stratification, denoted #,( F), is called a semi-cvlindrical cell decompo-
:ri;:'(:n. If d =1, we have Collins' decomposition: The union 'ol' the n varieties V f;
is a discrete set of real-algebraic numbers L<&H<-o-<gy, and &,(F) consists ol:
the cylindrical cells

(—oo, fl’-lfu!.(fh_{?].. ,.,{f‘]‘ (&, +o0),

To treat the general case we must define the intermediate K-decomposition K (¢, )
wh'ere w and ¢ are two polynomials of Q,. As we just outlined, the master pla‘n is;
to identify the building blocks of /#,( F) among the cylindrical cells of K (f], f;), for
atl i, j (i< j). i
Let's look at an example. Consider the four bivariate polynomials f; (1=i=<4d)
whose varieties, A, B, (., [, are shown in Fig. 1. Pairing A and B, we obtain the
ficconrnposilion of M corresponding to the sequence of points and horizontal segments
in Fig.2. Lifting this decomposition in the vertical direction gives us our first
K-decomposition (one should ignore the dashed curves in the figure). It consists
of a collection of cylindrical cells. Let us restrict our attention to the twn-c.iirnensional
j:ells‘that do notintersect any of the varieties A, B, C, D (dotted and hashed regions
in ‘I-"1g. 2). Some of the cells (the hashed regions) will be rediscovered during the
pairings (A, A) and ( B, B), and are best ignored for the time being. The three dotted

Fig. 1.
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regions are the two-dimensional cells which we keep once and for all as part of our
final decomposition. We also add on their upper boundaries. The remaining cells
are obtained by repeating the argument with the nine other pairings of A, B, ', D
(Fig. 3). The labels of the regions indicate the pairings at which they are selected.
Note that because of the junctions at a and b the final decomposition does not
form a cell complex. These “faulty” junctions always occur at the bottom of vertical
segments and not at the top because of our rule of adding upper and not lower
boundaries. Of course, this problem is easy to fix in two dimensions but it appears
much more formidable in higher dimensions.

3.1. The K-decompasition

Let A be a polynomial in Q,. Regarding A as a univariate polynomial with
coeflicients in the ring Q, ,, we can write
AlXy, o X)) = g e Al Xy REVS
where A, is not identically null. Following Collins’ notation [22] we define deg(A) =
a and Idef{AY=A,(x,,....%; ). For any k (0= k=<a) we also need the kth
reductum
red (AY= Y  Adx...o. 8 )X

[LERT R I 1
Let G be the polynomial map whose coordinate functions are the nonzero poly-

nomials in | G, where

(1) G,= !red"l'gﬂk =0 and deg(red"(g)) =1 and gele, b fi..... [}
(i) G.={red"(g)|k =0 and degtred*(g)) = 1 and ge {g, W},
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(i) G\ ={ldcfig)|ge G},

(iv) Go={psc*(g ag/ax,)|ge G, and 0=k < deg(ag/ax,)},

(v) Go={psc*(f.g)|f€ G,and ge G, and Ok < min(deg(f), deg(g))}.

T.‘hc reader familiar with Collins decomposition will recognize similarities in the
varla?ale elimination procedure. One crucial difference, however, is that all pairings
hCrChII'IW"I]VC either @ or 4, and are therefore considerably fewer. Regard each g as
a univariate polynomial in x,, so its coefficient domain is parametrized by a point
in M* ' Roughly, (iv) delimits the regions of ¢ ' where the number of real roots
of each g ¢ 5, changes, while (v) keeps track of where ¢ and ¢ (and their reductae)
acquire or lose common roots with each g The reason for including (iii) is that
changes in the number of roots might occur simply because of changes in the degree
of g. (Actually, this slight annoyance can be avoided by applying a normalization
procedure described in |40] for Collins’ decomposition: The idea is to change
coordinates so that each g receives a constant nonzero leading coefficient.)

We are n?w ready to construct ¥, ,(G) recursively. At this point we must mention
an assumption which we wish to make for the sake of convenience: Every polynomial
;'IZ( %142 Ya) should be well-based [46], meaning that g, as a univariate polynomial
in x4, should never vanish identically. In other words, its coefficients in Q. ., should
never 'hc all 0 simultaneously. Furthermore, this should also be true in all the
ReEiNive calls made by the algorithm. As it turns out, a random rotation in the
coordinate axes ensures well-basedness with probability 1. We shall not elaborate
on this issue, which is thoroughly discussed in [46].
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Note that, unlike the base decomposition used in Collins’ construction, £y (G)
is much too coarse to delineate the x,-roots of each f. Still, since ¥, (G) is
sign-invariant for G, we have a form of partial delineation. To elaborate on this
point, we need a few definitions. Let x¢ N " and let p(x; z)e Q,; ,[z]. Given a
connected manifold S " ' we say that the functions {£,: S — R |1 = i < I} delineate

p over S if
(i) each ¢, is smooth over S
(ii) for each x€ 8, we have {,(x)< {(x)< - - <{(x);

(iii) for each k=1,..., 1 there is an integer m, such that, for each x€ S, {i(x)
is the kth largest distinct real root of p, and this root has multiplicity m,;

(iv) for each x€ 8, p has exactly [ distinct real roots.
Note that the domain of {; need not extend beyond § and that the functions trace
only distinct real roots. Our definition of delineation differs from the standard one
[22]in two minor aspects: ignoring complex-valued roots and requiring smoothness.
Let us now substantiate our previous claim about partial delineation. We will
eventually prove that the cells of ¥,(F) are manifolds which are diffeomorphic to
the k-dimensional unit ball U*, so let us assume inductively that this is true of
#4 (G) (the basis case being obvious), and that ¥, (G) is a sign-invariant
stratification for G. We also assume that d > 1.

Lemma 3.1. The functions @, . fy,.... [, can all be delineated over each cell of
Sy LG

Proof. See Appendix. (1

Let g be the product of two polynomials r and s, where re {¢, ¢) and se
{e. 0. fr.....[.). We will now show that g is delineated over each cell ¢ of ¥, (G).
From the proof of Lemma 3.1, it suffices to show that for g as a univariate polynomial
in x,, the number of distinct roots of g(x,,...,x,;) remains constant for each
(Xy.....Xq )€ c. We have deg(g) = deg(r)+deg(s), so G, ensures that the degree
of g is invariant over c. Now what about root multiplicities? Since both r and s can
be delineated over c the only thing to check is that the degree of the greatest common
divisor of r and s (again as polynomials in x,) is constant over ¢. But this is precisely
what G; is there to ensure.

For a given x¢ ¢ and polynomial g(x, z), form the list of distinct real roots of g
and merge together these lists for all g in {@(x, 2), i x, 2), filx, 2), ..., [(x 2)}. We
obtain a list of smooth functions p{x)= - - = p{x). Since ¢ delineates ¢ x g for
any g€ {u fy. ..., 1} the real-root functions associated with ¢ are strictly ordered
among the others: This means that il p, is associated with ¢, then for all j, we have
P2 P OF p, =y, of p, = p,over the entire domain ¢. We refer to this property as
partial delineation. Of course, the same applies 1o . Now let j(x)< - < i (x)
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(k = 1I) be the (distinct) real-root functions associated with ¢ X . Since these func-
tions are smooth we can build a stack of cylindrical cells:
(i) U {x®@( -0, g{x))]xe ),

(i) U {x®(putx), +o0)|xe o},

Gil) U x®(px), piyy(x)) [xech (1=i<k),

(iv) U {x®{(x)}xech(1=i=k),

Cells of type (i)-(iii} are called layer cells, whereas cells of type (iv) are called
seciion cells (think of a birthday cake). Note that these notions are well defined
because the polynomials are well-based. A remark which will have its importance
later is that each section cell is the upper boundary of a unique layer cell. Collecting
cells for all ce .Y, () forms the desired decomposition K, ¢). In light of
Lemmas 2.1 and 3.1 it follows by induction that K (¢, ¢) is a stratification of ¢
into cylindrical cells. The lemma that follows describes the most useful property of
layer cells, for our purposes. It is an immediate corollary of partial delineation.
Roughly speaking, the lemma says that if we can poke a layer cell from floor to
ceiling with a vertical segment that intersects none of the varieties in the middle,
then the whole cell is itself free of intersections with the varieties.

Lemma 3.2. Suppose thar a laver cell ce K(p, W) contains a point x=(x;,..., %)

such thar g{x,,.. N 2)F O foranyge{o, i fy, ..., f,} and any z € N satisfying
(%1o....xs y,2)e e Then the same is true of any x € c. Furthermore, given x =
(¥i.... %) € ¢, the subset of functions g in {@, o, f,, ..., [} which contribute the nexi

real root (as polynomials of Q, | 21} larger (or smaller) than x, is invariant forall x € c.

Let us now show that these cells are Tarski cells (i.e., admit constant size
representations) and that an algebraic point can be computed for each of them.
Again, we proceed by induction on the dimension d. Regarding the representation
issue, it follows from the four cases listed above that all we need to show is that
heing the kth largest distinct real root of ¢.(z)%y.(z) can be expressed by a
quantifier-free formula involving only a constant (dependent on d) number of
polynomials and Boolean connectives. This is quite obvious if we allow quantifiers
[2] which is fine since we can use Collins" method afterwards to eliminate all the
quantifiers. To compute an algebraic sample point in each cell is straightforward.
As in [22], we lift an algebraic point xe ce ¥, (G) into 'H” by assigning to it the
following sequence of x,-coordinates:

i alx)+ g (x)

Al —1, p ), B 2
2

2 2 A (x), g (x) + 1.

o j’-h |‘X );
Of course, the difficulty is to compare and do arithmetic with (recursively represen-
ted) real-algebraic numbers, [9, 23, 24, 29, 30, 35, 36, 43] for a discussion of this
and related issues. A very short primer on real-algebraic numbers is given in the
Appendix. We will have 10 come back to the subject later when we analyze the
complexity of the algorithm,

-

— e -
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1.2. The semi-cylindrical cell decomposition

We are now ready to assemble our semi-cylindrical cell decomposition. Given
F=(f.....[.,)e @4, we begin by computing K(f,f) for each pair i, j such that
1<i<j<n Then we argue that the (";') K-decompositions contain all the cells
necessary to form %,(F). The only problem is finding the right cells. Intuitively,
we would like to include only layer cells that are not crossed by any variety; collecting
such cells over all pairs f;, f; will give us only “empty™ layer cells, which, put together
and glued to their upper boundaries, will yield the overall desired decomposition.
Some caution must be used, however, to avoid accepting the same cell several times.
This selection process is now described in detail. Let ¢ be a layer cell of K(f,f;)
and let & = (a,, ..., @4) € ¢ be its precomputed sample point. Should ¢ be accepted
into #,(F)? To decide, we compute three sets of indices L(a), M(a), U(a). Let
z;<---=1z be the real roots of the univariate polynomials fi(a,,..., a4 y,2)
(1= k= n), where each z, is associated with a unique f,. We partition the sequence
of roots into blocks B,, B,, ... of equal value. Thus, all z,’s in B, are equal and
strictly less than the roots in B,, etc. Now let B,, be the block (if one exists) whose
corresponding root value is precisely a,. We define M(a) (resp. L(a) and Ua))
as the set of indices associated with B,, (resp. B,, , and B,,,,). If there is no such
block B,,, then M(a) is empty and L(a) (resp. U(a)) is the set of indices associated
with the block whose root value is the one immediately smaller (resp. larger) than
a,. Note that any one of L(a), M(a), or U{a) might be empty. Assume that all
three sets have been computed. With the convention that min 1= 1, the inclusion
rule for ¢ is particularly simple: Accept c if and only if

M(a)=0 and {i,j}={min L(a), min Ula)}. (3.1)

(The minimization is used to ensure that no cell is accepted more than once.) To
complete the construction of ¥,(F), we simply throw in the upper boundaries of
each layer cell accepted. This asymmetry justifies the name semi-cylindrical cell
decomposition. The following falls straight out of Lemma 3.2

Lemma 3.3. Given a polynomial map F=(f,,...,f,)e Qy, the set ¥;(F) is a sign-
invariant siratification of M into Tarski cvlindrical cells.

Proof. It suffices to show that given x € N’ there is a unique cell ¢ in ¥, (F) that
contains x. We begin with the case where M(x)=#. The key observation comes
from Lemma 3.2: Given x € ¢, the set {min L(x), min U(x)} is invariant over ¢. This
implies that the unique cell of KI(f,/f) containing x,  where i=
min{min L(x), min U(x)} and j = max{min L(x), min U(x)}, is also the unigue cell
of #4(F) that contains x. Suppose now that M(x)#{. Then because of well-
basedness, the point y=x+(0, ..., 0, — ) satisfies M(y)=M#, for any positive r
small enough. Therefore, it lies in a unique layer cell of /,( F). The upper boundary
of that cell is the unique cell of #,(F) that contains x. []
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The reader is invited 1o check that Fig. 3 is indeed the decomposition resulting
from the curves of Fig. i. A few observations are in order. Why are not the two
regions labelled AA at the bottom left merged together? The reason is that during
the pairing (A, A), the silhouette of B {and C for that matter) is projected in the
vertical direction and causes this apparently useless separation. To avoid it might
be tricky because silhouettes are sometimes needed for delineation, as shown in
Fig. 4. Note that these two regions are discovered during the pairing (A, A), where
they are included in the final decomposition, but also during the pairings (A, B),
(A, C), and (A, D). Finally, the reader should pay particular attention to the “faulty™
Junctions a and b. What happens there is that the two-dimensional region labelled
AB, incident upon these points, forces its upper boundary into the decomposition,
but this clashes with the lower boundaries of the regions right above.

1.3 Trimming the stratifications in lower dimensions

Semi-cylindrical cell decompositions often contain many superfluous features:
certain cells could be merged together and we would still have a sign-invariant
stratification. As we already saw, Fig. 3 displays several examples of that, This is a
phenomenon which seems difficult to avoid. As we will show in Section 3.4, our
construction yields O(n™ 7) cells, which is still far from the Thom-Milnor bound
of O(n”} on the maximum number of sign-invariant components. It is possible to
trim down the decomposition in two and three dimensions. The three-dimensional
case is quite complicated, however, and yields only modest savings, so we will only
discuss the trimming process in two dimensions.

We begin with a briel review of Collins' decomposition in two dimensions. Let
F=(/i,..../.) be a polynomial map in Q} and let (x, y) be a Cartesian system of
coordinates. A cylindrical algebraic decomposition for the polynomials f,, ..., f,, or
cad for short [22], is defined by considering the prajection set C =1_J,. ;<4 C,, where

(iV €y ={red*(f,)|k ~0 and deg(red*(f))=1 and 1 < i=<n),

(i) = {ldeftg)fg- ),

(iii) Co={pse* (g og, ) |ge €, and 0= k < deg(dg/av)),

(iv) Co={psc" (1 g)|f.ge €, and 0=k < min(deg(_!'); deg(g))}.
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This is the projection set in its most general form, so that generalizing it to higher
dimensions is just a matter of substituting the right variables. As it turns out, reductae
are not necessary in two dimensions, as our previous discussion on delineation
should make clear. Indeed, each polynomial Idcf{ ;) is univariate and therefore has
a finite number of roots. Since delineation among these roots will be ensured,
anyway, the reductae become irrelevant. (We shall leave them in, however, for the
sake of simplicity).

A cad of the real line for polynomiais g,,..., g, is defined just like a semi-
cylindrical cell decomposition for the polynomial map (g, ..., g.). To define the
cad for F (in two dimensions), we begin by computing a cad of M for C, which
we will use as a base decomposition. Then we build cylindrical cells by lifting the
cells of the one-dimensional decomposition, using the f;'s to create sections. The
process is exactly the same as if we tried to define a K-decomposition with respect
to f,....f. using the one-dimensional cad as a base decomposition. We do not
elaborate on Collins’ construction any further and refer the reader to [ 22] for details.
However, let us mention the useful fact, proven in [46], that because of well-
basedness, a cad is a cell complex.

We define a vertical edge to be any one-dimensional layer cell. Similarly, a verfex
is a 0-dimensional cell. Next, we set out to remove extraneous vertical edges. To
do so, we need adjacency information about the cad, which we obtain by computing
all cell incidences. There are several ways to do that. For example, Schwartz and
Sharir [46] give a method for determining into how many real roots a given root
function splits, as we move from a cell to one next to it (which is the key question
for determining incidences among the cells of a Collins decomposition). Given a
real root p of ¢(x, z)€ Q[ z], what happens to it as x moves to x + rv, where v is
a vector pointing towards the next cell, and p splits into several roots? For each
new root z, we can express z — p by a fractional power series in £. A method is then
needed to assess how many terms must be computed to be able to count the number
of splits. This leads to a polynomial-time algorithm for computing incidences
between cells of codimension 0 and 1. Using a different approach based on certain
gap Theorems for real-algebraic numbers, Prill [40] gives a general polynomial-time
algorithm for computing cell incidences. The rough idea is to compute approximate
sample points for the cells and test incidence between two cells by checking how
close their sample points are. The key here is to prove that points need not be too
close and that fairly coarse approximations can be used. In our case, however, we
can avoid many of these difficulties by using a simple procedure from [3] which is
tailored for two dimensions and relies only on root isolation. The gist of the method
is to enclose each critical point in a box small enough so that all the branches at
that point cross the same vertical side. See also [ 33]. Other techniques for analyzing
the topology of real-algebraic curves (which is what the discussion above is all
about) are given in [24, 29, 43].

We now return to our main objective, which is to characterize the necessary
vertices and edges and set out to eliminate all the others. We must assume that all
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the cell incidences of the cad have heen computed. We say that a point (a, b)e W2
15 proper if
(1) f0a, by tdeftred (£ a) = 0, for some i{l=i=n)andsome k = 0such that
degred (£)) 1, or
(2} fita, b)=pse’ig dg/ivMa) =0 and g =red"( 1), for some i, k, | such that 1=
i=n k=0, and 0= [ deglag/iv), or

(3) fla, b) = ta h) =0, for some i, j (1= j=n).
We extend case (1) to the points at infinity along asymptotic branches. Figure 5
depicts proper vertices of all three types. Case (1) shows two proper points of type
(1), one of which is at infinity. We shall now remove every vertical edge of the cad
that is not incident upon at least one proper vertex (possibly at infinity). An example
is given in Fig 6. Because the edges removed do not delineate any function locally,
the natural variant of Lemma 1.2 still holds, That is, given any layer cell ¢ of the
new cad, the functions f,, .. | /. which contribute the next real root larger (or
smaller) than vy are the same Tor all (x, v) ¢ ¢ Similarly, any point in a given section
cell is the zero of the same subset of f's. Note that the order of removal does not
matter. (One might also observe that this cleanup will not always produce a minimal
set of vertical edges: Indeed, edges might still remain which play no role in the
delineation process.) Identifying edges to be removed can he done directly on the
hasis of the infornsation provided by the cell incidence algorithms mentioned earlier.
Similarly, repairing the decomposition (e.g., merging edges adjacent to a removed
edge) involves only straightforward local surgery, once incidences are known. It is
a simple exercise to show that the edge removal keeps all the cells cylindrical and,
in particular, maintains their smooth ditferential structure. This completes our
discussion of the sign-invariant semi-cylindrical cell decompasition of M for F, or

% : .'
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2-sed for short. Since the number of proper vertices is O(n’), a simple planarity
argument shows that the number of resulting cells is O(n”) as well.

1.4, Complexity analysis

The combinatorial complexity of ./,( F) obeys a simple recurrence relation. Let
¢(d, b, n) be the maximum number of cells in /,(F), given that F=(/f,,....f.)
and each f ¢ Q, has degree at most b. The size of L. ,. <G, does not exceed
2b'n+b’n and, because the subresultants we use are determinants of size at most
2h by 2b, their maximum degree is at most 2b°. Consequently, we have ¢(1, b, n) =
Otn) and

+1 3 3
cld, b,n)=(4h+ l](”2 )t‘(d -1,2h°,(2b+ 1)b"n), ford >1. (3.2)

This recurrence is very conservative, so let us look more closely at the case d = 2.
In particular, let us estimate the number I of edges in /,( F) when b is considered
a constant. This will give us an asymptotic upper bound on the total number of
cells: We have E = E_+ F,, where E_ counts the section edges and F, the vertical
edges. The closure ol every vertical edge contains at least one proper point and
there are O(n’) proper points, so E, = (( n’). Since, obviously, F.= E, +O(n"), we
derive ¢(2, h, n)=()(n"}, in the case where h is a constant,

Resolving the recurrence in (3.2) we find that for any d =2, ¢(d. b, m) =0(n™" 7).
Note that if b =1 (the linear case) then we can use simpler and more efficient
methods (e.g., Clarkson [17], Edelsbrunner [26]), which produce only O(n®) cells.
Let I be the maximum norm-length of the f,'s, that is,

I= max [logtw(/f)+1)].
-

It follows from Collins™ analysis that the norm-length of any intermediate polynomial
is at most O(1), if we take b to be a constant and assume that a computer word is
at least [ bits long. Similarly, encoding the sample points will require O(1) words
per point. An important remark is that although we can assume that b and d are
fixed constants, we cannot extend this to L Indeed, treating ! as a constant would
limit the maximum number of distinct polynomials to a constant: not a very wise
thing to do!

The preprocessing time (d, b, n) follows a recurrence similar to (3.2). Up to
within a constant factor, we have

n+l 3 5
e, b,n)- ( - )l(d =1, 2b (2h+ Vb n)

1 . ,
+(ah+ n("1 ){'(d ~1.26°,(2b+ Db nYh(d, b, n),

where hid, b, n) is the time for checking whether a cell of a K-decomposition of
N should be accepted in the semi-cylindrical cell decomposition. For simplicity,
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we will only count the number of word operations. Since the norm-length of all
intermediate polynomials remains linear in the maximum norm-length / of the input
polynomials, the bit complexity of the preprocessing will differ from our measure
by at most a polynomial in [ As usual, we assume that b and d are constants. There
are two (related) points to be discussed: (i) computing sample points and (ii) testing
acceptance of a cell into '/, (F).

Recall that the data structure must provide a precomputed algebraic point in each
cell of the semi-cylindrical cell decomposition. We have already seen how to specify
these points, but we have not said anything about representation. The obvious
solution is to use a recursive specification of real-algebraic numbers. One problem
with that approach, however, is that an operation as simple as comparing two
algebiaic reals becomes a major challenge. Instead, we follow the approach of
Collins [22] which is intimately based on Rubald’s methods for computing in
algebraic extension fields without requiring minimum defining polynomials. Collins’
approach works fine when computing samples, but it does not fare nearly as well
when testing cell acceptance. The reason is that it tends to make the asymptotic
cost too heavily dependent on n, as opposed to the other parameters b, d (which
we like toregard as constants), Fortunateiy, it is not too diflicult to fix these problems.

Without loss of generality, we will consider the representation of a sample point
terpooocag b ol K(f, f.). The point is specified by lifting into N the (recursively
computed) algebraic point (e, ... v, ), which itself has been computed recur-
sively from some other K-decomposition of lesser dimension. From now on, we
say that a real-algebraic number is isolated if it is expressed as the unique distinct
real root in a riational interval of some primitive squarefree integral polynomial®.
We assume that o, has been isolated. Let Qler,, ..., o) denote the multiple real-
algebraic extension field obtained by adjoining oy, ..., o, to Q. We shall inductively
assume that Qter,.. . e, ) has been reduced to a simple extension field Q(a)
and that & has been isolated. We also assume that each a, (1=i< d)is expressed
as A ), where A, is an integral polynomial.

Foreach i 1.2 let ¢ () be the univariate polynomial fi(er,,... @, ,,2) with
coellicients in Q). First, we compute a coarsest square-free basis ¥ = {4r,, ..., ..}
for {e,. ¢:b Next, we compute a list of distinct open rational intervals I,,.... I,
along with a hist of indices g, .. ge,, such that (i) Iy = -« < I (ii) each I, contains

one real root of o and (i) each distinet real root of 1 i, lies in a distinet

T=a-m

I, After this root isolation process, we must redefine the real roots by means of

Wereonlsome stndard termimology. An integral univaniate polyaomial pis primitive il its coeMicients
Arerelatively ponse Hahes e nat, theis greatest commaon divisoris called the comrenrs of the polynomial,
tactomng out the contents o vach coellicient gives the primitive part of p These nolions generalize
trivially o any unique Cutorization domain Given a sei P of primitive polvnomials, a basis B for P s
aset of primitive polynomials of positive degree, pinrwise relabively prime, such that (i) any be B divides
at .Ie.'u.l one polynomal of P oand (00 any o P ean be expressed as a product of polynomials in B I
i". .'.I.fl\lll'-ll'\f_ then it busis consists of the contents of its polvaomials along with the basis ol their
primitive parts Fimally, s well known that £ always admits o eoarsest hasiy ', in the sense that any
element ol any basis for P ivides sonae clement o 1’

', . ]e
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polynomials with integral coeflicients. For each retrieve the intervals I, ..., I,
which isolate its own real roots and compute a nonzero primitive square-free i‘ntegml
polynomial W, as well as a sequence of nonoverlapping intervals f. ... 1y, such
that, for each j (1 =j<v) f,,_f; I, and the unique root of ¢; in f,,‘ is also the unique
root of a,':_ in f, Finally, once we have merged all the intervals I's, it becomes trivial
to express the dth coordinates of all the sample points lifted from (a,,...,ay )}
in K(/,./:). The sample points in the section cells are already fully specified. The
other sample points (the midpoints in layer cells) follow readily; we omit the details.
To maintain the induction invariant, we must now compute and isolate a new
number & for each sample point which we just computed. This is a case of reducing
a real-algebraic extension field Q(a, b) to a simple one Q(c).

Collins [22] shows how to carry out each of the steps described above in time
polynomial in the number (=2) of functions involved in the lifting and in the number
and degrees of all the other polynomials. The latter quantities depend only on b
and d, and therefore are O(1) for our purposes. The function h(d, b, n) measures
the worst-case time complexity of the following problem. Given an algebraic point
(ary,....y). let @,(z) be the univariate polynomial fi(a,, ..., a4 1, 2) (1 =ji=n)
and |8l.p| < +-- < p, be the distinct real roots of all the ¢,’s in increasing order:
find which ¢,’s (if any) contribute py, where p, <" a4 = py. Clearly, we can extend
the previous technique to solve this problem, by simply substituting {/,...., 1.} for
{1,.f;). The running time of this method would not be linear in n, however, s0 we
slightly modify it. From our previous discussion we know that we can isolate {and
thus compare) the real roots of any two polynomials ¢, and ¢,. Similarly, we can
compare a, against the real roots of any ¢,. Since any of these tests requires constant
time it is immediate that h(d, b, n)=0O(n).

Let us now return to 1(d, b, n). We claim that 1(1, b, n) = O{n log n). In O(n) time
we can certainly isolate the real roots of each f, individually. Our claim will now
follow readily if we can prove that comparing the rth real root of f, against the sth
real root of f; can be done in constant time. But this is clear, since we can isolate
the roots of f, %[, in constant time. Thus we obtain the following recurrence:
t{l,h,n)=0(nlogn), and for d > 1,

+ 5 »
1d. b, n)< ("2 ')rcd— 1,2b°, (2b + 1B n)

n+1 . »
+(4b+l}u( % )r(d = 1,2b7,(2b+ 1)b ' n),

where 1(d, b, 1) is measured up to within a constant factor. This gives us t{(d, h, n) =
O(n™ 'logn).

Theorem 3.4. Let F=(f,,....[.} be a polynomial map from R to M". Suppose that
each [, is a polynomial of degree at most h in Q[ x,, ..., x;] (whose norm-length does
not exceed the size of a computer word ). It is possible to construct a sign-invariant
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stratification of W' for F consisting of Otn®" ") cvlindrical Tarski cells, if d =2. If
d =1 the number of cells is respectively Ot(n) and O(n’). In all cases, the construction
can he done in time Otn™ 'log n). Within the same asymptotic cost we can also
compute an algebraic point in each cell of the de('nmpmiﬁoln.

4. Point location among real-algebraic varieties

We are now ready to attack the problem of preprocessing the set of varieties
V...V [, to support fast point location. We use probabilistic divide-and-
conquer in the sense of Clarkson [ 18]: We choose a small random sample of varieties
and compute a semi-cylindrical cell decomposition compatible with them. Next, we
recurse in each cell ¢. passing only the varieties that intersect ¢ down the recursion.
To locate a point, we perform an exhaustive search in the top cell decomposition
and iterate this process in the cell that contains the query point. The success of this
method depends on how evenly the n varieties intersect the cells of the decomposi-
Finn. We can show that uniform random sampling ensures success with high probabil-
iy, To make the construction deterministic we use the general derandomization
technique of Chazelle and F-riedman | 14). This requires a certain amount of formal-
ism which we discuss below,

4.1. Geometric divide-and-conquer

Let r be a fixed integer parameter between | and n. Our first task is to show how
to select r varieties among \/ f; ... \/ /, and set the ground for divide-and-conquer.
Todoso we must recall some terminology [ 14]. Let H = (V, E) be a multi-hypergraph
(E is a multiset of edges in 2" ) and let ¢ 12"+ 2" be a map such that ()e(V)=E
fmcl (i} W'e Wc Vimplies o( W) < @(W). The pair (H; @) is called a frame. It
is said to be of dimension & if § is the smallest positive (constant) real such that,
for each W< V, the size of {W~ elee ol W)} is at most c|W|*, for some constant
¢ The ratio min{le|/|V|: ¢ ¢ E} is called the threshold of the frame. Finally, a subset

R of r vertices is called an r-cover if it has-a nonempty intersection with every edge
of ¢(R).

Theorem 4.1 (Chazelle- Friedman [141). Consider a frame of dimension & with n
l‘(".rﬁt't’.t and let r=n be any integer larger than some fixed constant. If the threshold
of the frame is at least a(log r)/r, for some appropriate constant a, then it is possible
to find an r-cover for the frame in Oten™"") (deterministic) time. A random subset of

r vertices (under the hypergeometric distribution) is an r-cover with probabhility larger
than some constant. ' .

We will now establish the relationship between frames and the problem at hand.
The basic idea is 1o construct a frame where the vertices are the varieties and the
edge\s represent all possible cells of the K:decompositions used in the construction
of /,(F). The vertices contained in an edpe denote the varieties interfering with
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its associated cell. In this way, a cell is accepted into the semicylindrical cell
decomposition il and only if its corresponding edge is empty. This will allow us to
prove the following important fact. '

Theorem 4.2. Consider n real-algebraic varieties in ‘R” of degree at most b and assume
that d > 1. Given any integer r< n large enough, there exisis a semi-cylindrical cell
decomposition of size O(r* ?), each of whose cells intersects O(n(log r)/r) varieties.
The preprocessing requires O(rmn*'*') deterministic time or O(nr’ *+ " 'logr)

expected (randomized) time.

Let f,.....f, be n polynomials of Q, of degree at most b. Our first task is to
define the notion of an absfract cylindrical cell. The idea is to take the recursive
definition of a cell of %4 (F) and remove all acceptance tests from it. Let us consider
a cell ¢ of #,(F) and retrace its recursive definition. To begin with, we define the
cell ¢ in reference to some K(f,f,) by lifting a cell ¢'c R’ " into d-space (and
perhaps taking its upper boundary). The lifting can be entirely specified by indicating
its level I, (i.e., as a real-root rank), which is an integer between 0 and 2h. We can
define ¢' similarly, except that the varieties have changed. Now, a variety can be
specified by a polynomial of the form ldcf(g), psc(g, 8g/9x,), or psc"(f, g), where
f=red"(f) or red"(f;), and g =red"(f,); each of the s is bounded by b, the
maximum degree of the polynomials. By agreeing once and for all on a certain
syntax, we can therefore specify the variety by means of the sequence (i, j, k), called
its multi-index, followed by O(log(b + 1)) parameter biis. Note that, strictly speaking,
i and j are not both needed: they are included as a reminder of the “genesis” of
the variety. In a similar manner, we can specify any variety at any level of the
recursion by a multi-index consisting of up to 24 integers between | and n, followed
by O(log 8) parameter bits, where & is the maximum degree of specified polynomials.
Since the degree of any intermediate variely is bounded above by H™""' we can
similarly specify any cell ¢ of ,;(F) combinatorially by providing a multi-index of
size 2d, followed by O(2" tog(-}} + 1)) parameter bits. Any cell used in the intermediate
decompositions (of type K or semi-cylindrical) at any level of the recursion can be
expressed in a similar manner. This set-up allows us to define abstract cylindrical
celis by first-order sentences. To be accepted into #,( F), such an abstract cell must
pass two different types of tests: (i) it must specify a nonempty cylindrical cell, and
(ii) it must pass the acceptance test at each level of the recursion, meaning that it
must pass, its base cell must pass, the base cell of its base cell must pass, etc.

Let us follow the chronological sequence of tests (3.1) which an abstract cylindrical
cell ¢ with multi-index § has to pass in order to make it into %,(F). Suppose that
the kth test (which takes place in H*) is the first one which fails. There are two
ways of failing. One is an unconditional failure caused by S itself, meaning that
even if the varicties specified in § were the only ones considered the cell would still
fail, In that case we say that every variety V f;,...,V [, is a witness. What may
happen, however, is that the kth test fails because of varieties not specified by S.
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In that case, the wilness set consists of the minimal subset of varieties V [’s whose
removal would let the cell pass all the tests and make it into 7, (F). To make this
definition sound we must prove that such a set is unique.

Let ¢ be an abstract cylindrical cell with multi-index § and let ¢,, ¢y, ..., c, be
the sequence of cells leading to ¢ = ¢, by successive lifting W M7 s - - 1 R A
the kth test, let E, be the set of varieties in ™" which cause o to fail. We easily
argue that il X is the set of multi-indices of the varieties in E,,..., E, then the
witness set of ¢ is precisely L) {o\ S| e 2} Therefore, the witness set of an abstract
cylindrical cell is uniguely defined.

Our nexl task is to construct an appropriate frame F=(H; ¢ ), with H =( V. E).
We define V by putting the vertices in bijection with the n input varieties. Given a
suhset S ¥ of size 2d, let «(S) be the set of all ahstract cylindrical cells with
multi-index 5. For any W o V, let ¢ W) be the set

LJ{x(SVS< Wand |8 - 2d).

We define the edge set I- by putting it in bijection with ¢( V) and making each edge
consist exactly of its witness set. From now on, we will not distinguish between
edges and abstract cell, or hetween vertices and varieties. We easily check that F
is a frame. As we observed earlier, an abstract cell can be specified combinatorially
Py its multi-index and O(2" tog(h 4 1)) bits, This means that |«(S)| is at most on
the order of A" We derive that the frame % is of dimension 2d, since given any
We
MW eelec et Wall= e W] = O W[y,

Let us remove all edges of H of size at most an(log r)/r, Tor the value of a
required for the application of Theorem 4.1. We are now ready to compute an
r-cover for the frame, which we can do in deterministic time O(rn’"'"). Let R be
the polynomial map in Q) formed by the defining polynomials of the varieties in
the r-cover, and let ¢ he a cell of AR Obviously, the cell ¢ has an edge ec F
associated with it We will now show that the size of e cannot exceed an(log r}/r.
I it did, indeed, there would be 4 variety f, in both e and the r-cover. This would
mean that f, is in the witness set of ¢, when regarded as an abstract cylindrical cell
defined with respect to R, But this would deny its membership in 7, (R), which is
A contradiction. We have not mentioned the fact that the decomposition algorithm
1s different in two dimensions. It is easy to show that our claims still hold true,
|'II'IW("I\ r_r. Computing 7,0 R) takes O(r™ 'log r) deterministic time. If we pick the
rvaneties at random, it takes us O(r™ 'log r) to construct the semi-cylindrical cell
decomposition and O™ "y time 1a check that it satisfies the desired properties.
Fhe prool of Thearem 4.2 is now complete.

4.2 Point location

_ We follow the approach which Clarkson used in the linear case | 18] and bring
in the new machinery we just huilt. Applying Theorem 4.2 for a fixed (but large)
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value of r gives us a semi-cylindrical cell decomposition of size O(r’" ?). For each
cell ¢¢ /F,{ R), identify the subset V(c)c {V f,....,V .} of varieties that intersect
. Each variety in V(c) is a witness of ¢, therefore | V(r)| = an(log r)/r. Now recurse
with respect to each V(c). (Do not try to clip the resulting decompositions within
¢.) Here is how a point location query is answered. First, locate the point among
the cells of £, (R) by exhaustive search. If the point is found to lie in one of the
varieties specified by R then we can stop. Otherwise, we recurse in the data structure
associated with the cell containing the query point.

In light of the previous Section, it is easy to argue thal the query-answering
terminates after O{log n) word operations. A multiplicative factor polynomial in
the norm-length of the input polynomials must be added to get the bit complexity.
Assume that d = 2; the storage requirement s(n) follows the recurrence s(0O(1)) =

O(1) and

s(ny=er? 2s([an(logr)/r]),

which gives

2d-2)1 +O(1
Iogs(n]'S( i logk ( )og i
log r—log(a log r)

or s(n)=0(n’" 7'7), Tor any fixed ¢ > 0. Similarly, the preprocessing time can be
estimated at O(n™""") (deterministic) and O(n™ *'") (randomized).

Theorem 4.3. Consider n real-algebraic varieties in N* (d > 1) of degree at most b.
It is possible to perform point location among the varieties in O(log n) guery time,

by space, for any fixed ¢ > 0. The data structure can be constructed

using O(n
2d - 24 r)

deterministically in O(n’"'") time, or by using a Las Vegas algorithm, in O(n
expected time. These bounds assume that the coefficients of the polynomials defining
the varieties are rationals that can be stored in a single computer word and that
arithmetic operations on word-size integers can be performed in constant time. To obtain
an upper bound on the bit complexity of the algorithm we must multiply hoth preprocess-
ing and query times by a polvnomial factor in the maximum number of bits required
to encode any coefficient in the defining polynomials.

5. Concluding remarks

Our point location method allows us to improve upon the solutions currently
known for a wide variety of optimization problems. Some of these problems have
been studied in Chazelle and Sharir [16] and we direct the reader to this reference
for details. Examples of these problems are:

(1) Computing the minimum vertical separation between two sets of line segments

in 3-space.

(2) Computing the longest line segment which fits inside a simple polygon.
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(3) Computing the time at which the convex hull of a set of points in (polynomial)

motion enters its stead y-state.

(4) Given m red objects (algebraic curves, surface patches, etc.) and n blue

objects, does any red object intersect any blue object?

(5) Given m rays and n triangles in 3-space, find the first triangle hit by each of

the rays, or alternatively, find the number of triangles stabbed by each ray.
In one way or the other all these problems can be reduced to a generic problem of
the following kind. Given a collection of n blue “objects™ (point, line, polygon,
curve, algebraic surface, etc.) and n red objects, does some blue-red pair of objects
interact in some predetermined manner? Each object is specified by a vector with
a constant number of real coordinates and the interaction predicate is a constant-size
formula in the unquantified first-order of the reals. If r is the maximum length of
any vector then the problem can be solved in time at most proportional to n? "2,
This assumes that point location among n varieties in d-space can be done in
logarithmic time and n""""' preprocessing. Plugging in our new point location result
vields a slightly better subquadratic complexity, namely, O(n? /'),

This work leaves apen three major problems: The first one is to obtain a triangula-
tion and not a stratification of the manifolds. The second problem is to lower the
space requirement to the Thom-Milnor bound of O(n?). Finally, it would be nice
to be able to carry out the computations without generating polynomials whose
degrees are doubly exponential in the number of variables.

Appendix

Lemma 2.1. A cylindrical cell of Misa k-manifold (k < d) which can be parameirized
by a single smooth diffeomorphism mapping the open unit ball U* 1o the cell,

Proof. We proceed hy induction on the dimension of the ambient space. The
one-dimensional case is trivial, so assume that d > 1. Of the five types of cells
introduced in the definition it suffices to consider types (i) and (v). Assume that
the cell c is of the form | {x®( f(x), g(x})|x € ¢} (type (i)). By induction hypothesis,
¢ is a k-manifold, for some k= d - 1, and we assume that there is a smooth
diffeomorphism @ 1" 'a M ' whose restriction to U* parametrizes ¢’. Now,
piven i =(u, a)e U', with we U ' let

0

v ] v : 1 .
u’:(ﬂ}=(w(u}_..(| —-—:T—.—_-;)_f(qn(a:]]+—(l+——~—) (el l)).
2 J1- Ju 2 Vi-|u] Sipln

We easily check that the Jacobian determinant Ay is equal to

(gW’(NH -_;"hrl'ull) il
Tom=s o JAg o,
Zﬁ—lul
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From the Inverse Function Theorem, we derive that ¢ is a smooth Iot:a:lll d 1 ﬁcomc‘:rph-
ism. Actually, it is now immediate that ¢ globally immerses UJ ) into M7 Its
restriction to U*'' parametrizes ¢ (which is therefore a (k +1)-manifold).
Consider now the case of the cell c=J {x®{fx)}|xe ') Qs before.. let
@: U "M ' be a smooth diffecomorphism whose restriction to U" parametrizes

¢', for some k=<d — 1. Consider the map

(i) =(e(u), a)+(0, f(e(u)),
where ii = (1, a)€ U? and ue U '. We have Ayy; = Ay, # 0, so again by the Inversf‘
Function Theorem, ¢ is a smooth difiecomorphism whose restriction to U
parametrizes ¢ and c is a k-manifold. O

Lemma 3.1. The funrn‘nns-qp, U Sy, S can all be delineated over each cell of
Fa (G).

Proof. For definiteness, we will deal with ¢ only, but everything we will say appli.es
to the other functions as well. Once again, we regard ¢ as a univariate polynomial
@(x4) in Qu ([xs]. As we shall see we only need to look at a subset H = H,u H,
of G’s coordinate functions, where

(i) H,={red*(p)|k=0and deg(red"(¢)) =1},

(i) H,={ldcf(g)lge H\},

(iii) H,={psc* (g, dg/dxs)|ge H,and 0=k < deg(dg/dx4)}. .
We will repeatedly use the fact that %, (G) is sign-invarianf for th? polynomial
map induced by H. Let ce ¥, .,(G); because of the sign-invana‘nc'e with respect to
H,, degl(¢) remains constant over ¢. Then H, contains a restriction g of ¢ to ¢,
whose leading coefficient does not vanish anywhere in ¢. From the Fundamental
Theorem of Algebra, it trivially follows that the number of distinct (real and complex)

roots of g (as a polynomial in x,) is equal to

deg(g)— deg(GCD(g, 3g/dx,)).

Consequently, the sign-invariance with respect to H,, combined with Lemma 2.3
proves that the number of distinct roots of ¢.(x,) is invariant over ¢ .

Borrowing a technique from Schwartz and Sharir [46] we can csts.bllsh fhc
continuity of the roots of ¢.(x;) by expressing each of its roots as a ratio of line
integrals. For completeness, let us rederive this result. Because of wetl-ba?edaess,
@.(2) is not identically zero, so it can be written as (z — z,)*y.(z), where z, is a root
of ¢,(z) of multiplicity k. Let us now regard z as a variable in the complex pian'e
and let us choose a small circle I” which encloses z, but no other root. Since z, is
not a pole of y,'(z), given any complex polynomial w(z), we have

I w(:lwi(z}dzzI kw(:‘.'de wiz)ylz)
i e 2) T {1 " y.(z)

=J' kw{Z)dZ___zﬂkw(zu)i-
1

L Z=2q
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Setting wiz) - zand wiz) = 1 successivelv, we derive

zefz) N3]
m.'rJ. : dz/j o dz,
r ez} r e is)

which immediately establishes the continuity of z, as a Tunction of x. Let us now
show that the number of distinct real roots is also invariant over ¢. To see this,
place small disjoint disks centered at each root of ¢.(z). Note that because of
disjointness the disks centered at the real roots are the only ones to intersect the
real axis, the reason heing that complex roots occur in conjugate pairs. For that
same reason, a root cannot wander in and out of the real axis without changing the
total count of distinct roots, therefore every real root x of ¢ has a neighborhood in
« composed entirely of real roots. Since ¢ is connected the number of distinct real
roots must therefore remain constant for all xe . To appreciate the importance of
connectivity in this argument, consider the case ¢ (z) = z" - x, where xe W, and
assume that ¢ =( 1. M0, 1). Then ¢,(z) always keeps two distinct roots over c,
hut both roots are real for x =} and imaginary for x = - }. Of course, our algorithm
would not allow such a cel! ¢, since ¢; would include the polynomial g{x)=x as
a coordinate function.

Returning now to our general discussion, we have established all the conditions
for the delineation of ¢,, except for the smoothness of the real-root functions
Gitvde - Lia) Before we do so we should note that, again because ¢ is
connected, the sign of ¢ (2], for any = between Lix)yand ¢, (x), does not depend
on v, To prove that each ¢, is smooth, we will forsake Cauchy integrals and use a
more general argument. Let (o, U7) be a {smooth) coordinate chart around some
arhitrary point of ¢ Given we afc) and z¢ ™M, let @lu, z) ela "(u), z). Fix j
I,l = j=1) once and for all and put v =(u, {a '(1))): by definition we know lhai
gl =10 Now let

ks koA

) i
miu) I'II:I.\H k 'Il"_} ‘fl't‘} -0 and ‘-T{r');‘(}
b ! g
where @"/dt is the identity operator. Note that m(u) is well defined unless

i : :
@lee "), ) =0, for all = But this cannot happen because the input polynomials
are well-hased. Now, since

we derive that m{n) 1 1 is the multiplicity of the jth largest real root of ¢, 1,,,(z)
which we know remains constant over ¢. et

TR

win, z) (n, 7).

S
il

.I_lcro 1s what we know about w: (i)itis smooth (i) win) =0_and (i) (dw/oz)e) # ().
Then by the Implicit Function Theorem it follows that locally around v the equation
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wi, z) =0 can be traced by a smooth function z = z(u). The key observation now
is that this function also traces @, '.(z) =0 around the point (« ) Gla un)
Consequently, this function is precisely {;(a '{u)) and the jth largest distinct real
root of ¢, '.,(2z) is a smooth function of w. [

Remarks. The main motivation for proving that {,(x) is smooth over c is to endow
the cells of ,(F) with a C" differential structure (via Lemma 2.1). Note that
although {,(x) can be extended outside of ¢ into a continuous function, it might
fiot be possible to make this extension differentiable (let alone smooth) over the
closure of c. For example, consider the torus (Jr2+y’-2}1+ z? =1, whose poly-

nomial equation is
Coon(2)= (X34 y 4+ 27 +3)7 = 16(x7 +p7) = 0.

The surface is obtained by revolving a vertical unit-circle centered at (2, 0, 0) around
the z-axis. The set

c={{x,»}1<x<3and 1< <9}

is an algebraic cell over which ¢, ,(z} has two real roots. Now the reader should
appreciate the difficulties in trying to extend, say, the second root

Ll p)=v1—(Jx~ - 2h]3

smoothly to the closure of ¢. Note that the function does not have a partial in x at
(3,00

Algebraic Numbers. A standard representation of a real-algebraic number a consists
of a pair (P,[a, b)), where P is a square-free polynomial with integer coordinates
and [a, b]< Q isolates o from the other real roots of P. Often we might be dealing
with numbers in the extension field of «, which can then be expressed as quotients
Ala)/ B(a), with A, Be Q,. Let us show briefly how the kth real root of P can be
isolated in time polynomial in the degree of P and the logarithm of its weight. (The
weight w(P) of P is the sum of the magnitudes of its coefficients.) First, we can
use Sturm sequences Lo compute the number of real roots in any interval [a, b].
This involves applying a straightforward variant of Euclid’s GCI) algorithm to the
pair (P, P’} and counting the sign changes in the resulting polynomial remainder
sequences (evaluated at @ and b). With this tool in hand, we can isolate the kth
real root of P by binary search, starting with a large interval enclosing all the real
raots, say [ ~w(P), w( P)] and ending with an interval which is too small to enclose
two distinet roots, A classical result of Mahler [36] says any two distinct real roots
of P must be apart by at least b "' ""“w(P)}' " Consequently, the binary search
will involve O(hlog b 1 log wi( )+ 1) GCD computations, which proves that root
isolation is polynomial. Collins and Loos [ 23] describe an efficient method for root
isolation, whose bit complexity is O(b""'+ b" log'w(P)). Note that this discussion
concerns only simple representations of real-algebraic numbers. For our purposes,
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we must deal with algebraic numbers which are represented as roots of polynomials

whase coeflicients themselves are algebraic numbers represented recursively in the
same manner [9, 23, 24, 2930, 35, 36, 41].
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