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AN O(rlog’ h) TIME ALGORITHM FOR THE THREE-DIMENSIONAL
CONVEX HULL PROBLEM*

HERBERT EDELSBRUNNERt anD WEIPING SHI:

Abstract. An algorithm is presented that constructs the convex hull of a set of n points in three
dimensions in worst-case time O(n log” h) and storage O(n), where h is the number of extreme points. This
is an improvement of the O(nh) time gift-wrapping algorithm and, if h = 0(2@), of the O(n log n) time
divide-and-conquer algorithm.
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L. Introduction. The convex hull of a set of points S in three-dimensional space
is the smallest convex set that contains S. If S is finite then the convex hull of S is a
convex polytope with vertices, edges, and facets making up its boundary. The convex
hull problem is to determine the points in S that are vertices of this convex polytope
(the extreme points of S, or ext (S)), possibly together with some ordering and adjacency
information. Finding efficient convex hull algorithms is one of the most intensively
studied problems in computational geometry (see Preparata and Shamos (1985) and
Edelsbrunner (1987) for more information). Table 1.1 summarizes the current best
results on the worst-case complexity of the convex hull problem not including the
result of this paper. The Q(n log n)' lower bounds in two and three dimensions are
due to Yao (1981) and simple proofs follow from Ben-Or (1983). Matching upper
bound in two and three dimensions can be found in Graham (1972) and in Preparata
and Hong (1977). The Q(n'*/?)) lower bound in d =4 dimensions follows from the

TABLE 1.1
The current best results for finding the convex hull, where n is
the number of input points, h is the number of extreme points, F is
the number of faces of any dimension, and d is assumed to be a fixed
constant. The first part of the table shows the best results that do not
depend on h and assume the worst case over all values of h. The
second part gives the output-sensitive results.

Dimension Lower bound Upper bound
Q(nlogn) O(nlog n)
3 Q(nlogn) O(nlog n)
d=4 QnldEl) O(n'4/21)

O(n'4 10g n)

2 Q(nlog h) O(nlogh)
3 Q(nlog h) O(nh)
dz4 Q(nlogh+F) O(n*+ Flog h)
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same lower bound on the maximum number of faces of the convex hull of n points
(see, e.g., Edelsbrunner (1987)). The O(n'%/?") upper bound is a careful implementa-
tion of the beneath-beyond method due to Seidel (1981) and is also described in
Edelsbrunner (1987). The O(n'?/*! log n) upper bound is due to Seidel (1986). The
Q(nlog h) lower bounds in two and three dimensions are given by Kirkpatrick and
Seidel (1986). The currently best output-sensitive algorithm in three dimensions, which
takes O(nh) time, is the gift-wrapping algorithm of Chand and Kapur (1970). Ind =4
dimensions, O(F) is the size of the convex hull, and therefore a trivial lower bound.
The O(n’+ F log h) time algorithm is due to Seidel (1986).

It is interesting to note that the lower bounds of Table 1.1 in two and three
dimensions also hold for the weaker problem of finding all extreme points, without
any order and adjacency information. In higher dimensions the complexity of this
problem is considerably less than that of constructing the convex hull itself. By solving
n linear programs the extreme points can be found in O(n’) time using results of
Megiddo (1984), if the number of dimensions is a fixed constant. At this point, it is
worth mentioning that in three dimensions the hard part of the convex hull problem
is to identify extreme points; thereafter, O(hlog h) time suffices to construct the
adjacency and order information. This allows us to be loose in explaining what exactly
our algorithm outputs. We will design it such that it produces all extreme points plus
the pairs that define edges of the convex hull, but we will ignore the order of edges
around vertices. Because the edges define a three-connected planar graph, O(h) time
suffices to find the unique embedding (see Hopcroft and Tarjan (1974) and also
Kirkpatrick (1987)).

For the two-dimensional convex hull problem, Kirkpatrick and Seidel (1986) give
an O(n log h) time algorithm and prove it is asymptotically optimal if the complexity
of the problem is measured in terms of input and output sizes. They also raise the
question of whether there exists an O(nlog h) time algorithm for constructing the
convex hull in three dimensions. Up to now, the best deterministic three-dimensional
convex hull algorithm whose complexity depends on n and h is the O(nh) time
“gift-wrapping” method of Chand and Kapur (1970). Using randomization, a concept
we do not consider in this paper, Clarkson and Shor (1989) give an algorithm running
in expected time O(n log h).

This paper presents an O(nlog®> h) worst-case time algorithm for the three-
dimensional convex hull problem. Following Kirkpatrick and Seidel (1986), the
algorithm uses the approach “marriage before conquest™ in which it first determines
how the solutions of the subproblems will combine and then proceeds to solve the
subproblems recursively. The main idea of the algorithm is to first project S onto two
carefully chosen planes. Then we use the O(nlogh) time two-dimensional convex
hull algorithm to find the convex hulls for the projected points. The two two-dimensional
convex hulls are projections of edge sequences of the convex hull of S. They are used
to partition S into subsets in a balanced way. By recursively finding the convex hulls
for each of the subsets, we can get the convex hull of S.

Section 2 presents the algorithm, § 3 assesses its complexity, § 4 remarks on
problems caused by points not in general position, and § 5 concludes this paper with
a brief discussion of the results.

2. The algorithm. Let S be a finite set of points in three-dimensional space. We
assume general position, that is, no four points are coplanar and no three points lie
on a common vertical plane. This assumption is algorithmically justified by the concep-
tual perturbation technique of Edelsbrunner and Miicke (1990). With this assumption,
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the convex hull of § is a simplicial polytope, that is, every facet is a triangle. In
addition, no edge or facet is vertical.

We call the part of the convex hull of § that can be seen from (0, 0, c) the upper
hull of S (see Fig. 2.1). Similarly, the lower hull of S is the part of the convex hull
that can be seen from (0, 0, —o0). Thus, both the upper hull and the lower hull are
simply connected subsets of the boundary of the convex hull of S. Indeed, the boundary
of the convex hull is the union of the upper hull and the lower hull, while the intersection

of the upper hull and lower hull is the cycle of edges that admit vertical supporting
planes.

Fi1G. 2.1. The upper hull of S.

The following algorithm shows how to construct the upper hull; the method to
construct the lower hull is symmetric. The union can be constructed in O(h) time once
we have both the upper and the lower hull. When we describe the procedure we assume
that the reader is familiar with the O(n) time three-variable linear programming
algorithms of Dyer (1984) or Megiddo (1983), the O(n) time planar ham-sandwich
cut algorithm of Megiddo (1985), the O(n log h) time two-dimensional convex hull
algorithm of Kirkpatrick and Seidel (1986), and one of the optimal planar point location
algorithms of Kirkpatrick (1983), Cole (1986), Sarnak and Tarjan (1986), and
Edelsbrunner, Guibas, and Stolfi (1986).

When we describe the algorithm we use the notational convention that a set
primed means the projection of the set onto the XY-plane. For example, §' =
{(x, ¥)|(x, y, z) € S}. The nondegeneracy assumption that no three points of S lie in a
vertical plane implies that no two points lie on a common vertical line which guarantees
a bijection between S and §'.

ALGORITHM 3D_UPPER_HULL (S, &).

Input. S is a set of points in space. % is a simple closed polygonal curve in space
whose vertices form a subset of S. &', the projection of % onto the XY-plane, is the
boundary of a simple polygon and all points of S’ lie on the boundary or inside this
polygon.

QOutput. The part of the upper hull of S whose relative boundary is 9%, represented as
an edge-point adjacency list.
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Method
if |S|=3
0: then return %

5 else do a 4-division of S’ using two intersecting lines in the XY -plane;

24 use three-variable linear programming to find the triangle of the upper
hull that intersects the vertical line through the center of the 4-division;

5] project S onto the vertical plane of the first line and compute the two-
dimensional upper hull;

4: do the same for the second line;

5 project the two three-dimensional polygonal paths obtained in Steps 3
and 4 onto the XY-plane;

6: recurse inside each connected region of the thus constructed subdivision;

T return the combination of all recursively computed upper hulls

endif.
End of Algorithm.

Below, we explain in detail each of the steps above.

Step 0. If | S| =3, then return % which, in this case, is a triangle in space.

Step 1. Use the algorithm of Megiddo (1985) to find two lines I, and I, that divide
the XY-plane into four quadrants containing about a quarter of the points each.
Because the points in S’ are in general position (no three are collinear) we can assume
that neither [, nor [, contains a point of S and that each quadrant contains at least
||S’|/4] points. If the equations of these lines are

L:ax+by+e¢=0 and L:ax+b,y+e,=0,
then the intersection point p=(p,, p,) of I, and I, is given by

¢ b a, &

¢ b a ¢
S P B P Y

a, b, a, b,

LetI', and I'; be the vertical planes that intersect the XY -plane at /; and I, (see Fig. 2.2).
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FiG. 2.2. Cut by two vertical planes, 'y and T',.
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Step 2. Use the algorithm of Dyer (1984) or Megiddo (1983) to solve the following
three-variable linear programming problem:

minimize vy, p,+ v, Pyt ys
subject to  y,x;+ .y, +ys=z forall (x;, ¥, z)eS.

The solution to this linear program is a plane I':z=y,x+ v,y + 5, such that every
point of § lies on or below I" and it has the lowest intersection point with the vertical
line through point p =(p,, p,) among all those planes. The 4-partition computed in
step 1 is such that each quadrant contains at least one point (because ||S'|/4] =1)
which implies that, indeed, the vertical line through p intersects the upper hull. We
can also assume that p is not collinear with any two points of S’ and thus I is unique.
By our nondegeneracy assumption I' passes through exactly three points, a=
(a, ay,a.), b=(b, b,, b,), and c=(c,, ¢,, ¢,) of S, and is given by the equation

2 cA NN 22 BT VRN |
e o . A

| A =
b M Y R
A E T |

(see Fig. 2.3).

Step 3. Project S onto the plane I'; where the direction of the projection is parallel
to I'NT,. Call the obtained point set S(I';) and assume a bijection between S and
S(I'y). Using Kirkpatrick and Seidel’s algorithm compute the two-dimensional upper
hull of S(I';) and let H, be the corresponding polygonal path in space, that is, the
vertices of H, are points of S and the projection of H, onto I'y, along I'NT,, is the
upper hull of S(T',).

Step 4. Project S onto the plane I'; along the direction parallel to I'NT,. Let the
resulting set be S(I',) and compute H, in complete analogy to H, in Step 3.

Step 5. Initialize H < %. Add H,, H, and the triangle abc to H; H'is a subdivision
of the XY-plane. Discard duplicate edges and edges whose projections lie outside %'

\

p

FiG. 2.3. Use linear programming to find a supporting triangle.
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Build a planar point location data structure based on H'. The data structure can be
any one of the optimal methods described by Kirkpatrick (1983), Cole (1986), Sarnak
and Tarjan (1986), and Edelsbrunner, Guibas, and Stolfi (1986). Associate each region
R} of H' with an initially empty set S,. For every point g € S, decide which region R
contains g'; put g into set S;. We also add points of S to S; whose projections lie on
the boundary of R;. Discard points inside a’'b’c'.

Step 6. For every region R of H' do H « HU 3p_upPPER _HULL (S;, B;), where B/
is the boundary of Rj.

Step 7. Return H.

Before the first call of the 3p_uprPER_HULL algorithm, we find the convex hull of
S’ and let & be the three-dimensional polygonal curve that projects onto its boundary.

Remark. The fairly complicated general point location method in Step 5 can be
avoided if we exploit special properties of H| and H). The partitioning of S into
subsets S; can be done in linear time since the polygonal paths, H| and H), are
monotone and the two-dimensional convex hull algorithm of Kirkpatrick and Seidel
(1986) not only produces H, and H,, but also “sorts” S into |H,| and |H,| buckets.
We spend a paragraph explaining how this works.

Assume for simplicity that [, is the Y-axis and [, is the X-axis. Then H| is
monotone in the Y-direction and HY is monotone in the X-direction. Consider the
regions of the subdivision formed by H} and H} that lie to the left of H| and below
Hj, (see Fig. 2.4 where H consists of the branches labeled N and S and H} consists
of the branches labeled E and W). Observe that there is a polygonal path Q that is
X- and Y-monotone and separates H; from H) (dotted line in Fig. 2.4); it can be
constructed in linear time from either H| or H5. If a point g lies in region R; then
the vertical line through g meets Q somewhere inside R, or the horizontal line through
g does so. Thus, after doing binary search twice, once in H| and once in H}, we can
narrow down the search to at most two regions. If g lies below or to the right of Q
then the horizontal line has priority over the vertical line, and vice versa if g lies above
or to the left of Q. The two binary searches are done implicitly in the two-dimensional
convex hull construction and thus add no extra time to the algorithm.

FiG. 2.4. Projection of H,, H, and triangle abe. H 1 is decomposed into N (North) and S (South) and
HY is decomposed into E (East) and W (West), and all four branches are connected to p. Note that some
branches share common parts.
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In the remainder of this section, we argue that the algorithm correctly finds the
part of the upper hull of S whose projection onto the XY-plane lies in %&’. We use
induction on the number of points in S. If |S| =3, the algorithm is trivially correct.
When |S|> 3, every edge e (and therefore every vertex) on H, and H, must also be
on the upper hull of S since there exists a plane that passes through e and has all
other points of S below it. For the same reason triangle abec must be on the upper
hull. Points inside triangle a'b’c’ cannot be on the upper hull because all these points
are under the facet abc and can therefore not be seen from (0, 0, +c0). It remains to
show that by partitioning S into subsets the algorithm does not lose any edges of the
upper hull.

Recall that every facet is a triangle because we assume that no four points are
coplanar. If there were an edge p;p; on the upper hull and p; € S; and p; € S;, i # j, then
the projection onto the XY-plane of the edge p;p; must cross some edge of H}, Hj,
B' or triangle a’'b’c’. We then have at least four points on the same plane, violating
the nondegeneracy assumption.

Remark. It is not absolutely necessary that the points are in general position for
our algorithm to work. However, with the nondegeneracy assumption it is significantly
simpler to describe, to understand, and to code.

3. Analysis. Finally, we are ready to assess the time-complexity of the algorithm.
We start by proving a general lemma on the total cost of certain trees. Then we show
by a geometric argument that the cost of the algorithm can be modeled by such a tree
and finally conclude with the main result of this paper.

DerintTiON. Let T=(V, E) be a rooted tree with a cost function ¢: V[0, +c0).
If there is a constant « € (0, 1), such that ¢(u) = ac(») for every node w and its parent
v, then we say the cost function ¢ is fading and « is the fading factor.

LemmMa 3.1. Inarooted tree T = (V, E) with fading cost function ¢ and fading factor
a, if for each level the sum of the costs of all nodes at this level is bounded by C, then
the sum of the costs of all nodes in the tree is at most C(log,,, |V|+ O(1)).

Proof. The proof consists of two steps. We first change the shape of the tree by
repeated application of a path compression operation without increasing its total cost
nor violating the level cost bound. Then we claim that after changing the shape, the
tree has height log,,, |V|+ O(1) and finish the proof.

Path compression operation. Arbitrarily pick a node v from the bottommost level
and make it a new child of one of its ancestors.

It is clear that after the application of this operation T is still a tree, ¢ is still
fading, and the total cost of the tree did not change. To change the tree we number
its levels 0, 1, 2, etc. with the root at level zero. If some level i that is not the bottommost
level has fewer than |a | nodes, then we apply the path compression operation and
make v a child of its ancestor at level i — 1. This is done until level i has at least |a ']
nodes, for each but the bottommost level i. The cost of level i increases only if in the
end it has exactly & ‘| nodes (except for the bottommost level which may have fewer
nodes). These |a '] nodes have a cost that does not exceed the cost of the root and
is therefore not greater than C.

Now consider the total number of nodes in the resulting tree, where [ is the height
of the tree (so level [ is the bottommost level). We have

Lz . . (1/a)' =1 (1/a)' -1
V= ‘1= —l= == —| V.
| | jgola J ;goa 1/0.’—1 ]./Q'—l | |
It follows that I =log,,. | V|+log,,, 2+1, and that the total cost of the tree is at most
C(logy. |V|+0O(1)). O
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In order to apply Lemma 3.1 to the algorithm of the preceding section, think of
the algorithm as a rooted tree whose nodes correspond to recursive calls. The cost of
a node is the time spent at this node. We will be able to argue that this cost is fading
if we can show that the number of points decreases by a constant factor from one
level of the recursion to the next.

Lemma 3.2. In Step 5 of the algorithm, each set S; contains at most [3|S]/4] points.

Proof. Denote the four quadrants defined by I, and I, as NE, NW, SW, and SE.
We claim that each set S; contains points from at most three of the four quad-
rants. The assertion follows because each quadrant contains at least ||S|/4] of the
points in S.

Note that no line parallel to I, intersects H5 more than once, and that no line
parallel to I, intersects H| more than once. Take a region R of the subdivision defined
by H} and H}; its boundary can be decomposed into two connected chains, one in
H{ and one in H. To show that R cannot intersect all four quadrants, we remove
a'b’c’, and call the remaining branches of H} N (North) and S (South) and those of
H} E (East) and W (West). Next, we connect each branch to point p by a straight
line segment, as shown in Fig. 2.4. These modifications can only increase regions of
the subdivision. Region R is bounded by only two of the four branches, say N and
E, and cannot intersect SW because N intersects only NE and NW and E meets only
NE and SE. O

Using the two lemmas we are ready to give the analysis of the algorithm still
assuming general position of the points.

TueOREM 3.3. The algorithm described in the previous section constructs the convex
hull of a set S of n points in three-dimensional space in time O(n log” h) and storage
O(n) in the worst case, where h =ext (S).

Proof. Let T(n, h) be the time-complexity of the algorithm, write S; for the
recursively considered subsets, and set n, =|S,| and h; =|ext (S;)|. Then

O(n) if h=3,

T(n, h) =
(n, b) {O(nloghuz,. T(n, h) otherwise.

Think of T(n, h) as a node in a tree, with cost nlog h and children T(n,, h;). Every
time we recurse we find some new edges or facets on the convex hull, since otherwise
there is no way to partition S into proper subsets which would contradict Lemma 3.2.
So the number of nodes in the tree is at most the number of edges and facets on the
hull which is O(h).

Now, increase the cost of each node in the tree from n; log h; to n; log h. If ¢ is
the cost of a node then, by Lemma 3.2, the cost of each child is at most [3¢/4] and
therefore the cost is fading.

At any one level of the tree, the algorithm works on different polygonal regions
R}, R}, - -, R} with boundaries B}, B5, - - -, Bj. Let |R}| be the number of points
in R; (that is, inside and on %), and |%}| be the number of vertices of ;. For the
total cost at this level we have

k Kk
2 JREIIOghé(H 3 |%;|) log h.
i=1 i=1

Since each %; is a simple polygon, each edge of the (planar) subdivision defined by
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the 98} occurs in at most two polygon boundaries on this level. Hence,
k
Y |Bi|=6h—12=6n.
i=1

This implies that the cost at each level is bounded by 7n log k. Since the cost is fading,
at each level it is bounded by O(n log k), and the total number of nodes in the tree
is O(h), we have T(n, h)=O(n log’ h) by Lemma 3.1.

The O(n) storage can be guaranteed if we declare H, &, and § as global variables.
For other subroutine calls, such as 4-partition, linear programming, two-dimensional
convex hull and point location, O(n) storage suffices and it is immediately returned
after each call. 0

Remark. To demonstrate that the above analysis is tight, we show that there are
point sets for which the algorithm in § 2 indeed takes ©(n log® h) time. To see this
consider the situation where the projections onto the X Y -plane of extreme points form
a v'h-by-/h grid and nonextreme points are evenly distributed in the grid. Since each
call to the two-dimensional convex hull algorithm takes @(n log h) time, and the depth
of recursive calls is ©(log h), the algorithm described in § 2 runs in O(n log® h) time.

4. Coping with degenerate point sets. As remarked earlier, point sets that are
not in general position can be (conceptually) perturbed to satisfy the general
position assumption with various definitions of this notion. For all details we refer to
Edelsbrunner and Miicke (1990) where such a perturbation method is described. Still,
there are two questions that need to be answered. First, how can we make sure that
the perturbation does not change S in a way that significantly changes its convex hull
and possibly increases the number of extreme points? Second, how does the perturba-
tion affect the implementation of the necessary primitive operations?

We start with a brief review of the main features of the conceptual perturbation
method, called SoS, of Edelsbrunner and Miicke (1990). SoS simulates an infinitesimal
perturbation of the point coordinates that removes all degeneracies relevant to the
algorithm of § 2. This is done by perturbing each coordinate differently, that is, there
is a sequence of the coordinates so that the amount of perturbation of a coordinate is
astronomically smaller than that of the preceding coordinates. Furthermore, because
the perturbation is arbitrarily small everywhere, extreme points remain extreme and
interior points remain interior. However, a point that is not extreme but lies on the
boundary of the convex hull will end up either as an extreme point or in the interior
of the convex hull. The decision made by SoS is based on the point and coordinate
indices, arbitrarily assigned, and thus is by and large arbitrary.

If we accept this arbitrariness then the main theorem of this paper still applies,
even if the point set S is not in general position. However, h must be redefined as the
number of points that lie on the boundary of the convex hull, rather than the number
of vertices of the convex hull. Another way to deal with nonextreme points on the
boundary of the convex hull is to devise a sequence of the coordinates that guarantees
that nonextreme points are perturbed below the upper hull. Such schemes are possible
but tedious, and we refer to Rosenberger (1990, Chap. 5.2), where related ideas are
explicated for the two-dimensional convex hull problem.

The next and related issue is how to simulate the perturbation. This is discussed
at length in Edelsbrunner and Miicke (1990), except that they do not cover all primitive
operations needed for our algorithm. The tricky part is in Steps 3 and 4 of our algorithm,
where points are projected onto vertical planes I'; and I',. These planes as well as the
directions of projection depend on the input points. As a consequence, the primitive



268 H. EDELSBRUNNER AND W. SHI

operations in the two-dimensional convex hull constructions are significantly more
involved than in the plain plane case, although still of constant size. A detailed study
of these operations together with possible simplifications is left as a future project.

5. Discussion. This paper presents an algorithm for constructing the convex hull
of n points in three-dimensional space in worst-case time O(n log” h) and storage
O(n), where h is the number of vertices of the convex hull. It should be mentioned
that the hidden constant in the big-O notation is rather large, although not astronomical.
This is because the algorithms for the planar 4-partition, three-dimensional linear
programming, and output-sensitive two-dimensional convex hull construction used in
our algorithm all have large multiplicative constants.

It seems natural to ask if the time-complexity can be further reduced to O(n log h).
The bottleneck of our method is the construction of two-dimensional hulls. All
other operations can be done in time O(n). It might also be interesting to see if the
algorithm of this paper can be extended to four and higher dimensions; compare to
the O(n*+ F log h) algorithm of Seidel (1986).

Acknowledgments. The second author thanks Franco P. Preparata and Bernard
Chazelle for discussions on the problem of this paper.
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A GENERAL SEQUENTIAL TIME-SPACE TRADEOFF
FOR FINDING UNIQUE ELEMENTS*

PAUL BEAMET

Abstract. An optimal £)(n®) lower bound is shown for the time-space product of any R-way branching
program that determines those values which occur exactly once in a list of n integers in the range [1, R]
where R=n. This Q(n®) tradeoff also applies to the sorting problem and thus improves the previous
time-space tradeoffs for sorting. Because the R-way branching program is such a powerful model, these
time-space product tradeoffs also apply to all models of sequential computation that have a fair measure
of space such as off-line multitape Turing machines and off-line log-cost random access machines (RAMs).

Key words. lower bounds, time-space tradeoff, computational complexity, sorting, branching programs
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1. Introduction. The goal of producing nontrivial lower bounds on the time or
space complexity for specific computational problems in A% has largely been elusive
Also, concentration on a single resource does not always accurately represent all of
the issues involved in solving a problem. For some computational problems it is possible
to obtain a whole spectrum of algorithms within which one can trade time performance
for storage or vice versa. Thus the question of obtaining lower bounds that say something
about time and space simultaneously has received considerable study as well.

The most interesting model for studying time-space tradeoff lower bounds that
has been developed is the R-way branching program model. The R-way branching
program is an unstructured model of computation that has unrestricted random access
to its inputs and which makes no assumption about the way its internal storage is
managed. The model is powerful enough that lower bounds proven in it apply to a
wide variety of sequential computing models including off-line multitape Turing
machines with random-access input heads. A particularly convenient model for which
the lower bounds for R-way branching programs apply is that of a random access
machine (RAM) with its input stored in a read-only memory, with a unit-cost measure
of time and with its read-write storage charged on a log-cost basis.

The R-way branching program model was introduced by Borodin and Cook
[BC82], who used it in showing the first nontrivial general sequential time-space
tradeoff lower bound for any problem. They showed that any R-way branching
program requires a time-space product of ((n’/logn) to sort n integers in the
range [1, n’].

Since [BC82], time-space tradeoff lower bounds on R-way branching programs
have been shown for a number of algebraic problems such as discrete Fourier trans-
forms, matrix-vector products, and integer and matrix multiplication [ Yes84], [Abr86].
In addition to these results, Reisch, in [RS82], has claimed an improvement of the
sorting lower bound to Q(n” log log n/log n) using the same approach as in [BC82].
[RS82] presents an improvement of only one of the two key lemmas in [BC82]; this
change appears to necessitate an overhaul of the second, more complex lemma as well
in order to obtain the claimed bound. However, even this bound leaves a gap between
the upper and lower bounds for sorting.
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