SIAM J. SCI. STAT. COMPUT. (© 1992 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 994-1008, July 1992 009

AN O(n*logn) TIME ALGORITHM FOR THE
MINMAX ANGLE TRIANGULATION*

HERBERT EDELSBRUNNER!, TIOW SENG TANt!, AND ROMAN WAUPOTITSCH!

Abstract. It is shown that a triangulation of a set of n points in the plane that minimizes
the maximum angle can be computed in time O(n?logn) and space O(n). The algorithm is fairly
easy to implement and is based on the edge-insertion scheme that iteratively improves an arbitrary
initial triangulation. It can be extended to the case where edges are prescribed, and, within the same
time- and space-bounds, it can lexicographically minimize the sorted angle vector if the point set is
in general position. Experimental results on the efficiency of the algorithm and the quality of the
triangulations obtained are included.

Key words. computational geometry, two dimensions, triangulations, minmax angle criterion,
iterative improvement, edge insertion

AMS(MOS) subject classifications. 68C05, 65M50

1. Introduction. Let S be a finite set of points in the Euclidean plane. A
triangulation of S is a maximally connected straight-line plane graph whose vertices
are the points of S. By maximality, each face is a triangle except for the exterior
face, which is the complement of the convex hull of S. Occasionally, we will call a
triangulation of a finite point set a general triangulation in order to distinguish it from
a constrained triangulation, which is a triangulation of a finite point set where some
edges are prescribed. A special case of a constrained triangulation is the so-called
polygon triangulation, where S is the set of vertices of a simple polygon and the edges
of the polygon are prescribed. In this paper only the triangles inside the polygon will
be of interest.

For a given set of n points there are, in general, exponentially many triangula-
tions. Among them one can choose those that satisfy certain requirements or optimize
certain objective functions. Different properties are desirable for different applications
in areas such as finite element analysis [1], [3], [23], computational geometry [21], and
surface approximation [12], [18]. The following are some important types of triangu-
lations that optimize certain objective functions.

(i) The Delaunay triangulation has the property that the circumcircle of any
triangle does not enclose any vertex [5].
(ii) The constrained Delaunay triangulation has the same property except that
visibility constraints depending on the enforced edges are introduced [13].
(iii) The minimum weight triangulation minimizes the total edge length over all
possible triangulations of the same set of points and prescribed edges [10], [17].

It is known that the Delaunay triangulation maximizes the minimum angle over
all triangulations of the same point set [22]. This result can be extended to a similar
statement about the sorted angle vector of the Delaunay triangulation [6] and to the
constrained case [13]. The Delaunay triangulation of n points in the plane can be
constructed in time O(nlogn) [6], [19], and even if some edges are prescribed, its
constrained version can be constructed in the same amount of time [20]. There is no
polynomial time algorithm known for the minimum weight triangulation if the input

* Received by the editors May 16, 1990; accepted for publication (in revised form) June 14, 1991.

t Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801. The research of the first author was supported by National Science Foundation grants CCR-
8714565 and CCR-8921421.

! This author is on study leave from the National University of Singapore, Republic of Singapore.

994

MINMAX ANGLE TRIANGULATION 995

is a finite point set, but dynamic programming leads to a cubic algorithm [10] if the
input is a simple polygon.

In this paper, we study the problem of constructing a triangulation that minimizes
the maximum angle, over all triangulations of a finite point set, with or without pre-
scribed edges. We call such a triangulation a minmaz angle triangulation. Although
avoiding small angles is related to avoiding large angles, the Delaunay triangulation
does not minimize the maximum angle—four points are sufficient to give an example
to this effect. Triangulations that minimize the maximum angle have potential appli-
cations in the area of finite element and surface approximation (1], [2], [8]. Our main
result is summarized in the following statement.

MAIN THEOREM. A minmaz angle triangulation of a set of n points in the plane,
with or without prescribed edges, can be computed in time O(n*logn) and space O(n).

Curiously, our algorithm has the same complexity for point sets and for simple
polygons. Prior to this paper no polynomial time algorithm for constructing a minmax
angle triangulation for a finite point set was known. On the other hand, if the input
is a simple n-gon, then a cubic time and quadratic space solution can be derived
simply by substituting the angle criterion for the edge-length criterion in the dynamic
programming algorithm of [10]. Thus, it seemed that the problem for simple polygons
. is much simpler than for point sets. Indeed, our attempts to apply popular techniques
such as local edge-flipping [11], [9], divide-and-conquer [21] and plane-sweep [7] to
construct a minmax angle triangulation for a point set were not successful; see also
(15].

Instead, we solve the problem by an iterative improvement method based on what
we call the edge-insertion scheme. An edge-insertion step adds some new edge gs to
the current triangulation, deletes edges that cross gs, and retriangulates the resulting
polygonal regions to the left and the right of gs. The difference from the simpler
edge-flip operation is that ¢gs can cross up to a fraction of the current edges, whereas
an edge added in an edge-flip crosses only one edge. This difference turns out to
be crucial in the case of minimizing the maximum angle: the edge-flip scheme can
get stuck in a nonglobal optimum [15], whereas the edge-insertion scheme is powerful
enough to always reach the optimum. A proof of the latter property is sufficient
to design a polynomial time implementation of the edge-insertion scheme. Clever
strategies to find an edge gs that leads to an improvement of the current triangulation
and to retriangulate the created polygonal regions are needed to obtain the claimed
O(n?logn) time bound.

Section 2 presents the algorithm to construct a minmax angle triangulation, and
§3 proves the crucial piece needed to show that the algorithm is correct. Section 4
gives the algorithmic details that lead to an efficient implementation of the algorithm.
Section 5 discusses the extensions to the constrained case and to the problem of
lexicographically minimizing the sorted angle vector. Finally, §6 presents experimental
results, and §7 mentions some related open problems.

2. The global algorithm. In general, there is more than one minmax angle
triangulation for a given set of points. Below we outline an algorithm that constructs
one such triangulation for a set S of n points in the plane. The maximum angle of a
given triangulation A is denoted by u(A).

Construct an arbitrary triangulation A of S.
repeat
(M1) Find a largest angle /pgr of A.

NERTO——

3 T R L R T

e

S

S S ——

996 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

(M2) Apply the ear-cutting procedure (§4) to modify A by
adding a “suitable” edge gs to A, where s € § — {p;g;7} and prngs # 0,
removing edges that intersect gs (this step creates polygons P and R
which have gs as a common edge), and
constructing triangulations P of P and R of R so that p(P), u(R) < Lpgr.
until the ear-cutting procedure fails to find such a gs.

To show that this algorithm is correct, we need the following two lemmas and some
forward references to the cake-cutting lemma of §3 and the ear-cutting procedure of
8§4. We define /zsy = 0 if any two of the three points are identical.

LEMMA 2.1. If zy is an edge in a triangulation A of a point set S, then u(A) >
maXgeg LT8Y.

Proof. Let t be a point so that Lzty = max,eg rsy. Thus no points of S lie inside
the triangle zty. Clearly, if zty is a triangle in A then there is nothing to be proved.
Otherwise, there exists a triangle utv in A so that eitheru =z, v € §— {y,t}, and uv
intersects ty or u,v € S - {z,y, t}, and uv intersects both zt and ty. In both cases,
p(A) > Lutv > Loty. O

The proof of the next lemma makes use of the cake-cutting lemma to be presented
in §3. We suggest that the reader read the statement of that lemma (Lemma 3.1) and
then return to the current discussion leading to Lemma 2.2. We call a triangulation
B of S an improvement of A if

(i) p(B) < u(A), or _
(if) u(B) = u(A), every triangle abe in B with Zabe = p(B) is also a triangle in
A, and B has at least one fewer maximum angle than A.

The next lemma asserts that the algorithm makes progress as long as the current
triangulation is not yet a minmax angle triangulation. It does this by proving that
there is at least one suitable edge gs. In its current version, the algorithm can be
thought of as trying all possible edges going out of g, so if there exist edges gs that
lead to an improvement of A, then the algorithm finds one such edge.

LEMMA 2.2. Assume that A is not yet a minmaz angle triangulation. Then an
iteration of the repeat-loop constructs an improvement of A.

Proof. Step (M1) of the repeat-loop finds a triangle pgr in A so that Zpgr = u(A).
The main observation is that there is some edge gs that intersects pr and belongs to a
minmax angle triangulation 7" of S. This is because WT) < p(A) implies that Zpgr
cannot exist in 7, and consequently, pr ¢ T (by the previous lemma). Therefore,
there exists a point s € § — {p, ¢, 7} such that gs Npr # (0 and gs is an edge of
7. With this edge gs, the cake-cutting lemma (§3) ensures that there are polygon
triangulations of P and R such that the largest angle of any triangle within P and
R is still smaller than /pgr. Section 4 shows that the ear-cutting procedure of step
(M2) indeed finds such a point s and produces triangulations P and R of P and R
such that u(P), u(R) < Zpgr. O

The above two lemmas can now be used to analyze the running time of the
algorithm. First, we address the number of iterations of the repeat-loop, which is one
plus the number of successful iterations of step (M2).

LEMMA 2.3. The above algorithm reaches o minmaz triangulation after at most
O(n?) iterations of the repeat-loop.

Proof. Each iteration produces a triangulation with a smaller maximum angle
than before, or with fewer maximum angles of the same size. Since the number of
different triangulations is finite, an optimum must be reached. To get an upper bound
on the number of iterations, notice that the edge pr removed from A during some

MINMAX ANGLE TRIANGULATION 997

iteration will not reappear in the future. The claim follows because S allows only (3)
different edges. 0

We are now ready to argue that the above algorithm runs in time O(n?logn)
and space O(n). There are two data structures needed for the algorithm. First,
the quad-edge structure of Guibas and Stolfi [9] is used to represent A; it permits
common operations, such as removing an edge, adding an edge, and walking from
one edge to the next, in constant time each. Second, the angles of A are stored in a
priority queue that admits insertions, deletions, and finding the maximum. Standard
implementations support each such operation in time O(logn); see, e.g., [4]. The
space needed for both data structures is O(n).

With these preliminaries we can give the analysis of the algorithm. By Lemma
2.3, the number of times the priority queue is consulted to get a largest angle is 0o(n?),
which implies that step (M1) takes total time O(n?logn). Section 4 will show that
the ear-cutting procedure performs only a total of O(n?) operations on the quad-edge
structure, each in constant time, and only O(n?) insertions into and deletions from
the priority queue, each in time O(logn). We conclude that the running time of the
algorithm is O(n? logn), as claimed.

3. The cake-cutting lemma. The result of this section is a technical lemma,
which is nevertheless the heart of this paper. It ensures that for some edge gs the
generated regions, P and R, can be triangulated without angles that are too large.
We first discuss the shape of these regions and then state and prove the lemma.

The regions P and R are generated in step (M2) of the algorithm by adding an
edge gs and removing all edges that intersect gs. It follows that P (and by symmetry
R) is very similar to a simple polygon; that is, it is simply connected and bounded
by straight-line edges. The only difference is that there can be edges surrounded by
P on both sides; these are the edges contained in the interior of the closure of P (see
Fig. 1). To simplify the forthcoming discussion (and also in the implementation of
the algorithm) we treat each such edge as if it consisted of two edges, one for each
side. Effectively, this means that we can talk about P and R as if they were simple
polygons.

Fic. 1. Regions P and R.

With this note we now state and prove the cake-cutting lemma. The intuition
behind the proof is that we look at a piece of an optimal triangulation 7 and argue
about its edges. Keep in mind, however, that during the algorithm we have no way
of knowing what 7 really is; we only know that it exists.

A L e i

AR

e

SY

s T —

998 H. EDELSBRUNNER, T. S. TAN » AND R. WAUPOTITSCH

LEMMA 3.1. Let T be a minmaz angle triangulation of S, A a triangulation of
S with u(A) > u(T), pgr a triangle in A so that {pgr = p(A), and gs an edge in
T that intersects pr. Let P and R be the polygons generated by adding qs to A and
removing all edges that intersect gs. Then there are triangulations P and R of P and
R s0 that p(P), u(R) < u(A).

Proof. We prove the claim for P; it follows for R by symmetry. Imagine we have
A and T on separate pieces of transparent paper that we lay on top of each other so
that the points match. Following step (M2) of the algorithm, we add ¢s to A and
remove intersecting edges from .4, thus creating P and R. Next, we clip everything
outside P. In A only P without intersecting edges is left, and in T there will generally
be edges that cut through P. By assumption, gs is also in 7, which implies that none
of these edges meets gs. We define a clipped edge as a connected component of such
an edge of 7 intersected with P. Since P is not necessarily convex, some clipped
edges can belong to the same edge of 7. Given a point z on the boundary of P, let
the path from z to g (or z to s) be the part of the boundary between z and ¢ (or z
and s) that does not contain gs- We have four classes of clipped edges zy; see Fig. 2.

I. Both endpoints, z and Y, are not vertices of P and thus lie on edges of P,

IL. Both endpoints are vertices of P.

III. Endpoint z is a vertex of P, y is not, and y lies on the path from z to s.

IV. The same as class III except that y lies on the path from z to q.

F1G. 2. The class 1 edges in this example are eg and mv; the class 11 edges are cj, ck, ez, and
sp; the class 111 edges are cl and cw; and the class TV edges are jh, jd, un, zb, and sa.

At any vertex z of P, the clipped edges with one endpoint at z define angles at z that
are all smaller than p(A), because the clipped edges come from 7" and wW(T) < p(A)
holds by assumption. The only disadvantage of the partition of P defined by the
clipped edges is that some of their endpoints lie on edges of P rather than at the
vertices. We will now construct a triangulation of P based on the clipped edges. It
proceeds step by step, where each step either removes or rotates a clipped edge or
introduces a new edge.

1. All class I edges are removed. This does not harm any angle.

2. All class II edges remain where they are.

3. Let zy be a class III edge with y on the edge aff of P, where a precedes Jé)

MINMAX ANGLE TRIANGULATION 999

on the path from z to s. We replace zy by z8.

Note first that z/ is indeed a diagonal of P. Otherwise, it intersects the boundary
of P, which implies that either z or 3 is not visible from gs. This is a contradiction
to the way P is constructed. Note second that the angle at = that precedes zy in the
counterclockwise order increases in step 3. Still, the angle formed by 8 is strictly
contained in an angle at z in A because all edges of A that intersect P also intersect
gs. It follows that the angle formed by z(is smaller than u(A). Another issue that
comes up is that there can be class IV edges z'y’ with 3’ on the same edge o of P—
these edges now intersect z3. To remedy this situation we replace z'y’ by z’z. By the
same argument as above, £’z is a diagonal of P, and the angle at ' that precedes z'y/’
in the clockwise order and that increases as we replace z'y’ by 'z remains smaller
than p(A).

4. If zy is a class IV edge with y on the edge o of P, where « precedes 3 on
the path from z to g, then we replace zy by z3.

5. After steps 1-4 we have a partial triangulation of P, which we complete by
adding edges arbitrarily. This finishes the construction of P.

We have u(P) < u(A) since we started out with all angles smaller than p(A);
each time an angle increases it remains smaller than u(.A) as argued above, and step
5 decomposes angles, thus creating only smaller angles. 0

Remark. Note that the only property of 7 used in the proof of the cake-cutting
lemma is that u(7) < p(A). The lemma thus also holds if we replace 7 by an
arbitrary triangulation B of S that satisfies u(B) < u(A). In fact, it suffices if B is an
improvement of 4 and pgr is not a triangle in B.

4. The ear-cutting procedure. The cake-cutting lemma in §3 shows that if
A is not yet a minmax angle triangulation and g¢s is an edge in 7, chosen by the
algorithm to improve A, then there are triangulations of the generated polygons P
and R with all angles smaller than /pgr. The two questions that remain are how to
find such an edge gs and how to quickly triangulate P and R. One obvious way to
find gs (not necessarily in T but in an improvement of A) is to try all possible points
s with gsNpr # 0. For each such s we add gs to .4 and remove all edges that intersect
gs. The thus-created polygons P and R are triangulated with minimum largest new
angle using dynamic programming. If the largest new angle is smaller than Zpgr we
have an improvement of .4 and thus a desired gs.

Apparently, the implementation of an iterative step sketched in the above para-
graph is rather inefficient. We improve the performance with a more clever way to
search for an appropriate point s and with a fast procedure for triangulating P and
R. The two tasks are woven together to the extent that it is not advisable to look
at them as separate steps. For a chosen point s we attempt to triangulate P and
R with all angles smaller than /pgr. If this fails we get some guidance on where to
look for a better point s. Following this guidance, a next point s is chosen so that we
can reuse part of the work done during the unsuccessful triangulation attempt. The
fundamental notion in all of this is that of an ear of a polygon triangulation.

4.1. Ears. An ear in a polygon triangulation is a triangle bounded by two poly-
gon edges and one diagonal. It is easy to show that any triangulation of a simple
polygon with more than three vertices has at least two ears [14].

In order to efficiently triangulate P and R, with all angles smaller than p =
u(A) = Lpgr, we need two properties. The first guarantees that no expensive testing
is necessary to recognize when an edge is a diagonal.

I A

T

G R ————

ey g

Ny

1000 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

LEMMA 4.1. Let P’ be a polygon obtained from P by repeatedly TEMOVINg ears
not incident to gs. If a,b,c are three consecutive vertices of P’ with {g,5} Z {a,b,c}
and Labc < , then ac is a diagonal of P,

Proof. By construction of P each of its vertices can be connected by a straight-
line segment within P to a point on gs. This property is maintained whenever we
remove an ear not incident to gs, so it also holds for P'. In particular, it holds for the
vertices a, b, and ¢ of P'. The edge ac can avoid being a diagonal only if it intersects
the boundary of P’ (it cannot lie outside P' because Zabe <). But this contradicts
the above property for either a or ¢ or for both.]

By symmetry, Lemma 4.1 also holds for R. It is now easy to identify ears because
only one angle has to be checked. This is because the angles at a and c inside abc are
always smaller than y as they are properly contained in angles of A. Thus, all three
angles of abe are smaller than p if and only if Zabe < 7

The second property we need is that it does not matter which ears we remove,
and in what sequence we remove them, as long as their angles are small enough.
This property is implied by the following lemma whose proof is omitted because it is
identical to that of the cake-cutting lemma.

LEMMA 4.2. Let P’ be o polygon obtained from P by repeatedly removing ears not
incident to gs. If gs is an edge of T then there ezists a triangulation of P' without
angles larger than or equal to W

The two lemmas suggest that we triangulate P and R simply by repeatedly finding
consecutive vertices a, b, ¢, with Zabe < K, and removing the ear abe. We remark that
this strategy can also be used to get an inductive proof of the cake-cutting lemma.
The next two subsections show how ear cutting and the search for an appropriate
point s can be combined to yield an efficient implementation of an iterative step.

4.2. How to cut. The way we search for a point s (§4.3) guarantees a certain
property of the polygons P and R that simplifies their triangulation by ear cutting.
To be accurate we should mention that at the time we start the triangulation process
for P and R, some ears will already have been removed as a result of earlier attempts
to triangulate polygons generated for other points s. Consistent with our earlier
notation, we therefore denote the two polygons that we attempt to triangulate by
P’" and R'. We state the mentioned property as an invariant of the algorithm after
introducing some notation.

As justified above we pretend that P’ and R’ are simple polygons; by construction
they share the edge gs. Let k + 2 be the number of vertices of P! and m + 2 the
number of vertices of R’, and label them consecutively as g = pg, py, - - - yPEsPk41 = 8
and g = T0;T1,""*,Tm, Tm41 = 8 (see Fig. 3). Define @i = Lpi_1pipiy1 for 1 < i <k
and P = é?‘j_l?"j‘!'j.].l for 1 %= j < m. 3

We can now state the property of P’ and R'.

Invariant. qﬁgzpforal115£<kandpj2yfo;a.111$j<m.

This implies that Pk—1,Pk, $ are the only three vertices that possibly define an
ear of P’ that is not incident to gs (provided k > 1) and has all three angles smaller
than . Symmetrically, r,,_, Tm, 8 are the only such three vertices of R’ Ifor<p
then pr_;pis is indeed such an ear and we can remove it from P’. This operation
decreases ¢;_;, the angle at pr_;, and leaves all other @i unchanged. Thus, P’ still
satisfies the invariant after setting k := k — 1. Similarly, the invariant is maintained
if we remove r,,,_;7,,s from R’ and set m :=m — 1.

We now describe this process more formally as a procedure that alternates be-
tween removing an ear from P’ and removing an ear from R’. It either completes its

MINMAX ANGLE TRIANGULATION 1001

%1 1
Rf
P.f

Pk Tm

Fic. 3. The circular arcs indicate angles that are known to be at least as large as p.

task of triangulating P’ and R’ or it stops because it encounters a situation where
Gk = W OF P 2 [he To avoid repetition we separate out the code that tests an angle
and removes an ear if the angle is small enough.

procedure CUTEARP’.
if ¢ < p then
if k> 1 then add the edge pr-18 to the triangulation endif;
remove the triangle px—1Pk3 from P’ and set k:=k—1
else set stop := true
endif.

Similarly, we define a procedure GUTEARR/, which either removes Tm—1Tm? from
R’ or raises the flag by setting stop := true. The attempt to triangulate P’ and R’ first
alternates between the two polygons and, if one polygon is successfully triangulated,
attempts to complete the polygon that remains.

stop := false;

while k > 0 and m > 0 and not stop do
cUTEARP'; if not stop then cuTeARR’ endif

endwhile;

while k > 0 and not stop do cuTEARP' endwhile;

while m > 0 and not stop do cuTEARR’ endwhile.

If the procedure finishes without raising the flag (stop = false) then we must
have k = m = 0 and the triangulation is complete. Otherwise, the flag is raised either
while testing P’ or while testing R’ (so we Should really have used two flags to be able
to distinguish the two cases—and we pretend we did).

Assume the flag was raised because of ¢x > p. Let g be the half-line that starts
at g and goes through s, and let p' be the point among p1,--*,Pk SO that /p'gs is a
minimum. Note that p is not necessarily equal to pk, but p/ = pi if P’ is convex. We
have the following lemma, which will be useful in searching for a new point s.

LEMMA 4.3. Assuming ¢k = K there is no point t € S so that gt is an edge in a
minmaz angle triangulation T of S, gt Npxs # 0, and gtNp's #0.

Proof. Suppose there is a point ¢ that contradicts the assertion. Because qtNpes #
@, this edge gt generates a polygon P” so that ¢ = Po,P1," "> p. is a contiguous subse-
quence of its vertices (after removing appropriate ears). Let Drt1,7* PR/ Prr+1 = t

R e T R TR N

e L e

1002 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

be the other vertices of P". By assumption we have Lpi1Ppipiy1 > pfor1 <i< k—1.
Furthermore, Zpx_1pxp; > pfor all k+1 < J < K" +1 because all these angles are
larger than ¢y, the angle at p; in P'. Hence, any attempt to triangulate P by re-
moving ears (not incident to gs with angles all smaller than) must fail to cut off
ears at p; forall 1 <i<k. 0

Remark. As in the remark after the cake-cutting lemma, we can argue that Lemma
4.3 is also true if we replace 7 by an arbitrary triangulation that is an improvement
of A.

Lemma 4.3 suggests that the search for a new s continue between gr’ and gs if
the flag is raised while testing P’, where ' is the counterpart of p’ in R’ and s is
the old s. Thus, all ears removed from P’ are safe and do not have to be considered
again. However, all ears removed from R’ have to be added back because they will
intersect any future edge gs. Simultaneously, the value of m has to be adjusted. The
amount of time needed to add these ears back in is proportional to the number of ears
removed from P’, because the ear cutting alternates between P’ and R'. Symmetric
actions are in order when the flag is raised while testing R'.

4.3. How to search. Let us go back to the triangulation 4 of § that is not
yet a minmax angle triangulation, and as usual let P, 4,7 be the points so that pgr
is a triangle in 4 and Zpgr = p = p(A). The first vertex s that we test is the third
vertex of the other triangle of pr (if no such triangle exists, then pr is an edge of
the convex hull of S and no appropriate point s exists). Thus we add gs and remove
pr. If the new angles at p and r are both smaller than i, then we are done. If
£qps < p and /grs > p, then, by Lemma 4.3, the edges we should test must intersect
ps. Symmetrically, if Zgps > u and Lgrs < p, then we must search for edges that
intersect sr. If both angles are at least y, then no appropriate edge exists.

We now generalize and formalize this idea. For given polygons P’ and R' we
define vertices p’ and ' as above, and we denote the open wedge between gp’ and
gr' by W. This wedge will get progressively smaller as we proceed with the search,
and only points s within the wedge will be considered as endpoints of new edges gs.
Initially, p’ = p and 7/ = r. We are now ready to describe the algorithm that searches
for an appropriate point s.

Input. A triangulation A of S with maximum angle Lpgr = p = p(A).

Output. An improved triangulation or a message that the maximum angle cannot be
decreased. In the latter case, the input triangulation is a minmax angle triangulation
of S.

Define. THIRD(a, b) is the vertex c of the triangle abc so that g and c lie on opposite
sides of the line through a and b. If such a vertex does not exist, which is the case
if ab is an edge of the convex hull of S, then THIRD(a, b) is undefined. As before, W
denotes the open wedge defined by 7/, g, and r'.

Initialize k :=1,py :==p' :=p, m:=1, and ry :=¢' :=1r.
loop
if THIRD(pf, ') is not defined then
return the message that the maximum angle cannot be decreased and stop.
else
set s := THIRD(pg,) and remove pyr,, from A.
if s € W then
add ¢s to A and attempt the triangulation of P’ and R’ as described in §4.2.
case 1. The attempt succeeds. Return the new triangulation and stop.

MINMAX ANGLE TRIANGULATION 1003

case 2. The flag was raised while testing P’. Set k:=k+ 1&pr:=p =5
case 3. The flag was raised while testing R'. Set m :==m+1 &rmi=1 =8
else (i.e, s ¢ W)

if sr,, intersects W then
set stop := false; while not stop do cuTEARP’ endwhile;
set k:=k+1 and px == §.

else (i.e., spx intersects W)

set stop := false; while not stop do CUTEARR' endwhile;
set m:=m+1and T, = S

endif

endif
endif
forever.

We would like to point out & subtlety of the algorithm needed to prove its cor-
rectness. That is, the polygons P’ and R’ defined by any edge gs are obtained from A
by removing only edges that intersect gs. Of course, some edges not in A have been
added already to remove some e€ars. In other words, P’ is the polygon P (as defined
in §2) with some ears removed, and the same is true for R and R.

4.4. The final analysis. The running time of an iterative step (the above al-
gorithm) is proportional to the number of removed ears. Because of the alternation
between removing an ear from P’ and one from R/, at most only one more than half
of the removed ears are added back to the polygon. This is also true if one polygon is
completely triangulated while ears are still removed from the other polygon, because
in this case only the ears of the former polygons need to be added back in, and their
number is smaller than the number of ears cut off from the other polygon. It follows
that the total number of removed ears is O(n). A single iteration therefore takes
only O(n) time. Together with Lemma 9.3, which states that there are only O(n?)
iterations, this implies a cubic upper bound on the time complexity of our algorithm
(if implemented without priority queue).

Below we argue that its running time is actually O(n?logn). To achieve this
bound it is necessary to store the angles of the current triangulation in a priority queue,
for otherwise finding all maximum angles costs time Q(n?). The crucial observation is
that the time spent in an iterative step is proportional to the number of edges in the
input triangulation that intersect the new edge gs. Each such edge has been removed
and we argue that it will never be added again because every future triangulation will
have an edge gt that intersects PkTm, the last edge before s. First note that every
future triangulation is an improvement of A. By Lemma 4.3 and the remark following
it, every improvement of A has an edge gt in the final wedge W as maintained by the
algorithm. Both D and Ty, lie outside W (possibly on its boundary) and the edge
prTm intersects W. The claim follows because all points of W N S lie beyond pxTm 88
seen from g. This implies the O(n?log n) bound because we bave only (%) = O(n?)
edges to work with. It should be noted that the maintenance of the priority queue
storing the angles is the sole reason for the logn term in the O(n?logn) bound; all
other operations take total time O(n?).

5. Extensions. We address two types of extensions of our elgorithm for con-
structing minmax angle triangulations. The first extension is to the constrained case
where the input consists of a set of n points plus some pairwise disjoint edges defined
by the points that are required to be in the triangulation. The second extension

PR AL O T VR My

v

1004 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

discusses the optimization of the entire angle vector rather than just the maximum
angle.

Only minor changes are necessary to adapt the algorithm presented in §82 and 4
to the constrained case. The most important change is that no prescribed edge will
be removed to give way to searching for a new point s. This modification takes no
extra time, which implies the part of the Main Theorem that deals with prescribed
edges.

Before we introduce angle vectors, note that for a given point set S all triangula-
tions (whether constrained or not) have the same number of triangles and therefore
the same number of angles. By Euler’s formula for planar graphs the number of trian-
glesis t = 2n — h—2, where n = | S| and h is the number of points of S that lie on the
boundary of its convex hull. For any triangulation A of S we define its angle vector
Va = (o1,02,,08), with oy > ap > --- > asz; the 3¢ angles of the ¢ triangles.
If B is another triangulation of S with angle vector Vg = (31,0, - -, B3:) we define
Vg<VAifthereisanindex1§j53tsotha{:ﬁi=ag forl$é<jaud,3j < aj.
For example, V5 < V4 if Bis an improvement of 4, but the reverse is not necessarily
true.

The problem of finding a triangulation with minimum angle vector is at least
as difficult as finding a minmax angle triangulation. If any two angles defined by
three points of S each are different we can construct the minimum angle vector
triangulation—which is unique in this case—as follows.

First, construct a minmax angle triangulation 7; and declare the
three edges of the triangle that contains the maximum angle as pre-
scribed. Second, construct a minmax angle triangulation 7; for the
thus constrained input and introduce new constraints to enforce the
second largest angle in future triangulations. Continue this way and
construct triangulations 73, 73, and so on until the prescribed edges
add up to a triangulation themselves. This triangulation minimizes
the angle vector.

An O(n®logn) time-bound for this algorithm is obvious because it just iterates
the minmax angle triangulation algorithm a linear number of times. Even better,
we have an O(n?logn) time-bound if we use 7; as the input triangulation for the
construction of 7;;;. The improved bound follows because an edge once removed
cannot appear in any future triangulation. We thus get the following result by the
same argument as in §4.4.)

THEOREM 5.1. Given a set of n points in the plane so that no angles defined by
three points each are equally large, the triangulation that lezicographically minimizes
the angle vector can be constructed in time O(n? log n) and space O(n).

Remark. In the presence of multiple angles it is not clear how to adapt the ap-
proach of this paper without requiring an exponential amount of time in the worst
case. We pose the existence of a polynomial algorithm for minimizing the angle vector
in the presence of multiple angles as an open problem. A case where multiple angles
can be handled relatively easily is that of a simple polygon. The straightforward cubic
time algorithm for minimizing the maximum angle, derived from the dynamic pro-
gramming algorithm of Klincsek [10], can be extended to an O(n*) time algorithm for
minimizing the angle vector as follows. Instead of characterizing a (partial) triangu-
lation by its maximum angle we store its sorted angle vector. The best triangulation
of a sequence of vertices is then selected on the basis of these vectors, The cubic time

MINMAX ANGLE TRIANGULATION 1005

increases to O(n*) because comparing two angle vectors takes O(n) time in the worst
case, in contrast to constant time for comparing maximum angles.

6. Experimental results. To demonstrate that the results of the preceding sec-
tions, which we believe are of theoretical interest, are significant also from a practical
viewpoint, we implement the algorithm along with a few other triangulation algo-
rithms from the literature. Using these implementations, we perform a small-scale
comparative study of the triangulations they produce. A more extensive study and
complete description of the findings will soon be available as the master’s thesis of
Waupotitsch. The difference between two triangulations is expressed in terms of their
angles and edges (as in [16]).

The experimental study is based on implementations of four different triangula-
tion algorithms. Three work by iterative improvement, and to construct an initial
triangulation we use a plane-sweep strategy (see, e.g., [6, §8.3.1]). Triangulations
constructed by plane-sweep are denoted by PS. The implementation of the edge-
insertion algorithm of this paper minimizes the angle vector as discussed in §5. Its
triangulations are referred to as MV. To avoid the difficulty that arises when two
angles are equally large (see the remark at the end of §b), we use a heuristic that
breaks ties in a consistent manner. Delaunay triangulations, DEL, are constructed by
flipping the diagonals of convex quadrilaterals as long as the smallest angle involved
increases (see, e.g., [11])- The third incremental improvement algorithm flips the di-
agonal of a convex quadrilateral if the largest of the six involved angles decreases.
As shown in [15], this heuristic typically gets stuck in a local optimum depending on
the initial triangulation as well as on the way the flips are scheduled. We use this
algorithm to construct triangulations FPD, FPN, FDD, and FDN, where the middle
letter distinguishes between PS and DEL as the initial triangulation and the final
letter distinguishes between deterministic (largest angle first) and “nondeterministic”
(first in first serve) scheduling.

The point sets chosen for our experimental study are drawn uniformly either
inside a square or near a circle (see Fig. 4). To allow for exact arithmetic all points
are chosen on the integer grid. For each of various point set sizes, 30 experiments are
carried out and average statistics are compiled.

Table 1 compares triangulations and their quality. More specifically, it compares
each triangulation X € {PL, DEL, FPD, FPN, FDD, FDN} with MV, the optimum
triangulation. The parameter Ae gives the number of edges in X that are not in
MYV. The angle vectors of X and MV are compared using parameters Leg; Lsm; and
(£/Lppy)- This means that the /e, largest angles of X and MV are the same and
that the next Zm largest angles are smaller for MV. (£/Lpy) is the ratio between
the Leq + 1 largest angle of each triangulation. The statistics show that for points
uniformly distributed in a square the edge-flip heuristic produces triangulations that
come close to the optimum. Consistent with the findings reported in (16], DEL differs
from MV by slightly less than 10 percent of its edges. This is in sharp contrast to
the relative performance of the algorithms for points chosen on or close to a circle. In
this case, DEL and MV share very few nonconvex hull edges. The edge-flip heuristic
produces triangulations that are superior in terms of angles to DEL, but they hardly
share any more edges with MV.

Tt is interesting to note that the amount of work needed to construct MYV is far less
for points in a square than for points near a circle. Table 2 shows the number of edges
removed during the construction of MV. While the difference between the two point
distributions is striking, the choice of the initial triangulation seems t0 have far lese

e .

T e

A

1006 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

DEL FDD MV

FIG. 4. The Delaunay triangulation, DEL, a locally optimal triangulation, FDD, and the
globally optimal triangulation, M V, for two small point sets.

influence on the running time of the edge-insertion algorithm. In general, we observe
that the edge-insertion algorithm is much faster on the average than expressed by the
worst-case analysis in §4. We would also like to remark that there are no polynomial
time-bounds known for the edge-flip heuristic used in our experimental study.

7. Conclusions. The main result of this paper is an O(n?logn) time algorithm
for constructing a minmax angle triangulation of a set of n points in the plane, with
or without prescribed edges. This seems fairly efficient considering that it is the first
polynomial time algorithm for the problem and that it somehow avoids looking at all
the () angles defined by the n points. On the other hand, our algorithm is a factor n
slower than the best algorithms for constructing Delaunay triangulations, at least in
the worst case. We thus pose the question of whether a minmax angle triangulation
can be constructed in o(n?logn) time.

In the nondegenerate case where no two angles defined by three points each are
equal, the algorithm can be extended to compute the triangulation that lexicograph-
ically minimizes the sorted vector of angles. The running time is still O(n?logn) in
the worst case, and our experiments indicate that the average run time is significantly
less.

A problem related to minimizing the maximum angle is to construct a triangu-
lation that minimizes the number of obtuse angles. It seems that the edge-insertion
scheme does not work for this criterion. The problem thus remains open for point
sets, although dynamic programming yields a cubic time algorithm if the input is a
simple polygon. Still, the authors of this paper believe that the edge-insertion scheme
is more generally applicable and plan to further investigate this paradigm.

MINMAX ANGLE TRIANGULATION 1007

TABLE 1
Comparison of MV with other triangulations.

50 points (in square) 100 points (in square) 200 points (in square)

a8l L.l =8 Vil L |28 |z |2 £
(%) eq am Z_E/ (%} eq am Z‘E (%) eq 8m Tﬁ

PSs 51.9 0 91 1.020 62.5 0 | 190 1.012 70.8 0| 391 1.006
DEL 7.3 7 29 1.033 8.0 8 53 1.018 88 | 11 66 1.008
FPD 15 | 97 5 1.011 31| 36 42 1.022 33| 24 66 1.011
FPN 1.6 | 89 6 1.012 3.2 1| 35 32 1.022 32| 26 68 1.012
FDD 24 | 54 7| 1.015 22| 74 13 1.017 2.5 | 28 30 1.010
FDN 26 | 29 7| 1.017 2.5 | 91 15 1.022 29 | 28 34 1.010

500 points (in square) 1000 points (in square) 50 points (near circle)

PS 79.0 0 | 995 1.002 84.0 0 [2001 1.001 45.7 0 33 1.058
DEL 88 | 17 | 185 1.005 9.1 | 21 | 231 1.002 46.5 0 47 1.072
FPD 33| 40 | 195 1.005 3.0 | 55 | 438 1.003 43.1 1 26 1.046
FPN 33| 41 | 151 1.006 3.2 | 57 | 454 | 1.003 43.7 1 26 1.045
FDD 2.7 | 45 92 1.009 2.7 | 62 | 200 | 1.007 42.0 2 24 1.039
FDN 3.0 | 43 91 1.008 3.0 | 60 | 201 1.006 40.6 2 22 1.035

100 points (near circle) 200 points (near circle) 500 points (near circle)

PS 43.5 4 79 1.003 47.1 T | 104 1.001 44.5 2 | 176 | 1.00006
DEL 38.6 5 28 1.001 46.5 7| 209 1.001 43.4 | 24 | 358 | 1.00003
FPD | 394 | 16 34 1.005 46.4 | 15 94 1.004 43.4 | 77 | 215 | 1.00018
FPN | 393 | 16 34 1.005 46.6 | 15 93 1.004 43.4 | 76 | 242 | 1.00018
FDD | 382 | 18 28 1.004 46.1 | 16 88 1.004 43.3 | 80 | 335 | 1.00024
FDN | 39.8 | 18 17 1.005 46.8 | 16 85 1.006 43.3 | 80 | 202 | 1.00011

TABLE 2
The number of edges removed by the edge-insertion algorithm when it computes MYV from either
PS§ or DEL.

Square Circle
50 pts | 100 pts | 200 pts | 500 pts | 1000 pts || 50 pts 100 pts | 200 pts | 500 pts
PS 240 647 1607 5067 11847 1301 2340 17136 63003
DEL 153 390 946 2887 6658 1303 2276 16660 58034

Acknowledgment. The second author thanks Professor C. L. Liu for his con-
stant support and encouragement.

REFERENCES

(1] 1. BABUSKA AND A. K. Az1z, On the angle condition in the finite element method, SIAM J.
Numer. Anal., 13 (1976), pp. 214-226.

[2] R. E. BARNHILL AND F. F. LITTLE, Three- and four-dimensional surfaces, Rocky Mountain
J. Math., 14 (1984), pp. 77-102. ~

[3] J. CavenDIsH, Automatic triangulation of arbitrary planar domains for the finite element
method, Internat. J. Numer. Methods Engrg., 8 (1974), pp. 679-696.

[4] T. H. CorMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[5] B. DELAUNAY, Sur la sphére vide, Izv. Akad. Nauk SSSR, Otdel. Mat. i Estest. Nauk, 7 (1934),

Pp. 793-800.

[6] H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, Ger-
many, 1987.

[7] S.J. FORTUNE, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), pp. 153
174.

[8] J. A. GrEGORY, Error bounds for linear interpolation on triangles, in The Mathematics of
Finite Element and Applications II, J. R. Whiteman, ed., Academic Press, New York,
1975, pp. 163-170.

St sy

s

T i

B

1008

(9]
(10]

(11]

(12]
(13]

[14]
(15]

[16]

[17)
(18]
[29)

(20]

[21]

[22]
(23]

H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

L. J. GUIBAS AND J. STOLFI, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graphics, 4 (1985), pp. 74-123.

G. T. KLINCSEK, Minimal triangulations of polygonal domains, Ann. Discrete Math., 9 (1980),
pp. 121-123.

C. L. LAWSON, Generation of a triangular grid with applications to contour plotting, Jet
Propulsion Laboratory Tech. Memo. 299, Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA, 1972.

1 Software for C* surface interpolation, in Mathematical Software III, J. R. Rice, ed.,
Academic Press, New York, 1977, pp. 161-194.

D. T. LEE AND A. K. LiN, Generalized Delaunay triangulations for planar graphs, Discrete
& Comput. Geom., 1 (1986), pp. 201-217.

G. H. MEISTERS, Polygons have ears, Amer. Math. Monthly, 82 (1975), pp. 648-651.

G. M. NIELSON, An ezample with a local minimum for the minmaz ordering of triangulations,
manuscript, Lawrence Livermore National Laboratory, Livermore, CA, 1987.

G. M. NIELSON AND R. FRANKE, Surface construction based upon triangulations, in Surfaces
in Computer Aided Geometric Design, R. E. Barnhill and W. Boehm, eds., North-Holland,
Amsterdam, 1983, pp. 163-177.

D. A. PLAISTED AND J. HONG, A heuristic triangulation algorithm, J. Algorithms, 8 (1987),
pp. 405-437.

M. J. D. PoweLL aND M. A. SABIN, Pairwise quadratic approzimation on triangles, ACM
Trans. Math. Software, 3 (1977), pp. 316-325.

F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry—an Introduction, Springer-
Verlag, New York, 1985.

R. SEIDEL, Constrained Delaunay triangulations and Voronoi diagrams with obstacles, in 1978
1988, 10-Years IIG, Report of the Institute for Information Processing, Technical University
of Graz, Austria, 1988, pp. 178-191.

M. I. Suamos aND D. Hogy, Closest point problems, in Proc. 16th Annual IEEE Symposium
on the Foundations of Computer Science, Berkeley, CA, 1975, pp. 151-162.

R. SBSON, Locally equiangular triangulations, Comput. J., 21 (1978), pp. 243-245.

G. STRANG AND G. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood
Cliffs, NJ, 1973.

