Information Processing Letters 42 (1992) 55-60
North-Holland

27 April 1992

Optimal time bounds for some proximity

problems in the plane

Alok Aggarwal

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Herbert Edelsbrunner *

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Prahakar Raghavan and Prasoon Tiwari

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Communicated by D.A. Plaisted
Received 8 November 1989
Revised 9 August 1990

Abstract

Aggarwal, A., H. Edelsbrunner, P. Raghavan and P. Tiwari, Optimal time bounds for some proximity problems in the plane,

Information Processing Letters 42 (1992) 55-60.

Given a sequence of n points that form the vertices of a simple polygon, we show that determining a closest pair requires
Q(nlogn) time in the algebraic decision tree model. Together with the well-known O(# log n) upper bound for finding a
closest pair, this settles an open problem of Lee and Preparata. We also extend this O(x log n) upper bound to the following
problem: Given a collection of sets with a total of n points in the plane, find for each point a closest neighbor that does not

belong to the same set.

Keywords: Computational geometry, upper and lower bounds, point sets, simple polygons, Euclidean distance, algebraic
decision tree model, integer element uniqueness problem

1. Introduction

The closest-pair problem for a set S of n points
in the plane is to find two points p,g €S so that

d(p, q) = rTLnS[d(r, S)}’

Correspondence to: Dr. A. Aggarwal, IBM Research Divi-
sion, Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598, USA. Email: aggarwa@
watson.ibm.com.

* Research supported by the National Science Founda-
tion under grant CCR-8714565.

where d(p, g) denotes the Euclidean distance
between p and g. It is well known that this
problem can be solved in O(#n log ») time, see e.g.
[5]. Shamos [15] has also shown that this problem
requires () (nlogn) time in the linear decision
tree model, and a general technique due to Ben-
Or [4] can be used to extend the Q(n log n) lower
bound to the algebraic decision tree model. The
lower bound is obtained by reducing the closest-
pair problem to the element uniqueness problem
for a set of ®(n) real numbers, and it does not
apply when the points are given as a sequence

0020-0190,/92 /$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved 55

Volume 42, Number 1

that defines a simply polygon '. If the sequence
forms a convex polygon then O(x) times suffices
to find the closest pair, see [10]. Indeed, they
showed that O(n) time suffices to compute a
closest neighbor 2 for each point.

The discrepancy between the Q(n log n) lower
bound and the O(n) upper bound motivated Lee
and Preparata [11] to ask whether (M(nlog n) is a
lower bound for the closest-pair problem even if
the sequence of points defines a simply polygon.
In this paper, we settle this question with the
affirmative and show the somewhat stronger re-
sult that Q(nlogn) is required even when the
points define a monotone or a star-shaped poly-
gon > We complement this lower bound with an
O(nlog n) upper bound for the following more
general proximity problem.

Given a collection of point sets, S, S,,..., S,
with a total of n points, for each point find a
point that is closest but not in the same set.

The algorithm that solves the problem in time
O(n log n) uses Voronoi diagrams of various sub-
sets of S=U,_;S; (see [7] or [13] for exten-
sive treatments of Voronoi diagrams). It extends
the O(n log n) upper bounds for the closest-pair
problem and the all closest neighbors problem *
for a point set.

The organization of this paper is as follows.
Section 2 demonstrates the (nlogn) lower
bound. This is done by a reduction to the so-called

! We obtain the polygon formed by the sequence
(py, P3,-.., P,) When we connect p; with p,., by a straight
line edge, for 1 <i<n and p,, = p,. The polygon is simple
if no two edges intersect, except for adjacent edges which
meet in a common endpoint.

2 A closest neighbor of a point p € § is a point g € § —{p}
so that d(p, g) = min, o ({d(p, r)}.

3 A simple polygon is monotone if there is a direction so
that any line parallel to this direction meets the polygon in at
most two points. It is star-shaped if there is a point inside the
polygon so that every line through this point meets the poly-
gon in exactly two points. The set of such points is called the
kernel of the polygon.

4 The all closest neighbors problem for a finite set of points
in the plane asks for a closest neighbor for each point in the
set.

56

INFORMATION PROCESSING LETTERS

27 April 1992

integer element uniqueness problem for which
Yao [16] has recently shown an Q(#n log n) lower
bound in the algebraic decision tree model. Sec-
tion 3 gives the upper bound for the closest
neighbors problem of a collection of point sets. In
Section 4 we briefly address an implication of
Yao’s lower bound on the difference between the
RAM model and the algebraic decision tree
model of computation. Finally, Section 5 con-
cludes with some remarks and open problems.

2. The closest-pair problem - a lower bound

This section demonstrates that the closest-pair
problem for a sequence of n points in the plane
takes {2(n log n) time even if the sequence forms
a simple polygon. The proof uses a recent Q(n -
log n) lower bound of Yao [16] for the integer
element uniqueness problem. This problem asks
whether or not any two of a given sequence of n
integers are equal. The lower bound holds in the
algebraic decision tree model.

Theorem 2.1. Given the sequence of n vertices of a
monotone or star-shaped polygon, to determine the
closest pair of vertices requires (M(nlogn) time in
the algebraic decision tree model.

Proof. We show that if the closest-pair problem
for the vertices of a monotone or star-shaped
polygon with n + 2 vertices can be solved in time
T(n), then the integer element uniqueness prob-
lem for n integers can be solved in time O(T(n)
+n). This coupled with the Q(nlogn) lower
bound given by Yao [16] yields the desired result.

Given a sequence Y =(y,, y,,..., y,) of inte-
gers, we construct a polygon P with n + 2 ver-
tices Py, Pys---s Ppsy- FOr 1 <i<n define p,=
(x;, y) with x,=i/(n + 1). It is enough to choose
x¥9=0, x,,; =1 and the y-coordinates of p, and
D, +1 smaller than any of the y; to complete P so
that it is monotone. However, to guarantee that it
is also star-shaped we have to be slightly more
sophisticated in the choice of y, and y,,,. De-
fine y' as the minimum y-coordinate of any
intersection point of the vertical lines x =0 and

Volume 42, Number 1

x =1 with the lines defined by any two consecu-
tive points of p,, p,,..., p,. That is,

y'= m_in [}/I- _i(yi+1 _y:')’
l=izn

Yier = (n =) (¥~ Y1)}
For technical reasons that will become apparent
soon we choose p,=(0, yo)and p,,,=(1, y,,,)

with y, and y,,, even smaller than y’. Define
6 =max, .;;,{y;—y;} and set

Yo=y'—(8+1) and y, =y —2(§+1).
At this point it can be readily seen that p,,
Dis---3 Py form a simple polygon that can be

constructed in linear time from Y; P is monotone
(any vertical line meets it in at most two points)
and star-shaped (any point slightly above the edge
PoP,+1 lies in its kernel). Below we show that if
the closest-pair problem for P can be solved in
T(n) time steps then the integer element unique-
‘ness problem for Y can be solved in time O(T(xn)
+n).

Suppose an algorithm .« determines a closest
pair, {p,, p,} with k <¢, in T(n) time steps. By
the choice of p, and p,,, we have k+0 and
F+n+ 1. Set

2
dp o=V (xg _x{)z +(¥i—=:) .

the distance between p, and p,. We claim that
there are two integers in Y that are equal if and
only if d, , < 1. To prove the claim, note that if y,
and y; denote any two integers in Y and if
y;=Y;, then the corresponding distance between
points p; and p; is |[i—j|/(n+1)<1. On the
other hand, if all integers in Y are distinct, then
the minimum distance between any two vertices
of P is strictly greater than 1. Thus, given the
closest pair of P we can decide the element
uniqueness problem for Y in constant time. O

Remarks. (1) Notice that the vertices of the

monotone polygon in the above proof occur in:

sorted order along the x-direction. Hence, Theo-
rem 2.1 implies an (nlogn) lower bound for
the closest-pair problem even when the points are
given in sorted order from left to right. In com-
parison, the furthest pair of a sequence of n

INFORMATION PROCESSING LETTERS

27 April 1992

points that form a simple polygon can be found in
time O(n). This is because the convex hull of the
polygon can be computed in time O(n) (see e.g.
[8,12]) and the diameter of the resulting convex
polygon, determined by the furthest pair, can be
found in time O(n) (see e.g. [13]).

(2) A result similar to Theorem 2.1 is the
Q(nlog n) lower bound for constructing the De-
launay triangulation of n points sorted along the
x-direction due to Seidel [14]. Since every closest
pair in the point set forms an edge of the Delau-
nay triangulation, Theorem 2.1 can be used to
obtain the same result. However, it is unclear
whether the techniques in [14] can be modified to
establish the result of Theorem 2.1.

3. The closest neighbors problem - an upper
bound

In this section we extend the well-known O(# -
log n) upper bound for the all closest neighbors
problem for n points in the plane to the more
general setting where the »n points come in Kk <n
sets, 8, S,,...,8,. For each point p we need to
find a point in § = U, _;_,S; that is closest to p
but not in the same set as p.

We use Voronoi diagrams and point location
algorithms to solve the problem. We review the
basic properties of both and refer to [13] and [7]
for further details.

The Voronoi region of a point g in some point
set P is the set of all points x in the plane that
are closer to g than to any other point in P. The
Voronoi diagram of P, Z°(P), is the subdivision
whose regions are the Voronoi regions of the
points in P. Two points in P are said to be
Voronoi neighbors if their regions have a common
edge. Using Euler’s relation for planar graphs it
is straightforward to prove that the number of
Voronoi neighbor pairs is at most 3| P|—6 if
| P|>3. To locate a point x in Z(P) means to
determine a region of #°(P) whose closure con-
tains x. The point of P that generates this region
is a closest neighbor of x. There are data struc-
tures that allow a point to be located in time
O(log n), after O(n log n) time for preprocessing
(see e.g. [7,13D).

57

Volume 42, Number 1

Fig. 1. Voronoi diagram of points in the plane with the

domain of one set (marked with “ + ") further decomposed by

the Voronoi diagram of the other points. Note that a “+7

point can have a closest neighbor which is not a Voronoi
neighbor.

Notice that it is enough to locate every point
pES; in the Voronoi diagram of §—§;, but
constructing all k diagrams Z°(S — S;) takes much
more than O(n log n) time unless k is very small.
We thus come up with a refinement of this ap-
proach (see Fig. 1):

Step 1. Construct Z°(S), the Voronoi diagram of
S
Step 2. fori:==1to k do
compute T,={pe€S—5,|p has a
Voronoi neighbor in S,};
construct Z(T});
locate the points of §; in Z(T));
endfor.

To prove the correctness of this algorithm we
just need to show that if g&S§, is a closest
neighbor of a point p €§;, then g is Voronoi
neighbor of some point in S;. Notice however
that g is not necessarily a Voronoi neighbor of p
itself. To see that g is a Voronoi neighbor of
some point in §; compare Z(S —S;) and Z(S).
The two Voronoi diagrams agree outside %;
which we define as the closure of the union of the
regions in Z°(S) that belong to points in S,
Because g is closest neighbor of p it must be that
p lies in the closure of g’s region in Z(S —§,).
But now g generates a region outside % which

4
does not even touch #; and it also generates
some region inside W.. It follows that g’s Voronoi
region in Z°(S — ;) is disconnected. This is a
contradiction because regions of a Voronoi dia-

gram are convex and therefore connected. This

58

INFORMATION PROCESSING LETTERS

27 April 1992

implies that if g &S, is a closest neighbor of a
point p € §;, then g is Voronoi neighbor of some
point in §,.

The analysis of the algorithm is fairly straight-
forward. The number of sets 7; a point belongs to
is at most its degree in Z°(S), that is, the number
of its Voronoi neighbors. Now, the sum of de-
grees, over all points in S, is at most 6n — 12
because there are at most 3n — 6 Voronoi neigh-
bor pairs. It follows that constructing Voronoi
diagrams and locating points takes only O(x log)
time total. Constructing the sets 7, takes only
linear time once Z°(S) is built. We thus arrive at
the main result of this section.

Theorem 3.1. Given a collection of sets with a total
of n points in the plane, there is an algorithm that
takes O(nlogn) time to find for each point a
closest neighbor outside its set.

Observe that the above algorithm works in the
algebraic decision tree model because the only
difference between the RAM and the algebraic
decision tree model is the indirect addressing
capability of a RAM, and we never used indirect
addressing in our algorithm.

4. A difference between the RAM and the alge-
braic decision tree

The Q(nlogn) lower bound for the integer
element uniqueness problem in [16] implies that
there are problems whose complexity in the RAM
model differs from its complexity in the algebraic
decision tree model, integer element uniqueness
being one of them. To show this we solve the
integer element uniqueness problem in linear time
using a technique described in [1, p.71]. We write
M{i] for the memory location with address i and
assume that the n given numbers x,, x,,...,x,,
are stored in M[X + 1] through M[X + n], where
X is the largest of the x,. Fora given index i we
define pouBLE(i) =true if X+ 1<M[x;]<X+
n, Mlx,]# X +i, and M[M[x,]]=x; otherwise,
poUBLE(Z) = false. That is, pouBLe(i) is true if
and only if M[x,] points to the range of memory
locations that accommodate the integers, it does

Volume 42, Number 1

not point to M[X +i] which stores x;, but still
the memory location it points to stores a value
equal to x;. The algorithm works without memory
initialization.
=1
while i <7z + 1 and pousLE() = false do

set M{x,]=X+i;i=i+1
endwhile;
ifi<n+1

then “yes, there are two equal numbers”

else “no, all » numbers are different”
endif.

Remark. There are two unrealistic assumptions
that make the above algorithm work in time O(n):
one is that a memory location can hold an arbi-
trarily large integer, the other that there are
arbitrarily many memory locations. Together with
these assumptions indirect addressing is powerful
enough to admit a RAM program for the integer
element uniqueness problem that is faster than
the lower bound in the algebraic decision tree
model.

5. Remarks and open problems

This paper proves an (1{(nlog n) lower bound
in the algebraic decision tree model for comput-
ing a closest pair of vertices of a simple polygon
in the plane. This matches the upper bound for
the problem and thus settles a problem of Lee
and Preparata [11]. In Section 4 we point out a
difference between the RAM model and the al-
gebraic decision tree model which explains why
our lower bound argument does not apply in the
RAM model.

As mentioned in Section 2, a furthest pair of
vertices of a simple n-gon can be found in time
O(n), which is of course tight. However, to deter-
mine the complexity of finding a furthest neigh-
bor for each vertex is still an open problem; the
known bounds are (n) and O(nlogn). How-
ever, when the polygon is convex there is an O(#n)
upper bound matching the trivial lower bound,
see [2].

Another proximity problem for simple poly-
gons whose time-complexity is open is to find a

INFORMATION PROCESSING LETTERS

27 April 1992

closest pair so that the two vertices are visible
inside the polygon. A related result is the O(n -
loglog) upper bound due to [3,9,6] for finding a
shortest vertex-to-vertex connection between two
non-intersecting simple polygons so that the two
vertices are visible from each other. Their algo-
rithm can be extended to find a closest visible
vertex pair inside a simple n-gon in time
O(n log n).

Acknowledgment

The authors thank the two referees for care-
fully reading the manuscript and for suggesting
the changes that improve the readability of the
paper.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).

[2] A. Aggarwal, M. Klawe, S. Moran, P.W. Shor and R.
Wilber, Geometric applications of a matrix searching
algorithm, Algorithmica 2 (1986) 195-208.

[3] A. Aggarwal, S. Moran, P.W. Shor and S. Suri, comput-
ing the minimum visible vertex distance between two
polygons, in: Proc. Workshop on Algorithms and Data
Structures, Ottawa (1989) 115-134.

[4] M. Ben-Or, Lower bounds for algebraic decision trees,
in: Proc. 14th Ann. ACM Symp. on Theory of Computing
(1983) 80-86.

(5] J.L. Bentley and M.I. Shamos, Divide-and-conquer in
multidimensional space, in: Proc. 8th Ann. ACM Symp.
on Theory of Computing (1976) 220-230.

[6] L.P. Chew, Constrained Delaunay Triangulations, in:
Proc. 3rd Ann. ACM. Symp. on Computational Geometry
(1987) 215-222.

[7] H. Edelsbrunner, Algorithms in Combinatorial Geometry
(Springer, Heidelberg, 1987).

[8] R.L. Graham and F.F. Yao, Finding the convex hull of a
simple polygon, J. Algorithms 4 (1983) 324-331.

[9] D.T. Lee and A.K. Lin, Generalized Delaunay triangula-
tions of planar graphs, Discrete Comput. Geom. 1 (1986)
201-216.

[10] D.T. Lee and F.P. Preparata, The all nearest-neighbor
problem for convex polygons, Inform. Process. Lett. 7
(1978) 189-192.

[11] D.T. Lee and F.P. Preparata, Computational geometry —
a survey, JEEE Trans. Comput. 33 (1984) 1072-1101.

59

Volume 42, Number 1 INFORMATION PROCESSING LETTERS 27 April 1992

[12] D. McCallum and D. Avis, A linear algorithm for finding [15] ML.I. Shamos, Computational Geometry., Ph.D. Thesis,
the convex hull of a simple polygon, Inform. Process. Dept. of Computer Science, Yale University, New Haven,
Lerr. 9 (1979) 201-206. CT, 1978.

[13] F.P. Preparata and M.I. Shamos, Computational Geome- [16] A.C.-C. Yao, Lower bounds for algebraic computation
try — An Introduction (Springer, New York, 1985). trees with integer inputs, in: Proc. 30th Ann. IEEE Symp.

[14] R. Seidel, A method for proving lower bounds for certain on Foundations of Computer Science, 1989, to appear.

geometry problems, in: G.T. Toussaint, ed., Computa-
tional Geometry (North-Holland, Amsterdam, 1985) 319
334.

60

