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Abstract

Questions of chemical reactivity can often be cast as questions of molecular geometry. Com-
mon geometric models for proteins and other molecules are the space-filling diagram, the solvent
accessible surface and the molecular surface. In this paper we present a new approach to trian-
gulating the surface of a molecule under the three models, which is fast, robust, and results in
topologically correct triangulations. Our computations are based on a simplicial complex dual to
the molecule models. All proposed algorithms are parallelizable.

1. Introduction

One of the paradigms produced by the last quarter century of intense research on
molecular biology is the relevance of geometric and topological reasoning for studying
molecular phenomena. Shapes and topological structures of proteins play an important
role in their functions. Accurate description of the shapes in terms of surfaces and
volumes of proteins have led to rational approaches to the study of protein folding,
protein—protein and protein-ligand interactions. Proteins are modeled geometrically, and
questions of chemical reactivity are recast as questions of connectivity and fit [12, 13].
Possibly the most popular geometric representation invoked to rationalize the behavior
of proteins is the space filling model. Sample applications include the attempt to link
the driving force for protein folding to solvent accessible surface area, and the reduction
of affinity for ligand protein binding to the mechanical fit of a ligand with a protein
receptor site.

Models for molecules. Common geometric representations for proteins and other
molecules are the space-filling, the solvent-accessible, and the molecular surface mod-
els. The space filling or SF model, introduced by Lee and Richards [12], interprets a
protein as the union of possibly overlapping spherical balls in R®. Each ball represents
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an atom and its size is determined by the van der Waals radius. The solvent accessible
or SA model, was introduced to study the interaction between a protein and a solvent
modeled as a spherical ball [13]. The solvent is deflated to a point and the spherical
balls representing atoms in the protein are inflated by the solvent radius. Geometrically,
there is little difference between the SF and SA models: both are unions of spherical
balls albeit of different sizes. The molecular surface or MS model is obtained by
rolling the sphere representing the solvent over the SF model [13].

Surface triangulations. The surface of a molecule is useful in studying structure of
and interaction between proteins and other molecules. A particularly important problem
in this context is the protein-substrate docking problem, A topologically correct trian-
gulation of a protein surface has several applications: packing defects in proteins may
be identified, water molecules may be located relative to the protein, shape and location
of cavities can be computed, mathematical functions defined on the surface may be con-
toured, and local optima of such functions may be identified. Visual inspection of three-
dimensional molecular surfaces is useful in identifying binding sites and in drug design
where molecules are designed to fit a receptor or active site. Representation of the sur-
face by a set of triangles is faster and more efficient than other representation schemes.
Previous work on surface triangulations including [4, 14, 15] is rather ad hoc in nature,
some of the methods are numerically instable, and the resulting triangulations are not
always topologically correct. Connolly [4] describes a scheme where the triangulation is
computed from a curved surface made up of pieces of spheres and tori that join at arcs
of circles. The curved surface is calculated from atomic coordinates by means of an an-
alytical molecular surface algorithm [3]. Each face of the curved surface is defined by
a set of cycles of edges that form its boundary. The basic idea behind the triangulation
algorithm is recursive subdivision. Each face is divided into smaller faces recursively
till all the faces have been replaced by a collection of triangles, each smaller than a
specified size. Varshney et al. [14] present a parallel algorithm for computing molec-
ular surfaces in time O(k logk) over n processors, where k is the average number of
neighbors of an atom and # is the number of atoms. They compute intersection patterns
for each atom in parallel and from this information generate a tesselation of the molec-
ular surface. Zauhar and Morgan [15] also start with a description of the curved sur-
face which they generate from atomic coordinates. Next, they generate points on each
face and triangulate the face in an incremental fashion starting from a boundary edge.

In this paper we present a different approach to computing a triangulation of the
surface of a molecule under the SF, the SA, and the MS models. Our computations
are based on a simplicial complex dual to the sphere model of the molecule, see [10].
The use of a simulated perturbation scheme eliminates all degeneracies and allows
us to assume the input is in general position. The geometric integrity of this complex
guarantees the topological correctness of the surface triangulation. We also make use of
a new approach to tesselating sphere patches which makes our triangulation particularly
suitable for visualization.

Outline. Section 2 introduces basic geometric concepts, including a simplicial com-
plex dual to the above molecule models. Section 3 describes the details of the
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relationship between the models and the complex. Section 4 shows how to construct a
triangulation of the boundary of an SF or SA model. Section 5 extends these results
to MS models. Section 6 discusses the sequential and parallel implementations and
addresses robustness problems. Section 7 concludes the paper with a brief discussion
of its main contributions.

2. Spheres and simplices

This section formally defines the dual complex of a union of spherical balls in three-
dimensional real space R*. An example of such a union of balls is the space filling
model of a molecule: each atom is represented by a ball whose size is determined by
its van der Waals radius. Different radii are needed for different types of atoms.

Basic definitions. |yz| is the Euclidean distance between two points y,z € R?. A
(spherical) ball or 3-ball in R’ is a set of the form

b={xeR| |xz| <o};

z € B is the center and ¢ > 0 is the radius of b. 2-balls, 1-balls, and 0-balls are
obtained by intersecting a 3-ball with planes, lines, and points, respectively, containing
its center. A (k — 1)-sphere is the boundary of a k-ball. It follows every 2-ball is a
disk, every 1-ball is a line segment, every 0-ball is a point, every 2-sphere is a sphere,
every l-sphere is a circle, and every O-sphere is a pair of points.

A k-simplex, o, is the convex hull of k+1 affinely independent points. The dimension
of o is dime = k. In R®, at most 4 points can be affinely independent, so we only
have 3-, 2-, 1-, and O-simplices referred to as tetrahedra, triangles, edges, and vertices,
respectively. An /-face of ¢ is a simplex defined by # + 1 < k + 1 vertices of a.

Simplicial complexes. An abstract simplicial complex is a finite system .o/ of sets
so X € o/ and Y CX implies ¥ € .o/. Since 0 is subset of every set it is an el-
ement of every abstract simplicial complex. Define card X to be the cardinality of
the set X. The dimension of o/ is dim.o/ = maxyecy{cardX — 1} and the vertex
set of o/ is Verts/ = Us/. A 3-dimensional geometric picture of .7 can be ob-
tained through a map ¢ : Vert./ — R*: each element is mapped to a point and each
set X € o/ is mapped to the convex hull of the points in e(X). The set of sim-
plices, {conve(X) | X € o/}, is a geometric realization of of if X,Y € o implies
conve(X)Nconve(Y) =conve(X NY). A (geometric) simplicial complex, A, is the
geometric realization of an abstract simplicial complex. Its dimension is the same as
the dimension of the corresponding abstract simplicial complex. The underlying space
of A is [A'| = Ugero. A subcomplex of A is a simplicial complex & C A,

Large abstract and geometric simplicial complexes can be generated using the nerve
operation. The nerve of a collection S of sets is

NrvS={XCS| ()X #0}
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Fig. 1. A surface triangulation for the union of 4 spherical balls. It consists of 4 patches separated by 6 arcs
and 4 corners.

Fig. 2. Decomposition of a union of disks showing the cells ;.

The nerve is an abstract simplicial complex because X € NrvS and ¥ C X implies
Y € Nrv §.

Let B be a finite set of 3-balls in R*. A triangulation of the boundary of UB is a
two-dimensional simplicial complex 7 whose underlying space is homeomorphic to
the boundary, Sur B = bd (UB), see Fig. 1. Our interest is in computing 7. The data
structure representing .~ stores triangles and pointers between adjacent triangles.

Voronoi decomposition. We assume the balls in B are in general position. Among
other things, this implies the centers of every k + 1<4 3-balls are affinely independent
and thus define a proper k-simplex. An algorithmic justification for this assumption
can be found in [9]. Consider a 3-ball b with center z € R and radius g, and a point
x € R®. The weighted distance of x from b is my(x) = |xz|* — g% The (weighted)
Voronoi cell of b € B is

Vy = {x € R? | my(x) < m(x), Ve € B}.

V = {V, | b € B} is the set of Voronoi cells. The Voronoi cells decompose the
union of balls, UB, into cells with disjoint interiors. Some of the cells share parts of
their boundary, which will be essential in defining a simplicial complex reflecting the
intersection pattern. For each b € B consider the intersection of its Voronoi cell with
UB, Uy = ¥V NUB, and note that Uy = F, N b. Since both V, and b are convex it
follows U} is also convex, see Fig. 2.
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Fig. 4. The Delaunay complex of the disk union in Fig. 2.

Dual complex. The simplicial complex mentioned in the abstract and the introduction
is constructed by taking the nerve of the above decomposition of UB. Let U = {U}, |
b € B}. The dual complex of UB is

Cpx B = {conve(X) | X € Nrv U},

where £(Uy) is the center of b, see Fig. 3. Cpx B is indeed a simplicial complex. To
see this consider

Del B = {conve(X) | X € Nrv V},

the (weighted) Delaunay complex of B, see e.g. [8]. It is known and not very difficult to
prove that the simplices in Del B intersect properly and thus form a simplicial complex.
Cpx B is a subset of Del B, see Fig. 4, which implies it is also a simplicial complex.

The dual shape of UB is the underlying space of the dual complex, |CpxB|. A
Jace of |Cpx B| is a simplex o € Cpx B that belongs to the boundary of |[Cpx B|. An
important result proved in [8] is the following.

(1) UB and |Cpx B| are homotopy equivalent, and more specifically, |Cpx B| is a
deformation retract of UB.

As a consequence, |Cpx B| € UB and every cavity of UB is contained in the corre-
sponding cavity of |Cpx B|. This turns out to be useful in the detection and construction
of cavities in proteins.

3. Links and patches

There is a close relationship between the face structure on the surface of the ball
union and the face structure of the dual shape. This section describes this relationship
in appropriate detail.
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Faces and face structure. The boundary of UB consists of spheres of various di-
mensions. Denote the sphere bounding a ball b by 5 = bd (b) and the clipped sphere
by b = VyNb. b is the spherical part of the boundary of the convex cell U, € U.
The components of b are 2-faces of UB. Lower-dimensional faces can be defined by
considering pair and triple intersections of clipped spheres. By general position as-
sumption, the intersection of 2 clipped spheres is either empty or 1-dimensional, and
the intersection of 3 clipped spheres is either empty or consists of 1 or 2 points. The
components of the intersection are 1-faces and 0-faces of UB. We refer to a 2-, 1-,
0-face of UB as a patch, an arc, a corner. Each patch is bounded by one or more
cycles of arcs, unless it is an entire sphere and without boundary. Each arc is bounded
by 2 corners, unless its is an entire circle and without boundary. The following result
can be found in [8].

(2) A simplex ¢ = conve(X), X CU, is a face of |[Cpx B| iff the intersection of the
corresponding clipped spheres is non-empty:

() 5+0.

UpeX

In other words, if we know the faces of |[Cpx B| we also know which 2-, 1-, and
O-spheres defined by balls in B contribute faces to the surface, Sur B = bd (UB). The
faces themselves, and their incidence structure, are determined by certain subcomplexes
of Cpx B. This is explained in the next two paragraphs.

Joins, stars, and links. We denote the edge connecting two points p,q € R® by pg.
The join of two sets P,Q CR? is

Px0= ] pa

pEP.gEQ

It is defined if PNQ = 0 and any two edges pq and p'q’, with p, p’ € P and ¢,4' € O,
are either disjoint or meet only at a common endpoint. By definition, P+ ) = ) % P = P.
The star of a simplex ¢ € X" is Sto = {t € A | ¢ Ct}. The link of 7 is

Lko={t€ X |ox1¢€Sta}.

Surface contributions. Consider a 3-ball, b € B, its bounding 2-sphere, b, its contri-
bution to the surface, b, and the part buried inside the ball union,

cl(b-b)y=bn|J(B - {p}).

The buried part of b is the union of finitely many circular caps on a 2-sphere, namely
the union of all caps in C = {bNc | c € B— {b}}. UC is similar to UB, only one
dimension lower and on a 2-sphere rather than in a plane. It is therefore not surprising
there is a simplicial complex, %, dual to UC. This complex is the link of u = e(Uj),
which is a vertex in Cpx B. & is two-dimensional and it is natural and appropriate to
define its boundary relative to a 2-dimensional surface containing £. In general, the
underlying space of the link of « in Del B is such a surface.
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Fig. 5. The link of vertex x is {0,a,b,c.d,¢, f,g,cd, fg}. The link of edge xc is {0,d}.

Only if u lies on the boundary of |Del B] = conve(U) we need to artificially add
simplices to complete Del B to a triangulation of the 3-sphere. Assuming such a com-
pletion, a face of |.#| is a simplex in % that belongs to the relative boundary of |Z].
The following results similar to (1) and (2) can be found in [8].

(3) UC and |&| are homotopy equivalent.

(4) A simplex ¢ = conve(X), Uy, € X CU, is a face of || iff the intersection of
the corresponding clipped circles is non-empty:

(N @Enb)=bn () ¢#0.

U.EX U.ex
Results (3) and (4) can be extended to the boundary contribution of a 1-sphere and
the link of an edge, and to the boundary contribution of a O-sphere and the link of a
triangle. Consider two 3-balls, b,d € B, the 1-sphere bd = bNd, its contribution to
the surface, bd, and the part buried inside the ball union,

cl(bd — bd) = bd N | J (B - {b.d}).

The buried part of bd is the union of finitely many circular arcs on a 1-sphere, namely
the union of all arcs in F = {bdNc | c € B—{b,d}}. The simplicial complex, %, dual
to UF is the link of the edge uv, u = &(U,) and v = &(U;). We can similarly relate
the boundary contribution of a 0-sphere to the link of a triangle. Section 4 presents the
algorithm recovering the patches, arcs, and corners of UB from the links of vertices,
edges, and triangles in Cpx B.

4, SF and SA models

This section discusses the surface triangulation algorithm for the union of a set of
balls in further detail. It is instructive to first study the 2-dimensional case, where we
consider the union of disks in R?. The problem in R? is similar to tracing the boundary
of the surface contribution of a single 2-sphere in R>.

Union of disks. Let D be a finite set of 2-balls or disks in R?, see Fig. 2. The union,
UD, consists of one or more components, and each component is bounded by one or
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Fig. 6. The boundary contribution of a circle and the corresponding star and link. Non-shaded triangles and
broken edges indicate simplices of DelD that do not belong to the dual complex.

more cycles. More globally, the boundary of the union, SurD = bd (UD), consists of
finitely many cycles, and each cycle is a cyclic sequence of circular arcs. A cycle can
consist of as few as one arc, in which case the arc is a complete circle. If there are
two or more arcs then each arc is bounded by 2 corners, which it shares with the
adjacent arcs in the cycle.

The two-dimensional specialization of the surface triangulation problem in R asks
for approximating each arc by a chain of line segments. A triangulation of SurD
is a one-dimensional simplicial complex whose underlying space is homeomorphic to
Sur D. It suffices to construct a chain per arc and to connect the chains at their begin
and end points to form appropriate cycles.

Consider a disk, d € D, its bounding circle, d = bd(d), its contribution to the
boundary, d= V;Nd, and the part buried inside the union,

dd-d)y=dn| JD—{d}).

The buried part is the union of the one-dimensional caps in F = {dNe | e € D—{d}}.
It is possible a disk e completely contains d, in which case d Ne = d and d = 0.
Symmetrically, if d contains e then dNe = . In all other cases, a cap dNe is bounded
by the two intersection points of d and &.

Traversing a link. We can trace the components of d by traversing the link % =
Lku of the vertex u = &(¥;) in Del D, see Fig. 6. For convenience assume Del D is
completed to a triangulation of a 2-sphere so we do not need to distinguish between
the general case, when u belongs to the interior of |Del D], and the other case, when
it belongs to the boundary of |Del D|. With this assumption, % is always a cycle of
vertices and edges. For a vertex v € %, let next(v) be the successor vertex in a
counterclockwise order about u. Let left(u, v) be the triangle in Del D to the left of the
edge uv directed from u to v. We assume the data structure for Del D supports functions
returning the next vertex in a link and the triangle to the left of a directed edge in
constant time. The following algorithm computes polygonal chains approximating the
contribution of d to SurD. It assumes d # 0, which is the case iff u is a vertex of
|Cpx D|. Let vy be an arbitrary vertex of & that is also a vertex of |[Cpx D|. Assume also
that the edge connecting vy with vy = next(vg) does not belong to %, or equivalently,
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Fig. 7. Examples of patches. The second patch has a hole.

left(vov) & Cpx D.

a = vy
loop
while left(u,a) € Cpx D do a := next(a) endwhile;
b := next(a);
while b € Cpx D do b := next(b) endwhile;
chain(u, a, b);
if a =1y or b =1y then exit endif:
gii=:
forever.

chain(u,a,b) computes a polygonal approximation to the arc on circle d that begins
at the counterclockwise second intersection point of d and 4 and ends at the counter-
clockwise first intersection point of d and b. In the first while loop, if the triangle to
the left of ua belongs to Cpx D we advance a, which is equivalent to erasing another
buried piece of d. In the second while loop, if b is not in the dual complex of UD
we advance b, which is equivalent to adding another piece of d to d.

Union of balls. We return to three dimensions. B is a finite set of 3-balls in R3, as
usual. The surface, Sur B = bd (UB), is the union of patches, and to triangulate Sur B
we approximate each patch by a homeomorphic two-dimensional simplicial complex.
This amounts to selecting points on each patch and connecting them with edges and
triangles to form a connected surface piece with boundary, see Fig. 7. Note the patch is
not necessarily simply connected. After triangulating all patches we glue them together
at matching boundary arcs.

Let b € B be a 3-ball and consider b, b, and UC as in section 3. It was mentioned ear-
lier that b, the contribution of b to Sur B, is the complement of a union of circular caps,
UC. Tts boundary consists of one or more cycles of circular arcs, and these cycles are
computed and approximated as described in the two-dimensional discussion above using
the link of a vertex in lieu of the dual two-dimensional complex. We shall refer to the
edges approximating the circular arcs as arc edges and their end points as arc points.
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Details of a technique for generating points on a sphere can be found in [1], where
convex polyhedral approximations of spheres and sphere patches are studied. Starting
with a random distribution of a finite set of points on a sphere, a good approximation
is constructed during an iterative process that moves points in an attempt to maximize
the surface area of the convex hull. This scheme is referred to as the area maximization
heuristic (amh). See [1] for details about the quality of the point distribution generated
by amh and the computational time.

We precompute and store a point distribution on the unit sphere using amh. These
points are translated so they now lic on b. The arc points are added to this point set.
Next, a (possibly non-convex) polytope P is constructed on this point set. The attempt
is to get a convex polytope but if convexity contradicts that all arc edges belong to
the boundary, then convexity is sacrificed. P has the property that all arc edges appear
on the boundary and P exhibits non-convexity only in the vicinity of the arc edges. P
is referred to as the constrained convex hull, see [1].

Once we have constructed P, we can erase parts of it not needed in the approximation
of b. The parts to be erased are bounded by cycles of arc edges. We start a depth
first traversal with a triangle in P that we know is used in the approximation of b
and hence needs to be reported. During the search, whenever we cross an arc edge,
we either leave or enter b. We keep track of this parity information to appropriately
accept and reject triangles of P.

5. MS models

The molecular surface or MS model defined by Richards [13] modifies the SF model
using the concept of a rolling sphere representing the solvent. Intuitively, cusps and
crevices are filled up to the extent they cannot be reached by the rolling sphere touch-
ing but not overlapping the SF model. We first define the resulting surface and then
show how the triangulation of a corresponding SA surface can be modified to give a
triangulation of the molecular surface.

Rolling sphere definition. Let UB be the SF model of the considered molecule, and
let R be the rolling sphere representing the solvent. Assuming general position, R can
touch Sur B in only 1, 2, or 3 points, in the second case the 2 points cannot be diamet-
rically opposite, and in the third case the 3 points cannot lie on a great-circle of R. The
center p of R is used to refer to a particular position R, of the rolling sphere. Only po-
sitions where the rolling sphere touches Sur B but does not overlap UB are considered.

An important definition is the geodesic hull of the contact points, denoted gd p. If
R, touches Sur B in only 1 point, x, then gd p = x. If R, touches Sur B in 2 points, x
and y, then gd p is the geodesic on R connecting x and y; it is the shorter of the two
connecting great-circle arcs. If R, touches SurB in 3 points, x, ,z, then gd p is the
smaller of the two spherical triangles on R bounded by the geodesics connecting x and
y, y and z, and z and x. The molecular surface, Mol B, is the union of all geodesic
hulls over all positions of R touching Sur B.



N. Akkiraju, H. Edelsbrunner | Discrete Applied Mathematics 71 (1996) 5-22 15

Fig. 8. The molecular surface of the union of same 4 balls as in Fig. 1. It consists of 4 convex patches
separated by 6 saddles and 4 concave patches.

Following Connolly [3, 4] we differentiate regions on Mol B by the number of contact
points generating geodesic hulls, see Fig. 8. The contact region is the union of gd p
over all positions with only 1 contact point. The reentrant region is the union of
gd p over all positions with 2 or 3 contact points. The components of the contact
region are referred to as convex patches. The reentrant region consists of saddles, that
are components of the union of geodesics connecting pairs of contact points, and of
concave patches, that are spherical triangles on the rolling sphere generated by triple
contacts. The convex patches, saddles, and concave patches meet at their bounding arcs
forming the molecular surface.

Self-intersections. The above definition of Mol B as the union of geodesics allows for
possible self-intersections. Indeed, already 2 balls generate a self-intersecting molecular
surface if the gap between them is only slightly smaller than the diameter of the rolling
sphere.

In the molecular surface literature, these self-intersections are commonly referred
to as degeneracies, and they are removed by clipping Mol B at the curves of self-
intersection [4]. We take a different viewpoint tolerating self-intersections: Mol B is a
genuine surface, only its embedding in R* is not intersection-free. This interpretation
has the advantage of a direct correspondence between the patches of Mol B and the
faces of the SA model defined by the solvent sphere, R.

Correspondence to SA surface. Recall the definition of MolB as the union of
geodesic hulls. Now, instead of taking the union of the gd p take the union of the
points p. The result is the surface of another ball union, UB,. « is the radius of the
rolling sphere, and for each ball b with radius ¢ in B the concentric ball b, with radius
¢ + o belongs to B,.

Each convex patch of Mol B corresponds to a patch of SurB,. To be spec1ﬁc, con-
sider a ball b, € B, and its contribution b, to Sur B,. The components of 5, are patches
of SurB,. The convex patches of MolB on b are obtained by shrinking b, towards
the shared center until the radius is the same as that of 5. More globally, the contact
surface of Mol B is obtained by simultaneously shrinking all patches of Sur B, each
patch towards the center of its own sphere, see Fig. 9.
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Fig. 9. Gaps between (convex) patches opening up during the shrinking process.

Each saddle of Mol B corresponds to an arc of SurB,. Suppose the arc belongs to
5c, M ¢,. A copy of the arc shrinks towards the center of &, and another copy shrinks
towards the center of ¢. The two shrunk copies form two boundary arcs of the saddle
bridging the opening gap, see Fig. 9. These two boundary arcs connect the saddle to
convex patches on b and on ¢ The other two boundary arcs connect the saddle to
concave patches corresponding to the comers limiting the arc.

Let p be a comer of SurB,, and let d € B so p € b, N &, Nd, A copy of
p shrinks towards the center of b, another towards the center of ¢, and a third to-
wards the center of d. At the end of the shrinking process, the three copies coincide
with the contact points x, y,z of R at position p, see figure 9. The geodesic hull of
x, ¥,z is the concave patch of Mol B that corresponds to the corner p. The 3 bound-
ary arcs connect the concave patch to 3 saddles, one for each arc of SurB, ending
at p.

Triangulating the molecular surface. The correspondence between Mol B and Sur B,
suggests we derive a triangulation of the former from the triangulation of the latter.

Step 1: Triangulate Sur B,.

Step 2: Shrink the triangulated patches of Sur B, towards their respective centers.

Step 3: Triangulate the saddles and the concave patches used to bridge the opening

gaps.
Step 1 is explained in Section 4, and step 2 is straightforward. Step 3 needs some
clarification. Each saddle is the homeomorphic image of a rectangle in R2. It is easy
to triangulate it choosing a k-by-/ regular grid of points. Edges are drawn in three
directions: vertical, horizontal, and diagonal. Note that the adjacent convex patches are
already triangulated, which implies / and the # + £ points along two opposite sides of
the rectangle are prescribed. Each of the other two sides carries & points, and k can be
chosen suitable for the length of these sides, or rather the length of their homeomorphic
images. The vertices of the rectangle triangulation are mapped to points on the saddle
using the homeomorphism mentioned before, and the edges and triangles are added
connecting these points. The result is a triangulating approximation of the saddle, see
Fig. 10.

Finally, the concave patches need to be triangulated. We use the same method as for
the (convex) patches of Sur B,, see [1]. The chains of line segments approximating the
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Fig. 10. Saddle surface.

3 boundary arcs of a concave patch are fixed by the triangulations of the 3 adjacent
saddles.

6. Implementation Issues

The implementation of the algorithms described in sections 4 and 5 is by no means
straightforward. Some of the steps require sophisticated data structures to achieve satis-
factory performance, others pose challenging robustness questions. This section reviews
the overall algorithm and discusses some of the more delicate implementation issues.

Overall algorithm. The triangulation of the molecular surface, Mol B, is based on the
triangulation of Sur B,, which in turn relies on the availability of Del B, and Cpx B,.
We assume the input consists of a finite set B of 3-balls in R, each specified by its
center and radius, and by the solvent radius o > 0.

Step C1: Inflate the radius of each ball in B by o; the result is B,.

Step C2: Construct Del B,.

Step C3: Construct Cpx B, by selecting the appropriate simplices in Del B,.

Step C1 is straightforward. Step C2 is quite demanding, in particular if robustness
and performance are stressed. We use the publically available Delaunay triangulation
software discussed in [10, 2]. It is based on integer or real fixed-point coordinates
and uses exact arithmetic to guarantee a geometrically and topologically consistent
representation of Del B,. The use of a simulated perturbation admits the assumption
of general position and unwanted effects such as zero-volume tetrahedra are removed
in a post-processing step. The output is a triangle-based data structure similar to the
edge-facet data structure described in [7]. We refer to this as the triangle-edge data
structure [10]. The atomic unit of the triangle-edge data structure is the triangle-edge
pair @ = (0,i) with 0 <i < 5. It identifies 6 versions of the triangle ¢, one for each
of its six directed edges. Each triangle has two edge rings associated with it, one
traversing the edges in a clockwise order and the other in a counter clockwise order.
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Similarly, each edge defines two triangle rings traversing the incident triangles in the
two opposite orders. The triangle-edge data structure allows for traversing the link of
an edge or a vertex in constant time per step. The algorithm used to construct the
Delaunay complex takes time and storage O(n?) in the worst case where n = |B|.
Experimental evidence suggests that it performs significantly better for most point sets,
especially proteins and other molecules.

The software also includes a program that builds a data structure storing a sequence
of Delaunay simplices that contains Cpx B, as a subcomplex of Del B,. This program
takes time O(m log m) where m is the number of simplices in Del B,, which is quadratic
in the worst case and seemingly linear in most practical cases. We generate Cpx B, by
reporting all simplices stored up to a certain index in the sequence. For further details
on how this sequence and the index are computed, see [10].

Step S1: Traverse links of edges in Del B, to compute and connect approximations
to arcs of Sur B,.

Step S52: Traverse links of vertices in Del B, to compute and connect triangulating
approximations to patches of Sur B,.

The time taken for link traversal in steps S1 and S2 is bounded by the number of
simplices in Del B,. The time taken for generating approximations of arcs and patches
depends on parameters controlling the density of the point distribution on arcs and
spheres. The program provides the user the ability to specify these parameters at run
time. If the distribution is very dense, then the patch computation phase will take longer
and vice versa.

Steps S1 and S2 pose serious robustness problems discussed below. Step S2 com-
pletes the triangulation of the solvent accessible model, UB,. The only change necessary
to compute a triangulation of the space filling model, UB, is the omission of step C1
and the substitution of B for B, in steps €2, C3, S1, and S2.

Step M1: Shrink the patches of Sur B, to obtain the convex patches of Mol B.

Step M2: Compute triangulating approximations of all saddles and concave patches
and add them to bridge the gaps between convex patches.

Step M2 completes the triangulation of the molecular surface. Each component is
an orientable surface represented by a triangle-based data structure similar to the quad-
edge structure described in [11]. Each element in the triangulation stores the three
end points of the triangle and three pointers to neighboring triangles. It admits local
navigation in constant time per step through explicitly storing adjacency information
among triangles. This information effectively glues the triangles along shared edges
and thus triangulated patches along shared boundary arcs. Adjacencies are computed
in constant time per triangle using radix sort on the set of edges. The time complexity
of building the triangulation is linear in the size of the triangulation.

Robustness. Our software for patch computation does not perform any numerical
computations in the sense of using floating-point numbers and arithmetic. Still, we
run into similar robustness problems resulting from inconsistency between different
representations; the Delaunay complex, Del B,, and the triangulated surface patches. To
explain we need more details about the triangulation algorithm in steps Si and 3S2.
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To approximate a circular arc in step S1 we pick points on the arc, or rather
near the arc because a fixed number of bits per coordinate may allow only a very
small number of points exactly on the arc, possibly no point at all. The same ap-
plies to patches in step S2. Observe this remains true for floating-point represen-
tations of coordinates although one tends to forget real numbers in the mathemati-
cal sense are an idealization of the actual grossly limited situation. The apparently
minor distinction between points on and points near an arc or patch makes all the
difference.

Consider, for example, the computation of the patches contributed by a ball . The
triangulation is computed by taking the constrained convex hull and then selecting an
appropriate collection of triangles from the convex hull boundary. Owing to numerical
inaccuracies, it may not be possible to force all the arc edges to appear on the bound-
ary, although ideally this should not happen. Such a missing arc edge is part of the
approximation of a boundary arc. The same edge is also used in the triangulation of
the adjacent patch, the one sharing the arc. If the edge is dropped in one triangulation
and not the other, it will be impossible to glue the two triangulations along shared
arcs.

In a way, the problem posed by two inconsistent data structures mirrors the common
difficulties in writing robust geometric software based on floating-point computation.
In the case at hand we deal with the inconsistency by putting all our trust on the
data structure for Del B, and forcing the surface triangulations to conform. This would
involve perturbing the points on the boundary of a sphere, if necessary, to make sure all
arc edges appear on the convex hull boundary. On occasions this implies the necessity
to sacrifice the geometric integrity of the surface for the topological correctness. Again
the interpretation of a proper surface with slightly imperfect embedding in R® seems
appropriate. For an exhaustive analysis of such problem cases and possible ways to
handle them, see [1].

Correctness of the triangulation. We generate a collection of closed surfaces, each
separating a component of CpxB, from a void or the outside. The total number of
surfaces is the number of components plus the number of voids of Cpx B,. To see this
assign a surface to the incident component if it is enclosed by the surface, and assign
it to the incident void, otherwise. Let p;,e; and # denote the number of points, edges
and triangles of the ith surface. The Euler characteristic of a closed surface with genus
g is 2 — 2g. This implies

p;-—eg-+r,-=2—2g;-,

where g; is the genus of the ith surface. Since the number of edges is e; = 31;/2 we
have #; = 2p; — 4 4 4g;. The genus of a surface for a component of Cpx B, that has
no voids is the same as the first betti number of the component, ;. If the component
has voids, then B, is the sum of the genuses of the surfaces for this component. We
can compute how many voids and components there are in total and we can sum the
individual relations. See [6] for a discussion on betti numbers and on how to compute
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the number of voids and components. Summing over all the & components and / voids
of CpxB,, i=1,2,...k+ I, we get

t=> "4

= "2pi—4+4g)

=2p—4k+D+4) g
i

The number of components is k = fy, the number of voids is [ = f, and the sum of
genuses is ) . g; = B;. Therefore, we have

t=2p—4fo— P+ p)

where ¢ and p are the total number of triangles and points in the triangulation. The
above equation is necessary though not sufficient for the topological consistency of the
triangulation. We use it as a simple test for evidence that the collection of points, edges
and triangles generated by our algorithm is indeed a triangulation consistent with the
dual complex model of the molecule. We also test whether the set of triangles indeed
form a 2-manifold (collection of closed surfaces). A necessary and sufficient condition
for a 2-manifold is (i) every edge belongs to exactly two triangles, and (ii) the link
of every point is a single cycle of edges.

Parallelization. Except for step C2, all computations can be parallelized in a fairly
straightforward manner. Once Del B, is available, each further step can be executed
in parallel by distributing simplices bounding |Cpx B,| to the available processors in
about equal numbers. Triangulations of convex patches are independent for each vertex,
triangulations of arcs and saddles are independently for each edge, and triangulations
of concave patches are independently for each triangle of |Cpx B,|. Note, however,
that arcs are to be approximated before patches can be triangulated, patches are to
be shrunk before saddles can be triangulated, and saddles are to be complete before
concave patches can be triangulated.

Software described in [2] is used for steps C2 and C3. The first author of this paper
implemented steps S1, S2, M1, and M2 on an SGI challenge system with 12 processors.
Table 1 illustrates the experimental performance. The time it takes to compute a surface
triangulation from the Delaunay complex is measured in seconds. Constructing the De-
launay complex is considered a preprocessing step and is not included in the statistics.
The topological correctness of the triangulation is checked in a post-processing step,
and the amount of time for checking is also not included in the statistics. The time
complexity of the parallel algorithm, assuming we have already precomputed Del B,
and |Cpx B, is O(k) over n processors where k is the average number of simplices
in the link of a vertex and n = |B|.
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Table 1

Timing results for triangulating the surfaces of proteins under the
SA and the MS models using 4, 8, and 12 processors of an SGI
challenge system. The proteins are gramicidin (G), trypsin (T),
myoglobin (M), ribonuclease mutant (R), bactereorhodopsin (B),
and hemoglobin thionville (H). The probe radius is 1.2 A in all
cases. [n the case of the SA model, the time for steps S1 and
52 is measured. In the case of the MS model, the time for steps
51, 82, M1 and M2 is measured

No. of No. of Time in seconds
atoms Model  triangles 4p 8p 12 p

SA 12784 212 1.32 1.17
G 316 MS 35544 2.38 2.85 1.49
SA 25944 4.46 2.96 2.49
T 909  MS 74064 5.50 4.28 3.55
SA 43622 7.81 5.85 5.34
M 1381  MS 119002 9.45 7.49 6.72
SA 43 898 7.88 5.08 4.37
R 1815 MS 125570 9.62 6.40 6.05
SA 60202 11.22 7.59 6.98
B 3726 MS 175786 14.40 9.60 9.00
SA 201208 4933 3191 2524
H 9234 MS 586752 5558 3636 31.35

7. Discussion

This paper describes algorithms for triangulating the surface of a molecule under the
space filling (SF), solvent accessible (SA), and the molecular surface (MS) models.
The computations are based on the Delaunay complex of the spherical balls representing
atoms of the molecule. The generated triangulation is guaranteed to be topologically
correct and can be used for further processing, such as the display of cavities and
the computation of electro-static charges, see [15]. Other triangulation schemes have
the drawback that they cannot correctly handle the reentrant parts of the surface. The
triangulation generated by our algorithm can be used to accurately display the molecular
surface to the required level of detail.

All algorithms are implemented, and the crucial steps are available on a parallel-
processor architecture. The resulting software is used to display all geometric concepts
described in this paper in the cave virtual reality environment [5].
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